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Abstract
Purpose – Modern mathematicians and scientists of math-related disciplines often use Document
Preparation Systems (DPS) to write and Computer Algebra Systems (CAS) to calculate mathematical
expressions. Usually, they translate the expressions manually between DPS and CAS. This process is
time-consuming and error-prone. The purpose of this paper is to automate this translation. This paper uses
Maple and Mathematica as the CAS, and LaTeX as the DPS.
Design/methodology/approach – Bruce Miller at the National Institute of Standards and Technology
(NIST) developed a collection of special LaTeX macros that create links from mathematical symbols to their
definitions in the NIST Digital Library of Mathematical Functions (DLMF). The authors are using these
macros to perform rule-based translations between the formulae in the DLMF and CAS. Moreover, the
authors develop software to ease the creation of new rules and to discover inconsistencies.
Findings – The authors created 396 mappings and translated 58.8 percent of DLMF formulae (2,405
expressions) successfully between Maple and DLMF. For a significant percentage, the special function
definitions in Maple and the DLMF were different. An atomic symbol in one system maps to a composite
expression in the other system. The translator was also successfully used for automatic verification of
mathematical online compendia and CAS. The evaluation techniques discovered two errors in the DLMF and
one defect in Maple.
Originality/value –This paper introduces the first translation tool for special functions between LaTeX and
CAS. The approach improves error-prone manual translations and can be used to verify mathematical online
compendia and CAS.
Keywords Translation, Computer Algebra System (CAS), Document Preparation System (DPS), LaTeX,
Presentation to Computation (P2C), Special functions
Paper type Research paper

1. Introduction
A typical workflow of a scientist who writes a scientific publication is to use Document
Preparation Systems (DPS) to write the paper and one or more Computer Algebra Systems
(CAS) for verification, analysis and visualization. Especially in the Science, Technology,
Engineering and Mathematics literature, LaTeX has become the de facto standard for
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writing scientific publications over the past 30 years (Knuth, 1997, 1998, p. 559; Alex, 2007).
LaTeX enables printing of mathematical formulae in a structure similar to handwritten
style. For example, consider the specific Jacobi polynomial (DLMF, 2019, Table 18.3.1):

P a;bð Þ
n cos aYð Þð Þ; (1)

where n is a nonnegative integer, α, βW−1, and a;YAℝ. This mathematical expression
can be written in LaTeX as:

P_n4 \alpha; \betað Þ� �
\cos a\Thetað Þð Þ:

While LaTeX focuses on displaying mathematics, a CAS concentrates on computations
and user friendly syntax. Especially important for a CAS is to embed unambiguous
semantic information within the input. Each system uses different representations and
syntax, so that a writer needs to continually translate mathematical expressions from
one representation to another and back again. Table I shows four different representations
for Expression (1).

Translations from generic LaTeX to CAS are difficult to realize since the full semantic
information is not easily constructed from the input. Bruce Miller at the National Institute of
Standards and Technology (NIST) has created a set of semantic LaTeX macros (Miller and
Youssef, 2003). Most macros tie specific character sequences to well-defined mathematical
objects and are linked with corresponding definitions in the Digital Library of Mathematical
Functions (DLMF). The Digital Repository of Mathematical Formulae (DRMF) is an
outgrowth of the DLMF with the goal to facilitate interaction among a community of
mathematicians and scientists (Cohl et al., 2014, 2015). The DRMF extends the set of
semantic macros. These macros embed necessary semantic information into LaTeX
expressions. The macros may also contain @ symbols preceding the variables of the
function. The number of @ symbols is used to switch between different notation styles, e.g.,
cos(x) and cos x. One example of such a macro is given in Table I for the semantic LaTeX
representation of the Jacobi polynomial. The macros provide isolated access to important
parts of the mathematical function, such as the arguments.

