

 1

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for

public release; distribution unlimited.

Proceedings of the ASME 2018 International Design Engineering Technical Conferences and

Computers and Information in Engineering Conference
IDETC2018

August 26-29, 2018, Quebec City, Quebec, Canada

DETC2018-85109

On Algorithms and Heuristics for Constrained Least-Squares Fitting of
Circles and Spheres to Support Standards

Craig M. Shakarji
Physical Measurement Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899, U.S.A.

craig.shakarji@nist.gov

Vijay Srinivasan
Engineering Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899, U.S.A.

vijay.srinivasan@nist.gov

Abstract
Constrained least-squares fitting has gained considerable

popularity among national and international standards

committees as the default method for establishing datums on

manufactured parts. This has resulted in the emergence of several

interesting and urgent problems in computational coordinate

metrology. Among them is the problem of fitting inscribing and

circumscribing circles (in two-dimensions) and spheres (in three-

dimensions) using constrained least-squares criterion to a set of

points that are usually described as a ‘point-cloud.’ This paper

builds on earlier theoretical work, and provides practical

algorithms and heuristics to compute such circles and spheres.

Representative codes that implement these algorithms and

heuristics are also given to encourage industrial use and rapid

adoption of the emerging standards.

1. Introduction
 Recent years have seen the emergence of constrained least-

squares as the preferred criterion for establishing digital datums

in ASME and ISO (International Organization for

Standardization) standards committees [1]. There is also a

nascent interest in applying constrained least-squares fitting for

tolerancing purposes beyond datums. Unconstrained least-

squares fitting has been used in digital metrology for decades,

and algorithms have been published to implement them [2-5].

Now there is industrial demand for constrained least-squares

fitting algorithms and guidance for their implementations.

An algorithm must theoretically guarantee the correct

solution to a problem, but it may not be ultra-efficient in

execution time or memory space. On the other hand, heuristics

may find the correct solution to the problem, but they cannot

theoretically guarantee the correctness. Heuristics are often

simpler to implement and they may compute quickly.

The general problem of constrained least-squares fitting has

attracted the attention of several researchers in several domains

[6-8]. In the field of computational coordinate metrology,

preliminary algorithms for constrained least-squares fitting of

planes, parallel planes, and intersecting planes for establishing

digital datums have been published only recently [9-11], and

these algorithms have been implemented in commercial

software. This paper builds on recent theoretical results [12] for

constrained least-squares fitting of circles and sphere, and

provides algorithms for computing them. It also provides

heuristics to compute such circles and spheres. Representative

codes are provided to implement these algorithms and heuristics.

These algorithms, heuristics, and codes are the major

contributions of this paper.

The rest of the paper is organized as follows. Section 2

analyzes the nature of the optimization problem. Algorithms to

compute the global optimum solution are provided in Section 3,

along with codes to implement one of these algorithms. Section

4 provides some heuristics and codes to compute such circles and

spheres. Opportunities for improvements and extensions are

discussed in Section 5. Finally, Section 6 summarizes the results

of the paper and offers some directions for future research and

development.

2. Nature of the Optimization Problem
 Consider a set of n points {𝒑𝟏, … , 𝒑𝒏} in a plane (for fitting

a circle) or in space (for fitting a sphere). These are the input

points for the optimization problems. Let c be the center and 𝒓𝒄

be the radius of a circle or sphere of interest. Also let 𝒓𝒊 be the

distance between c and 𝒑𝒊. Figure 1 illustrates these notations in

mailto:craig.shakarji@nist.gov

 2

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for

public release; distribution unlimited.

a plane involving a circle. A similar figure can be imagined for

points in space involving a sphere.

For the sake of computational coordinate metrology

discussed in this paper, each point will be assumed to have

Cartesian coordinates as 𝒑𝒊 = (𝑥𝑖 , 𝑦𝑖) in a plane, or 𝒑𝒊 =
(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) in space. The center will have its coordinates as 𝒄 =
(𝑥𝑐 , 𝑦𝑐) in the plane, or 𝒄 = (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) in space.

Figure 1. Illustration of notations for the optimization problem.

Following notations established earlier [12], four

constrained least-squares fitting problems will be denoted as:

• CL2IC: Constrained least-squares inscribing circle.

• CL2CC: Constrained least-squares circumscribing circle.

• CL2ISp: Constrained least-squares inscribing sphere.

• CL2CSp: Constrained least-squares circumscribing sphere.

With these notations, constrained least-squares fitting of circles

and spheres can be posed compactly as the following four

constrained optimization problems.

min
𝒄,𝑟𝑐

[
1

𝑛
∑(𝑟𝑖 − 𝑟𝑐)2

𝑛

𝑖=1

]

1
2⁄

subject to

𝑟𝑐 ≤ 𝑟𝑖 , ∀𝑖 for CL2IC and CL2ISp,
𝑟𝑐 ≥ 𝑟𝑖 , ∀𝑖 for CL2CC and CL2CSp.

(1)

The objective function in Eq. (1) is represented in the L2-

norm. It is also commonly referred to as the root-mean-square

(RMS) of the deviation. This explains why all the designations

of the fitting problems have the CL2 prefix, denoting that each is

a constrained least-squares fit. The same optimum solution can

be obtained if the objective function is retained in a simpler form

as in min
𝒄,𝑟𝑐

∑ (𝑟𝑖 − 𝑟𝑐)2𝑛
𝑖=1 with the same constraints, as done in

earlier literature [12].

2.1 Removing the constraints

The objective function in Eq. (1) is a continuous and smooth

function (that is, having continuous derivatives) of the

coordinates of the center c and the radius 𝑟𝑐 . However, the

inequality constraints and the non-linear nature of the objective

function render the optimization problem more difficult to solve

than a corresponding unconstrained optimization problem. The

problem can be converted to a more tractable, unconstrained

optimization problem by recasting Eq. (1) as

min
𝒄

[
1

𝑛
∑ (𝑟𝑖 − 𝑟𝑚𝑖𝑛)2𝑛

𝑖=1]
1

2⁄

where 𝑟min = min
𝑖

(𝑟𝑖)

for CL2IC and CL2ISp, and

min
𝒄

[
1

𝑛
∑ (𝑟𝑖 − 𝑟𝑚𝑎𝑥)2𝑛

𝑖=1]
1

2⁄

where 𝑟max = max
𝑖

(𝑟𝑖)

for CL2CC and CL2CSp.

