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Abstract 
Constrained least-squares fitting has gained considerable 

popularity among national and international standards 

committees as the default method for establishing datums on 

manufactured parts. This has resulted in the emergence of several 

interesting and urgent problems in computational coordinate 

metrology. Among them is the problem of fitting inscribing and 

circumscribing circles (in two-dimensions) and spheres (in three-

dimensions) using constrained least-squares criterion to a set of 

points that are usually described as a ‘point-cloud.’ This paper 

builds on earlier theoretical work, and provides practical 

algorithms and heuristics to compute such circles and spheres. 

Representative codes that implement these algorithms and 

heuristics are also given to encourage industrial use and rapid 

adoption of the emerging standards.  

1. Introduction 
  Recent years have seen the emergence of constrained least-

squares as the preferred criterion for establishing digital datums 

in ASME and ISO (International Organization for 

Standardization) standards committees [1]. There is also a 

nascent interest in applying constrained least-squares fitting for 

tolerancing purposes beyond datums. Unconstrained least-

squares fitting has been used in digital metrology for decades, 

and algorithms have been published to implement them [2-5]. 

Now there is industrial demand for constrained least-squares 

fitting algorithms and guidance for their implementations. 

An algorithm must theoretically guarantee the correct 

solution to a problem, but it may not be ultra-efficient in 

execution time or memory space. On the other hand, heuristics 

may find the correct solution to the problem, but they cannot 

theoretically guarantee the correctness. Heuristics are often 

simpler to implement and they may compute quickly. 

The general problem of constrained least-squares fitting has 

attracted the attention of several researchers in several domains 

[6-8]. In the field of computational coordinate metrology, 

preliminary algorithms for constrained least-squares fitting of 

planes, parallel planes, and intersecting planes for establishing 

digital datums have been published only recently [9-11], and 

these algorithms have been implemented in commercial 

software. This paper builds on recent theoretical results [12] for 

constrained least-squares fitting of circles and sphere, and 

provides algorithms for computing them. It also provides 

heuristics to compute such circles and spheres. Representative 

codes are provided to implement these algorithms and heuristics. 

These algorithms, heuristics, and codes are the major 

contributions of this paper.      

The rest of the paper is organized as follows. Section 2 

analyzes the nature of the optimization problem. Algorithms to 

compute the global optimum solution are provided in Section 3, 

along with codes to implement one of these algorithms. Section 

4 provides some heuristics and codes to compute such circles and 

spheres. Opportunities for improvements and extensions are 

discussed in Section 5. Finally, Section 6 summarizes the results 

of the paper and offers some directions for future research and 

development. 

2. Nature of the Optimization Problem 
 Consider a set of n points {𝒑𝟏, … , 𝒑𝒏} in a plane (for fitting 

a circle) or in space (for fitting a sphere). These are the input 

points for the optimization problems. Let c be the center and 𝒓𝒄  

be the radius of a circle or sphere of interest. Also let 𝒓𝒊 be the 

distance between c and 𝒑𝒊. Figure 1 illustrates these notations in 
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a plane involving a circle. A similar figure can be imagined for 

points in space involving a sphere. 

For the sake of computational coordinate metrology 

discussed in this paper, each point will be assumed to have 

Cartesian coordinates as 𝒑𝒊 = (𝑥𝑖 , 𝑦𝑖) in a plane, or 𝒑𝒊 =
(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) in space. The center will have its coordinates as 𝒄 =
(𝑥𝑐 , 𝑦𝑐) in the plane, or 𝒄 = (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) in space. 

 

 

 

 

 

 

Figure 1. Illustration of notations for the optimization problem. 

Following notations established earlier [12], four 

constrained least-squares fitting problems will be denoted as: 

• CL2IC: Constrained least-squares inscribing circle. 

• CL2CC: Constrained least-squares circumscribing circle. 

• CL2ISp: Constrained least-squares inscribing sphere. 

• CL2CSp: Constrained least-squares circumscribing sphere. 

With these notations, constrained least-squares fitting of circles 

and spheres can be posed compactly as the following four 

constrained optimization problems. 

min
𝒄,𝑟𝑐

[
1

𝑛
∑(𝑟𝑖 − 𝑟𝑐)2

𝑛

𝑖=1

]

1
2⁄

 

subject to 

𝑟𝑐 ≤ 𝑟𝑖 , ∀𝑖 for CL2IC and CL2ISp,  
𝑟𝑐 ≥ 𝑟𝑖 , ∀𝑖 for CL2CC and CL2CSp. 

 
 
 

(1) 

The objective function in Eq. (1) is represented in the L2-

norm. It is also commonly referred to as the root-mean-square 

(RMS) of the deviation. This explains why all the designations 

of the fitting problems have the CL2 prefix, denoting that each is 

a constrained least-squares fit. The same optimum solution can 

be obtained if the objective function is retained in a simpler form 

as in min
𝒄,𝑟𝑐

∑ (𝑟𝑖 − 𝑟𝑐)2𝑛
𝑖=1  with the same constraints, as done in 

earlier literature [12]. 

2.1 Removing the constraints 

The objective function in Eq. (1) is a continuous and smooth 

function (that is, having continuous derivatives) of the 

coordinates of the center c and the radius 𝑟𝑐 . However, the 

inequality constraints and the non-linear nature of the objective 

function render the optimization problem more difficult to solve 

than a corresponding unconstrained optimization problem. The 

problem can be converted to a more tractable, unconstrained 

optimization problem by recasting Eq. (1) as 

min
𝒄

[
1

𝑛
∑ (𝑟𝑖 − 𝑟𝑚𝑖𝑛)2𝑛

𝑖=1 ]
1

2⁄

where 𝑟min = min
𝑖

(𝑟𝑖)  

for CL2IC and CL2ISp, and 

min
𝒄

[
1

𝑛
∑ (𝑟𝑖 − 𝑟𝑚𝑎𝑥)2𝑛

𝑖=1 ]
1

2⁄

where 𝑟max = max
𝑖

(𝑟𝑖)  

for CL2CC and CL2CSp. 