Even with embedded semantic information, a translation between systems can be
difficult. A typical example of complex problems occurs for multivalued functions
(Davenport, 2010). A CAS usually defines branch cuts to compute principal values of
multivalued functions (England et al., 2014), which makes the implementation of a
theoretically continuous function to a discontinuous presentation of it. In general,
positioning branch cuts follows conventions, but can be positioned arbitrarily in many
cases. Communicating and explaining the decision for defined branch cuts is a
critical issue for CAS and can vary between various systems (Corless et al., 2000).
Figure 1 illustrates two examples of different branch cut positioning for the inverse
trigonometric arccotangent function. While Maple [1] (square brackets refer to notes which

Systems Representations

Generic LaTeX P_n4{(\alpha, \beta)}(\cos(a\Theta))
Semantic LaTeX \JacobiP{\alpha}{\beta}{n}@{\cos@{a\Theta}}
Maple JacobiP (n, alpha, beta, cos (a*Theta))
Mathematica JacobiP [n, \[Alpha], \[Beta], Cos [a \[CapitalTheta]]]

Notes: Generic LaTeX is the default LaTeX expression; semantic LaTeX uses special semantic macros to
embed semantic information; and CAS representations are unique to themselves

Table I.
Different
representations for (1)
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appear at the end of the manuscript, just above the bibliography) defines the branch cut at
[−i∞, −i], [i, i∞] (Figure 1(a)), Mathematica defines the branch cut at [−i, i] (Figure 1(b)).

A CAS user needs to fully understand the properties and special definitions (such as the
position of branch cuts) in the CAS to avoid mistakes during a translation (England et al.,
2014). A manual translation process is not only laborious, but also prone to errors. Note that
this general problem has been named as automatic Presentation To Computation (P2C)
conversion (Youssef, 2017).

This paper presents a new approach for automatic P2C and vice versa conversions.
Translations from presentational to computational (computational to presentational)
systems are called forward (backward) translations. A forward translation is denoted with
an arrow with the target system language above the arrow. For example:

t/
Maple

c;

where t is an expression in the LaTeX language and c is an element of the Maple language
Maple. As we will see later in this paper, we need to compare mathematical concepts between
systems. This is impossible from a mathematical point of view. Consider the transcendental
mathematical constant e, known as Euler’s number. The theoretical construct for this

–3
–2

–1
0

0

1

2

3

1
2

3 2 1 0 –1 –2 –3

(z) (z)

(a
rc

co
t(

z
))

–3
–2

–1
0

0

–1

–0.5

0.5

1.5

1

1
2

3

(a)

(b)

Note: Plotted with Maple 2016

2 1 0 –1 –2 –3

(z)
(z)

(a
rc

co
t(

z
))

Figure 1.
Two plots of the real

part for the
arccotangent function
with a branch cut at

[−i∞, −i], [i, i∞] in (a)
and at [−i, i] in (b),

respectively

417

Semantic
preserving
bijective

mappings



symbol cannot be mathematically equivalent to the value exp(1) in Maple, caused by
computational and implementational limitations.

In order to clarify the notion of equivalence (or lack thereof ) in our context of
translations, we introduce the terms appropriate and inappropriate translations. We
consider a translation to be appropriate, when a numerical evaluation returns the same
values in both concepts up to a numerical precision |ϵ|≪1, for all possible points in specified
domains for the functions. A translation is considered as inappropriate, when it is not
appropriate.

For example, a translation such as:

\cos@ zf g/Maple
cos zð Þ; (2)

is appropriate, while a translation such as:

\cos@ zf g/Maple
sin zð Þ; (3)

is inappropriate. Note that it is not always as easy as in this example to decide if a
translation is appropriate or not. This paper also presents several validation techniques to
automatically verify if a translation is appropriate or inappropriate.

In addition, we also introduce the notion of direct translations. Most mathematical
objects in one system have a direct counterpart in other systems. Later in the paper, we will
explain that a translation from one specific mathematical object to its counterpart in the
other system is not always appropriate. Also, not every mathematical object has a
counterpart in other systems. We call a translation to its counterpart direct. For example, the
translation (2) is direct, while a translation to the definition of the cosine function:

\cos@ zf g/Maple
exp I�zð Þþexp �I�zð Þð Þ=2;

is not a direct translation even though it is appropriate. Note that partial results of this paper
have been published in Cohl et al. (2017).

2. Related work
Since LaTeX became the de facto standard for writing papers in mathematics, most CAS
provide simple functions to import and export mathematical LaTeX expressions [2]. Those tools
have two essential problems. They are only able to import simple mathematical expressions,
where the semantics are unique. For example, the internal LaTeXmacro \frac always indicates
a fraction. For more complex expressions, e.g., the Jacobi polynomial in Table I, the import
functions fail. The second problem appears in the export tools. Mathematical expressions in
CAS are fully semantic. Otherwise the CAS would not be able to compute or evaluate the
expressions. During the export process, the semantic information is lost, because generic LaTeX
is not able to carry sufficient semantic information. Because of these problems, an exported
expression cannot be imported to the same system again in most cases (except for simple
expressions such as those described above). Our tool attempts to solve these problems and
provide round trip translations between LaTeX and CAS.

