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Drawing an analogy to the paradigm of quasielastic neutron scattering, we present a general approach for
quantitatively investigating the spatiotemporal dependence of structural anisotropy relaxation in deformed
polymers by using small-angle neutron scattering. Experiments and nonequilibrium molecular dynamics
simulations on polymer melts over a wide range of molecular weights reveal that their conformational
relaxation at relatively high momentum transferQ and short time can be described by a simple scaling law,
with the relaxation rate proportional toQ. This peculiar scaling behavior, which cannot be derived from the
classical Rouse and tube models, is indicative of a surprisingly weak direct influence of entanglement on
the microscopic mechanism of single-chain anisotropy relaxation.
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The dynamics of polymers is characterized by a remark-
ably wide range of length scales and timescales.
Historically, the development of quasielastic neutron scat-
tering techniques has provided a powerful tool for under-
standing the microscopic details of polymer motions in the
quiescent state, where the spatial and temporal dependence
of dynamics is encapsulated in the measured coherent and
incoherent dynamic structure factors or corresponding
intermediate scattering functions in Fourier space [1–3].
The application of quasielastic neutron scattering to poly-
mers undergoing mechanical deformation and flow has so
far been limited by serious theoretical and practical
difficulties, despite some technical progress [4,5]. In this
context, time-resolved small-angle neutron scattering
(SANS), based on either ex situ or in situ methods, stands
out as a different and alternative approach to elucidating the
spatiotemporal relation of molecular motions in the non-
equilibrium deformed state.
In this Letter, we describe a quantitative method for

analyzing the structural anisotropy relaxation of poly-
mers, by drawing an analogy to the paradigm of
quasielastic neutron scattering. To illustrate our
approach, let us consider the case of small-angle neutron
scattering from a mixture of two identical polymers,
one deuterated and the other protonated, where the
scattering intensity IðQ; tÞ is dominated by the single-
chain structure factor SðQ; tÞ [6,7],

IðQ; tÞ ∝ SðQ; tÞ ¼ 1

N2

X

m;n

heiQ·½RnðtÞ−RmðtÞ�i: ð1Þ

Here Rn and Rm are the position vectors of the nth and
mth segments of a polymer chain of length N, respec-
tively. The notation fð…; tÞ is used to emphasize the fact
that we are measuring the time evolution of the quantity
fð…Þ, instead of its time correlation. For a step-strain
experiment in which the sample is deformed instanta-
neously at time t ¼ 0, SðQ; tÞ describes the relaxation of
the perturbed polymer structure towards the equilibrium
state. The approach we introduce here exploits the so-
called spherical harmonic expansion technique [8–14].
In general, the single-chain structure factor can be
decomposed by a series of spherical harmonics:
SðQ; tÞ ¼ P

l;mS
m
l ðQ; tÞYm

l ðθ;ϕÞ, where Sml ðQ; tÞ is the
expansion coefficient corresponding to each real spheri-
cal harmonic function Ym

l ðθ;ϕÞ. For the aforementioned
step-strain relaxation experiment, a class of anisotropic
structural relaxation functions ϕm

l ðQ; tÞ can be defined
for all the l > 0 terms,

ϕm
l ðQ; tÞ≡ Sml ðQ; tÞ=Sml ðQ; 0Þ: ð2Þ

These functions bear an apparent resemblance to the
classical intermediate scattering functions and encapsulate
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the essential spatial and temporal information about the
anisotropic single-chain structure.
To demonstrate the usefulness of this new approach, we

performed small-angle neutron scattering experiments on a
series of uniaxially deformed polymers at the EQ-SANS
beam line at theOakRidgeNational Laboratory and theNGB
30m SANS beam line at the National Institute of Standards
and Technology. Our experimental system consisted of
isotopically labeled polystyrenes (PS) of three different
molecular weights, which we shall refer to as PS30K
(h-PS: Mw ¼ 33.5 kg=mol; d-PS: Mw ¼ 35.4 kg=mol;
h=d ¼ 90∶10), PS100K (h-PS: Mw ¼ 101 kg=mol;
d-PS: Mw ¼ 115 kg=mol; h=d ¼ 90∶10), and PS500K
(h-PS: Mw ¼ 450 kg=mol; d-PS: Mw ¼ 510 kg=mol;
h=d ¼ 5∶95). Their dynamic mechanical spectra are shown
in Fig. 1(a). While PS30K has a weight-average molecular
weight approximately two times that of the entanglement
molecular weight, its linear viscoelastic spectrum is still
characteristic of that of an unentangled melt. On the other
hand, the two high molecular weight systems exhibit the
typical behavior of entangled polymers. The PS sampleswere
uniaxially elongated on an RSA-G2 solid analyzer in their
melt state to a stretching ratio λ ¼ 1.8, allowed to relax
for different amounts of time after the step deformation

