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This work investigates the link between residual entropy and viscos-
ity based on wide-ranging, highly-accurate experimental and sim-
ulation data. This link was originally postulated by Rosenfeld in
1977, and it is shown that this scaling results in an approximately
monovariate relationship between residual entropy and reduced vis-
cosity for a wide range of molecular fluids (argon, methane, CO2,
SF6, refrigerant R-134a (1,1,1,2-tetrafluoroethane), refrigerant R-125
(pentafluoroethane), methanol, and water), and a range of model
potentials (hard sphere, inverse power, Lennard-Jones, and Weeks-
Chandler-Andersen). While the proposed “universal" correlation of
Rosenfeld is shown to be far from universal, when used with the ap-
propriate density scaling for molecular fluids, the viscosity of non-
associating molecular fluids can be mapped onto the model poten-
tials. This mapping results in a length scale that is proportional to
the cube root of experimentally measureable liquid volume values.
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In 1977 Rosenfeld (1) postulated a quasi-universal relation-1

ship between reduced transport properties and the reduced2

residual entropy. This analysis was based on the analysis of3

simulation data for hard spheres, the one-component plasma,4

and the Lennard-Jones 12-6 model potential in the liquid phase5

only. This scaling, here referred to as the Rosenfeld scaling,6

was of the form7

η

ηR = f
(
−s

r

R

)
, [1]8

where the reducing viscosity ηR, in the same units as η, is9

given by10

ηR = ρ
2/3
N

√
mkBT , [2]11

which is obtained by scaling the viscosity in units of Pa·s (with12

dimensions of mass/(length×time)) by the appropriate dimen-13

sional scaling parameters (for Newtonian dynamics, mass: m,14

time: ρ−1/3
N

√
m/(kBT ), length: ρ−1/3

N )(2, 3). The parameter15

ρN is the number density, not to be confused with the molar16

density ρ, m is the mass of one particle or molecule in kg, kB17

is the Boltzmann constant in J mol−1, T is the temperature18

in kelvins, and −sr/R is the reduced residual entropy. For19

more on the selected unit system and nomenclature, see the20

supporting information (SI) appendix in Section ??.21

Twenty-two years later, in 1999, Rosenfeld (4) proposed22

the “universal" correlation for viscosity given by23

η

ηR = 0.2 exp
(
−0.8s

r

R

)
. [3]24

Empirical equations of a similar form have been obtained25

for a growing body of fluids and intermolecular potentials in26

dense phases(5–9).27

Over the last few years, a theoretical basis for the scaling28

effects that Rosenfeld saw four decades ago has been developed29

with isomorph theory(2, 3, 10–14). This theory stipulates30

that the viscosity scaled in the manner of Eq. (1) should be 31

invariant along lines of constant residual entropy if there is a 32

high degree of correlation between fluctuations in the virial 33

of the system and fluctuations in its intermolecular potential 34

energy. A fluid that follows this behavior, even in some of its 35

phase space, is referred to as an R-simple (Roskilde simple) 36

fluid (3). No molecular fluids are truly perfectly correlating 37

in the R-simple sense, and furthermore, this R-simple scaling 38

may only apply in part of the liquid domain, but this is a 39

powerful theoretical tool to understand the dynamic behavior 40

of molecular fluids. The recent review of Dyre (14) summarizes 41

the state-of-the-art in residual entropy scaling of transport 42

properties. 43

Density scaling and residual entropy scaling are directly 44

connected by isomorph theory (15–20). The reduced dynamic 45

properties of fluids that can be modeled with inverse-power 46

pair potentials scale with ρn/3/T where n is the exponent of 47

the inverse-power pair potential(15, 19, 20); for the inverse- 48

power pair potential (see Section B), there is a one-to-one 49

relationship between ρn/3/T and the residual entropy (see SI 50

Appendix, Fig. ??). 51

Rosenfeld scaling can also be applied to dynamic properties 52

like diffusivity; there are now a number of studies focused on 53

Rosenfeld scaling of diffusivity from molecular simulation (see 54

for instance (21–26)) due to the ease with which self-diffusion 55

can be extracted from the results of molecular simulations. 56

Studies considering the entropy scaling of experimental diffu- 57

sivity measurements are growing in number as well (25, 27–29). 58

As is highlighted by (25, 27), and also seen in this work in 59

the case of viscosity, one of the limitations of the Rosenfeld 60

scaling applied to self-diffusion is that unique curves are in 61

general obtained for each species studied. The residual entropy 62

corresponding states approach proposed in this work should 63

also apply to self-diffusion, allowing for harmonization of the 64

self-diffusion studies that have been carried out thus far. 65

The Rosenfeld scaling of viscosity has been comparatively 66

Significance Statement

We confirm, based on a large database of experimental mea-
surements, Rosenfeld’s hypothesis from 1977 that the viscosity
(a transport property) and the residual entropy (a thermody-
namic property) are intimately connected in dense fluid phases.
This study also provides a means to estimate viscosity with
knowledge of only thermodynamic property information, or to
characterize a fluid’s full liquid viscosity surface based upon
a very small number of high-accuracy experimental measure-
ments.
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less studied. Abramson(30–35) was one of the first to consider67