(2)

The constraints in Eq. (1) have been removed in Eq. (2), and the

free variables are reduced to the center coordinates (that is,

coordinates of c) alone. However, this had been achieved at the

expense of some lack of smoothness of the objective functions

in Eq. (2), which are now continuous in the center coordinates

but with discontinuous gradient vectors.

The non-smooth nature of the objective functions of Eq. (2)

can be illustrated with a simple, but generally representative,

example. Consider the following example problem with only

four points in a plane:

Example E1. 𝒑𝟏: (1.2, 0.9), 𝒑𝟐: (−0.95, 1.05),

𝒑𝟑: (−1.1, −1.2), and 𝒑𝟒: (0.9, −0.8).

The objective function of Eq. (2) for the inscribing circles

(CL2IC) for Example E1 is shown in Fig. 2. A clearer illustration

of the objective function is shown in Fig.3 as a contour plot,

where the input points of Example E1 are marked as ‘+’.

Figure 2. Objective function for Example E1.

It can be clearly seen that most contours in Fig. 3 suffer

tangent discontinuities at discrete points. These are the places

where the gradient vector of the objective function also suffers

discontinuities. The minimum for the objective function in Fig.

𝒑𝒊

𝑟𝑖

𝑟𝑐 c

 3

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for

public release; distribution unlimited.

2 occurs at the bottom of the valley within the inner most contour

of Fig. 3 near the origin (0,0).

Figure 3. Contour plot of the objective function of Fig. 2.

2.2 Connection to Voronoi diagrams

An interesting and important connection between the

behavior of the objective functions of Eq. (2) and the Voronoi

diagrams of the input points has been established in a recent

theoretical investigation of the optimality conditions for

constrained least-squares fitting of circles and spheres [12]. In

that investigation, the following theorem was proved.

Theorem 1: The constrained least-squares inscribing and

circumscribing circles and spheres must contact at least two

input points.

It immediately implies the following theorem.

Theorem 2: The centers of the constrained least-squares circles

and spheres must lie on the Voronoi diagram of the input

points. More specifically, the center of CL2IC and CL2ISp

must lie on the nearest-neighbor Voronoi diagram of the input

points; similarly, the center of CL2CC and CL2CSp must lie

on the furthest-neighbor Voronoi diagram of the input points.

The connection between the objective functions of Eq. (2)

and Voronoi diagrams can be illustrated using Example E1.

Figure 4 shows the nearest-neighbor Voronoi diagram for the

input points of Example E1. Figure 5 is a superposition of the

contour plot (Fig. 3) and the Voronoi diagram (Fig. 4). It can be

clearly seen in Fig.5 that the Voronoi edges of Fig. 4 are perfectly

aligned with the points of tangent discontinuities of Fig. 3.

Figure 4. Voronoi diagram of input points in Example E1.

Figure 5. Superposition of Figs. 3 and 4.

The nature of the optimization problem can now be

summarized as follows.

• The minimum occurs on the Voronoi diagrams. This fact

will be exploited in Section 3 to design and implement

algorithms that find the global minimum.

• The minimum occurs where the gradient vector is

discontinuous. This fact will be considered in Section 4 in

 4

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for

public release; distribution unlimited.

the design and implementation of heuristics that find a

minimum.

3. Algorithms and their Implementations
Theorem 2 guarantees that the global minimum to the

optimization problems of Eq. (2) can be found by restricting the

search to Voronoi diagrams. This cuts the feasible region down

by one full dimension. For circles in a plane, the search for the

optimal center needs to look no further than a finite number of

line segments. Similarly, for spheres in space, the search for the

optimal center can be confined to a finite number of convex

polygonal regions. Moreover, in both cases, the objective

function is smooth (continuous function with continuous

derivatives) over each Voronoi edge (in the plane) and over each

Voronoi face (in space). These notions will now be described in

some detail.

The nearest-neighbor or furthest-neighbor Voronoi diagram

for a discrete set of points in a plane is a connected, planar graph

𝐺 = (𝐸, 𝑉) with edge set E and vertex set V [13]. The Voronoi

edges are straight line segments. Figure 4 is an example of such

a graph. Some of the edges in E will extend to infinity in one

direction; these are usually trimmed by a generously large

bounding box for computational and display purposes. For a set

of n input points in a plane, its Voronoi diagram has 𝑂(𝑛) edges

and 𝑂(𝑛) vertices.

Figure 6. Objective function along the five Voronoi edges shown

in Figs. 4 and 5. The bottom-most function is along the only

short, finite Voronoi edge. The other four functions are along the

half-line Voronoi edges that have been trimmed.

The nearest-neighbor or furthest-neighbor Voronoi diagram

for a discrete set of points in (3D) space is also a connected (but

not planar) graph 𝐺 = (𝐹, 𝐸, 𝑉) with face set F, edge set E, and

vertex set V. The faces in F are convex polygons, and the edges

in E are straight line segments. Some of the faces and edges will

extend to infinity, and they are usually trimmed by a generously

large three-dimensional bounding box for computational and

display purposes. For a set of n input points in space, the size of

its Voronoi diagram can vary quadratically with 𝑛.

Even though the gradient vectors of the objective functions

of Eq. (2) are not continuous in the region of interest in the plane

and in space, the objective functions are locally smooth and

continuous in the interior of the Voronoi edges and Voronoi

faces. This means that the gradient vector is also continuous

along the Voronoi edges and over the Voronoi faces. Figure 6

illustrates the local smoothness of the objective function along

each of the five Voronoi edges shown in Figs. 4 and 5. Such local

smoothness will be exploited in the design of algorithms in

Section 3.1, and in their implementation in Section 3.2.

3.1 Design and analysis of algorithms

A general algorithm to find the global minimum for the

problems in Eq. (2) is given in Table 1 in two major steps.

Table 1. Algorithm for circles and spheres.

Algorithm A_CL2x (x stands for IC, CC, ISp, or CSp)

Input: Set of n points, either in a plane or in space.