[Figs. 1(b)–1(d)], and subsequently quenched to the glassy
state by pumpingcold air into the environmental test chamber.
In our experiments, the time required to effectively freeze
the large-scale molecular motions was negligibly small
(≲0.02τR) compared to the Rouse or reptation relaxation
times, ensuring that the evolution of SðQÞ could be captured
with sufficient temporal accuracy. More details of the sample
characteristics and the experimental procedures are provided
in the Supplemental Material [15].
The spherical harmonic expansion technique outlined in

our previous work [12] allows us to transform the aniso-
tropic two-dimensional SANS spectra during stress relax-
ation into plots of wave-number-dependent expansion
coefficients (Fig. 2). The axial symmetry of the uniaxial
deformation eliminates the dependence of SðQ; tÞ on ϕ and
forbids all the m ≠ 0 and odd l terms, namely,

SðQ; tÞ ¼
X

l∶even
S0l ðQ; tÞY0

l ðθÞ: ð3Þ

In this Letter, we confine ourselves to the analysis of the
leading anisotropic expansion coefficient S02ðQ; tÞ and its
corresponding relaxation function ϕ0

2ðQ; tÞ≡ S02ðQ; tÞ=
S02ðQ; 0Þ. In the Supplemental Material [21], we show that

(a)

(b)

(c)

(d)

FIG. 1. (a) Dynamic mechanical spectra of PS500K, PS100K,
and PS30K at 130 °C. (b)–(d): Relaxation of engineering stress
σeng after a large step uniaxial extension to a stretching ratio
λ ¼ 1.8. The initial Rouse Weissenberg numbers WiR;i ¼ vτR=l0
of the step deformation are 5.6, 5.0, and 40, for PS30K, PS100K,
and PS500K, respectively.

(a)

(b)

(c)

FIG. 2. Relaxation of the leading anisotropic expansion co-
efficient S02ðQÞ after a step deformation. (a) PS30K at 0, 0.1, 0.2,
0.4, 0.6, and 1τR. (b) PS100K at 0, 0.5, 1, 2, 3, 6, and 10τR.
(c) PS500K at 0, 0.5, 1, 3, 10, and 20τR. (Solid lines) Guide to
eye. The SANS spectra at the beginning and the end of the
relaxation experiments are shown on the right, with different
color schemes for each sample.
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according to the classical theory the tensile stress of
Gaussian chains is determined by the two-point spatial
correlations associated with only the real spherical har-
monic function Y0

2ðθ;ϕÞ. Therefore, ϕ0
2ðQ; tÞ contains the

relevant information of the structural changes underlying
the macroscopic stress relaxation.
The anisotropic structural relaxation function ϕ0

2ðQ; tÞ
can be examined by presenting ϕ0

2ðQ; tÞ as a function of the
duration of stress relaxation t at different scattering wave
numbers Q [Figs. 3(a)–3(c)]. This approach, in its apparent
form, is analogous to the classical way in which the
intermediate functions of polymers are analyzed [3].
Here, we focus on the intermediate- and high-Q regions,
i.e., RgQ≳ 1, corresponding to length scales that are
roughly equal to or smaller than the size of the polymer
coil. Figures 3(a)–3(c) reveal that the anisotropy relaxation
depends highly on the length scale probed by the scattering
experiment—the ϕ0

