
BotSifter: An SDN-based Online Bot Detection
Framework in Data Centers

Zili Zha
George Mason University

zzha@gmu.edu

An Wang
Case Western Reserve University

axw474@case.edu

Yang Guo, Doug Montgomery
NIST

{yang.guo, dougm}@nist.gov

Songqing Chen
George Mason University

sqchen@cs.gmu.edu

Abstract—Botnets continue to be one of the most severe secu-
rity threats plaguing the Internet. Recent years have witnessed
the emergence of cloud-hosted botnets along with the increasing
popularity of cloud platforms, which attracted not only various
applications/services, but also botnets. However, even the latest
botnet detection mechanisms (e.g., machine learning based) fail
to meet the requirement of accurate and expeditious detection in
data centers, because they often demand intensive resources to
support traffic monitoring and collection, which is hardly practi-
cal considering the traffic volume in data centers. Furthermore,
they provide little understanding on different phases of the bot
activities, which is essential for identifying the malicious intent
of bots in their early stages.

In this paper, we propose BotSifter, an SDN based scalable,
accurate and runtime bot detection framework for data centers.
To achieve detection scalability, BotSifter utilizes centralized
learning with distributed detection by distributing detection tasks
across the network edges in SDN. Furthermore, it employs a
variety of novel mechanisms for parallel detection of C&C chan-
nels and botnet activities, which greatly enhance the detection
robustness. Evaluations demonstrate that BotSifter can achieve
highly accurate detection for a large variety of botnet variants
with diverse C&C protocols.

I. INTRODUCTION

Driven by the great success of cloud computing, the last
decade have seen the continuous migration of various services
and applications to different cloud platforms. With the flexible
pay-per-use model, more and more end users also rely more
and more on the cloud platforms for their personal storage
and computing need [1]. Under this trend, bots and botnets-
as-a-service [2] are no exception: bots and botnets have
been one of the most severe Internet threats underpinned by
the economic motive, and recent years have witnessed the
emergence of cloud-hosted botnets [3] largely due to its cost
effectiveness and the long-term availability of the machines in
the data centers. Compared to traditional bot machines which
get switched on/off frequently by the end-users, data center
hosted bot machines usually stay online for longer periods of
time [3] and generate more attack traffic (and profit). It was
previously reported [4] that cybercriminals have managed to
install DDoS botnets in AWS by exploiting a vulnerability
in Elasticsearch [5], an open source search engine that is
often deployed in cloud environments such as Amazon EC2,
Microsoft Azure, Google’s Compute Engine. Likewise, botnet
command and control software has previously been found to
be hosted in Dropbox [6]. Apart from these particular cases,
they show that cybercriminals are now breaching commodity

data centers, seeking the values of cloud infrastructures to host
the botnets.

Cloud-hosted bots (and thus truly botnets-as-a-service) are
more harmful than their traditional counterpart, yet accurate
and expeditious botnet detection schemes on cloud platforms
are not on the horizon yet because of the following challenges.
First, since the cloud is a multi-tenant environment, the
detection of bots should be fast (e.g., at runtime to prevent
further damage) and as non-intrusive as possible so that the
detection would have no or trivial impact on the normal data
center applications. Second, given the large traffic volume
in a data center, such a detection scheme must be scalable,
capable of handling tens or hundred gigbit line rate. Third,
the detection must be very accurate, since compared to the end
user environment, the cost of misclassifying a bot process or
connection (and subsequently closing/blocking the connection)
in a data center could be much larger or even disastrous.

Some of the early-day bot detection schemes [7] [8] rely
on deep packet inspection, which suffer from high resource
demands and ineffectiveness against encrypted botnet traffic.
Some others [9], [10], [11], [12], [13] focused on host traffic
and bot behavior analysis. These schemes became less and less
effective since contemporary botnets are constantly evolving
to circumvent the advanced detection mechanisms [14], [15],
[16], [17], [18]. For example, most botnets abandoned the
traditional IRC based Command and Control (C&C) channels
and embrace HTTP or P2P for communications.

To deal with such challenges, lately more schemes have
been built by taking advantage of the machine learning (ML)
techniques for detecting bot activity and/or C&C channels [9],
[10], [18], [12], [13], [19]. Such schemes often demand in-
tensive resources to capture the incoming and outgoing traffic
information, e.g., a centralized traffic monitoring facility at the
network gateway or the firewall, and then run the detection
after the traffic features are extracted. These schemes may
work for a small network with medium or low traffic volume,
but they are hardly effective in detecting the cloud-based bots
because (1) they demand a lot of extra resources for effective
traffic monitoring, which is hardly scalable considering the
huge traffic volume in data centers, (2) their accuracy varies
with the used ML model and the chosen features, and they
are often incapable of identifying unseen bots without under-
standing bot invariant characteristics (e.g., C&C channels), and
(3) they provide little understanding on different phases of bot

2019 IEEE Conference on Communications and Network Security (CNS)

978-1-5386-7117-7/19/$31.00 ©2019 IEEE 142

activities, which is essential for identifying the malicious intent
of bots in their early stages. This is however very desirable
for data centers in order to prevent further damage.

More importantly, existing ML-based approaches focus on
the detection of botnet flows [12], [13]. However, in the
detection of cloud-hosted bots, accurate identification of the
bots is more imperative compared to the detection of individual
malicious flows. Only after the bots are identified, the infected
VMs could be shut down to prevent future attacks. To our best
knowledge, no prior works focused on the detection of VM-
based bots in the cloud.

To this end, we propose to build BotSifter towards a scalable
and accurate runtime bot detection framework in data centers.
To be scalable, BotSifter integrates centralized learning (thus
to have a global view of the traffic and centralized intelligence)
with distributed edge-assisted detection by leveraging software
switches in data centers. Due to their widespread deployment
in data centers, software switches (e.g., Open vSwitch1) are
being increasingly employed as monitoring devices as they
typically reside in commodity servers with abundant hardware
resources. Since they are usually deployed at the edge of
the monitored network and located within close proximity to
the end hosts, only relatively a small amount of traffic flows
traverse the switch, rendering it a more scalable solution for
anomaly detection in data centers. Implementing detection at
the edge also enables our system to observe both directions
of the traffic, which is an essential prerequisite for connection
based anomaly detection. Moreover, our edge-based detection
framework has the inherent capability of observing the internal
attack traffic and C&C traffic within the data center network.