the Rosenfeld scaling of his experimental viscosity data at68

very high pressures. Since then, modified Rosenfeld scaling69

of viscosity (reducing by the dilute-gas viscosity rather than70

Eq. (2)) has also been successfully investigated (36–42).71

This work investigates the hypothesis that the Rosenfeld-72

scaled viscosity should in general be invariant along lines of73

residual entropy, as is proposed by isomorph theory. The74

most comprehensive study to date of this hypothesis based75

upon viscosities obtained from experimental measurements of76

molecular fluids and molecular simulation of model potentials77

is carried out here. The nearly monovariate relationship for78

non-associating fluids between reduced viscosity and residual79

entropy in the liquid phase, where simple fluids are approx-80

imately R-simple, is shown. Furthermore, this monovariate81

scaling is shown to apply surprisingly well to hydrogen-bonding82

fluids approaching the melting line. Network forming (hydro-83

gen bonding) tends to destroy the R-simple character of the84

fluid and is expected to result in a non-monovariate scaling85

between reduced viscosity and residual entropy.86

The model potentials show the same monovariate depen-87

dency of reduced viscosity on the residual entropy as the88

molecular fluids, and deviate from this behavior in the same89

ways. The scaling of the molecular fluids and the model po-90

tentials collapse by a residual entropy corresponding states91

approach. In this case, the residual entropy (the measure of92

structure of the fluid phase) is the parameter that must be93

corresponding for dynamic states to be equivalent.94

Thermodynamic and transport properties have tradition-95

ally been considered independently. This work shows that:96

Residual entropy is the scaling parameter that connects the97

thermodynamic and transport properties of dense fluids.98

While empirical viscosity models are usually complicated99

functions of temperature and density (43, 44), much simpler100

functional forms can be developed in terms of one variable, the101

residual entropy. This scheme offers the practical promise of a102

different approach for correlating the viscosity of fluids. Only103

a single variable (the residual entropy) is involved, and thus far104

fewer experimental data points would be required compared105

to a function depending on temperature and density. We have106

begun to apply residual entropy scaling with promising results.107

1. Molecular fluids108

The term “molecular fluid" is used in this work to differentiate109

from model intermolecular potentials; model potentials are110

useful theoretical models but are not experimentally accessible111

in a laboratory. The study of molecular fluids in this section is112

indebted to the work of the experimental transport property113

community; without their tireless work, this study would not114

have been possible.115

A. Fluid selection. Molecular fluids for this study were selected116

according to the availability of:117

1. a significant body of high-quality experimental viscosity118

data covering most of the liquid, gas, and supercritical119

states, and120

2. a well-constructed equation of state for the thermody-121

namic properties that yields high-fidelity predictions of122

the residual entropy over the entire fluid range.123

Unfortunately, there are not many fluids (perhaps 30) that 124

meet these requirements. The selected molecular fluids repre- 125

sent the following classes: 126

• a monatomic gas (argon), 127

• nonpolar molecules (methane, carbon dioxide, and sulfur 128

hexafluoride), 129

• halogenated refrigerants (R-134a and R-125) with electro- 130

static interactions due to polarity, and 131

• strongly associating fluids (methanol and water) 132

Table 1 lists the equations of state that were employed in 133

this work. All of the equations of state are multiparameter 134

reference equations. The NIST REFPROP thermophysical 135

property library (45) was used to carry out all the calculations. 136

The equations of state in REFPROP have been critically 137

assessed and deemed to be the most reliable for the given fluid 138

and all have been published in the literature. 139

Table 1. Equations of state used in this work

Common name EOS Tmax (K) pmax (MPa)

Argon (46) 2000 1000
Methane (47) 625 1000

SF6 (48) 625 150
CO2 (49)a 2000 800

R-134a (50) 455 70
R-125 (51) 500 60

Methanol (52) 620 800
Water (53) 2000 1000

a: The equation of state of Giordano et al. (54) is used above
800 MPa instead of that of Span and Wagner(49).

If temperature and pressure are known for the experimental 140

state point, the density is iteratively obtained from the equa- 141

tion of state. With the exception of carbon dioxide, for which 142

the equation of state of (54) (see SI Appendix, Section ?? for 143

the use of this EOS) was used above the maximum pressure 144

of the equation of state of (49), measurements at pressures 145

above the stated maximum pressure of the EOS were excluded 146

to avoid errors associated with extrapolation. 147

In the SI Appendix, Fig. ?? shows the coverage of the 148

experimental viscosity data available for the studied fluids, 149

and the limits of the equations of state for these fluids. This 150

figure demonstrates that there is significant disparity in data 151

coverage, even among the best-studied fluids. 152

B. Evaluation of sr. The state-of-the-art equations of state for 153

molecular fluids are Helmholtz-energy explicit with temper- 154

ature and density as independent variables. In these formu- 155

lations, the molar Helmholtz energy a is expressed as a sum 156

of the ideal-gas a0 = RTα0 and residual ar = RTαr contribu- 157

tions, given as 158

α(τ, δ) = a

RT
= α0(τ, δ) + αr(τ, δ), [4] 159

where the independent variables are the reciprocal reduced 160

temperature τ = Tc/T and the reduced density δ = ρ/ρc, 161

and Tc and ρc are the critical temperature and molar density, 162

respectively. 163
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Expressed in terms of derivatives of α, the molar entropy164