Output: Center of optimum circle/sphere, its radius, and

the minimized objective function.

1. Compute the Voronoi diagram of the input points.

a. For CL2IC and CL2ISp, it is the nearest-neighbor

Voronoi diagram. For CL2CC and CL2CSp, it is

the furthest-neighbor Voronoi diagram.

b. For CL2IC and CL2CC, the Voronoi diagram is a

connected, planar graph 𝐺 = (𝐸, 𝑉). For CL2ISp

and CL2CSp, it a connected graph 𝐺 = (𝐹, 𝐸, 𝑉).

2. Search through the Voronoi graph to find the global

minimum.

a. For CL2IC and CL2CC, search along each closed

edge in the edge set E to find the minimum, and

then find the minimum of all such minima over

E. If more than one global minimum is found,

return all the global minimum results.

b. For CL2ISp and CL2CSp, search over each closed

face in the face set F to find the minimum, and

then find the minimum of all such minima over

F. If more than one global minimum is found,

return all the global minimum results.

The correctness of the A_CL2x algorithm is guaranteed by

Theorem 2. An analysis of the A_CL2x algorithm requires the

consideration of both the steps.

1. The time and space complexity of Step 1 is completely

determined by the complexity of computing the Voronoi

diagram. One of the most popular algorithm to compute

Voronoi diagrams is called qhull [14], which can be

computed, on average, in 𝑂(𝑛 log 𝑛) time.

2. The complexity of Step 2 is dominated by the number of

Voronoi edges or Voronoi faces; the time required for

finding the minimum along each Voronoi edge or Voronoi

 5

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for

public release; distribution unlimited.

face is not a function of the input size n, and so it can be

considered to be a constant for the purpose of analysis.

There are only 𝑂(𝑛) Voronoi edges in two-dimensional

problems. But there could be 𝑂(𝑛2) Voronoi faces in three-

dimensional problems.

Table 2. Code for A_CL2IC

 filename: A_CL2IC.m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

function [c,rc,f]=A_CL2IC(M)

%

% Implementation of an algorithm

% to fit a constrained (inscribed) least-squares circle in a plane

% Input:

% M: an nx2 matrix of x and y coordinates of n points

% Output:

% c: center of the circle; a 1x2 array of x and y coordinates

% rc: radius of the circle; a scalar

% f: minimized objective function; a scalar

%

% Needs:

% fminbnd: a built-in function to search for minimum over a Voronoi edge

% CL2IC_ObjFun: a local function needed by fminbnd

%

 global P % Make the coordinate matrix a global variable in this file

 global psedge % Make starting endpoint of an edge global

 global pfedge % Make finishing endpoint of an edge global

 P = M; % Copy M to P

 [vx, vy] = voronoi(P(:,1), P(:,2)); % Compute (nearest-neighbor) Voronoi diagram

 nedge = size(vx)(2); % Number of edges in the Voronoi diagram

 ps = [vx(1,:); vy(1,:)]; % Vector of starting endpoints of Voronoi edges

 pf = [vx(2,:); vy(2,:)]; % Vector of finishin endpoints of Voronoi edges

 for j=1:nedge % Search over all Voronoi edges

 psedge = ps(:,j); % Starting endpoint of Voronoi edge

 pfedge = pf(:,j); % Finishing endpoint of Voronoi edge

 [tval, fval] = fminbnd(@CL2IC_ObjFun, 0, 1); % Call the built-in minimizer

 cen(:,j) = (1-tval)*psedge + tval*pfedge; % Center coordinates of local minima

 fminval(j) = fval; % Vector of local minima

 end

 [f, ednum] = min(fminval); % Global minimum

 c = cen(:,ednum)'; % Center coordinates of global minimum

 rc = min(sqrt((P(:,1)-c(1)).^2 + (P(:,2)-c(2)).^2)); % Radius at global minimum

end

%

 function f=CL2IC_ObjFun(t)

% Objctive function needed by fminbnd

% Input:

% t: argument (parameter) for the objective function; a scalar

% Output:

% f: Objective function = sqaure root of the mean of the squares (RMS)

% of the deviations of the points from the circle; a scalar

%

 global P % a gloabl variable to get the coordinate matrix

 global psedge % Make starting endpoint of an edge global

 global pfedge % Make finishing endpoint of an edge global

 x = (1-t)*psedge + t*pfedge; % From parameter to coordinates

 r = sqrt((P(:,1)-x(1)).^2 + (P(:,2)-x(2)).^2); % radius vector

 f = (norm(r-min(r)))/sqrt(size(r)(1)); % RMS of deviations from the circle

 end

 6

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for

public release; distribution unlimited.

3.2 Implementation of algorithms

Any implementation of an algorithm requires a language to

be chosen and some compromises to be made. Table 2 exhibits

an implementation of the A_CL2IC algorithm in GNU Octave

language [15]. GNU Octave is a free software distributed under

the GNU General Public License. It is a ‘MATLAB-clone,’

which means in practice that GNU Octave code should run under

MATLAB, but not necessarily the other way around. GNU

Octave has the advantage of free availability and openness, but

it is only an interpretive language with some syntactic

restrictions (e.g., no support for nested functions).

The A_CL2IC code in Table 2 is generously commented to

be almost self-documented. Step 1 of Algorithm A_CL2IC is

executed in line 20 using a built-in voronoi function of GNU

Octave. The rest of the code implements Step 2 of the algorithm.

As each Voronoi edge is examined in the for loop in lines 24

through 30, a built-in minimizer fminbnd is called in line 27 to

find the minimum of the objective function along that edge. Here

it is assumed that the univariate objective function is smooth with

continuous directional derivative along each Voronoi edge, as

illustrated in Fig. 6.

The smoothness of the objective function with continuous

directional derivative along the Voronoi edges in Fig. 6 (as

opposed to the apparent discontinuous derivatives across

Voronoi edges in Fig. 5) can be explained as follows. Notice that

for all inscribing circle centers located in the interior of a Voronoi

edge, there are only two points of contact from the input set and

these two points remain invariant as long as the centers lie in the

interior of that Voronoi edge. This implies that the ‘active’

constraints in Eq. (1) (that is, those constraints that turn to

equality constraints) remain invariant during the entire traversal

of the circle center in the interior of that Voronoi edge, thus

contributing to the smoothness of the objective function and its

directional derivatives along that edge.