The semantics must be well-known before an expression can be translated. There are
two main approaches to solve that problem: first, someone could specify the semantic
information during the writing process (pre-defined semantics); and second, the translator
can determine the correct semantic information in general mathematical expressions before
it translates the expression. So-called interactive documents [3], such as the Computable
Document Format (CDF) [4] by Wolfram Research, or worksheets by Maple, try to solve this
problem with the second approach and allow one to embed semantic information into

418

AJIM
71,3



the input. Those complex document formats require specialized tools to show and work with
the documents (Wolfram CDF Player, or Maple for the worksheets). The JOBAD
architecture (Giceva et al., 2009) is able to create web-based interactive documents and uses
Open Mathematical Documents (OMDoc) (Kohlhase, 2006) to carry semantics. The
documents can be viewed and edited in the browser. Those JOBAD documents also allow
one to perform computations via CAS. This gives one the opportunity to calculate, compute
and change mathematical expressions directly in the document. The translation performs in
the background, invisible to the user. Similar to the JOBAD architecture, other interactive
web documents exist, such as MathDox (Cuypers et al., 2008) and The Planetary System
(Kohlhase et al., 2011).

Another approach tries to avoid translation problems by allowing computations directly via
the LaTeX compiler, e.g., LaTeXCalc (Churchill and Boyd, 2010). Those packages are limited to
the abilities of the compiler and therefore are not as powerful as CAS. A work around for this
case is sagetex (Drake, 2009), which is a LaTeX package interface for the open source CAS
sage [5]. This package allows sage commands in TeX-files and uses sage in the background to
compute the commands. In this scenario, a writer still needs to manually translate expressions to
the syntax of sage, but it is possible to integrate CAS expressions directly into TeX documents.

There exist two approaches for marking up mathematical TeX/LaTeX documents
semantically with TeX macros. Namely, sTeX (Kohlhase, 2008) developed by Kohlhase and
the DLMF/DRMF LaTeX macros developed by Miller (Miller and Youssef, 2003). This paper
shows that it is possible to develop a context-free translation tool using the semantic macros
introduced by Miller. The goal of sTeX is to markup the functional structure of
mathematical documents so that they can be exported to the OMDoc format. The macro
functionality developed by Miller introduces new macros for special functions, orthogonal
polynomials and mathematical constants. Each of these macros ties specific character
sequences to a well-defined mathematical object and is linked with the corresponding
definition in the DLMF or DRMF. We call these semantic macros DLMF/DRMF LaTeX
macros. These semantic macros are internally used in the DLMF and the DRMF. We gave
the DLMF/DRMF LaTeX macro set the preference for developing the translation engine
because it provides DLMF definitions for a comprehensive number of functions. In contrast,
sTeX does not focus on the semantics of functions, is often complex to use, and defines
diverse macros for symbols and concepts that CAS usually does not support.

Miller also developed LaTeXML, a tool for converting LaTeX expressions to MathML
(Miller, 2004). LaTeXML is used to generate the DLMF and is able to parse the DLMF/
DRMF LaTeX macros to generate content MathML. Even though many CAS are able to
import and export MathML, they fail for special functions. Schubotz and collaborators
recently performed benchmarks on several LaTeX to MathML conversion tools, including
LaTeXML, in Schubotz et al. (2018).

3. Translation problems
There are several potential problems for performing translations between systems that embed
semantic information in the input. These problems vary from simple cases, e.g., a function is
not defined in the system, to complex cases, e.g., different positioning of branch cuts for
multivalued functions. This section will discuss some problems and our workarounds.

3.1 Different sets of defined functions
If a function is defined in one system but not in the other, sometimes we can easily translate
the definition of the mathematical function. For example, the Gudermannian (DLMF
(4.23.10)) gd(x) function is defined by:

gd xð Þ :¼ arctan sinh xð Þ; xAℝ; (4)

419

Semantic
preserving
bijective

mappings



and linked to the semantic macro \Gudermannian in the DLMF but does not exist in Maple.
We can perform a translation for the definition (4) instead of the macro itself:

\Gudermannian xf g/Maple
arctan sinh xð Þð Þ: (5)

Since translations such as these are non-intuitive, describing explanations become necessary
for the translation process. A particular logging function stores each translation and provides
details after a successful translation process. Section 5 explains this task further.