 

 

(2) 

The constraints in Eq. (1) have been removed in Eq. (2), and the 

free variables are reduced to the center coordinates (that is, 

coordinates of c) alone. However, this had been achieved at the 

expense of some lack of smoothness of the objective functions 

in Eq. (2), which are now continuous in the center coordinates 

but with discontinuous gradient vectors. 

The non-smooth nature of the objective functions of Eq. (2) 

can be illustrated with a simple, but generally representative, 

example. Consider the following example problem with only 

four points in a plane: 

Example E1. 𝒑𝟏: (1.2, 0.9), 𝒑𝟐: (−0.95, 1.05), 

𝒑𝟑: (−1.1, −1.2), and 𝒑𝟒: (0.9, −0.8). 

The objective function of Eq. (2) for the inscribing circles 

(CL2IC) for Example E1 is shown in Fig. 2. A clearer illustration 

of the objective function is shown in Fig.3 as a contour plot, 

where the input points of Example E1 are marked as ‘+’.  

 
 

Figure 2. Objective function for Example E1. 

It can be clearly seen that most contours in Fig. 3 suffer 

tangent discontinuities at discrete points. These are the places 

where the gradient vector of the objective function also suffers 

discontinuities. The minimum for the objective function in Fig. 

𝒑𝒊 

𝑟𝑖 

𝑟𝑐  c 
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2 occurs at the bottom of the valley within the inner most contour 

of Fig. 3 near the origin (0,0). 

 
Figure 3. Contour plot of the objective function of Fig. 2. 

2.2 Connection to Voronoi diagrams 

An interesting and important connection between the 

behavior of the objective functions of Eq. (2) and the Voronoi 

diagrams of the input points has been established in a recent 

theoretical investigation of the optimality conditions for 

constrained least-squares fitting of circles and spheres [12]. In 

that investigation, the following theorem was proved. 

Theorem 1: The constrained least-squares inscribing and 

circumscribing circles and spheres must contact at least two 

input points.  

It immediately implies the following theorem. 

Theorem 2: The centers of the constrained least-squares circles 

and spheres must lie on the Voronoi diagram of the input 

points. More specifically, the center of CL2IC and CL2ISp 

must lie on the nearest-neighbor Voronoi diagram of the input 

points; similarly, the center of CL2CC and CL2CSp must lie 

on the furthest-neighbor Voronoi diagram of the input points. 

The connection between the objective functions of Eq. (2) 

and Voronoi diagrams can be illustrated using Example E1. 

Figure 4 shows the nearest-neighbor Voronoi diagram for the 

input points of Example E1. Figure 5 is a superposition of the 

contour plot (Fig. 3) and the Voronoi diagram (Fig. 4). It can be 

clearly seen in Fig.5 that the Voronoi edges of Fig. 4 are perfectly 

aligned with the points of tangent discontinuities of Fig. 3. 

 

 
Figure 4. Voronoi diagram of input points in Example E1. 

 

Figure 5. Superposition of Figs. 3 and 4. 

The nature of the optimization problem can now be 

summarized as follows. 

• The minimum occurs on the Voronoi diagrams. This fact 

will be exploited in Section 3 to design and implement 

algorithms that find the global minimum. 

• The minimum occurs where the gradient vector is 

discontinuous. This fact will be considered in Section 4 in 
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the design and implementation of heuristics that find a 

minimum. 

3. Algorithms and their Implementations 
Theorem 2 guarantees that the global minimum to the 

optimization problems of Eq. (2) can be found by restricting the 

search to Voronoi diagrams. This cuts the feasible region down 

by one full dimension. For circles in a plane, the search for the 

optimal center needs to look no further than a finite number of 

line segments. Similarly, for spheres in space, the search for the 

optimal center can be confined to a finite number of convex 

polygonal regions. Moreover, in both cases, the objective 

function is smooth (continuous function with continuous 

derivatives) over each Voronoi edge (in the plane) and over each 

Voronoi face (in space). These notions will now be described in 

some detail. 

The nearest-neighbor or furthest-neighbor Voronoi diagram 

for a discrete set of points in a plane is a connected, planar graph 

𝐺 = (𝐸, 𝑉) with edge set E and vertex set V [13]. The Voronoi 

edges are straight line segments. Figure 4 is an example of such 

a graph. Some of the edges in E will extend to infinity in one 

direction; these are usually trimmed by a generously large 

bounding box for computational and display purposes. For a set 

of n input points in a plane, its Voronoi diagram has 𝑂(𝑛) edges 

and 𝑂(𝑛) vertices. 

 

Figure 6. Objective function along the five Voronoi edges shown 

in Figs. 4 and 5. The bottom-most function is along the only 

short, finite Voronoi edge. The other four functions are along the 

half-line Voronoi edges that have been trimmed. 

The nearest-neighbor or furthest-neighbor Voronoi diagram 

for a discrete set of points in (3D) space is also a connected (but 

not planar) graph 𝐺 = (𝐹, 𝐸, 𝑉) with face set F, edge set E, and 

vertex set V. The faces in F are convex polygons, and the edges 

in E are straight line segments. Some of the faces and edges will 

extend to infinity, and they are usually trimmed by a generously 

large three-dimensional bounding box for computational and 

display purposes. For a set of n input points in space, the size of 

its Voronoi diagram can vary quadratically with 𝑛. 

Even though the gradient vectors of the objective functions 

of Eq. (2) are not continuous in the region of interest in the plane 

and in space, the objective functions are locally smooth and 

continuous in the interior of the Voronoi edges and Voronoi 

faces. This means that the gradient vector is also continuous 

along the Voronoi edges and over the Voronoi faces. Figure 6 

illustrates the local smoothness of the objective function along 

each of the five Voronoi edges shown in Figs. 4 and 5.  Such local 

smoothness will be exploited in the design of algorithms in 

Section 3.1, and in their implementation in Section 3.2. 