Another interesting observation about the objective function

along a Voronoi edge is that it achieves a minimum at an

endpoint of that edge or at only one point in the interior of that

edge. (It may also achieve a maximum, but that is not germane

to the minimization search.) This property can be termed a

‘quasi-min unimodality,’ and can be exploited in employing the

fminbnd function.

Since the gradient is also continuous along a Voronoi edge,

a faster minimization method that employs the gradient could

have been used. However, fminbnd, which requires only the

objective function evaluation in its golden section search, is used

in the code for simplicity and it seems to be sufficient for finding

the minimum along each edge. Also, the ‘quasi-min unimodality’

mentioned above ensures that fminbnd will find the global

minimum along each Voronoi edge. The global minimum among

all Voronoi edges is extracted in line 31 of Table 2. In this simple

implementation in line 31, only one of the minimum value is

picked, even if there were multiple minima of the same value.

Figure 7. Results from A_CL2IC for Example 1.

The output circle from executing the code for the input from

Example 1 is shown in Fig. 7, along with the Voronoi diagram of

the input points. The center of the circle, shown as a small circle,

lies in the interior of a small Voronoi edge, and the circle contacts

two of the input points. For input points that may come from only

an arc of a circle, consider the following example problem, again

with only four points in a plane:

Example E2. 𝒑𝟏: (0.1, − 0.9), 𝒑𝟐: (0.7, −0.75),

𝒑𝟑: (0.95, 0.1), and 𝒑𝟒: (0.65, 0.72).

Figure 8 shows the output circle from executing the code in Table

2 for the input points from Example 2, along with the Voronoi

diagram of the input points. In Fig. 7, the center of the inscribing

circle falls inside the convex hull of the input points. In Fig. 8,

on the other hand, the center of the inscribing circle falls outside

the convex hull of the input points.

The code for A_CL2IC given in Table 2 can be modified to

obtain the code for A_CL2CC with only two changes:

1. In line 20, voronoi should be replaced by an appropriate

call to a function that computes the furthest-neighbor

Voronoi diagram. Such a code is available in qhull [14].

2. In line 49, min(r) should be replaced by max(r) so that

the correct objective function for circumscribing circle is

computed.

 7

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for

public release; distribution unlimited.

Figure 8. Results from A_CL2IC for Example 2.

Developing similar codes for A_CL2ISp and A_CL2CSp

requires more work.

• For A_CL2ISp, GNU Octave has a voronoin function to

compute the three-dimensional nearest-neighbor Voronoi

diagram. For A_CL2CSp, a similar function to compute the

three-dimensional furthest-neighbor Voronoi diagram can

be found in qhull [14].

• In addition, for both A_CL2ISp and A_CL2CSp, fminbnd

should be replaced by another minimizer for a smooth

bivariate function over a bounded domain (in this case, a

Voronoi face).

It is quite remarkable that a working code that implements an

algorithm for CL2IC can be developed that is as compact as the

one exhibited in Table 2. Even more remarkable are the power of

heuristics to compute all the circles and spheres defined in

Section 2, and the compactness of codes to implement them, as

described in the next section.

4. Heuristics and their Implementations
The optimization problems posed in Eq. (2) can be attacked

by heuristic methods that may be simpler than the algorithmic

methods of Section 3. But these heuristics may not provide any

theoretical guarantee about the global optimality of the solutions.

Nevertheless, heuristics deserve attention because of their ease

of implementation to solve a wide set of problems.

There are direct search methods, such as polytope (also

known as simplex) methods, to find a minimum [16]. An outline

of heuristics to attack the optimization problems of Eq. (2) is

provided as Heuristic H_CL2x in Table 3.

Table 3. Heuristic for circles and spheres.

Heuristic H_CL2x (x stands for IC, CC, ISp, or CSp)

Input: Set of n points, either in a plane or in space.

Output: Center of optimum circle/sphere, its radius, and the

minimized objective function.

1. Find a good starting solution set.

a. For circles and spheres, this can be accomplished

automatically and algorithmically using parabolic

projection, as described in Section 4.1.

b. A compact implementation of this algorithm is

also described in Section 4.1.

2. Employ a derivative-free, direct search method to

descend to a minimum. One such method is the

following.

a. Create a starting simplex around the starting

solution set and move it by reflection, expansion,

contraction, and scaling towards a minimum.

Stop the search when it reaches a threshold.

b. An implementation that employs Nedler-Mead

method to accomplish this direct search is

described in Section 4.2

Implementations of the two steps outlined in Heuristic

H_CL2x are now described in Sections 4.1 and 4.2.

4.1 Finding good starting circles and spheres

Good starting circles and spheres as initial approximations

are critical to heuristics that then find a local minimum. Luckily,

there exists a mathematically elegant method that finds starting

circles and spheres automatically and algorithmically by

combining existing ideas in literature [2, 13]. A general

algorithm to find an approximate sphere in m-dimensional space

is described in Table 4 as Algorithm AppSphm, which can be

specialized by setting 𝑚 = 2 to find an approximate starting

circle in a plane, and 𝑚 = 3 to find an approximate starting

sphere in space.

A visual interpretation of the Algorithm AppSphm, and a

proof of its correctness, can be given using Fig. 9 for a simple

case with 𝑚 = 1, and generalizing the results to any 𝑚. Figure 9

shows a unit parabola 𝑈2 in ℝ2, and a point 𝑥1 = 𝑐1 = 5 in ℝ1

that is projected up to the parabola in ℝ2 as the point (𝑐1, 𝑐1
2) =

(5, 25). Also shown in Fig. 9 is a line 𝐿1𝑐 tangential to the

parabola at the point (𝑐1, 𝑐1
2), and another line 𝐿1 that is parallel

to 𝐿1𝑐 but shifted up by a positive scalar amount equal to 𝑟2 = 9.