Providing detailed information also solves the problem for multiple alternative
translations. In some cases, a semantic macro has two alternative representations in the
CAS or vice versa. In such cases, the translator picks one of the alternatives and informs
the user about the decision.

3.2 Positions of branch cuts
In case of differences between defined branch cuts, we can also use alternative translations
to solve the problems. Consider the mentioned case of the arccotangent function (Corless
et al., 2000) that has different positioned branch cuts in Maple as compared to the DLMF or
Mathematica definitions. As suggested by Corless et al. (2000), we can translate an
alternative definition of the arccotangent function to avoid the branch cut issues.
Considering Corless et al. (2000), (23) and (25), we can define three translations:

\acot@ zf g/Maple
arccot zð Þ; (6)

/
Maple

arctan 1=z
� �

; (7)

/
Maple

I=2�ln z�Ið Þ= zþIð Þ� �
: (8)

The position of the branch cut of the arccotangent function differs after the direct
translation (6), which may lead to incorrect calculations later on. The alternative translations
(7) and (8) use other functions instead of the arccotangent function. The arctangent function
(7) and the natural logarithm (8) have the same positioned branch cuts as in the DLMF and
in Maple. Translation (7) solves this issue as long as the user does not evaluate the function
at z¼ 0, while translation (8) solves the issue except at z¼−i. Note that none of the
translations ((6)–(8)) are appropriate.

3.3 Insufficient semantic information
Other problematic cases for translations are the DLMF/DRMF LaTeX macros themselves.
In some cases, they do not provide sufficient semantic information to perform translations.
One example is the Wronskian determinant. For two differentiable functions w1, w2, the
Wronskian is defined as (DLMF (1.13.4)):

W w1 zð Þ;w2 zð Þ� � ¼ w1 zð Þw0
2 zð Þ�w2 zð Þw0

1 zð Þ:
In semantic LaTeX, it is currently implemented using:

\Wronskian@ w_1 zð Þ;w_2 zð Þ� �
: (9)

This translation is unfeasible because the macro does not explicitly define the variable
of differentiation for the functions w1, w2. For a correct translation, the CAS needs to be
aware of the variable of differentiation z. We solved this issue by creating a new macro
\Wron, e.g.:

\Wron zf g@ w_1 zð Þ� �
w_2 zð Þ� �

: (10)
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This example demonstrates that the DLMF/DRMF LaTeX macros are still a work in
progress and further updates are sometimes necessary in order to further encapsulate
critical semantic information.

3.4 Potentially ambiguous expressions
Since the DLMF/DRMF LaTeX macros aims to cover an extensive set of special
functions, orthogonal polynomials and mathematical constants, they do not contain specific
macros for other mathematical objects. However, also mathematical expression without
functions, polynomials and mathematical constants can be ambiguous. As an example,
multiplications are rarely explicitly marked in LaTeX expressions, e.g., scientists using
whitespace to indicate multiplications rather than using \cdot or similar symbols. But
whitespaces can also be used to improve the readability and not to represent a multiplication.

For such problems, we introduced a new macro \idot for an invisible multiplication
symbol (this macro will not be rendered). Since this macro is newly introduced by contributors
of the DRMF team, and automatic conversion of existing equations is difficult, none of the
equations in the DLMF use this macro. The translator has some simple rules for performing
translations without explicitly marking multiplication translations with \idot.

The DLMF/DRMF LaTeX macros do not guarantee entirely disambiguated expressions.
In Table II there are four examples of potentially ambiguous expressions. These expressions
are unambiguous for the LaTeX compiler since it only considers the very next token for
superscripts and subscripts. Our translator follows the same rules to solve these issues.

Another more questionable translation decision addresses alphanumerical expressions.
As explained in Table VI, the Part-of-Math (PoM)-tagger handles strings of letters and
numbers differently depending on the order of the symbols. The reason is that an
expression such as “4b” is usually considered to be a multiplication of 4 and “b”, while “b4”
gives the impression that 4 indexing “b”. While the first example produces two nodes,
namely 4 and “b”, the second example “b4” produces just a single alphanumerical node in
the PoM-Parsed Tree (PPT). The translator interprets alphanumerical expressions as
multiplications for two reasons: we would assume that the inputs “4b” and “b4” are
mathematically equivalent; and it is more common in mathematics to use single letter names
for variables (Cajori, 1994). We have used rules as follows:

4b/
Maple

4�b;

b4/
Maple

b�4;

energy/
Maple

e�n�e�r�g�y:
In general, the translator is designed to find a work around for disambiguating expressions.
If there is no way to solve a potential ambiguity with defined rules, then we stop the
translation process.