s = −(∂a/∂T )ρ is given by165

s

R
= τ

[(
∂α0

∂τ

)
δ

+
(
∂αr

∂τ

)
δ

]
− α0 − αr. [5]166

and the residual entropy sr is the part of Eq. (5) that is based167

only on αr and its derivatives, resulting in168

sr

R
= τ

(
∂αr

∂τ

)
δ
− αr. [6]169

For additional details of the use of multiparameter EOS,170

the reader is directed to the literature (55–57).171

The residual entropy should not be confused with the term172

“excess" entropy (27, 58), which refers to differences of mixture173

thermodynamics from ideal-solution behavior.174

The residual entropy is defined as the part of the entropy175

that arises from the interactions among particles or molecules.176

This contribution is negative due to repulsive and attractive177

interactions that increase the structure beyond that of the178

non-interacting ideal gas(19). To illustrate this property, Fig. 1179

shows contours of the reduced residual entropy for ordinary180

water, where −sr/R is evaluated from the equation of state181

of Wagner and Pruß (53). In the zero-density limit, −sr/R182

is zero (no increase in structure caused by molecular inter-183

actions), and as the density increases, so does −sr/R. The184

maximum value for −sr/R is found along the melting line at185

the maximum pressure of the equation of state; this can be186

intuitively understood as the state within the fluid domain187

where the fluid is most structured.188
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Fig. 1. Contours of the residual entropy sr/R for water from the equation of state
of Wagner and Pruß (53). The dashed curve is the line of maximum pressure of the
equation of state, the solid red curve is the melting curve, and the solid black curve is
the vapor-liquid co-existence curve (the binodal).

C. Data Analysis. Experimental viscosity data were curated for189

a selection of fluids that experience more complex interactions190

than the simple model fluids investigated by Rosenfeld(1).191

For each experimental data point, the molar density was192

determined, either taken directly from the measurement or193

from an iterative thermodynamic calculation of the equation of194

state given T and p. The residual entropy was then evaluated195

at the specified molar density and temperature as described196

in Section B.197

Figure 2 shows the experimental viscosity data for the eight198

molecular fluids under study, with the Rosenfeld “universal"199

relationship overlaid for each fluid. The viscosity is reduced in 200

the same manner as proposed by Rosenfeld (1). The data for 201

each of the fluids in these scaled coordinates has a characteris- 202

tic, and roughly similar, shape. The data for other molecular 203

fluids (investigated but not discussed in this paper) also have 204

the same shape. 205

For the fluids that are Lennard-Jones-like (e.g., argon or 206

methane), the “universal" correlation of Rosenfeld captures 207

the correct qualitative relationship between the viscosity and 208

the residual entropy at liquid-like conditions (−sr/R & 1) at 209

moderate densities. As the intermolecular interactions quali- 210

tatively increase in intensity (i.e., for the associating fluids), 211

the Rosenfeld “universal" relationship does not agree with the 212

experimental data either qualitatively or quantitatively in the 213

liquid-like phase. 214

Costigliola et al. (59) and others (19, 60, 61) suggest 215

that water (and other associating fluids) should not have a 216

monovariate viscosity scaling in terms of residual entropy in 217

the liquid phase due to the presence of hydrogen-bonding 218

networks. Fig. 2 shows that water does in fact demonstrate 219

an approximate collapse of the reduced viscosity surface with 220

monovariate dependency on the reduced residual entropy, with 221

the exception of states approaching the melting line where 222

the analysis of Ruppeiner and co-authors (see Section C.1) 223

suggests a means of identifying the presence of hydrogen- 224

bonding networks from a high accuracy equation of state. 225

C.1. Liquids. For liquid-like states (−sr/R & 1), the experimen- 226

tal data for each non-associating molecular fluid (aside from 227

some scatter in the experimental measurements) collapse onto 228

master curves – a monovariate functional dependence. The 229

curvature in semi-log coordinates differs depending on the in- 230

termolecular interactions. In the case of argon, methane, SF6, 231

CO2, and the refrigerants R-134a and R-125, the liquid-like 232

scaling is roughly linear in semi-log coordinates. The exper- 233

imental data for these fluids (particularly for SF6 and CO2 234

and less so for R-134a and R-125) extend to the melting line 235

(SI Appendix, Fig. ??). 236

For the associating fluids methanol and water, a more 237

complicated functional dependence is seen, particularly at 238

large values of −sr/R. While the reduced viscosity data are 239

still a nearly monovariate function of the residual entropy, 240

the curvature of the data increases at higher values of −sr/R. 241

The pronounced increase in curvature can be ascribed to the 242

presence of transient structures in the fluid caused by hydrogen- 243

bonding networks in the bulk liquid phase. This pronounced 244

curvature in the Rosenfeld-scaled viscosity is consistent with 245

the behavior identified by other authors for diffusivity(25) and 246

viscosity(34) of water. The thermodynamic states where these 247

networks are present can be identified by states with positive 248

Riemannian curvature (62–65). 249

To assess the monovariability of the relationship between 250

the reduced viscosity and the residual entropy, polynomial 251

correlations for each fluid at states from −sr/R = 0.5 up to 252

the melting curve of the fluid were developed in this work. 253

The correlations are of the form 254

ln
[

η

ρ
2/3
N
√
mkBT

·
(
−s

r

R

)2/3]
=
∑
i

ci

(
−s

r

R

)i
. [7] 255

Multiplication of the reduced viscosity by (−sr/R)2/3 was used 256

to remove the divergence in the dilute-gas limit, consistent 257
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Fig. 2. Overview of relationship between reduced viscosity and residual entropy for the molecular fluids from a total of 12987 experimental data points. The dashed line
represents the “universal" scaling law of Rosenfeld (4). The data are vertically stacked by multiplying by increasing powers of 10.