To achieve high accuracy, BotSifter not only conducts neural
network (NN) based bot activity detection, but also conducts
the detection of C&C channels in parallel. These detections
are further enhanced with local and network wide correlations
to minimize false alarms. Not only detecting the existence of
C&C channels, BotSifter is also able to differentiate different
communication protocols (i.e., IRC, HTTP, P2P) utilized by
the bots so that custom mitigation mechanisms could be
quickly deployed to defend against specific types of bots.
Since the majority of the detection operations in BotSifter are
conducted within software switches that are instrumented to
collect connection features and states on the fly, BotSifter is
highly efficient in identifying bots without interrupting other
network functions, thus making it a practical solution for
the cloud and data center systems. A prototype of BotSifter
is implemented, and evaluations based on real-world traces
show BotSifter is highly accurate and efficient in detecting
bots utilizing known protocols, but also bots with customized
protocols.

The highlights of BotSifter lies in

1Certain commercial equipment, instruments, or materials are identified in
this paper in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply
that the materials or equipment identified are necessarily the best available
for the purpose.

• The design naturally utilizes the SDN’s centralized struc-
ture to have a global visibility while distributing most of
the detecting load to the network edge to be scalable.

• It builds the monitoring capability in the OVS via an off-
path traffic collection design to minimize the intrusion of
traffic monitoring to normal applications.

• It utilizes neural network to detect bot activities, and
employs newly designed protocol specific mechanisms
(e.g., self-correlation for P2P) to detect and differentiate
different C&C protocols. The local and network wide
correlations further enhance the accuracy and robustness
of the detection.

The remainder of the paper is as follows. Section II
describes the BotSifter design and section III sketches its
implementation. The evaluation is presented in section IV. We
discuss the related work in section V and make concluding
remarks in section VI.

II. BOTSIFTER DESIGN

The design of a cloud botnet detection framework that is
capable of monitoring thousands of servers, tens of thousands
of Virtual Machines (VMs) running on these servers, and
terabit per second communication among these entities and
between the data center and the outside Internet is extremely
challenging. In this paper, we explore a ML based distributed
online cloud bot detection framework, called BotSifter, that
monitors and detects the bots within a data center. BotSifter
takes advantage of Software Defined Networking (SDN) ar-
chitecture widely adopted by the data center, and integrates
the centralized ML training with distributed monitoring and
detection. The ML based bot detector is trained at the central
controller, and runs distributedly at the cloud servers with
the ML configurations acquired from the central controller.
SDN software switches, e.g., OVS, are instrumented with
traffic monitoring capability. Both bot activity detector and
bot C&C communication detector are implemented at servers
using locally collected traffic stats. If necessary, the central
detector is invoked to detect data-center wide botnets.

Botnet	 Traffic	

Data	 Center	

OpenFlow	

SDN	 Controller	
Centralized	
	 	 Learning	

Network-‐wide	
	 	 Correla<on	

	 Mi<ga<on	
Deployment	

Distributed	 	
	 	 Detec<on	

OVS	

VM	
VM	 VM	 VM	 VM	

VM	 VM	 VM	 VM	
VM	 VM	 VM	 VM	

VM	 VM	 VM	 VM	
VM	 VM	 VM	 VM	

VM	 VM	 VM	

OVS	 OVS	 OVS	 OVS	 OVS	

Server	 Server	

Fig. 1: Overall architecture of BotSifter

The key feature of our design is to leverage the data-center
servers and the software switches running on these servers.
The contemporary servers have abundant computational and
memory resources, and the software switches have the full
access to the traffic originated from and destined to the end
hosts residing on the servers. Our design philosophy is to

place as many monitoring and detection functionality at the
edge servers as possible, while judiciously utilize the central
controller for data-center wide tasks when necessary.

The BotSifter architecture is depicted in Fig. 1. The central
controller is responsible for ML training, network wide bot
detection, and bot mitigation. At individual servers, traffic
features are extracted and recorded by the instrumented soft-
ware switches, which are then used by C&C channel detection
modules and ML based bot activity detection module. Below
we describe local traffic monitoring, C&C bot detection, ML
based bot detection, and network wide bot detection and
mitigation, respectively. The major components to accomplish
these tasks are sketched in Figure 2.

Userspace	

OVS	

	 	 	 Run$me	 ML	 Bot	
	 	 	 Detec$on	 Module	

SDN	 Controller	

OpenFlow	 Protocol	

Kernel	 Flow	 Cache	

Kernel	 Space	

ring	 buffer	 cache	

Packet	 Out	 Packet	 In	

Local	 Parallel	
	 Correla$on	

Network-‐wide	
	 	 Correla$on	 	

	 	 Migaon	 	
Deployment	

Netlink	

Local	 	 OVS	 Traffic	 	
	 	 	 	 Monitoring	

C&C	 Detec$on	 Modules	

Centralized	
	 	 Learning	

IRC	 C&C	 Detec?on	

HTTP	 C&C	
Detec?on	

P2P	 C&C	
Detec?on	

Fig. 2: BotSifter design: major components

A. Local OVS Traffic Monitoring

To lessen the impact on software switch’s forwarding speed
while efficiently capturing the traffic stats required by ML
bot detection module and C&C detection modules is the main
design challenge for local OVS based traffic monitoring. OVS
maintains a user-space forwarding pipeline and a kernel space
forwarding cache. The majority of the incoming packets are
forwarded by the kernel module, with few packets that do not
have the matches in the kernel being redirected to the user-
space. To decouple the monitoring from the forwarding, a ring
buffer cache, as shown in the bottom of Fig. 2, is introduced.
Such a design significantly reduces the monitoring interference
to the forwarding.