3.1 Design and analysis of algorithms 

A general algorithm to find the global minimum for the 

problems in Eq. (2) is given in Table 1 in two major steps. 

Table 1. Algorithm for circles and spheres. 

Algorithm A_CL2x       (x stands for IC, CC, ISp, or CSp) 

Input: Set of n points, either in a plane or in space. 

Output: Center of optimum circle/sphere, its radius, and 

the minimized objective function. 

1. Compute the Voronoi diagram of the input points. 

a. For CL2IC and CL2ISp, it is the nearest-neighbor 

Voronoi diagram. For CL2CC and CL2CSp, it is 

the furthest-neighbor Voronoi diagram. 

b. For CL2IC and CL2CC, the Voronoi diagram is a 

connected, planar graph  𝐺 = (𝐸, 𝑉). For CL2ISp 

and CL2CSp, it a connected graph 𝐺 = (𝐹, 𝐸, 𝑉). 

2. Search through the Voronoi graph to find the global 

minimum. 

a. For CL2IC and CL2CC, search along each closed 

edge in the edge set E to find the minimum, and 

then find the minimum of all such minima over 

E. If more than one global minimum is found, 

return all the global minimum results. 

b. For CL2ISp and CL2CSp, search over each closed 

face in the face set F to find the minimum, and 

then find the minimum of all such minima over 

F. If more than one global minimum is found, 

return all the global minimum results. 

The correctness of the A_CL2x algorithm is guaranteed by 

Theorem 2. An analysis of the A_CL2x algorithm requires the 

consideration of both the steps.  

1. The time and space complexity of Step 1 is completely 

determined by the complexity of computing the Voronoi 

diagram. One of the most popular algorithm to compute 

Voronoi diagrams is called qhull [14], which can be 

computed, on average, in 𝑂(𝑛 log 𝑛) time. 

2. The complexity of Step 2 is dominated by the number of 

Voronoi edges or Voronoi faces; the time required for 

finding the minimum along each Voronoi edge or Voronoi 
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face is not a function of the input size n, and so it can be 

considered to be a constant for the purpose of analysis.  

There are only   𝑂(𝑛) Voronoi edges in two-dimensional 

problems. But there could be 𝑂(𝑛2) Voronoi faces in three-

dimensional problems.

 

 

Table 2. Code for A_CL2IC 

 filename: A_CL2IC.m  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

function [c,rc,f]=A_CL2IC(M) 

% 

% Implementation of an algorithm  

%   to fit a constrained (inscribed) least-squares circle in a plane  

% Input: 

%   M: an nx2 matrix of x and y coordinates of n points 

% Output: 

%   c:  center of the circle; a 1x2 array of x and y coordinates  

%   rc: radius of the circle; a scalar  

%   f:  minimized objective function; a scalar  

%   

% Needs: 

%   fminbnd: a built-in function to search for minimum over a Voronoi edge 

%   CL2IC_ObjFun: a local function needed by fminbnd  

% 

  global P % Make the coordinate matrix a global variable in this file 

  global psedge % Make starting endpoint of an edge global 

  global pfedge % Make finishing endpoint of an edge global   

  P = M; % Copy M to P 

  [vx, vy] = voronoi(P(:,1), P(:,2)); % Compute (nearest-neighbor) Voronoi diagram 

  nedge = size(vx)(2); % Number of edges in the Voronoi diagram 

  ps = [vx(1,:); vy(1,:)]; % Vector of starting endpoints of Voronoi edges 

  pf = [vx(2,:); vy(2,:)]; % Vector of finishin endpoints of Voronoi edges 

  for j=1:nedge % Search over all Voronoi edges 

    psedge = ps(:,j); % Starting endpoint of Voronoi edge 

    pfedge = pf(:,j); % Finishing endpoint of Voronoi edge 

    [tval, fval] = fminbnd(@CL2IC_ObjFun, 0, 1); % Call the built-in minimizer 

    cen(:,j) = (1-tval)*psedge + tval*pfedge; % Center coordinates of local minima 

    fminval(j) = fval; % Vector of local minima 

    end 

  [f, ednum] = min(fminval); % Global minimum 

  c = cen(:,ednum)'; % Center coordinates of global minimum 

  rc = min(sqrt((P(:,1)-c(1)).^2 + (P(:,2)-c(2)).^2)); % Radius at global minimum 

end 

%   

  function f=CL2IC_ObjFun(t) 

%   Objctive function needed by fminbnd  

%   Input: 

%     t: argument (parameter) for the objective function; a scalar  

%   Output: 

%     f: Objective function = sqaure root of the mean of the squares (RMS) 

%        of the deviations of the points from the circle; a scalar       

%    

    global P % a gloabl variable to get the coordinate matrix 

    global psedge % Make starting endpoint of an edge global  

    global pfedge % Make finishing endpoint of an edge global 

    x = (1-t)*psedge + t*pfedge; % From parameter to coordinates  

    r = sqrt((P(:,1)-x(1)).^2 + (P(:,2)-x(2)).^2); % radius vector  

    f = (norm(r-min(r)))/sqrt(size(r)(1)); % RMS of deviations from the circle  

  end 
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3.2 Implementation of algorithms 

Any implementation of an algorithm requires a language to 

be chosen and some compromises to be made. Table 2 exhibits 

an implementation of the A_CL2IC algorithm in GNU Octave 

language [15]. GNU Octave is a free software distributed under 

the GNU General Public License. It is a ‘MATLAB-clone,’ 

which means in practice that GNU Octave code should run under 

MATLAB, but not necessarily the other way around. GNU 

Octave has the advantage of free availability and openness, but 

it is only an interpretive language with some syntactic 

restrictions (e.g., no support for nested functions). 