with the theory of Rosenfeld (4, 14) that the reduced viscosity258

should be proportional to (−sr/R)−2/3 in dilute gases. The259

coefficients of the polynomial fits are in the SI Appendix (Table260

??). Figure 3 shows the deviations between the experimental261

data points and calculations from the fits from Eq. (7). Even262

though the absolute deviations are as much as 35 % for the263

hydrogen-bonding fluids in the compressed liquid due to the264

breakdown in monovariability caused by hydrogen bonding,265

the average absolute deviation (AAD) for each fluid is less266

than 4.3% for −sr/R > 0.5. This demonstrates that the267

relationship between reduced viscosity and residual entropy is268

indeed approximately monovariate (except for the associating269

fluids).270

The practical implication of this is that if an equation of271

state of sufficient accuracy is available for a fluid, a correlation272

of viscosity in terms of residual entropy can describe the273

viscosity surface.274

These liquid-like data do not directly refute the analysis of275

Rosenfeld, who merely proposed a monovariate relationship276

between reduced viscosity and residual entropy. The results in277

Fig. 2 and Fig. 3 indicate that this monovariate relationship278

is present, even if the relationship might be different for each279

fluid. As shown in Section 3, the mapping onto the results of280

model intermolecular potentials can reduce the data so that281

non-associating fluids can all be collapsed onto a single curve282

with one adjustable parameter.283

C.2. Gas. In the gaseous domain where −sr/R . 1, there is a284

pronounced deviation from monovariate scaling, as is visible285

in Fig. 2, and more readily seen in the detailed view of this 286

region in the SI Appendix (Fig. ??). This figure demonstrates 287

two deficiencies in the scaling proposed by Rosenfeld: 288

• The scaling diverges at zero density (where −sr/R = 0). 289

• The gaseous region does not reduce to a monovariate 290

dependence of reduced viscosity with −sr/R. 291

Other authors (36–42, 66) have proposed alternative 292

residual-entropy-based schemes that are more successful at 293

scaling the viscosity in the dilute gas limit, but they intro- 294

duce significant deviations from monovariate scaling in the 295

compressed liquid phase for small non-associating molecules 296

and in the gaseous phase for associating molecules. Exam- 297

ples of these difficulties for argon and water are shown in the 298

SI Appendix(Fig. ??). For that reason alternative entropy 299

scalings are not discussed in this work; further work will in- 300

vestigate potential means of reconciling these different scaling 301

approaches. 302

Isomorph theory describes why the reduced viscosity should 303

not be a monovariate function of the residual entropy in the 304

gas phase. In this region, the motion of the molecules is 305

predominantly ballistic, aside from the infrequent interactions 306

between molecules via collision. Therefore, the fluid should not 307

be R-simple, isomorph scaling should be invalid, and reduced 308

viscosity should not be a monovariate function of residual 309

entropy. 310
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Fig. 3. Deviations from monovariability between data and fits from Eq. (7). The
deviation term is given by ∆η = 100× (ηfit/ηexp− 1) and dashed lines represent
±10%. The correlation is fit for−sr/R > 0.5; values below the range of the fit are
impacted by the extrapolation behavior of the fit and non-monovariate scaling.