ML detection module and different C&C detection modules
require different traffic stats. For instance, ML module uses a
traffic feature vector, while P2P C&C detection keeps track
of DNS transactions for each source/destination pair. Multiple
hash tables are employed for efficient lookup and update.

B. Parallel C&C and Bot Activity Detection

At edge server, BotSifter implements one ML based bot
detection module and three C&C detection modules: HTTP
C&C detection module, P2P C&C detection module, and
IRC C&C detection module, respectively. We have the design
choice of implementing them inside the software switch OVS,

or on the server but outside the OVS. In addition, if a module is
placed inside the OVS, we need to decide whether the module
resides in the kernel or at user-space. Since P2P and HTTP
C&C modules use the connection stats rather than individual
packet info, placing them in the user-space at OVS is the
right choice. In contrast, IRC based C&C module conducts
keyword search over a packet, thus is impleneted in OVS
kernel. ML based bot detector uses TensorFlow ML libraries,
thus is implemented in the user-space outside OVS. We also
place the local parallel correlation module in the OVS, as
shown in Fig. 2.

1) C&C Detection: P2P C&C detection: Distinguishing
P2P traffic used by bots from normal P2P traffic is not
trivial. The study in [11] made the discovery that the sets of
peers contacted by two different bots within the same botnet
typically have a much larger overlap compared to the peer
sets contacted by two legitimate P2P clients within the same
network. In practice, there is the possibility that only one bot
resides in the data center.

We develop a client self-correlation approach to detect P2P
bots. Specifically, the peer set of a P2P bot is more likely to
remain stable over the time, while that of a normal P2P client is
more likely to change due to the changing user behavior (e.g.,
downloading of disparate resources over time). We conduct
extensive empirical experiments, and the results show that P2P
bots do exhibit strong self-overlap patterns while normal P2P
hosts do not. The new approach is more flexible and robust
than the approach in [11].

HTTP C&C detection: Bots tend to communicate with the
server periodically over the HTTP channel [20]. HTTP C&C
detection module makes the detection using such periodic
traffic pattern. The timing information of HTTP connections
between a pair of end hosts is collected by the monitoring
module. The number of HTTP connections within each time
slot is counted. The time series of connection counts is fed
into a Discrete Fourier Transform (DFT). If periodic pattern
is discovered, the host becomes a bot candidate.

IRC based C&C detection. Although IRC based botnets
are diminishing nowadays, we include the IRC C&C detection
for the sake of completeness. To minimize system overhead,
a combination of keyword matching and port numbers is
leveraged to identify IRC connections. Furthermore, to de-
termine whether they are IRC C&C channels, our detection
relies on inspection of packet payloads by searching for attack
relevant commands in IRC response messages. We implement
the detection module at the kernel space of OVS.

Note that our system design is extensible and new C&C
detection schemes can be easily integrated. In addition, the
design enables network wide correlation for agile C&C detec-
tion. For example, a P2P C&C host may not exhibit sufficient
self-overlap. In such a case, flow stats of all P2P hosts inside
a network can be exported to the central controller, where the
clustering based detection can be performed.

2) Runtime ML based bot detection: In parallel to the
C&C channel detection, BotSifter also conducts bot activity
detection using a deep learning Neural Network (NN). For

each connection, NN is able to detect if it is potentially a bot
activity connection.

In order to detect if a host is compromised and becomes a
bot, BotSifter keeps track of the percentage of connections
initiated by this host that are identified by the NN as the
bot activity connections. If the percentage surpasses a preset
threshold, the host is identified as a bot.

3) Local parallel correlation: While C&C based detection
detects bots via monitoring C&C communication, ML based
detection detects the bots via monitoring bot activity traf-
fic. BotSifter introduces a local detection correlation module
that combines the results from these two types of detection
modules. The consistent detection by both C&C modules and
ML based module is a strong indication that a host has been
compromised and will be placed on a blacklist. On the other
hand, a single positive identification may not be conclusive.
For example, the P2P C&C detection module detects that a
host may potentially be a bot. However, the bot may still be
dormant and have not launched any attacks yet. As another
example, if a host is identified by the online ML module as
an attacker, it is not clear if the identified host is a bot with a
customized C&C protocol that is not recognized by our C&C
detection modules, or an ordinary attacker without any C&C
channels. In any case, such bots are placed on a so-called local
grey list and will be under persistent monitoring/scrutiny. The
blacklists and grey lists are sent to the central controller for
network-wide correlation and identification.

C. Network-wide Correlation and Mitigation

While local detection is beneficial for the system scalability,
the lack of global view can deter the bot detection. Hence
BotSifter introduces a centralized correlation module that
examines the blacklists and greylists received from the edge
servers, and performs network-wide correlation to detect bots.
In addition, a mitigation module is implemented to mitigate
bots’ damages. For each bot on the blacklist, the controller
installs flow rules into the OVS to block C&C traffic and/or
attacking traffic.

For hosts on a local C&C greylist, the controller performs
network-wide grouping analysis to determine if it is a bot.
Each group consists of the hosts on blacklists or C&C greylists
communicating with the same destination host. If any host in
the same group has already been positively identified as a
bot, the greylist hosts in the same group are marked as a bot
and will be placed on the blacklist. Otherwise, the controller
places the host on the global C&C greylist, and continues to
monitor the host until a timeout occurs. For hosts on the local
ML greylist, the controller looks up the global C&C greylist
to check if there is a match. If so, this host is included in
the global blacklist. Otherwise, it is placed onto the global
ML greylist and continues to be monitored for future signs of
C&C communication.

III. BOTSIFTER IMPLEMENTATION

We implement a BotSifter prototype following the design
as laid out in the Section II. Fig. 3 highlights the major parts

implemented for BotSifter. More implementation details are
described as below.