Potentially ambiguous input LaTeX output

n4m! nm!
a4bc4d abcd

x4y4z Double superscript error
x_y_z Double subscript error

Table II.
Potentially ambiguous

LaTeX expressions
and how LaTeX
displays them
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4. The translator
The translator analyzes a parse tree to perform translations. For generating a parse tree of
LaTeX expressions, the translator uses the PoM-Tagger (Youssef, 2017) [6]. CAS define their
own syntax parser. We were able to use Maple’s internal data structure to obtain a parse tree
of the input. Sections 5 and 6 will explain the parsing and translation process in detail.

All translations are defined by a library (Comma-Separated Values and JavaScript Object
Notation ( JSON) files) that define translation patterns for each function and symbol. The
pattern uses $i as a placeholder to determine the positions of the arguments. For example,
the translation patterns for the Jacobi polynomial are illustrated in Table III.

The DLMF/DRMF LaTeX macros also allow one to specify optional arguments to
distinguish between standard and another version of these functions. The Legendre and
associated Legendre functions of the first kind are examples of such cases. The library that
defines translations for each macro uses the macro name as the primary key to identify the
translations. The Legendre and associated Legendre function of the first kind both use the
same macro \LegendreP. To distinguish such cases, we use a special syntax, shown in
Table IV.

4.1 Escape the placeholder symbol
The used placeholders cause trouble when the CAS uses the symbol $ for other reasons, e.g.,
differentiation in Maple is implemented as:

diff f; x$n
� �� �

;

where f is an algebraic expression or an equation, x is the name of the differentiation
variable and n is an integer representing the n-th order differentiation [7]. A translation for
(d2x2)/(dx2) should be displayed as:

\deriv 2½ � x^2f g xf g/Maple
diffðx^2; ½x$2�Þ;

but would end up as:

\deriv 2½ � x^2f g xf g/Maple
diff x^2; xx½ �ð Þ:

We can solve this issue by using parentheses in such cases, e.g., diff($1,
[$2$($0)]).

Forward Translation
Maple JacobiP ($2, $0, $1, $3)
Mathematica JacobiP [$2, $0, $1, $3]

Backward Translation from Maple/Mathematica
Semantic LaTeX \JacobiP {$1}{$2}{$0}@{$3}

Notes: The pattern for the backward translation is the same for Maple and Mathematica

Table III.
Forward and
backward translation
patterns for the Jacobi
polynomial example
(1) in this manuscript

Semantic macro entry Maple entry

\LegendreP {\nu}@{x} LegendreP ($0, $1)

X1:\LegendrePX\LegendreP[\mu]{\nu}@{x} LegendreP ($1, $0, $2)

Notes: The prefix notation XodW:onameWX defines the translation for onameW with odW -number of
optional arguments

Table IV.
Example entries of the
Legendre and
associated Legendre
function in the
translation library
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5. Forward translations
As a pre-processing step, we use the PoM-Tagger (Youssef, 2017) [8] for parsing semantic LaTeX
expressions. The PoM-Tagger is defined by a context-free grammar in Backus-Naur Form (BNF)
and is an LL-Parser, i.e., it parses the input from Left to right and assigns the Leftmost
(first applicable) derivation rule defined by the grammar to an expression. In other words, the
PoM-Tagger scans the input for terms and groups them into sub expressions if suitable, where
terms are non-terminal symbols in the context of BNF. A node in the generated parse tree will be
tagged by meta information if the node matches defined symbols. The meta information is
stored in lexicon files. Those lexicon files were manually cultivated for the PoM-Tagger.

We integrated the defined translation patterns from our library also into these lexicon
files. The tagger also tags a node in the parse tree by its translation patterns Table V gives
an example of an entry of the lexicon file.

The parsed tree generated by the PoM-Tagger is not a mathematical expression tree.
The PoM project aims to disambiguate mathematical LaTeX expressions and generates an
expression tree. In the current state, however, many expressions still cannot be
disambiguated. The PoM-tagger generates a raw parsed tree where each token in the LaTeX
expression is a node in the tree. We call this parsed tree the PPT.