2. Model potentials311

Model intermolecular potentials, and the simulation results312

that are obtained from these potentials, have much to teach313

us about transport properties of molecular fluids. After some314

general information, this section covers four model potentials.315

The viscosity of single-site models in molecular simulations316

is in general given in the form η∗ = ησ2/
√
mε (67), in terms of317

the reduced temperature T ∗ = T/(ε/kB) and reduced density318

ρ∗ = ρNσ
3, where ε is an energy scale, σ is a length scale, and319

ρN is the number density in m−3; for more information on320

working in molecular simulation units, see (68).321

A. Hard sphere. The hard sphere model potential is a par-322

ticularly simple one; rigid spherical particles have ballistic323

trajectories until they collide with another particle. The re-324

duced viscosity of the hard-sphere potential, as well as its325

associated residual entropy, can each be obtained as a function326

of the packing fraction ζ = πρ∗/6. The parameter ζ is not a327

function of temperature, but only a function of density. In328

the SI Appendix (Fig. ??) is a graphical representation of329

the scaling for the hard sphere, and the curve of the reduced330

viscosity versus the residual entropy is also shown in Fig. 4.331

The shape of the viscosity versus −sr/R curve in scaled coor-332

dinates bears significant but imperfect resemblance to that of 333

the argon data in Fig. 2. The hard sphere model has been used 334

to develop a theoretical understanding of transport properties 335

(5, 69–71). The other potentials studied here provide higher 336

fidelity representations of intermolecular interactions, and are 337

more suitable reference models for the corresponding states 338

approach described below. 339

B. Inverse-power pair potential. Real molecules are not rigid; 340

they are more like a rubber ball than a billiard ball. As a 341

result, it is more reasonable to treat molecules as soft spheres 342

than hard spheres. The inverse-power pair potential (IPP) 343

is a repulsive potential commonly used to model fluids with 344

soft repulsive interactions given by U = ε (σ/r)n, where r is 345

the radius in meters and n is an integer power. The density 346

and temperature are not independent for the IPP potential 347

(11, 72, 73); they are linked via the scaling variable γ = 348

ρNσ
3(T ∗)−3/n. 349

The ratio of viscosity η to ρ2/3
N
√
mkBT is then 350

η

ρ
2/3
N
√
mkBT

= η∗/(T ∗)n′

γ2/3 , [8] 351

in which n′ = (2/n) + (1/2). The simulation for the IPP 352

potential is carried out at specified pairs of ρ∗ = ρNσ
3 and 353

T ∗ = TkB/ε, for which the simulation data are expressed in 354

terms of η∗/(T ∗)n′ as a function of the scaling variable γ (see 355

(74) and the SI Appendix (Section ??)). For the n = 12 IPP 356

potential, the residual entropy is obtained from integration 357

of the convergent virial expansion given by (72). For other 358

values of n, the asymptotically convergent approximation of 359

(73) is used (SI Appendix, Section ?? for further description 360

of this method). 361

C. Lennard-Jones. Real fluids interact by both attraction and 362

repulsion (as well as long-range electrostatic interactions); the 363

potential should capture this. The canonical example of a 364

fluid with both attraction and repulsion is the Lennard-Jones 365

12-6 potential; it is given by 366

U = 4ε
[(

σ

r

)12
−
(
σ

r

)6
]
. [9] 367

A number of researchers have carried out molecular sim- 368

ulation on the Lennard-Jones 12-6 potential, and evaluated 369

viscosities through application of the Green-Kubo formalism 370

(75). The coverage of the simulation results for the Lennard- 371

Jones fluid is shown in the SI Appendix (Fig. ??). The most 372

accurate equation of state for the Lennard-Jones 12-6 potential 373

is the one recently developed by Thol et al. (76), which is 374

valid up to T ∗ = 9 and p∗ = 65, where p∗ = pσ3/ε. Due to the 375

availability of the multiparameter EOS for the Lennard-Jones 376

12-6 potential(76), the same methodology for the Lennard- 377

Jones 12-6 potential is applied as with the molecular fluids in 378

Section B – for a given set of T ∗, ρ∗, and η∗ from one simu- 379

lation, the residual entropy is evaluated from the equation of 380

state as described in Eq. (6). 381

D. WCA. Weeks, Chandler, and Andersen (WCA) (77) pro- 382

posed a means of deconstructing potentials into reference and 383

attractive contributions. The reference part of the WCA de- 384

construction of the Lennard-Jones 12-6 potential results in a 385

fully repulsive potential that has dynamic behavior similar to 386
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that of the Lennard-Jones 12-6 potential with shorter-ranged387

interactions. This reference potential is obtained by truncat-388

ing the Lennard-Jones 12-6 potential at the location of its389

minimum value at r = 21/6σ and shifting the curve upwards390

by ε, or391

U =

 4ε
[(

σ

r

)12
−
(
σ

r

)6
]

+ ε, r ≤ 21/6σ

0, r > 21/6σ.