A. Local OVS Traffic Collection Implementation
The local traffic monitoring function is implemented in

a kernel thread called kernel collector. We also modify the
kernel forwarding thread so that the packet headers are pushed
into the ring buffer cache upon arrival. The kernel collector
thread takes the packet headers off the ring buffer, and process
them to generate the required stats that are stored in hash
tables. The hash tables with connection stats are periodically
pulled by the user-level stats collection thread stats collector,
as shown in Fig. 3.

A more involved task is to detect P2P connections required
by the P2P C&C detection module. To identify a P2P con-
nection, the kernel thread intercepts the DNS requests, parses
them, and records the hosts who have conducted look-up for a
specific IP address. For each new connection between any two
hosts src ip and dst ip, we check whether the src ip host has
conducted a DNS lookup for the destination dst ip. If yes, it
is a normal connection. If not, this new connection is marked
as a P2P connection, which will be further examined by the
P2P C&C detection module.

B. Parallel C&C and Bot Activity Detection Module Imple-
mentation

Three threads, irc c&c detector, p2p c&c detector and
http c&c detector are implemented to realize the IRC C&C
detection, P2P C&C detection, and HTTP C&C detection,
respectively. Thread irc c&c detector runs in the kernel, as
discussed in the Section II, while p2p c&c detector and
http c&c detector run in the user space, as in Fig. 3.

To identify IRC connections, irc c&c detector performs
lightweight payload inspection against connections with stan-
dard IRC ports (6660-6669). The first few packets of an
IRC connection typically contain certain keywords, such as
“JOIN”,“USER”, “NICK” and “PRIVMSG”. To further iden-
tify IRC C&C channels, irc c&c detector examines IRC mes-
sages by searching for attack relevant commands (e.g., “scan”,
“flood”). If such commands are recognized, the irc flag for the
connections will be set and exported to userspace.

As mentioned in Section II, the differentiation of P2P C&C
traffic and normal P2P traffic relies on self-correlation behav-
ior of peer sets. For the self-correlation, we conduct overlap
analysis over multiple time windows of each P2P connection.
Time window is a fixed length period of time during the
connection. For each time window, we calculate the per-host
peer sets in the current and N subsequent time windows. Then,
we calculate the number of re-appearing peers in both the
current time window and the ith(i ≤ N) time window. We
use the average of the N overlap values to represent how the
peer sets evolve over time. For runtime detection, we calculate
the moving average overlaps to differentiate the P2P bots from
normal hosts. The used parameters are discussed in Section IV.

Thread online ml detector implements a NN based bot de-
tection module. The NN model is implemented using Tensor-
Flow 1.8.0 [21], an open source NN library. Since the thread

2019 IEEE Conference on Communications and Network Security (CNS)

145

Userspace	

OVS	

online_ml_detector	

TensorFlow	
	 	 	 	 Model	 stats_collector	

Output	

Stats	 Table	 flow_exporter	

Kernel	 Flow	 Cache	

Kernel	 Space	 ring	 buffer	 cache	

Packet	 Out	
Packet	 In	

irc_c&c_	
detector	

Connec?on	 	
Stats	 Table	
kernel_thread	

p2p_c&c_	
detector	

h7p_c&c_	
	 detector	

Local	 Parallel	
Correla;on	

Customized	 Thread	
Customized	 Data	 	
	 	 	 	 Structure	
Data	 Flow	

Netlink	

IPC	

Fig. 3: BotSifter system implementation

runs outside of the OVS, a user-space thread inside OVS,
called flow exporter, is created to allow online ml detector
to retrieve the connection 2 feature vectors collected by OVS
using Linux IPC calls, as depicted in Fig. 3.

Table I summarizes the features used in our NN model.
Notably, different from previous flow based ML models,
src/dst IP addresses are excluded from our feature set. We
believe they are unique to particular data centers and thus
should be excluded. More importantly, the exclusion can avoid
over-fitting the NN model. In general, choosing the right
feature set, or feature engineering, is a challenging research
task. We experimented with different features and choose the
most discriminative ones based on the experiment results. For
example, the forward/backward average packet size of normal
flows tends to be larger than botnet traffic since they contain
realistic payloads. Meanwhile, we introduce a novel feature,
i.e., conn stat to capture whether the connection has been
successfully established. Since bots usually maintain a large
number of half open connections, this feature is effective in
identifying malicious botnet traffic such as direct DoS flooding
attack and the amplification attack traffic.

The online ml detector thread fetches NN configuration
parameters from the controller, and initiates the NN model.
The flow-exporter thread in OVS continuously exports con-
nection features to the NN model, as shown in Fig. 3.
To facilitate communication between flow exporter and on-
line ml detector, a shared memory pool is created. Linux
semaphores are used to synchronize access to the shared
memory.

C. Network-wide Correlation and Mitigation Implementation
Bot detection applications are programmed at the central

controller to perform network-wide correlation analysis. Once
a bot is detected, the controller installs customized flow rules
into the corresponding OVS switch to prevent future attacks.
To facilitate the communication between the threads at servers
and controller, traditional OpenFlow protocol is extended to
facilitate the collection of detection results from edge servers.

2A UDP “virtual” connection is considered successful if at least one packet
is received from the destination host.

TABLE I: Description of connection features.

Feature Description

Source Port Source port.
Destination Port Destination port.

Protocol IP protocol.
Forward packet count Total number of packets in the forward direction.

Backward packet count Total number of packets in the backward direction.
Forward byte count Total number of bytes in the forward direction.

Backward byte count Total number of bytes in the backward direction.
Duration Connection duration.

Forward packet rate Packet rate in the forward direction.
Backward packet rate Packet rate in the backward direction.

Connection State whether the connection is successfully established.
Forward inter-arrival time Packet inter-arrival time in the forward direction .

Backward inter-arrival time Packet inter-arrival time in the backward direction.
Forward average packet size Average packet size in the forward direction.

Backward average packet size Average packet size in the backward direction.
Forward byte rate Byte rate in the forward direction.

Backward byte rate Byte rate in the backward direction.