2 at high Q’s relax much faster than
those at low Q’s. This result is in accordance with our
current general understanding of polymer dynamics. For
example, the local segmental relaxation involving a few
successive repeating units is much more rapid than the
reorientation of the end-to-end vector of the entire polymer
chain. However, it is worth noting that neither the affine
deformation model [23–25], which assumes the same
degree of microscopic deformation on all length scales,
nor the speculative formula proposed by de Gennes and
Léger [26,27] anticipates such wave number dependence
for the anisotropic structural relaxation. For example, the
phenomenological approach by de Gennes and Léger
predicts that the rate of anisotropy relaxation is independent
ofQ [26]. To lend support to our experimental observation,

we carried out complementary nonequilibrium molecular
dynamics (MD) simulations of the step-strain experiments
based on the coarse-grained bead-spring model for polymer
melts [28,29]. All beads interact with the Weeks-Chandler-
Andersen potential and the bonded interactions between
neighboring beads along the polymer chain are described
by the finite extensible nonlinear elastic potential. Three
different chain lengths, N ¼ 120, 500, and 2000, were
simulated at ρ ¼ 0.85 and T ¼ 1 to mirror the PS30K,
PS100K, and PS500K samples, respectively. To simulate
the step-strain relaxation experiment, the equilibrated
polymer melt is uniaxially elongated in the z direction
with a constant engineering strain rate to a stretching ratio
of λ ¼ 1.8 and the equilibrium pressure of the melt is
imposed in the x and y directions via a Nosé-Hoover
barostat. After the step deformation, MD simulations with a
Langevin thermostat are performed to study the relaxation
behavior. The details of the simulations are described in the
Supplemental Material [30]. Figures 3(d)–3(f) show that
the MD simulations produce qualitatively similar behavior
for the anisotropic structural relaxation function ϕ0

2ðQ; tÞ,
which further confirms the experimental results.
It is intriguing to ask whether the classical Rouse [40]

and tube models [41–43] can offer some insights into the
observed spatiotemporal dependence of anisotropy relax-
ation. Before embarking on the theoretical analysis, we
point out a striking feature of the relaxation behavior of
ϕ0
2ðQ; tÞ, observed in both the SANS experiments and MD

simulations. In the case of quasielastic neutron scattering,
the so-called Rouse scaling approach, which stems from de
Gennes’ derivation of the dynamic structure (form) factors
of the Rouse model [1,3,44], has been fruitful in elucidating

(a) (b) (c)

(d) (f)(e)

FIG. 3. Anisotropic structural relaxation function ϕ0
2ðQ; tÞ as a function of the normalized relaxation time t=τR (with τR being the

Rouse relaxation time) at different Q’s. (a)–(c) Comparison of experiments and theories. (d)–(f) Comparison of simulations and
theories. To put these results in perspective, the momentum transfer Q is normalized by the equilibrium radius of gyration Rg of the
polymer. The initial Rouse Weissenberg numbers in the MD simulations are 5.56, 6.08, and 41.8 for N ¼ 120, N ¼ 500, and
N ¼ 2000, respectively. The same rates are used in the corresponding theoretical calculations. The GLaMM calculations include the
“local fluctuation” effect [39].
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the slow dynamics of polymer melts. In particular, it has
been shown that, for RgQ > 1 and t < τR, the coherent
intermediate scattering function FcohðQ; tÞ can be
described as a function of the scaling variable ðΓtÞ1=2,
where the decay rate Γ ∝ Q4. Therefore, FcohðQ; tÞ mea-
sured at different Q and t can be collapsed by plotting
FcohðQ; tÞ against the Rouse variable ðΓtÞ1=2 [44].
Interestingly, we find that the anisotropic structural relax-
ation functions ϕ0

2ðQ; tÞ at differentQ’s can be reduced to a
single curve by using ðRgQÞ1=2ðt=τRÞ1=2 as the scaling
variable [Fig. 4(a)]. In other words, Fig. 4(a) indicates that
ϕ0
2ðQ; tÞ can be cast into the following functional form,

S02ðQ; tÞ
S02ðQ; 0Þ ¼ ϕ0

2ðQ; tÞ ∼ exp ½−ðΓtÞ1=2�; ð4Þ

with Γ ∝ Q. Furthermore, it appears that the data from the
three systems can be further superimposed onto a master
curve by normalizing the time t with the longest visco-
elastic relaxation time τ [inset of Fig. 4(a)]. Similar to the
case of quasielastic neutron scattering, the above scaling
approach is only valid under roughly the condition of
RgQ > 1 and t < τ. Lastly, the experimentally observed
scaling behavior is corroborated by the nonequilibriumMD
simulations [Figs. 4(b)–4(d)].
To put these results in perspective, we evaluate the

anisotropic structural relaxation function ϕ0
2ðQ; tÞ using the

Rouse model for the unentangled system and the tube
model by Graham et al. [43], i.e., the GLaMM model, for
the entangled polymers [45]. The GLaMM model is solved
with the standard parameters in the literature [43]. The
comparisons between the theories and simulations are
presented in Figs. 3(d)–(f) and 4(b)–4(d). At first glance,
the Rouse model seems to be able to provide a reasonable
description of the spatiotemporal dependence of anisotropy
relaxation for short chains [Figs. 3(a) and 3(d)]. However,
a closer inspection reveals that the model does not faithfully
reproduce the aforementioned scaling for ϕ0