The A_CL2IC code in Table 2 is generously commented to 

be almost self-documented. Step 1 of Algorithm A_CL2IC is 

executed in line 20 using a built-in voronoi function of GNU 

Octave. The rest of the code implements Step 2 of the algorithm. 

As each Voronoi edge is examined in the for loop in lines 24 

through 30, a built-in minimizer fminbnd is called in line 27 to 

find the minimum of the objective function along that edge. Here 

it is assumed that the univariate objective function is smooth with 

continuous directional derivative along each Voronoi edge, as 

illustrated in Fig. 6. 

The smoothness of the objective function with continuous 

directional derivative along the Voronoi edges in Fig. 6 (as 

opposed to the apparent discontinuous derivatives across 

Voronoi edges in Fig. 5) can be explained as follows. Notice that 

for all inscribing circle centers located in the interior of a Voronoi 

edge, there are only two points of contact from the input set and 

these two points remain invariant as long as the centers lie in the 

interior of that Voronoi edge. This implies that the ‘active’ 

constraints in Eq. (1) (that is, those constraints that turn to 

equality constraints) remain invariant during the entire traversal 

of the circle center in the interior of that Voronoi edge, thus 

contributing to the smoothness of the objective function and its 

directional derivatives along that edge. 

Another interesting observation about the objective function 

along a Voronoi edge is that it achieves a minimum at an 

endpoint of that edge or at only one point in the interior of that 

edge. (It may also achieve a maximum, but that is not germane 

to the minimization search.) This property can be termed a 

‘quasi-min unimodality,’ and can be exploited in employing the 

fminbnd function.        

Since the gradient is also continuous along a Voronoi edge, 

a faster minimization method that employs the gradient could 

have been used. However, fminbnd, which requires only the 

objective function evaluation in its golden section search, is used 

in the code for simplicity and it seems to be sufficient for finding 

the minimum along each edge. Also, the ‘quasi-min unimodality’ 

mentioned above ensures that fminbnd will find the global 

minimum along each Voronoi edge. The global minimum among 

all Voronoi edges is extracted in line 31 of Table 2. In this simple 

implementation in line 31, only one of the minimum value is 

picked, even if there were multiple minima of the same value.  

 
Figure 7. Results from A_CL2IC for Example 1. 

The output circle from executing the code for the input from 

Example 1 is shown in Fig. 7, along with the Voronoi diagram of 

the input points. The center of the circle, shown as a small circle, 

lies in the interior of a small Voronoi edge, and the circle contacts 

two of the input points. For input points that may come from only 

an arc of a circle, consider the following example problem, again 

with only four points in a plane: 

Example E2. 𝒑𝟏: (0.1, − 0.9), 𝒑𝟐: (0.7, −0.75),  

𝒑𝟑: (0.95, 0.1), and 𝒑𝟒: (0.65, 0.72). 

Figure 8 shows the output circle from executing the code in Table 

2 for the input points from Example 2, along with the Voronoi 

diagram of the input points. In Fig. 7, the center of the inscribing 

circle falls inside the convex hull of the input points. In Fig. 8, 

on the other hand, the center of the inscribing circle falls outside 

the convex hull of the input points. 

The code for A_CL2IC given in Table 2 can be modified to 

obtain the code for  A_CL2CC with only two changes: 

1. In line 20, voronoi should be replaced by an appropriate 

call to a function that computes the furthest-neighbor 

Voronoi diagram. Such a code is available in qhull [14]. 

2. In line 49, min(r) should be replaced by max(r) so that 

the correct objective function for circumscribing circle is 

computed.  
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Figure 8. Results from A_CL2IC for Example 2. 

Developing similar codes for A_CL2ISp and A_CL2CSp 

requires more work.  

• For A_CL2ISp, GNU Octave has a voronoin function to 

compute the three-dimensional nearest-neighbor Voronoi 

diagram. For A_CL2CSp, a similar function to compute the 

three-dimensional furthest-neighbor Voronoi diagram can 

be found in qhull [14].  

• In addition, for both A_CL2ISp and A_CL2CSp, fminbnd 

should be replaced by another minimizer for a smooth 

bivariate function over a bounded domain (in this case, a 

Voronoi face). 

It is quite remarkable that a working code that implements an 

algorithm for CL2IC can be developed that is as compact as the 

one exhibited in Table 2. Even more remarkable are the power of 

heuristics to compute all the circles and spheres defined in 

Section 2, and the compactness of codes to implement them, as 

described in the next section.    

4. Heuristics and their Implementations 
The optimization problems posed in Eq. (2) can be attacked 

by heuristic methods that may be simpler than the algorithmic 

methods of Section 3. But these heuristics may not provide any 

theoretical guarantee about the global optimality of the solutions. 

Nevertheless, heuristics deserve attention because of their ease 

of implementation to solve a wide set of problems. 

There are direct search methods, such as polytope (also 

known as simplex) methods, to find a minimum [16]. An outline 

of heuristics to attack the optimization problems of Eq. (2) is 

provided as Heuristic H_CL2x in Table 3. 

 

Table 3. Heuristic for circles and spheres. 

Heuristic H_CL2x       (x stands for IC, CC, ISp, or CSp) 

Input: Set of n points, either in a plane or in space. 

Output: Center of optimum circle/sphere, its radius, and the 

minimized objective function. 

1. Find a good starting solution set. 

a. For circles and spheres, this can be accomplished 

automatically and algorithmically using parabolic 

projection, as described in Section 4.1. 

b. A compact implementation of this algorithm is 

also described in Section 4.1.   

2. Employ a derivative-free, direct search method to 

descend to a minimum. One such method is the 

following.    

a. Create a starting simplex around the starting 

solution set and move it by reflection, expansion, 

contraction, and scaling towards a minimum. 