[10]392

We refer to the reference part of the WCA deconstruction393

of the Lennard-Jones 12-6 potential as the "repulsive WCA394

potential" for concision.395

The repulsive WCA potential retains the same intermolecu-396

lar force between molecules as the Lennard-Jones 12-6 potential397

(the force between particles is the negative of the derivative398

of the potential with respect to position) within r ≤ 21/6σ.399

The transport properties of the repulsive WCA potential are400

similar to those of the Lennard-Jones 12-6 potential, while401

having thermodynamic properties that are more straightfor-402

ward to evaluate because the equation of state reduces to a403

quasi-monovariate function of the effective packing fraction404

without a liquid phase or a critical point (78).405

Analogously to the soft-sphere potential, an effective pack-406

ing fraction (with implicit temperature dependence) is defined407

by Heyes and Okumara (79) by ζe = πρ∗ (σe/σ)3 /6, with the408

effective particle diameter given by σe/σ = [2/(1 +
√
T ∗)]1/6.409

Alternative effective particle diameter models are described in410

the literature (80–83). The residual entropy of the repulsive411

WCA potential is obtained by integration of the empirical com-412

pressibility factor model proposed by Heyes and Okumara (79)413

(see SI Appendix, Section ??). There is currently a scarcity of414

high-accuracy tabulated viscosity data for the repulsive WCA415

potential; however, sufficient data exist to develop the empiri-416

cal correlation given in the SI Appendix. Of particular interest417

are the new simulation results from Krekelberg provided in418

the SI Appendix (Section ??) with permission.419

E. Overview. Figure 4 presents the simulation results for all420

the model potentials included in our study. These data com-421

prise the corpus of data for the Lennard-Jones 12-6 potential,422

simulation results for the IPP with n = 12, results for the423

repulsive WCA potential, and the curve for the hard-sphere424

potential.425

The “universal" scaling of Rosenfeld does not reproduce all426

of the Lennard-Jones simulation data in the liquid phase. In427

the work of Rosenfeld (4), he described good agreement with428

simulation results for the “universal" correlation. In reality, the429

correlation was compared with a single data set comprising four430

data points at zero shear rate from Ashurst and Hoover (84,431

Table VI); the present data coverage of results on the Lennard-432

Jones fluid here is far more comprehensive. Rosenfeld’s curve433

of “universal" scaling might not have been quite right, but with434

the appropriate caveats, most repulsive-dominated potentials435

are remarkably consistent in the Rosenfeld scaling framework.436

3. Residual Entropy Corresponding States437

Figures 2 and 4 demonstrate a remarkable similarity for the438

non-associating fluids. The primary difference between fluids439

and potentials is the scaling of the residual entropy. Therefore,440

a means of connecting the molecular fluids and the model441
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Fig. 4. Overlaid data for each of the model potentials studied in this work (blue4:
Lennard-Jones 12-6 potential (67, 85–90); black C: IPP with n = 12 (74); red©:
repulsive WCA potential; yellow4: Lennard-Jones data from Ashurst and Hoover(84)
(zero-shear-rate extrapolation) considered by Rosenfeld (1); orange dashed curve:
hard sphere (Enskog theory plus correction of (91)); black dashed line: correlation
from Rosenfeld(4)). A larger version of this figure is available in the SI Appendix (Fig.
??).

potentials is needed. This link is formed through the use of 442

residual entropy corresponding states. 443

It is possible to map from experimental units into simulation 444

units of T ∗, ρ∗, etc. by adjusting the parameters ε/kB and σ. 445

Carrying out the appropriate cancellation results in 446

η

ρ
2/3
N
√
mkBT

= η∗

(ρ∗)2/3√T ∗
[11] 447

and, therefore, scaling properties from number density to ρ∗, 448

from temperature to T ∗, and from viscosity to η∗ will not 449

change the Rosenfeld-reduced viscosity. On the other hand, 450

modifying ε/kB and σ adjust the residual entropy. 451

At this point, it is necessary to determine: 452

• the most appropriate reference potential, and 453

• a set of values for σ for the mapping from a molecular 454

fluid to a reference potential 455

While the Lennard-Jones potential is appealing as a model 456

potential, its use as the reference system for molecular fluids 457

is problematic because 458

• the Lennard-Jones 12-6 potential behaves like a molecu- 459

lar fluid and has a liquid phase (see the relevant phase 460

diagrams in the SI Appendix, Fig. ??, and Fig. ??), and 461

also no convenient scaling variable such as the γ of the 462

IPP potential, 463

• the equation of state for the Lennard-Jones 12-6 potential 464

has areas in the unstable region between the spinodals 465

where non-physical residual entropies are obtained (see 466

the SI Appendix, Fig. ??), and 467

• no highly accurate viscosity correlation for the Lennard- 468

Jones 12-6 potential exists, though several empirical vis- 469

cosity correlations of poorer accuracy are available in the 470

literature (92, 93). 471
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Table 2. Optimized values of σ for the eight molecular fluids included
in this study. Units of all variables are 10−10 m (Å)

fluid v
1/3
N,triple v

1/3
N,0.8Tc

v
1/3
N,crit σIPP σWCA

Water 3.104 3.334 4.529 3.084 2.973
Argon 3.615 3.855 4.985 3.676 3.476
CO2 3.966 4.081 5.387 3.943 3.724

Methane 3.901 4.226 5.471 3.957 3.733
Methanol 3.892 4.311 5.739 4.178 3.950
R-134a 4.745 5.204 6.917 5.095 4.830