These entities can be described mathematically as:

𝑈2: 𝑥2 = 𝑥1
2 (3)

𝐿1𝑐: 𝑥2 = 2𝑐1𝑥1 − 𝑐1
2 (4)

𝐿1: 𝑥2 = 2𝑐1𝑥1 − 𝑐1
2 + 𝑟2. (5)

 8

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for

public release; distribution unlimited.

The intersection of the unit parabola 𝑈2 and the line 𝐿1 can then

be seen to be

𝑈2 ∩ 𝐿1: (𝑥1 − 𝑐1)2 = 𝑟2 (6)

which can be interpreted as the equation of a one-dimensional

sphere in ℝ1 with radius 𝑟 and centered at 𝑐1.

Table 4. Algorithm for approximate circles and spheres.

Algorithm AppSphm

Input: Set of n points in ℝ𝑚. Each point 𝒑𝒊 has coordinates

(𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑚) for 𝑖 = 1, 𝑛. Let 𝑛 > 𝑚.

Output: Center coordinates (𝑐1, 𝑐2, … , 𝑐𝑚) and radius 𝑟𝑐 of

a sphere in ℝ𝑚.

1. Project points in ℝ𝑚 to a unit paraboloid in ℝ𝑚+1.

This is accomplished by setting

 𝑥𝑚+1 = 𝑥1
2 + 𝑥2

2 + ⋯ + 𝑥𝑚
2 for each point.

2. Fit a least-squares hyperplane to these points in ℝ𝑚+1.

This is accomplished by solving a set of over-

constrained linear equations

[

2𝑥1,1 …

2𝑥2,1 …

2𝑥1,𝑚 1

2𝑥2,𝑚 1
… …

2𝑥𝑛,1 …
… …

2𝑥𝑛,𝑚 1

] {

𝑐1

…
𝑐𝑚

𝑐𝑚+1

} = {

𝑥1,1
2 + ⋯ + 𝑥1,𝑚

2

……
𝑥𝑛,1

2 + ⋯ + 𝑥𝑛,𝑚
2

}

using the least-squares method.

3. Find the intersection of the unit paraboloid and the

hyperplane. It is an m-dimensional ellipsoid in ℝ𝑚+1.
4. Project that ellipsoid back to ℝ𝑚 to obtain a sphere in

ℝ𝑚, and return its center coordinates (𝑐1, 𝑐2, … , 𝑐𝑚)

and radius 𝑟𝑐 = √𝑐1
2 + ⋯ + 𝑐𝑚

2 + 𝑐𝑚+1.

Figure 9. Parabola and parallel lines.

The Eqs. (3-6) can be generalized to any dimension 𝑚 by

considering a unit paraboloid 𝑈𝑚+1 in ℝ𝑚+1, and a point
(𝑐1, 𝑐2, … , 𝑐𝑚) ∈ ℝ𝑚 that is projected up to the paraboloid in

ℝ𝑚+1 as the point (𝑐1, 𝑐2, … , 𝑐𝑚, ∑ 𝑐𝑗
2𝑚

𝑗=1). Also consider a

hyperplane 𝑃𝑚𝑐 tangential to the paraboloid at the point

(𝑐1, 𝑐2, … , 𝑐𝑚, ∑ 𝑐𝑗
2𝑚

𝑗=1), and another hyperplane 𝑃𝑚 that is

parallel to 𝑃𝑚𝑐 but shifted up by a scalar amount equal to 𝑟2.

These entities can be described mathematically as:

𝑈𝑚+1: 𝑥𝑚+1 = ∑ 𝑥𝑗
2

𝑚

𝑗=1

(7)

𝑃𝑚𝑐 : 𝑥𝑚+1 = 2 ∑ 𝑐𝑗𝑥𝑗

𝑚

𝑗=1
− ∑ 𝑐𝑗

2
𝑚

𝑗=1

(8)

𝑃𝑚: 𝑥𝑚+1 = 2 ∑ 𝑐𝑗𝑥𝑗

𝑚

𝑗=1
− ∑ 𝑐𝑗

2
𝑚

𝑗=1
 + 𝑟2

(9)

The intersection of the unit paraboloid 𝑈𝑚+1 and the hyperplane

𝑃𝑚 can then be seen to be

𝑈𝑚+1 ∩ 𝑃𝑚 : ∑ (𝑥𝑗 − 𝑐𝑗)
2𝑚

𝑗=1
= 𝑟2

(10)

which can be interpreted as the equation of a 𝑚-dimensional

sphere in ℝ𝑚 with radius 𝑟 and centered at (𝑐1, 𝑐2, … , 𝑐𝑚). When

𝑚 = 2 it is a circle in a plane, and when 𝑚 = 3 it is a sphere in

three-dimensional space.

With these preliminary results, the proof of correctness of

Algorithm AppSphm can be obtained by considering fitting a

hyperplane

𝑥𝑚+1 = 2 ∑ 𝑥𝑗𝑐𝑗

𝑚

𝑗=1
+ 𝑐𝑚+1

(11)

to a set of 𝑛 points in ℝ𝑚+1. These points are obtained in Step 1

of AppSphm by the mapping

(𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑚) → (𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑚, ∑ 𝑥𝑖,𝑗
2

𝑚

𝑗=1
)

(12)

for all 𝑖. When these point coordinates are applied to Eq. (11),

they result in a set of over-determined equations (because it is

assumed that 𝑛 > 𝑚, and often 𝑛 ≫ 𝑚) shown in Step 2 of

AppSphm. In Step 3, these over-determined equations are solved

using the usual least-squares methods to obtain the coefficients

𝑐𝑗 , 𝑗 = 1, … , 𝑚 + 1. Then, Eq. (10) implies that the center of the

desired sphere has the coordinates (𝑐1, 𝑐2, … , 𝑐𝑚), and a

comparison of Eq. (9) and Eq. (11) indicates that the radius 𝑟 of

the sphere can be obtained from 𝑐𝑚+1 = − ∑ 𝑐𝑗
2𝑚

𝑗=1 + 𝑟2. This

proves the correctness of the last step (Step 4) of AppSphm, and

thus of the whole algorithm.

𝑈2

𝐿1

𝐿1𝑐

 9

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for

public release; distribution unlimited.