Stop the search when it reaches a threshold. 

b. An implementation that employs Nedler-Mead 

method to accomplish this direct search is 

described in Section 4.2  

 

Implementations of the two steps outlined in Heuristic 

H_CL2x are now described in Sections 4.1 and 4.2. 

4.1 Finding good starting circles and spheres 

Good starting circles and spheres as initial approximations 

are critical to heuristics that then find a local minimum. Luckily, 

there exists a mathematically elegant method that finds starting 

circles and spheres automatically and algorithmically by 

combining existing ideas in literature [2, 13]. A general 

algorithm to find an approximate sphere in m-dimensional space 

is described in Table 4 as Algorithm AppSphm, which can be 

specialized by setting 𝑚 = 2 to find an approximate starting 

circle in a plane, and 𝑚 = 3 to find an approximate starting 

sphere in space. 

A visual interpretation of the Algorithm AppSphm, and a 

proof of its correctness, can be given using Fig. 9 for a simple 

case with 𝑚 = 1, and generalizing the results to any 𝑚. Figure 9 

shows a unit parabola 𝑈2 in ℝ2, and a point 𝑥1 = 𝑐1 = 5 in ℝ1 

that is projected up to the parabola in ℝ2 as the point (𝑐1, 𝑐1
2) =

(5, 25). Also shown in Fig. 9 is a line 𝐿1𝑐 tangential to the 

parabola at the point (𝑐1, 𝑐1
2), and another line 𝐿1 that is parallel 

to 𝐿1𝑐 but shifted up by a positive scalar amount equal to 𝑟2 = 9. 

These entities can be described mathematically as: 

𝑈2: 𝑥2 = 𝑥1
2 (3) 

𝐿1𝑐: 𝑥2 = 2𝑐1𝑥1 − 𝑐1
2 (4) 

𝐿1: 𝑥2 = 2𝑐1𝑥1 − 𝑐1
2 + 𝑟2. (5) 
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The intersection of the unit parabola 𝑈2 and the line 𝐿1 can then 

be seen to be 

𝑈2 ∩ 𝐿1: (𝑥1 − 𝑐1)2 = 𝑟2 (6) 

which can be interpreted as the equation of a one-dimensional 

sphere in ℝ1 with radius 𝑟 and centered at 𝑐1. 

Table 4. Algorithm for approximate circles and spheres.     

Algorithm AppSphm 

Input: Set of n points in ℝ𝑚. Each point 𝒑𝒊 has coordinates 

(𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑚) for 𝑖 = 1, 𝑛. Let 𝑛 > 𝑚. 

Output: Center coordinates (𝑐1, 𝑐2, … , 𝑐𝑚) and radius 𝑟𝑐  of 

a sphere in ℝ𝑚. 

1. Project points in  ℝ𝑚 to a unit paraboloid in ℝ𝑚+1. 

This is accomplished by setting 

 𝑥𝑚+1 = 𝑥1
2 + 𝑥2

2 + ⋯ + 𝑥𝑚
2  for each point. 

2. Fit a least-squares hyperplane to these points in ℝ𝑚+1.    

This is accomplished by solving a set of over-

constrained linear equations 

[

2𝑥1,1 …

2𝑥2,1 …

2𝑥1,𝑚 1

2𝑥2,𝑚 1
… …

2𝑥𝑛,1 …
… …

2𝑥𝑛,𝑚 1

] {

𝑐1

…
𝑐𝑚

𝑐𝑚+1

} = {

𝑥1,1
2 + ⋯ + 𝑥1,𝑚

2

……
𝑥𝑛,1

2 + ⋯ + 𝑥𝑛,𝑚
2

} 

using the least-squares method. 

3. Find the intersection of the unit paraboloid and the 

hyperplane. It is an m-dimensional ellipsoid in ℝ𝑚+1.  
4. Project that ellipsoid back to ℝ𝑚 to obtain a sphere in 

ℝ𝑚, and return its center coordinates (𝑐1, 𝑐2, … , 𝑐𝑚) 

and radius 𝑟𝑐 = √𝑐1
2 + ⋯ + 𝑐𝑚

2 + 𝑐𝑚+1.  

 

 

Figure 9. Parabola and parallel lines. 

The Eqs. (3-6) can be generalized to any dimension 𝑚 by 

considering a unit paraboloid 𝑈𝑚+1 in ℝ𝑚+1, and a point 
(𝑐1, 𝑐2, … , 𝑐𝑚) ∈ ℝ𝑚  that is projected up to the paraboloid in 

ℝ𝑚+1 as the point (𝑐1, 𝑐2, … , 𝑐𝑚, ∑ 𝑐𝑗
2𝑚

𝑗=1 ). Also consider a 

hyperplane 𝑃𝑚𝑐  tangential to the paraboloid at the point 

(𝑐1, 𝑐2, … , 𝑐𝑚, ∑ 𝑐𝑗
2𝑚

𝑗=1 ), and another hyperplane 𝑃𝑚 that is 

parallel to 𝑃𝑚𝑐  but shifted up by a scalar amount equal to 𝑟2. 

These entities can be described mathematically as: 

𝑈𝑚+1: 𝑥𝑚+1 = ∑ 𝑥𝑗
2

𝑚

𝑗=1
 

(7) 

𝑃𝑚𝑐 : 𝑥𝑚+1 = 2 ∑ 𝑐𝑗𝑥𝑗

𝑚

𝑗=1
− ∑ 𝑐𝑗

2
𝑚

𝑗=1
 

(8) 

𝑃𝑚: 𝑥𝑚+1 = 2 ∑ 𝑐𝑗𝑥𝑗

𝑚

𝑗=1
− ∑ 𝑐𝑗

2
𝑚

𝑗=1
 + 𝑟2 

(9) 

The intersection of the unit paraboloid 𝑈𝑚+1 and the hyperplane 

𝑃𝑚 can then be seen to be 

𝑈𝑚+1 ∩ 𝑃𝑚 : ∑ (𝑥𝑗 − 𝑐𝑗)
2𝑚

𝑗=1
= 𝑟2 

(10) 

which can be interpreted as the equation of a 𝑚-dimensional 

sphere in ℝ𝑚 with radius 𝑟 and centered at (𝑐1, 𝑐2, … , 𝑐𝑚). When 

𝑚 = 2 it is a circle in a plane, and when 𝑚 = 3 it is a sphere in 

three-dimensional space. 