SF6 5.094 5.250 6.888 5.244 4.995
R-125 4.909 5.314 7.030 5.265 4.992

For these reasons, scaling onto the repulsive WCA potential472

was chosen; the repulsive WCA potential has a compressibility473

factor that is a monovariate function of the thermodynamic474

scaling parameter ζe, and the simulation results for the vis-475

cosity of the repulsive WCA potential lie within the range of476

results from the Lennard-Jones simulations (see Fig. 4). Map-477

ping the properties onto the n = 12 IPP potential was slightly478

less successful, as described in the SI Appendix (Fig. ??). The479

mapping onto the hard-sphere potential was also carried out480

with the same methodology. The hard-sphere mapping was481

not successful, as is shown in the SI Appendix (Fig. ??).482

The value of ε/kB was set equal to the critical temperature483

of the molecular fluid divided by 1.32 (T ∗c = 1.32 for the484

Lennard-Jones equation of state (76); the repulsive WCA485

potential is fully repulsive and therefore does not have a critical486

point) and σ was left as an adjustable parameter. In this487

way, corresponding states between the Lennard-Jones analog488

(the repulsive WCA potential) and the molecular fluid are489

enforced. Values of ε/kB = Tc and ε/kB = Tc/0.7 were also490

considered, as described in the SI Appendix; there is a very491

weak dependence of σ on ε/kB.492

Each fluid was mapped onto the residual entropy of the493

reference potential. In order to do this, a one-dimensional494

optimization of σ was carried out to minimize the difference495

between the Rosenfeld scalings at liquid-like states. The ap-496

proach is as follows:497

1. For a given molecular fluid experimental datapoint498

for which −sr/R > 1, calculate the reduced quantity499

η/[ρ2/3
N
√
mkBT ].500

2. At the same value of reduced viscosity for the repulsive501

WCA correlation, calculate the corresponding value of502

ζe for the repulsive WCA potential; the correlation is503

monotonic.504

3. From ζe, calculate ρ∗ for the given σe/σ from ρ∗ =505

6ζe(σe/σ)3/π, and then obtain σ = (ρ∗/ρN)1/3.506

The median value of σ among all the experimental data points507

for which a value of σ is successfully obtained is retained; the508

median σ was used in order to avoid the influence of outliers. It509

may not be possible to obtain the value for σ if η/[ρ2/3
N
√
mkBT ]510

is below the minimum value of η/[ρ2/3
N
√
mkBT ] ≈ 0.57 that511

can be achieved for the repulsive WCA potential. Once the512

value of σ has been determined for a molecular fluid, this value513

can then be used to scale all the experimental data into the514

“simulation" units of T ∗, ρ∗, η∗.515

This approach was carried out for the eight molecular fluids516

discussed in this study, and the obtained values of σ are given517
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Fig. 5. Scaled experimental data mapped onto the repulsive WCA potential for
the non-associating fluids argon, methane, CO2, SF6, R-134a, and R-125. The
residual entropies are evaluated for the repulsive WCA potential. The solid line is the
correlation for the repulsive WCA potential, and the dashed lines show±20%.

in Table 2. Figure 5 shows the scaled experimental data for 518

the non-associating fluids; the results for associating fluids 519

are shown in the SI Appendix (Fig. ??). In the case of the 520

non-associating fluids, the qualitative agreement is surprisingly 521

good; with the appropriate scaling, all experimental data can 522

be closely mapped onto a master curve given by the repulsive 523

WCA correlation. The repulsive WCA model potential does 524

not perfectly match the Rosenfeld-scaled experimental data 525

mapped onto the repulsive WCA potential, and it is evident 526

that although the majority of the data in the liquid phase can 527

be predicted within 20% (the dashed lines), the curvature of 528

the mapped experimental data does not perfectly match the 529

curvature of the correlation. 530

Figure 6 shows the deviations between the experimental 531

viscosities and the viscosities calculated by the fitted values 532

of σ for each of the non-associating fluids described in Fig. 5. 533

Within the recommended range of validity (0.5 . −sr/R . 3.5) 534

of the repulsive WCA potential, the deviations are in general 535

less than 10% within the bulk of the range, except at larger 536

values of −sr/R, where the curvature of the repulsive WCA 537

potential results begins to move the correlation away from the 538

experimental data (see Fig. 5). Within the center of the region 539

of validity, the absolute deviations are in general less than 5%. 540

The same exercise was made for all the molecular fluids 541

that a) have a Helmholtz-energy explicit equation of state 542

available in the NIST REFPROP thermophysical property 543

library (45) and b) have experimental liquid viscosity data 544

available in the NIST ThermoData Engine version 10.1 (94). 545

The fluids included in this suite include hydrocarbons, refrig- 546

erants, siloxanes, noble gases, fatty-acid methyl esters, etc. 547

In total, 120 fluids were included in the analysis, with molar 548

masses ranging from 2 g mol−1 (hydrogen) to 459 g mol−1
549

(MD4M). 550

The fitted values for σ are shown in Fig. 7 as a function of 551

three characteristic volumes, those at the critical point, the 552

liquid at the triple point, and the saturated liquid at 0.8Tc. 553

The fact that σ3 should be proportional to the critical volume 554

was originally proposed in corresponding states theory (28, 95), 555

and these data confirm this proposition. A similar linear rela- 556
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tionship between the cube root of the critical volume and the557

length scale was seen by Liu et al. (28) with diffusivity data. It558

is remarkable that this behavior holds even for fluids that are559

associating (ethanol, water, etc.), for which this relationship is560

not expected to be followed. The proportionality constant of561

the critical point volume scaling is approximately 0.7, which562

is quite different than the value given by the Chung model563

for extended corresponding states (96, 97) of 0.958. An even564

more remarkable relationship is found when the length-scaling565

parameter is plotted against cube root of the volume of the566

liquid at the triple point; the length scaling parameter is ap-567

proximately equal to v1/3
N,triple. We currently have no theoretical568

explanation for this behavior. A third length scale based on569

the cube root of the volume of the saturated liquid at 0.8Tc570

also results in a nearly linear functional dependence; this is a571

more meaningful liquid corresponding states point than the572

triple point because the latter depends on solid-phase prop-573

erties. In the SI Appendix (Section ??) additional candidate574

length scales are further described, including the length scale575

obtained from Noro-Frenkel universalism (98) and the length576

scales obtained for ε/kB = Tc and ε/kB = Tc/0.7 for each577

reference potential.578
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Fig. 6. Deviations between Rosenfeld-scaled experimental data mapped onto the
repulsive WCA potential and experimental data for the non-associating fluids argon,
methane, CO2, SF6, R-134a, and R-125. Absolute deviations are given by |∆η| =
|(ηfit/ηexp − 1)× 100|. The colored rectangle is the approximate range of validity
of this method, and the dashed line indicates 10%