Table 5. Code for AppCir

 filename: AppCir.m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

function [c,rc]=AppCir(M)

%

% Computes an approximate circle in a plane based on (1) parabolic projection

% of 2D points to 3D, (2) fitting an ordinary least-squares plane in 3D, and

% (3) projecting the intersecting ellipse to the 2D plane.

% Input:

% M: an nx2 matrix of x and y coordinates of n points

% Output:

% c: center of the circle; a 1x2 array of x and y coordinates

% rc: radius of the circle; a scalar

%

x = [2*M ones(size(M)(1),1)]\(M(:,1).^2 + M(:,2).^2); % Does the magic!

c = [x(1) x(2)]; % Center of the circle

rc = sqrt(x(1)^2 + x(2)^2 + x(3)); % Radius of the circle

end

Table 6. Code for H_CL2IC

 filename: H_CL2IC.m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

function [c,rc,f]=H_CL2IC(M)

%

% Implementation of a heuristic

% to fit a constrained (inscribed) least-squares circle in a plane

% Input:

% M: an nx2 matrix of x and y coordinates of n points

% Output:

% c: center of the circle; a 1x2 array of x and y coordinates

% rc: radius of the circle; a scalar

% f: minimized objective function; a scalar

%

% Needs:

% AppCir: an external function to get an approximate circle

% fminsearch: a built-in function to search for minimum

% CL2IC_ObjFun: a local function needed by fminsearch

%

 global P % Make the coordinate matrix a global variable in this file

 P = M; % Copy M to P

 [x0, apprad] = AppCir(P); % Get the approximate circle to start the search

 [c, f] = fminsearch(@CL2IC_ObjFun, x0); % Conduct the heuristic search

% Input:

% @CL2IC_ObjFun: handle for a local objective function

% x0: a 1x2 array of starting circle center coordinates

% Output:

% c: a 1x2 array of circle center coordinates

% f: minimized objective function; a scalar

 rc = min(sqrt((P(:,1)-c(1)).^2 + (P(:,2)-c(2)).^2)); % Radius of the circle

end

%

 function f=CL2IC_ObjFun(x)

% Objective function needed by fminsearch

% Input:

% x: starting approximation for center and radius

% center is a 1x2 array of x and y coordinates

% radius is a scalar

% Output:

% f: Objective function = square root of the mean of the squares (RMS)

% of the deviations of the points from the circle; a scalar

%

 global P % a global variable to get the coordinate matrix

 r = sqrt((P(:,1)-x(1)).^2 + (P(:,2)-x(2)).^2); % radius vector

 f = (norm(r-min(r)))/sqrt(size(r)(1)); % RMS of deviations from the circle

 end

 10

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for

public release; distribution unlimited.

Table 5 exhibits a compact GNU Octave code for the AppCir

algorithm, which specializes Algorithm AppSphm for 𝑚 = 2. It

is remarkable that the entire computation is executed in a single

line (line 12). A similar code that specializes Algorithm

AppSphm for 𝑚 = 3 is given in the Annex Table A2.

4.2 Direct search to find a local minimum

The fact that the objective functions of Eq. (2) have

discontinuous gradient vectors, and that the minimum always

occurs at these discontinuities (that is, on Voronoi diagrams)

limits the choice of generic optimization methods. For problems

of these types, one may resort to a direct search method that does

not depend on derivatives. One such derivative-free direct search

can be carried out by the Nedler-Mead method [16], which has

been well documented and implemented in publicly-available

software.

A code that implements the Heuristic H_CL2IC in GNU

Octave is exhibited in Table 6. It uses the Nedler-Mead method

by invoking a built-in function fminsearch in line 20. Similar

code for heuristic H_CL2CC for constrained least-squares fitting

of circumscribing circles is exhibited in Annex Table A1. The

only difference between the codes in Table 6 and Table A1 is in

line 42, where the function min(r) is replaced by max(r)in

evaluating the objective function.

Figures 10 and 11 show the results of executing the code

H_CL2IC for Example 1 and Example 2, respectively. Contour

plots of the objective functions are superposed in these figures to

illustrate how the centers (marked as ‘o’) are found by the search

heuristics at the ‘bottom of the valley.’

It is instructive to compare Figs. 7 and 10 for Example 1,

and Figs. 8 and 11 for Example 2. The results of the algorithmic

and heuristic codes look strikingly identical. Table 7 summarizes

and compares the numerical results from algorithmic and

heuristic computations of center coordinates (𝑐), radii (𝑟), and

objective functions (𝑓) for inscribing circles; also presented are

the center and radius values for approximate starting circles used

in search heuristics. The numerical results differ within the

default tolerances set in the GNU Octave built-in functions

fminbnd and fminsearch.

Table 7. Comparison of numerical results.

 Example 1 Example 2

A_CL2IC

𝑐 = (−0.1417377,
0.0082623)
𝑟 = 1.3185
𝑓 =0.18410

𝑐 = (0.0592824,
−0.0041400)
𝑟 = 0.89678
𝑓 = 0.047181

H_CL2IC

𝑐 = (−0.1416265,
0.0083757)
𝑟 =1.3185

𝑓 =0.18410

𝑐 = (0.0596950,
−0.0044904)
𝑟 = 0.89642
𝑓 = 0.047181

AppCir

𝑐 = (−0.1061450 ,
0.0049736)
𝑟 = 1.4501

𝑐 = (0.107328,
−0.023512)
𝑟 = 0.89722

Figure 10. Results from H_CL2IC for Example 1.

Figure 11. Results from H_CL2IC for Example 2.

To complete the picture, Figs. 12 and 13 illustrate the results

of executing the code H_CL2CC for Examples 1 and 2. Again, it

can be observed that the search heuristic solution is centered at

the ‘bottom of the valley.’ One way to interpret the working of

the Nedler-Mead method using Figs.10 to 13 is to imagine a

 11

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for

public release; distribution unlimited.

water droplet deposited at the center of the approximate starting

circle. This droplet, taking the form of a changing simplex, then

trickles down by gravity to the bottom of the valley. Tables A3

and A4 in the Annex exhibit the heuristics H_CL2ISp and

H_CL2CSp, respectively, to compute the constrained least-

squares fitting of inscribing and circumscribing spheres.