IV. EVALUATION

Our testbed consists of three Lenovo ThinkServer machines
running Ubuntu 14.04. Each machine is equipped with Intel
Xeon 4-Core 3.20GHz CPU and 4GB RAM. One machine is
installed with Open vSwitch 2.3.90. Another machine runs
the Ryu SDN controller. A third machine serves as both
packet generator and data sink, which is connected to the OVS
machine via two 10Gbps Ethernet cables. Packet traces are
replayed using TCPReplay at the original speed.

A. Datasets

For our experiments, we are able to obtain several third-
party traces, including a variety of botnet traces composed
of different botnet types and normal network traces. CTU-
13 dataset [22] contains traffic of botnet samples captured in
the CTU University, Czech Republic, in 2011. In each botnet
sample, bots use specific protocols for C&C communication
and perform diverse malicious tasks, including SPAM, port
scanning, DDoS, click fraud, etc. Due to the diversity of
botnet samples, this dataset is appropriate for evaluating the
performance of our framework. For the normal traces, we
use the UNB ISCX IDS 2012 dataset [23] containing normal
traces with full packet payloads. This dataset captures typical
user daily activities (e.g., HTTP, DNS, SSH, FTP) at UNB
university and was made public for scientific research.

Our runtime bot activity detection relies on a pre-trained
model. Table II summarizes the composition of the botnets in

Datasets Underlying C&C Protocol
HTTP P2P IRC Custom

Training Dataset Neris, Virut Storm, Waledac Rbot -
Testing Dataset Neris, Virut, Sogou Storm, Waledac, NSIS Rbot Menti

TABLE II: Description of botnet datasets for training and testing.
stats collector

kernel collector

p2p c&c detector

flow exporter

http c&c detector
0

10

20

30

40

50

60

C
PU

U
til

iz
at

io
n

(%
)

Fig. 4: CPU utilization of detection related threads.

the training and testing datasets. For the training dataset, we
merged several traces, including P2P botnets, IRC Botnets and
HTTP botnets. For runtime detection, we include not only the
same types of botnets as the training dataset, but also novel
botnet variants, such as NSIS (P2P C&C), Menti (Proprietary
C&C) and Sogou (HTTP C&C). Among them, Menti uses
a custom protocol for C&C communication. By evaluating
how BotSifter performs when facing novel botnet variants, this
experimental strategy aims to demonstrate the effectiveness of
our design in real-world bot detection.

B. Impact on Normal Applications

Since the botnet detection accuracy of our system strongly
relies on the accurate timing information of the packet se-
quences, the botnet traces are replayed at the original speed. To
evaluate the overall system performance, we perform a stress
test using a CAIDA trace and replay the trace towards our
monitoring system at the highest achievable rate.

Considering that no modification is made for native OVS
threads (e.g., handlers and revalidators), their CPU usage is
not shown here. We only report the CPU utilizations of the
customized threads in Fig. 4, which shows the peak CPU usage
of each detection-related thread under various detection tasks.

We can see that the stats collector in the userspace incurs
the highest CPU utilization while the threads regarding C&C
detection and flow exportation to the online ML detector
introduce negligible overhead. Since stats collector mainly
manages the collection of connection stats from the kernel
space through Netlink and the maintenance of the connection
hash table in the userspace, we infer that its CPU utilization
is mainly attributed to the Netlink communications. Further
optimization is possible by utilizing shared memory between
the user and kernel space instead of relying on Netlink sockets.

In realistic scenarios, these overheads are acceptable as
OVS typically resides in commodity servers with abundant
CPU resources. The detector threads could be pinned to
different CPUs to avoid interfering with CPUs dedicated to
the forwarding functions in OVS.

To estimate the network overhead, we use DPDK based
packet generator MoonGen to generate high speed traffic and
measure the maximally achievable throughput such that no
packet loss occurs on the forwarding path. The experiment is
repeated 10 times. Compared to the throughput of the native
OVS (1.44Mpps), BotSifter could achieve 1.15Mpps through-

put. This overhead is acceptable and further analysis shows
this overhead is mainly incurred by the memcpy operations on
the ring buffer cache.

C. Detection Performance

1) Evaluation metrics: To evaluate the performance of Bot-
sifter, we use three metrics. C&C Accuracy is calculated as the
ratio between the number of hosts which have triggered alarms
of C&C detectors and the total number of hosts. ML Accuracy
represents the detection rate of the bots based on suspicious
ratios predicted by the runtime NN model. Since our final
detection result relies on a parallel correlation between C&C
detection and runtime ML detection, we define a novel metric
Local Parallel Accuracy to represent the overall accuracy.

As discussed in Section II, the hosts triggering alarms from
both http c&c detector and irc c&c detector will be put onto
a greylist instead of blacklist since they need further network-
wide correlation. In contrast, alarms from p2p c&c detector
indicate the associated hosts must be bots and thus they are
included in a blacklist. Therefore, we claim that if the host
appears on either the C&C blacklist or the ML greylist (e.g.,
is an attacker, but needs further monitoring to find out C&C
channels), it is regarded as a true positive, which also implies
that it has been successfully detected by BotSifter. This design
principle further demonstrates the robustness of BotSifter
compared to methods based on single stage detection.

2) Detection Accuracy and Latency: The measurement re-
sults are shown in the C&C accuracy column in Table III. Note
that, in ML Accuracy, the percentage values in the brackets
represent the suspicious ratios for the bots in the current trace.
The parallel detection scheme in BotSifter successfully detects
all bots with zero false positives, although some bots trigger
alerts from only one stage (either C&C or NN model), such
as NSIS and Menti. In the normal trace, there are no false
positives due to the following two reasons. First, the hosts are
included in HTTP greylist instead of the blacklist, due to the
periodicity of software updates. Besides, the suspicious ratios
of all hosts are far below the threshold. In a nutshell, BotSifter
can detect all bots which may get missed by any single stage
of detection. Since local detection accomplishes the tasks,
no computation is needed from the central controller, which
demonstrates that BotSifter is a distributed scalable solution.
In the following, we analyze the results in more detail.