With these preliminary results, the proof of correctness of 

Algorithm AppSphm can be obtained by considering fitting a 

hyperplane 

𝑥𝑚+1 = 2 ∑ 𝑥𝑗𝑐𝑗

𝑚

𝑗=1
+ 𝑐𝑚+1 

(11) 

to a set of 𝑛 points in ℝ𝑚+1. These points are obtained in Step 1 

of AppSphm by the mapping 

(𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑚) → (𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑚, ∑ 𝑥𝑖,𝑗
2

𝑚

𝑗=1
) 

(12) 

for all 𝑖. When these point coordinates are applied to Eq. (11), 

they result in a set of over-determined equations (because it is 

assumed that 𝑛 > 𝑚, and often 𝑛 ≫ 𝑚) shown in Step 2 of 

AppSphm. In Step 3, these over-determined equations are solved 

using the usual least-squares methods to obtain the coefficients 

𝑐𝑗 , 𝑗 = 1, … , 𝑚 + 1. Then, Eq. (10) implies that the center of the 

desired sphere has the coordinates (𝑐1, 𝑐2, … , 𝑐𝑚), and a 

comparison of Eq. (9) and Eq. (11) indicates that the radius 𝑟 of 

the sphere can be obtained from 𝑐𝑚+1 = − ∑ 𝑐𝑗
2𝑚

𝑗=1 + 𝑟2. This 

proves the correctness of the last step (Step 4) of AppSphm, and 

thus of the whole algorithm.  

    

𝑈2 

𝐿1 

𝐿1𝑐 
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Table 5. Code for AppCir 

 filename: AppCir.m  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

function [c,rc]=AppCir(M) 

% 

% Computes an approximate circle in a plane based on (1) parabolic projection  

% of 2D points to 3D, (2) fitting an ordinary least-squares plane in 3D, and  

% (3) projecting the intersecting ellipse to the 2D plane. 

% Input: 

%   M: an nx2 matrix of x and y coordinates of n points 

% Output: 

%   c: center of the circle; a 1x2 array of x and y coordinates  

%   rc: radius of the circle; a scalar 

%    

x = [2*M  ones(size(M)(1),1)]\(M(:,1).^2 + M(:,2).^2); % Does the magic! 

c = [x(1) x(2)]; % Center of the circle  

rc = sqrt(x(1)^2 + x(2)^2 + x(3)); % Radius of the circle  

end 

Table 6. Code for H_CL2IC 

 filename: H_CL2IC.m  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

function [c,rc,f]=H_CL2IC(M) 

% 

% Implementation of a heuristic  

%   to fit a constrained (inscribed) least-squares circle in a plane  

% Input: 

%   M: an nx2 matrix of x and y coordinates of n points 

% Output: 

%   c:  center of the circle; a 1x2 array of x and y coordinates  

%   rc: radius of the circle; a scalar  

%   f:  minimized objective function; a scalar  

%   

% Needs: 

%   AppCir: an external function to get an approximate circle 

%   fminsearch: a built-in function to search for minimum 

%   CL2IC_ObjFun: a local function needed by fminsearch  

% 

  global P % Make the coordinate matrix a global variable in this file  

  P = M; % Copy M to P 

  [x0, apprad] = AppCir(P); % Get the approximate circle to start the search 

  [c, f] = fminsearch(@CL2IC_ObjFun, x0); % Conduct the heuristic search 

%   Input: 

%     @CL2IC_ObjFun: handle for a local objective function 

%     x0: a 1x2 array of starting circle center coordinates 

%   Output: 

%     c: a 1x2 array of circle center coordinates 

%     f: minimized objective function; a scalar      

  rc = min(sqrt((P(:,1)-c(1)).^2 + (P(:,2)-c(2)).^2)); % Radius of the circle  

end 

%   

  function f=CL2IC_ObjFun(x) 

%   Objective function needed by fminsearch  

%   Input: 

%     x: starting approximation for center and radius  

%     center is a 1x2 array of x and y coordinates 

%     radius is a scalar 

%   Output: 

%     f: Objective function = square root of the mean of the squares (RMS) 

%        of the deviations of the points from the circle; a scalar       

%    

    global P % a global variable to get the coordinate matrix  

    r = sqrt((P(:,1)-x(1)).^2 + (P(:,2)-x(2)).^2); % radius vector  

    f = (norm(r-min(r)))/sqrt(size(r)(1)); % RMS of deviations from the circle  

  end 
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Table 5 exhibits a compact GNU Octave code for the AppCir 

algorithm, which specializes Algorithm AppSphm for 𝑚 = 2. It 

is remarkable that the entire computation is executed in a single 

line (line 12). A similar code that specializes Algorithm 

AppSphm for 𝑚 = 3 is given in the Annex Table A2. 

4.2 Direct search to find a local minimum 

The fact that the objective functions of Eq. (2) have 

discontinuous gradient vectors, and that the minimum always 

occurs at these discontinuities (that is, on Voronoi diagrams) 

limits the choice of generic optimization methods. For problems 

of these types, one may resort to a direct search method that does 

not depend on derivatives. One such derivative-free direct search 

can be carried out by the Nedler-Mead method [16], which has 

been well documented and implemented in publicly-available 

software.  