2ðQ; tÞ
[Fig. 4(b)]. Additionally, it should be noted that, for the
entangled chains, the scaling behavior persists well beyond
the Rouse relaxation time. The observed scaling behavior
for anisotropy relaxation, therefore, does not arise from
the unconstrained Rouse motion. It is worth mentioning
that deviation from the standard Rouse behavior has been
observed in neutron spin-echo experiments on an unen-
tangled polyethylene melt in the equilibrium state [44,55]
and is attributed to non-Gaussian dynamics. The possible
connection between these phenomena remains to be
explored.
Figures 3(b), 3(c), 3(e), 3(f), 4(c), and 4(d) indicate that

the tube model also fails to predict the correct spatiotem-
poral dependence for anisotropy relaxation, even with the
consideration of local fluctuations about the primitive path
[39,45]. We previously showed that the chain retraction

mechanism of the tube model leads to an increase of
S02ðQ; tÞ around the Rouse time in the intermediate-Q range
after a large step uniaxial deformation, which is incon-
sistent with both the SANS experiment [12] and the MD
simulation [29]. Not surprisingly, quantitative analysis of
ϕ0
2ðQ; tÞ reveals a strong deviation from the theoretical

prediction for the well-entangled systems (PS500K and
the N ¼ 2000 chain in simulation). The upturn of the

(a)

(b)

(c)

(d)

FIG. 4. ln½ϕ0
2ðQ; tÞ� as a function of the scaling variable

ðRgQÞ1=2ðt=τRÞ1=2. (a) Scaling analysis for the experimental data.
(Inset) Shows ln½ϕ0

2ðQ; tÞ� as a function of ðRgQÞ1=2ðt=τÞ1=2,
where τ is the longest viscoelastic relaxation time of the sample.
(b)–(d) Scaling analysis of the theoretical and simulation results.
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theoretical ϕ0
2ðQ; tÞ at intermediate Q and t < τR is caused

by the chain retraction mechanism [12]. The effect of chain
retraction is less pronounced for mildly entangled polymers
[29]. Nevertheless, the theory disagrees with both the
experiment [Fig. 4(a)] and the simulation [Fig. 4(c)].
The most surprising aspect of our result is that entan-

glement appears to have a very weak direct influence on the
microscopic mechanism of single-chain anisotropy relax-
ation: the same peculiar behavior is observed for both
entangled and unentangled systems. Furthermore, for the
well-entangled systems, the scaling law holds well both
below (aQ > 1) and above (aQ < 1) the length scale of the
tube diameter a. The effect of entanglement shows up only
indirectly through the scaling variable τ [inset of Fig. 4(a)].
This observation suggests a possible simple explanation for
the absence of “chain retraction” in the previous step-strain
relaxation experiments [12] and molecular dynamics sim-
ulations [29]: if the confinement effect of the tube on the
test chain is weak, then the molecular relaxation on the
timescale of the Rouse time will not produce the unique
conformation predicted by the chain retraction mechanism
of the tube model [42].
In summary, we present the first quantitative analysis of

the spatial and temporal dependence of anisotropy relax-
ation in deformed polymers by using small-angle neutron
scattering and nonequilibrium molecular dynamics simu-
lations. We show that the relaxation of the anisotropic
structure of uniaxially stretched entangled and unentangled
polymer melts can be described by a simple, universal
scaling law, with the relaxation rate proportional to the
magnitude of the momentum transfer. This unexpected
finding presents a challenge to our current theoretical
understanding of the rheological behavior of polymers:
the observed scaling behavior of anisotropy relaxation
cannot be explained by the classical Rouse and tube
models. This Letter highlights the importance of studying
the spatiotemporal dependence of molecular motion under
deformation and flow—an aspect that has been overlooked
in traditional polymer rheology.
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