2019 IEEE Conference on Communications and Network Security (CNS)

147

TABLE III: Detection results for 8 botnet variants and normal trace.

Botnet C&C #Bots or Duration P2P HTTP IRC C&C ML Detection Local Parallel
Variant Protocol #Hosts Overlap Periodicity C&C Accuracy Accuracy Accuracy

Neris HTTP 1 4.8h - Strong - 1/1 1/1(99.2%) 1/1
Virut HTTP 1 16.36h - Strong - 1/1 1/1(99.7%) 1/1
Sogou HTTP 1 0.38h - Weak - 1/1 1/1(95.5%) 1/1
Storm P2P 13 3.1h Yes - - 13/13 13/13(90.1%) 13/13

Waledac P2P 3 3.45h Yes - - 3/3 0/3(50.5%) 3/3
NSIS P2P 3 1.21h - - - 0/3 1/1(93.7%) 3/3
Rbot IRC 1 5h - - Yes 1/1 1/1(99%) 1/1
Menti Custom 1 2.18h - - - 0/1 1/1(99.4%) 1/1

Normal n/a 36 10h - Yes(4/36) - 4/36 on greylist FPR:0/36(See Fig. 6) FPR: 0/36

HTTP C&C detection. Based on our empirical experi-
ments, we find that the C&C connections of certain HTTP
botnets may not exhibit periodicity patterns as strong as other
botnets. This may be due to unknown factors such as network
delay and congestion which introduce noises to the connection
timing. We use strong and weak to represent whether strong
periodicity is observed in each botnet trace. Among the
used HTTP botnet samples, Neris and Virut exhibit strong
periodicity since the bots connect to the HTTP C&C server
at regular intervals with negligible timing variations. Since
periodicity patterns are observed for each 3-tuple (src ip,
dst ip, dst port), the suspicious client and server associated
with the 3-tuple could be accurately pinpointed and placed
onto a greylist for further examination. Aside from this, we
also observed that certain botnets contain more than one
HTTP C&C channels, some of which exhibit no periodical
pattern. These C&C communications are not typical and
cannot represent the botnet C&C behaviors. For those C&C
channels exhibiting periodical connection patterns, our online
http c&c detector can accurately identify the C&C channels.

Apart from accuracy, the detection latency is dominated by
the prevalence of bots’ activities. As previously discussed,
HTTP C&C detection relies on disclosing the periodicity
inherent in bot C&C communication. Therefore, the latency
for identifying the C&C channels is closely correlated with
the inter-connection duration. In our experiment, BotSifter can
detect periodic C&C communication after 4∼5 connections
on average. The actual latency depends on how frequent bots
connect to C&C servers. For example, in one of our Neris
botnets, the bot periodically communicates with the C&C
server on a minute basis, in which BotSifter can detect this
channel after around 4∼5 minutes since the first connection.

During the test for the normal trace, the http c&c detector
triggers an alert unexpectedly, which implies that periodic http
connections are observed between two normal hosts. Further
examination reveals that those hosts are running legitimate
applications with periodic HTTP connections.

P2P C&C detection. The detection results for the P2P
botnets are also quite promising. Storm and Waledac both
show strong self-overlap in their C&C communication. One
exceptional case is NSIS, for which no P2P overlap is ob-
served. This is reasonable as the trace is reported to be
incomplete with only one C&C channel that is insufficient
for analysis. Below we demonstrate that our scheme allows to
accurately distinguish P2P C&C from normal P2P traffic.

TABLE IV: Description of P2P traces.

Trace Normal Botnet
Emule FrostWire uTorrent Storm Waledac

Number of Packets 3.6M 1.35M 6.5M 6M 2.5M
Duration 3.25h 10h 8h 3.16h 8.23h

As previously discussed, the key characteristic differentiat-
ing P2P C&C from normal P2P traffic is that the peer sets of a
P2P bot have large overlaps across consecutive time windows;
while the overlaps for a normal P2P host are noticeably
smaller. To verify this, we use several third-party traces [24]
of normal P2P applications and P2P botnets, as summarized in
Table IV. The Storm and Waledec contain 13 and 3 P2P bots
respectively. Our experiments show that the p2p c&c detector
could successfully detect all bots.

In our experiment, the average overlap values are calculated
across 5 consecutive time windows with respect to the current
time window. The length of the time window is set to be
10 minutes. We have tested with various window parameters
and acquired similar detection results. However, choosing a
relatively small window and short window sequence results
in more prompt detection. Otherwise, it causes longer de-
tection delay if more subsequent time windows are used to
calculate the average overlaps. In our parameter setting, the
P2P C&C channels can be detected within 5 consecutive
time windows. To demonstrate the effectiveness of the self-
correlation scheme, the moving average overlaps for 10 initial
time windows for each P2P host in the trace are shown in
Figure 5. For each trace, the result for only one P2P host
is depicted in the figure. Other hosts in the same trace all
demonstrate similar patterns as the one reported here.

0 2 4 6 8 10
Time Window

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P2
P

Se
lf

-O
ve

rl
ap

Emule
Storm
Waledac
Frostwire
uTorrent

Fig. 5: Peer overlaps for botnet/normal P2P applications.
From Figure 5, there is significant difference between the

2019 IEEE Conference on Communications and Network Security (CNS)

148

peer overlap for P2P bots and normal P2P hosts. In real world
detection, a simple threshold based measure (e.g., 0.6) would
suffice to distinguish between them. Based on the reported
overlaps, our p2p c&c detector manages to identify all P2P
bots in both traces. This demonstrates the effectiveness of the
self-correlation scheme for detecting P2P C&C.

IRC C&C detection. In the Rbot botnet, the bot com-
municates with the C&C server through an established IRC
channel. Via this channel the server commands the bot to
perform port scanning against certain IPs in the network and
the bot continuously reports scanning results to the C&C
server. Our irc c&c detector can accurately detect the IRC
C&C channel using keyword matching with negligible delay
since the detection is performed entirely in kernel space.