A code that implements the Heuristic H_CL2IC in GNU 

Octave is exhibited in Table 6. It uses the Nedler-Mead method 

by invoking a built-in function fminsearch in line 20. Similar 

code for heuristic H_CL2CC for constrained least-squares fitting 

of circumscribing circles is exhibited in Annex Table A1. The 

only difference between the codes in Table 6 and Table A1 is in 

line 42, where the function min(r) is replaced by max(r)in 

evaluating the objective function. 

Figures 10 and 11 show the results of executing the code 

H_CL2IC for Example 1 and Example 2, respectively. Contour 

plots of the objective functions are superposed in these figures to 

illustrate how the centers (marked as ‘o’) are found by the search 

heuristics at the ‘bottom of the valley.’  

It is instructive to compare Figs. 7 and 10 for Example 1, 

and Figs. 8 and 11 for Example 2. The results of the algorithmic 

and heuristic codes look strikingly identical. Table 7 summarizes 

and compares the numerical results from algorithmic and 

heuristic computations of center coordinates (𝑐), radii (𝑟), and 

objective functions (𝑓) for inscribing circles; also presented are 

the center and radius values for approximate starting circles used 

in search heuristics. The numerical results differ within the 

default tolerances set in the GNU Octave built-in functions 

fminbnd and fminsearch. 

Table 7. Comparison of numerical results. 

 Example 1 Example 2 

A_CL2IC 

𝑐 = (−0.1417377,    
0.0082623) 
𝑟 = 1.3185 
𝑓 =0.18410 

𝑐 = (0.0592824,
−0.0041400) 
𝑟 = 0.89678 
𝑓 = 0.047181 

H_CL2IC 

𝑐 = (−0.1416265,
0.0083757) 
𝑟 =1.3185 

𝑓 =0.18410 

𝑐 = (0.0596950,
−0.0044904) 
𝑟 = 0.89642 
𝑓 = 0.047181 

AppCir 

𝑐 = (−0.1061450 ,
0.0049736) 
𝑟 = 1.4501 

𝑐 = (0.107328,
−0.023512) 
𝑟 = 0.89722 

 
 

Figure 10. Results from H_CL2IC for Example 1. 

 

 

 

 
Figure 11. Results from H_CL2IC for Example 2. 

To complete the picture, Figs. 12 and 13 illustrate the results 

of executing the code H_CL2CC for Examples 1 and 2. Again, it 

can be observed that the search heuristic solution is centered at 

the ‘bottom of the valley.’ One way to interpret the working of 

the Nedler-Mead method using Figs.10 to 13 is to imagine a 
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water droplet deposited at the center of the approximate starting 

circle. This droplet, taking the form of a changing simplex, then 

trickles down by gravity to the bottom of the valley. Tables A3 

and A4 in the Annex exhibit the heuristics H_CL2ISp and 

H_CL2CSp, respectively, to compute the constrained least-

squares fitting of inscribing and circumscribing spheres.  

 

 

 

 

 
 

Figure 13. Results from H_CL2CC for Example  2.

Figure 12. Results from H_CL2CC for Example 1. 

 

 

 

5. Opportunities for Improvements and Extensions 
The implementations of algorithms and heuristics presented 

in this paper can be improved in many ways. Parallel processing 

using GPUs can obviously accelerate the computation of Voronoi 

diagrams, and search for minima over Voronoi edges and 

Voronoi faces in the algorithms. Any number of direct search 

methods may be improved and deployed to find the minima in 

the heuristics.  

An exciting opportunity lies in the extension of the 

heuristics to compute the constrained least-squares fitting of 

other geometric elements such as cylinders, cones, tori, and free-

form surfaces. The ease of implementation of the heuristics for 

circles and spheres reported in this paper gives some 

encouragement to such extensions. However, these extensions 

should be subjected to careful analysis and testing before they 

can be adopted for serious use in industry.   

6. Summary and Concluding Remarks 
This paper addressed the practical issues in implementing 

constrained least-squares fitting of circles and spheres. These 

problems have acquired some urgency due to the impending 

adoption of the constrained least-squares criterion as the 

common, default definition for datums in ASME and ISO 

standards for geometric dimensioning and tolerancing. 

In addition to presenting algorithms and heuristics, the paper 

also provided representative codes written in freely available 

GNU Octave language to encourage software testing and 

adoption by industry. As indicated in Section 5, exciting 

opportunities exist to extend the heuristics for constrained least-

squares fitting to other important geometric elements covered by 

standards. This promises to be an area for further fruitful 

research.    
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Annex 
 

Table A1. Code for H_CL2CC 

 filename: H_CL2CC.m  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

function [c,rc,f]=H_CL2CC(M) 

% 

% Implementation of a heuristic  

%   to fit a constrained (circumscribed) least-squares circle in a plane  

% Input: 

%   M: an nx2 matrix of x and y coordinates of n points 

% Output: 

%   c:  center of the circle; a 1x2 array of x and y coordinates  

%   rc: radius of the circle; a scalar  

%   f:  minimized objective function; a scalar  

%   

% Needs: 

%   AppCir: an external function to get an approximate circle 

%   fminsearch: a built-in function to search for minimum 

%   CL2CC_ObjFun: a local function needed by fminsearch  

% 

  global P % Make the coordinate matrix a global variable in this file  

  P = M; % Copy M to P 

  [x0, apprad] = AppCir(P); % Get the approximate circle to start the search 

  [c, f] = fminsearch(@CL2CC_ObjFun, x0); % Conduct the heuristic search 

%   Input: 

%     @CL2CC_ObjFun: handle for a local objective function 

%     x0: a 1x2 array of starting circle center coordinates 

%   Output: 

%     c: a 1x2 array of circle center coordinates 

%     f: minimized objective function; a scalar      

  rc = max(sqrt((P(:,1)-c(1)).^2 + (P(:,2)-c(2)).^2)); % Radius of the circle  

end 

%   

  function f=CL2CC_ObjFun(x) 