Figure 13. Results from H_CL2CC for Example 2.

Figure 12. Results from H_CL2CC for Example 1.

5. Opportunities for Improvements and Extensions
The implementations of algorithms and heuristics presented

in this paper can be improved in many ways. Parallel processing

using GPUs can obviously accelerate the computation of Voronoi

diagrams, and search for minima over Voronoi edges and

Voronoi faces in the algorithms. Any number of direct search

methods may be improved and deployed to find the minima in

the heuristics.

An exciting opportunity lies in the extension of the

heuristics to compute the constrained least-squares fitting of

other geometric elements such as cylinders, cones, tori, and free-

form surfaces. The ease of implementation of the heuristics for

circles and spheres reported in this paper gives some

encouragement to such extensions. However, these extensions

should be subjected to careful analysis and testing before they

can be adopted for serious use in industry.

6. Summary and Concluding Remarks
This paper addressed the practical issues in implementing

constrained least-squares fitting of circles and spheres. These

problems have acquired some urgency due to the impending

adoption of the constrained least-squares criterion as the

common, default definition for datums in ASME and ISO

standards for geometric dimensioning and tolerancing.

In addition to presenting algorithms and heuristics, the paper

also provided representative codes written in freely available

GNU Octave language to encourage software testing and

adoption by industry. As indicated in Section 5, exciting

opportunities exist to extend the heuristics for constrained least-

squares fitting to other important geometric elements covered by

standards. This promises to be an area for further fruitful

research.

Acknowledgment and Disclaimer
The authors thank ISO and ASME standards experts whose

advice and suggestions were invaluable in initiating and

sustaining this research investigation. Any mention of

commercial products or systems in this article is for information

only; it does not imply recommendation or endorsement by

NIST. The software codes presented in this paper come with

absolutely no warranty.

 12

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for

public release; distribution unlimited.

References

[1] Shakarji, C.M. and Srinivasan, V., Toward a new

mathematical definition of datums in standards to support

advanced manufacturing, MSEC2018-6305, Proceedings of

the ASME 2018 Manufacturing Science and Engineering

Conference, College Station, Texas, June 18-22, 2018.

[2] Forbes, A.B., Least-squares best-fit geometric elements,

NPL Report DITC 140/89, Revised edition Feb. 1991,

National Physical Laboratory, U.K., 1991.

[3] Shakarji, C.M., Least-squares fitting algorithms of the NIST

algorithm testing system, Journal of Research of the

National Institute of Standards and Technology, Vol. 30, pp.

663-641, Dec. 1998.

[4] Srinivasan, V., Shakarji, C.M. and Morse, E.P., On the

enduring appeal of least-squares fitting in computational

coordinate metrology, ASME Journal of Computing and

Information Science in Engineering, Vol. 12, March 2012.

[5] Shakarji, C.M. and Srinivasan, V., Theory and algorithms

for weighted total least-squares fitting of lines, planes, and

parallel planes to support tolerancing standards, ASME

Journal of Computing and Information Science in

Engineering, 13(3), 2013.

[6] Coons, S.A., Constrained least-squares, Computers &

Graphics, Vol. 3, No. 1, pp. 43-47, 1978.

[7] Golub, G.H., and Matt, U.V., Quadratically constrained least

squares and quadratic problems, Numerische Mathematik,

Vol. 59, No. 1, pp. 561-580, 1991.

[8] Peng, J.J., and Liao, A.P., Algorithm for inequality-

constrained least squares problems, Computational and

Applied Mathematics, Vol. 36, No. 1, pp. 249-258, 2017.

[9] Shakarji, C.M. and Srinivasan, V., A constrained L2 based

algorithm for standardized planar datum establishment,

ASME IMECE2015-50654, Proceedings of the ASME 2015

International Mechanical Engineering Congress and

Exposition, Houston, TX, Nov. 13-19, 2015.

[10] Shakarji, C.M. and Srinivasan, V., Theory and algorithm for

planar datum establishment using constrained total least-

squares, 14th CIRP Conference on Computer Aided

Tolerancing, Gothenburg, Sweden, 2016.

[11] Shakarji, C.M. and Srinivasan, V., Convexity and optimality

conditions for constrained least-squares fitting of planes and

parallel planes to establish datums, IMECE2017-70899,

Proceedings of the ASME 2017 International Mechanical

Engineering Congress and Exposition, Tampa, FL, Nov. 3-

9, 2017.

[12] Shakarji, C.M. and Srinivasan, V., Optimality conditions for

constrained least-squares fitting of circles, cylinders, and

spheres to establish datums, ASME Journal of Computing

and Information Science in Engineering, 2018. (Also

DETC2017-67143, Proceedings of the ASME 2017

International Design Engineering Technical Conferences

and Computers and Information in Engineering Conference,

Cleveland, OH, Aug. 6-9, 2017.)

[13] O’Rourke, J., Computational Geometry in C, 2nd Edition,

Cambridge University Press, 1998.

[14] www.qhull.org

[15] Eaton, J.W., Bateman, D., Hauberg, S., and Wehbring, R.,

GNU Octave version 4.2.0 manual: a high-level interactive

language for numerical computations, 2016. url:

www.gnu.org/software/octave/doc/interpreter/

[16] Gill, P.E., Murray, W., and Wright, M.H., Practical

Optimization, Emerald Group Publishing Ltd., 1982.

http://www.gnu.org/software/octave/doc/interpreter/

 13

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for

public release; distribution unlimited.