Different from other botnets, Menti adopts a custom pro-
tocol and performs port scans. Since its C&C communica-
tion does not rely on the three well-known C&C protocols,
c&c detector discovers no suspicious C&C pattern. However,
our experiment shows that online ml detector raises an alert
since suspicious activities are discovered in the trace, which
will be further explained in the following analysis.

Runtime ML based bot detection. As shown in Table III,
the suspicious ratios for the majority bots fall between 95% to
99%. For the remaining bots, the ratios still exceed 90%. The
result for Waledac is relatively low since the majority of its
traffic is C&C related. Since the goal of ML detection module
is to detect suspicious bots instead of individual connections,
online ml detector raises alerts based on the suspicious ratio
for each individual host. As defined in Section II, it represents
the ratio of the number of suspicious connections with respect
to the total number of connections for each host. If the ratio
exceeds a pre-specified threshold, the host will be included in
a greylist. Obviously, the choice of this threshold has a direct
impact on the detection accuracy. A higher threshold leads
to more false negatives while a lower threshold incurs more
false positives. With a threshold of 10%, in the normal trace, 4
out of 36 are false positives. Instead, with a higher threshold,
for example, 85%, all bots are accurately identified, with zero
false positives. By excluding hosts with a limited number of
connections, the ratios of all other hosts are shown in Figure 6.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Host ID

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Su
sp

ic
io

us
R

at
io

Fig. 6: Suspicious ratios for hosts in the normal trace.
For novel botnets, such as Menti, no C&C patterns are

discovered since it uses a custom C&C protocol. However,

as shown in Table III the online ml detector reports high
suspicious ratio for the bot in this trace and raises alarms for
further correlation. This parallel design is extremely effective
in detecting bots in real-world, since it increases the difficulty
of novel botnet variants evading both stages of detection.

Performance comparisons. We compare our approach to
previous works by evaluating them using the same datasets
in our experiment. Since our detection relies on parallel
correlation of C&C detection and bot activity detection, the
comparison is two-fold. First, we compare our ML detection
accuracy to a recent ML based approach [13]. Different from
ours, their ML model is based on per-flow feature vectors and
only achieves an overall accuracy of 75% on a testing dataset
containing multiple novel botnet variants not embraced in the
training dataset. By contrast, in our evaluation for Menti (a
variant with a custom C&C protocol), the ML model reports
a fairly high accuracy (∼99.4%). Indeed our detection method
achieves satisfactory accuracy for a majority of the test traces.

Moreover, another similar work [11] focuses on the detec-
tion of stealthy P2P botnets through cross-bot overlap analysis,
which shows that P2P bots could be identified based on cross-
bot correlation. Our experiments evaluate the detection accu-
racy on the same P2P botnets. As shown in Table III, all P2P
bots are detected without any false negatives, which indicates
that Botsifter can achieve comparable detection performance
by solely using single-bot patterns. However, our approach is
more robust in the scenario of a small number of bots.

V. RELATED WORK

SDN based detection The emerging SDN techniques offer
new opportunities for enhancing network security. The visi-
bility and programmability provided by SDN have often been
leveraged to perform various security detection and attack
mitigation schemes.

FRESCO [25] represents one of the initial attempts to
compose security services for SDN network systems. It is
a framework to enable rapid development of OpenFlow-
based security applications on the control plane. Shin et
al. implemented a FRESCO version of the BotMiner [9] to
perform clustering and correlations over network traffic to
identify bot hosts. Later, Sonchack et al. proposed OFX [26], a
system that enables practical deployment of security functions
within an existing OpenFlow infrastructure. It allows control
applications to dynamically load security modules directly
into unmodified SDN compatible switches. OFX integrates
botnet detection as a sample security application. It loads pre-
processing functions into the switches so that the switches
could send batch updates containing the processed feature
vectors to the controller for further processing. However,
neither solution utilizes computational power of the SDN data
plane to perform more fine-grained and accurate detection.
Machine learning based detection In the early stage of bot
detection, numerous efforts focused on identifying unique be-
havioral patterns of bots. For this purpose, various techniques
are employed, such as matching the IDS dialog [8] and statis-
tical algorithms to detect organized network activities [10].

2019 IEEE Conference on Communications and Network Security (CNS)

149

However, a big challenge faced by these solutions is the
prior knowledge of the malicious behaviors. Alternatively, the
advancement of machine learning techniques and frameworks
facilitate the explorations of the feature space of malicious
traffic to address the challenge.

BotFinder [27] creates a model based on statistical features
of flows to detect C&C communications. The model is built on
a clustering algorithm to capture similar malicious behaviors
of flows. Later, Zhao et al. proposed a detection method that
employs a decision tree based algorithm with feature vectors
extracted from the flows using a sliding window technique.
In this model, the feature space is expanded to 12 features of
flows [12]. Nonetheless, both algorithms are created towards
specific botnet families or certain types of botnet, e.g., P2P
botnet. Furthermore, most existing approaches are offline since
real-time detection with a rich feature set is expensive and may
impact network performance significantly.

Targeting the newly emerged cloud hosted bots, BotSifter
addresses all these limitations by utilizing distributed detection
and centralized learning in SDN, enhanced with a scalable
traffic monitoring facility, and thus offering better detection
efficiency.

VI. CONCLUSION

The cloud-based bots pose an imperative threat to the
applications and services running on various cloud platforms,
yet highly accurate and scalable detection solutions are not
available. In this study, we have designed and implemented
BotSifter, an SDN based scalable and accurate runtime bot
detection framework in data centers. BotSifter utilizes a
centralized learning and distributed detection model that is
effectively supported by SDN. Furthermore, BotSifter adopts
parallel detection of both the botnet C&C communication
patterns and the machine learning based attack activities. The
evaluations show the effectiveness of BotSifter based on real-
world traces.