While the mapping between experimental data and model579

potentials via the residual entropy is fruitful, one challenge580

is that the repulsive model potentials reach their respective581

solid-liquid-equilibrium curve at smaller values of −sr/R than582
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Fig. 7. Optimized values of σ for each fluid for the mapping to the repulsive WCA
reference potential for ε/kB = Tc/1.32. The slightly transparent markers corre-
spond to the full set of fluids from NIST REFPROP and with experimental viscosity
data from NIST ThermoData Engine #103b version 10.1, and the solid markers corre-
spond to the fluids selected in Section 1. Dashed line for the critical point is given by
σ = 0.6786(vN,crit)1/3, for the triple point is given by σ = (vN,triple)1/3, and
for the saturated liquid at 0.8Tc is given by by σ = 0.8984(vN,0.8Tc )1/3.

the experimental data scaled into simulation units. The largest 583

value of η∗/[(ρ∗)2/3√T ∗] available for the repulsive WCA po- 584

tential is 4.3 for the highest density simulation run of (99). 585

Therefore, the mapped data for η∗/[(ρ∗)2/3√T ∗] > 4.3 repre- 586

sent metastable extrapolation of the repulsive WCA results 587

into the solid phase that should be considered with caution. 588

Finally, Fig. 8 presents a set of violin plots for all of the 589

experimental data for the full set of fluids in NIST REFPROP 590

with experimental viscosity data in NIST ThermoData Engine 591

#103b version 10.1. Nearly 50,000 experimental data points 592

are included in this collection. For each fluid, the optimized 593

value of σ for each fluid is used. In the recommended range of 594

validity of the WCA potential (0.5 . −sr/R . 3.5), 95% of the 595

data points are predicted within 18.1%, and the worst median 596

error is 4.2% for the bin at the largest value of−sr/R. The fully 597

predictive mode, where σ is taken from the correlation based 598

upon the volume of the saturated liquid at 0.8Tc, as described 599

in Fig. 7, results in a poorer representation of the experimental 600

viscosity, as shown in the SI Appendix. In predictive mode 601

and in the same range of validity, 95% of the data points are 602

predicted within 46.5%. 603

4. Conclusions and Outlook 604

This work has demonstrated that the Rosenfeld scaling of vis- 605

cosity allows the viscosity of pure fluids and model potentials to 606

collapse to nearly monovariate functions of the residual entropy. 607

This monovariability allows for a mapping from molecular fluid 608

properties onto the properties of the model potentials for non- 609

associating molecular fluids. Thus, a theoretically grounded 610

approach is demonstrated that connects model potentials and 611

molecular fluids through the residual entropy. The scaling 612

parameter σ is shown to be nearly proportional to measureable 613

length scales of the molecular fluids. 614

It is not conclusively shown that the WCA potential is 615

the best possible model potential for the residual entropy 616

corresponding states in viscosity; further study should consider 617

whether other model potentials would be more suitable. For 618

instance it is seen that the scaled viscosity data in Fig. 5 do 619

not have the same curvature as the repulsive WCA potential. 620
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Fig. 8. Violin plots of deviations in the prediction of viscosity with the optimized
values of σ for each fluid for the mapping to the repulsive WCA reference potential for
non-associating fluids. The range of−sr/R between 0.5 and 3.5 was split into bins
of width 0.5. A violin distribution was constructed (by matplotlib(100)) for the results in
each bin. The 97.5% and 2.5% percentiles are indicated with horizontal lines and the
marker is the median value. Experimental data points for−sr/R greater than 3.5 or
less than 0.5 are not shown, and in general correspond to much larger deviations.

A better potential would more faithfully represent the shape621

of the viscosity data in these scaled coordinates.622

Ultimately, the connection between residual entropy and623

viscosity stems from the fact that viscosity is primarily gov-624

erned by the repulsive interactions between molecules. The625

structure in the fluid is driven by the repulsive interactions626

(3, 77, 101), so if structure is the determinant of viscosity, and627

if structure can be quantified by the residual entropy, then628

it follows that the viscosity should be closely related to the629

residual entropy.630

There are many molecular fluids for which no experimental631

viscosity data exist. This universal scaling approach, along632

with the scaling parameters of Fig. 7, can yield a reasonable633

estimate for viscosities of heretofore unmeasured fluids, as634

long as they are not associating. Or, if a small number of635

viscosity measurements are available, σ could be fit to those636

data points and the entire liquid viscosity surface accurately637

predicted within perhaps 20%. The mapping of associating638

fluids onto model potentials remains a challenging endeavor,639

and worth continued research effort.640

Materials and Methods641

The SI Appendix includes detailed information on the literature642

data sources for each molecular fluid and model potential, mathe-643

matical derivations that complement the analysis in this manuscript,644

as well as additional figures for completeness.645
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