%   Objective function needed by fminsearch  

%   Input: 

%     x: starting approximation for center and radius  

%     center is a 1x2 array of x and y coordinates 

%     radius is a scalar 

%   Output: 

%     f: Objective function = square root of the mean of the squares (RMS) 

%        of the deviations of the points from the circle; a scalar       

%    

    global P % a global variable to get the coordinate matrix  

    r = sqrt((P(:,1)-x(1)).^2 + (P(:,2)-x(2)).^2); % radius vector  

    f = (norm(r-max(r)))/sqrt(size(r)(1)); % RMS of deviations from the circle  

  end 

 

Table A2. Code for AppSph 

 filename: AppSph.m  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

function [c,r]=AppSph(M) 

% 

% Computes an approximate sphere in space based on (1) parabolic projection  

% of 3D points to 4D, (2) fitting an ordinary least-squares hyper-plane in 4D,  

% and(3) projecting the intersecting ellipsoid to the 3D space. 

% Input: 

%   M: an nx3 matrix of x,y and z coordinates of n points 

% Output: 

%   c: center of the sphere; a 1x3 array of x,y and z coordinates  

%   r: radius of the sphere; a scalar 

%    

  x = [2*M  ones(size(M)(1),1)]\(M(:,1).^2 + M(:,2).^2 + M(:,3).^2); % Does the magic! 

  c = [x(1) x(2) x(3)]; % Center of the sphere  

  r = sqrt(x(1)^2 + x(2)^2 + x(3)^2 + x(4)); % Radius of the sphere  

end 
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Table A3. Code for H_CL2ISp 

 filename: H_CL2ISp.m  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

function [c,rc,f]=H_CL2ISp(M) 

% 

% Implementation of a heuristic  

%   to fit a constrained (inscribed) least-squares sphere in space  

% Input: 

%   M: an nx3 matrix of x,y and z coordinates of n points 

% Output: 

%   c:  center of the sphere; a 1x3 array of x,y and z coordinates  

%   rc: radius of the sphere; a scalar  

%   f:  minimized objective function; a scalar  

%   

% Needs: 

%   AppSph: an external function to get an approximate circle 

%   fminsearch: a built-in function to search for minimum 

%   CL2ISp_ObjFun: a local function needed by fminsearch  

% 

  global P % Make the coordinate matrix a global variable in this file  

  P = M; % Copy M to P 

  [x0, apprad] = AppSph(P); % Get the approximate sphere to start the search 

  [c, f] = fminsearch(@CL2ISp_ObjFun, x0); % Conduct the heuristic search 

%   Input: 

%     @CL2ISp_ObjFun: handle for a local objective function 

%     x0: a 1x3 array of starting sphere center coordinates 

%   Output: 

%     c: a 1x3 array of sphere center coordinates 

%     f: minimized objective function; a scalar      

  rc = min(sqrt((P(:,1)-c(1)).^2 + (P(:,2)-c(2)).^2 + (P(:,3)-c(3)).^2)); % Radius of the sphere  

end 

%   

  function f=CL2ISp_ObjFun(x) 

%   Objective function needed by fminsearch  

%   Input: 

%     x: starting approximation for center and radius  

%     center is a 1x3 array of x,y and z coordinates 

%     radius is a scalar 

%   Output: 

%     f: Objective function = square root of the mean of the squares (RMS) 

%        of the deviations of the points from the sphere; a scalar       

%    

    global P % a global variable to get the coordinate matrix  

    r = sqrt((P(:,1)-x(1)).^2 + (P(:,2)-x(2)).^2 + (P(:,3)-x(3)).^2); % radius vector  

    f = (norm(r-min(r)))/sqrt(size(r)(1)); % RMS of deviations from the sphere  

  end 
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Table A4. Code for H_CL2CSp 

 filename: H_CL2CSp.m  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

function [c,rc,f]=H_CL2CSp(M) 

% 

% Implementation of a heuristic  

%   to fit a constrained (circumscribed) least-squares sphere in space  

% Input: 

%   M: an nx3 matrix of x,y and z coordinates of n points 

% Output: 

%   c:  center of the sphere; a 1x3 array of x,y and z coordinates  

%   rc: radius of the sphere; a scalar  

%   f:  minimized objective function; a scalar  

%   

% Needs: 

%   AppSph: an external function to get an approximate circle 

%   fminsearch: a built-in function to search for minimum 

%   CL2CSp_ObjFun: a local function needed by fminsearch  

% 

  global P % Make the coordinate matrix a global variable in this file  

  P = M; % Copy M to P 

  [x0, apprad] = AppSph(P); % Get the approximate sphere to start the search 

  [c, f] = fminsearch(@CL2CSp_ObjFun, x0); % Conduct the heuristic search 

%   Input: 

%     @CL2CSp_ObjFun: handle for a local objective function 

%     x0: a 1x3 array of starting sphere center coordinates 

%   Output 

%     c: a 1x3 array of sphere center coordinates 

%     f: minimized objective function; a scalar      

  rc = max(sqrt((P(:,1)-c(1)).^2 + (P(:,2)-c(2)).^2 + (P(:,3)-c(3)).^2)); % Radius of the sphere  

end 

%   

  function f=CL2CSp_ObjFun(x) 

%   Objective function needed by fminsearch  

%   Input: 

%     x: starting approximation for center and radius  

%     center is a 1x3 array of x,y and z coordinates 

%     radius is a scalar 

%   Output: 

%     f: Objective function = square root of the mean of the squares (RMS) 

%        of the deviations of the points from the sphere; a scalar       

%    

    global P % a global variable to get the coordinate matrix  

    r = sqrt((P(:,1)-x(1)).^2 + (P(:,2)-x(2)).^2 + (P(:,3)-x(3)).^2); % radius vector  

    f = (norm(r-max(r)))/sqrt(size(r)(1)); % RMS of deviations from the sphere  

  end 

 