VII. ACKNOWLEDGEMENT

We appreciate the constructive comments from the review-
ers. This work is supported by NIST grant 70NANB18H272
and NSF grant CNS-1524462. This work was also supported in
part by the Institute for Smart, Secure and Connected Systems
at Case Western Reserve University through a grant provided
by the Cleveland Foundation.

REFERENCES

[1] L. Columbus, “83% Of Enterprise Workloads Will Be
In The Cloud By 2020,” 2018. [Online]. Avail-
able: https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-
enterprise-workloads-will-be-in-the-cloud-by-2020/#32e7847e6261

[2] P. McDougall, “Microsoft: Kelihos Ring Sold
’Botnet-As-A-Service’,” 2011-09-30. [Online]. Available:
https://www.darkreading.com/risk-management/microsoft-kelihos-
ring-sold-botnet-as-a-service/d/d-id/1100470?piddl msgorder=thrd

[3] K. Clark, M. Warnier, and F. M. Brazier, “Botclouds-the future of cloud-
based botnets,” in in CLOSER. Citeseer, 2011.

[4] [Online]. Available: https://securelist.com/elasticsearch-vuln-abuse-on-
amazon-cloud-and-more-for-ddos-and-profit/65192/

[5] [Online]. Available: https://www.elastic.co/

[6] B. Butler, “Hackers found controlling malware and
botnets from the cloud,” 2014-06-26. [Online]. Avail-
able: https://www.networkworld.com/article/2369887/cloud-security/
hackers-found-controlling-malware-and-botnets-from-the-cloud.html

[7] J. Goebel and T. Holz, “Rishi: Identify bot contaminated hosts by irc
nickname evaluation.” HotBots, vol. 7, pp. 8–8, 2007.

[8] G. Gu, P. A. Porras, V. Yegneswaran, M. W. Fong, and W. Lee,
“Bothunter: Detecting malware infection through ids-driven dialog cor-
relation.” in USENIX Security Symposium, vol. 7, 2007, pp. 1–16.

[9] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer: Clustering
analysis of network traffic for protocol-and structure-independent botnet
detection,” 2008.

[10] G. Gu, J. Zhang, and W. Lee, “Botsniffer: Detecting botnet command
and control channels in network traffic,” 2008.

[11] J. Zhang, R. Perdisci, W. Lee, U. Sarfraz, and X. Luo, “Detecting
stealthy p2p botnets using statistical traffic fingerprints,” in Depend-
able Systems & Networks (DSN), 2011 IEEE/IFIP 41st International
Conference on. IEEE, 2011, pp. 121–132.

[12] D. Zhao, I. Traore, B. Sayed, W. Lu, S. Saad, A. Ghorbani, and
D. Garant, “Botnet detection based on traffic behavior analysis and flow
intervals,” Computers & Security, vol. 39, pp. 2–16, 2013.

[13] E. B. Beigi, H. H. Jazi, N. Stakhanova, and A. A. Ghorbani, “Towards
effective feature selection in machine learning-based botnet detection
approaches,” in Communications and Network Security (CNS), 2014
IEEE Conference on. IEEE, 2014, pp. 247–255.

[14] T. Holz, M. Steiner, F. Dahl, E. Biersack, F. C. Freiling et al., “Mea-
surements and mitigation of peer-to-peer-based botnets: A case study on
storm worm.” LEET, vol. 8, no. 1, pp. 1–9, 2008.

[15] B. B. Kang, E. Chan-Tin, C. P. Lee, J. Tyra, H. J. Kang, C. Nunnery,
Z. Wadler, G. Sinclair, N. Hopper, D. Dagon et al., “Towards complete
node enumeration in a peer-to-peer botnet,” in Proceedings of the 4th In-
ternational Symposium on Information, Computer, and Communications
Security. ACM, 2009, pp. 23–34.

[16] S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich, “Analysis of the
storm and nugache trojans: P2p is here,” USENIX; login, vol. 32, no. 6,
pp. 18–27, 2007.

[17] G. K. Venkatesh and R. A. Nadarajan, “Http botnet detection using
adaptive learning rate multilayer feed-forward neural network,” in IFIP
International Workshop on Information Security Theory and Practice.
Springer, 2012, pp. 38–48.

[18] T. Cai and F. Zou, “Detecting http botnet with clustering network
traffic,” in Wireless Communications, Networking and Mobile Computing
(WiCOM), 2012 8th International Conference on. IEEE, 2012, pp. 1–7.

[19] L. Carl et al., “Using machine learning technliques to identify botnet
traffic,” in Local Computer Networks, Proceedings 2006 31st IEEE
Conference on. IEEE, 2006.

[20] S. Garcıa, “Identifying, modeling and detecting botnet behaviors in the
network,” Unpublished doctoral dissertation, Universidad Nacional del
Centro de la Provincia de Buenos Aires, 2014.

[21] [Online]. Available: https://www.tensorflow.org/
[22] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical compar-

ison of botnet detection methods,” computers & security, vol. 45, pp.
100–123, 2014.

[23] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” computers & security, vol. 31, no. 3, pp. 357–374,
2012.

[24] B. Rahbarinia, R. Perdisci, A. Lanzi, and K. Li, “Peerrush: Mining
for unwanted p2p traffic,” in International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer, 2013,
pp. 62–82.

[25] S. W. Shin, P. Porras, V. Yegneswara, M. Fong, G. Gu, and M. Tyson,
“Fresco: Modular composable security services for software-defined
networks,” in 20th Annual Network & Distributed System Security
Symposium. NDSS, 2013.

[26] J. Sonchack, J. M. Smith, A. J. Aviv, and E. Keller, “Enabling practical
software-defined networking security applications with ofx.” in NDSS,
2016.

[27] F. Tegeler, X. Fu, G. Vigna, and C. Kruegel, “Botfinder: Finding bots in
network traffic without deep packet inspection,” in Proceedings of the
8th international conference on Emerging networking experiments and
technologies, 2012.

2019 IEEE Conference on Communications and Network Security (CNS)

150