Annex

Table A1. Code for H_CL2CC

 filename: H_CL2CC.m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

function [c,rc,f]=H_CL2CC(M)

%

% Implementation of a heuristic

% to fit a constrained (circumscribed) least-squares circle in a plane

% Input:

% M: an nx2 matrix of x and y coordinates of n points

% Output:

% c: center of the circle; a 1x2 array of x and y coordinates

% rc: radius of the circle; a scalar

% f: minimized objective function; a scalar

%

% Needs:

% AppCir: an external function to get an approximate circle

% fminsearch: a built-in function to search for minimum

% CL2CC_ObjFun: a local function needed by fminsearch

%

 global P % Make the coordinate matrix a global variable in this file

 P = M; % Copy M to P

 [x0, apprad] = AppCir(P); % Get the approximate circle to start the search

 [c, f] = fminsearch(@CL2CC_ObjFun, x0); % Conduct the heuristic search

% Input:

% @CL2CC_ObjFun: handle for a local objective function

% x0: a 1x2 array of starting circle center coordinates

% Output:

% c: a 1x2 array of circle center coordinates

% f: minimized objective function; a scalar

 rc = max(sqrt((P(:,1)-c(1)).^2 + (P(:,2)-c(2)).^2)); % Radius of the circle

end

%

 function f=CL2CC_ObjFun(x)

% Objective function needed by fminsearch

% Input:

% x: starting approximation for center and radius

% center is a 1x2 array of x and y coordinates

% radius is a scalar

% Output:

% f: Objective function = square root of the mean of the squares (RMS)

% of the deviations of the points from the circle; a scalar

%

 global P % a global variable to get the coordinate matrix

 r = sqrt((P(:,1)-x(1)).^2 + (P(:,2)-x(2)).^2); % radius vector

 f = (norm(r-max(r)))/sqrt(size(r)(1)); % RMS of deviations from the circle

 end

Table A2. Code for AppSph

 filename: AppSph.m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

function [c,r]=AppSph(M)

%

% Computes an approximate sphere in space based on (1) parabolic projection

% of 3D points to 4D, (2) fitting an ordinary least-squares hyper-plane in 4D,

% and(3) projecting the intersecting ellipsoid to the 3D space.

% Input:

% M: an nx3 matrix of x,y and z coordinates of n points

% Output:

% c: center of the sphere; a 1x3 array of x,y and z coordinates

% r: radius of the sphere; a scalar

%

 x = [2*M ones(size(M)(1),1)]\(M(:,1).^2 + M(:,2).^2 + M(:,3).^2); % Does the magic!

 c = [x(1) x(2) x(3)]; % Center of the sphere

 r = sqrt(x(1)^2 + x(2)^2 + x(3)^2 + x(4)); % Radius of the sphere

end

 14

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for

public release; distribution unlimited.

Table A3. Code for H_CL2ISp

 filename: H_CL2ISp.m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

function [c,rc,f]=H_CL2ISp(M)

%

% Implementation of a heuristic

% to fit a constrained (inscribed) least-squares sphere in space

% Input:

% M: an nx3 matrix of x,y and z coordinates of n points

% Output:

% c: center of the sphere; a 1x3 array of x,y and z coordinates

% rc: radius of the sphere; a scalar

% f: minimized objective function; a scalar

%

% Needs:

% AppSph: an external function to get an approximate circle

% fminsearch: a built-in function to search for minimum

% CL2ISp_ObjFun: a local function needed by fminsearch

%

 global P % Make the coordinate matrix a global variable in this file

 P = M; % Copy M to P

 [x0, apprad] = AppSph(P); % Get the approximate sphere to start the search

 [c, f] = fminsearch(@CL2ISp_ObjFun, x0); % Conduct the heuristic search

% Input:

% @CL2ISp_ObjFun: handle for a local objective function

% x0: a 1x3 array of starting sphere center coordinates

% Output:

% c: a 1x3 array of sphere center coordinates

% f: minimized objective function; a scalar

 rc = min(sqrt((P(:,1)-c(1)).^2 + (P(:,2)-c(2)).^2 + (P(:,3)-c(3)).^2)); % Radius of the sphere

end

%

 function f=CL2ISp_ObjFun(x)

% Objective function needed by fminsearch

% Input:

% x: starting approximation for center and radius

% center is a 1x3 array of x,y and z coordinates

% radius is a scalar

% Output:

% f: Objective function = square root of the mean of the squares (RMS)

% of the deviations of the points from the sphere; a scalar

%

 global P % a global variable to get the coordinate matrix

 r = sqrt((P(:,1)-x(1)).^2 + (P(:,2)-x(2)).^2 + (P(:,3)-x(3)).^2); % radius vector

 f = (norm(r-min(r)))/sqrt(size(r)(1)); % RMS of deviations from the sphere

 end

 15

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for

public release; distribution unlimited.

Table A4. Code for H_CL2CSp

 filename: H_CL2CSp.m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

function [c,rc,f]=H_CL2CSp(M)

%

% Implementation of a heuristic

% to fit a constrained (circumscribed) least-squares sphere in space

% Input:

% M: an nx3 matrix of x,y and z coordinates of n points

% Output:

% c: center of the sphere; a 1x3 array of x,y and z coordinates

% rc: radius of the sphere; a scalar

% f: minimized objective function; a scalar

%

% Needs:

% AppSph: an external function to get an approximate circle

% fminsearch: a built-in function to search for minimum

% CL2CSp_ObjFun: a local function needed by fminsearch

%

 global P % Make the coordinate matrix a global variable in this file

 P = M; % Copy M to P

 [x0, apprad] = AppSph(P); % Get the approximate sphere to start the search

 [c, f] = fminsearch(@CL2CSp_ObjFun, x0); % Conduct the heuristic search

% Input:

% @CL2CSp_ObjFun: handle for a local objective function

% x0: a 1x3 array of starting sphere center coordinates

% Output

% c: a 1x3 array of sphere center coordinates

% f: minimized objective function; a scalar

 rc = max(sqrt((P(:,1)-c(1)).^2 + (P(:,2)-c(2)).^2 + (P(:,3)-c(3)).^2)); % Radius of the sphere

end

%

 function f=CL2CSp_ObjFun(x)

% Objective function needed by fminsearch

% Input:

% x: starting approximation for center and radius

% center is a 1x3 array of x,y and z coordinates

% radius is a scalar

% Output:

% f: Objective function = square root of the mean of the squares (RMS)

% of the deviations of the points from the sphere; a scalar

%

 global P % a global variable to get the coordinate matrix

 r = sqrt((P(:,1)-x(1)).^2 + (P(:,2)-x(2)).^2 + (P(:,3)-x(3)).^2); % radius vector

 f = (norm(r-max(r)))/sqrt(size(r)(1)); % RMS of deviations from the sphere

 end