The overall forward translation process is explained in Figure 2. All translation patterns
and related information are stored in the DLMF/DRMF tables. These tables are converted
by the lexicon-creator to the DLMF-macros-lexicon lexicon file. Together with the
global-lexicon file, the PPT will be created by the PoM-tagger. The latex-converter
takes a string representation of a semantic LaTeX expression and uses the PoM engine as
well as our Translator to create a proper string representation for a specified CAS.

5.1 Analyzing the PoM-parsed tree
Since the BNF does not define rules for semantic macros, each argument of the semantic
macro and each @ symbol are following siblings of the semantic macro node. That is the
reason why we stored the number of parameters, variables and @ symbols in the lexicon
files. Otherwise, the translator could not find the end of a semantic macro in the PPT.

Figure 3 visualizes the PPT of the Jacobi polynomial example from Table I. Because of
the differences between expression trees and PPT, it can be difficult to generate a string
representation after a successful translation process. It is especially difficult to determine
necessary and unnecessary parentheses when we analyze the PPT. We create the Translated
Expression Object (TEO) which is a list containing already translated sub expressions.

Table V.
The entry of the

trigonometric sine
function in

the lexicon file
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With these tools, we can translate a LaTeX expression by translating the PPT node by node
and perform group or reordering operations for some special cases. The algorithm is realized
in a simple recursive structure. Whenever the algorithm finds a leaf, it can translate this
single term. If the node is not a leaf, it starts to translate all children of the node recursively.

global-lexicon.txt

lexicon-
creator.jar

DLMF-macros-lexicon.txt

DLMF/DRMF TABLE

POM Syntax Tree

\JacobiP{\alpha}{\beta}{n}@{\cos@{a\Theta}}
Semantic LaTeX

JacobiP[n, \[Alpha], \[Beta], Cos[a˽\[CapitalTheta]]]
Mathematica

JacobiP(n, alpha, beta, cos(a˽Theta))
Maple

Function Class Function Name DRMF Macro Maple Function Mathematica Function Mathematica-Link
Trigonometric Functions Sine \sin@@{z} sin(z) Sin[$0] https://reference.wolfram.com/language/ref/Sin.html

Cosine \cos@@{z} cos(z) Cos[$0] https://reference.wolfram.com/language/ref/Cos.html
Tangent \tan@@{z} tan(z) Tan[$0] https://reference.wolfram.com/language/ref/Tan.html
Secant \sec@@{z} sec(z) Sec[$0] https://reference.wolfram.com/language/ref/Sec.html
Cosecant \csc@@{z} csc(z) Csc[$0] https://reference.wolfram.com/language/ref/Csc.html
Cotangent \cot@@{z} cot(z) Cot[$0] https://reference.wolfram.com/language/ref/Cot.html

Hyperbolic Functions Hyperbolic sine \sinh@@{z} sinh(z) Sin[$0] https://reference.wolfram.com/language/ref/Sinh.html
Hyperbolic cosine \cosh@@{z} cosh(z) Cos[$0] https://reference.wolfram.com/language/ref/Cosh.html
Hyperbolic tangent \tanh@@{z} tanh(z) Tan[$0] https://reference.wolfram.com/language/ref/Tanh.html
Hyperbolic secant \sech@@{z} sech(z) Sec[$0] https://reference.wolfram.com/language/ref/Sech.html
Hyperbolic cosecant \csch@@{z} csch(z) Csc[$0] https://reference.wolfram.com/language/ref/Csch.html
Hyperbolic cotangent \coth@@{z} coth(z) Cot[$0] https://reference.wolfram.com/language/ref/Coth.html

Inverse Trigonometric
Functions Inverse sine \asin@@{z} arcsin(z) ArcSin[$0] https://reference.wolfram.com/language/ref/ArcSin.html

Inverse cosine \acos@@{z} arccos(z) ArcCos[$0] https://reference.wolfram.com/language/ref/ArcCos.html
Inverse tangent \atan@@{z} arctan(z) ArcTan[$0] https://reference.wolfram.com/language/ref/ArcTan.html
Inverse secant \asec@@{z} arcsec(z) ArcSec[$0] https://reference.wolfram.com/language/ref/ArcSec.html
Inverse cosecant \acsc@@{z} arccsc(z) ArcCsc[$0] https://reference.wolfram.com/language/ref/ArcCsc.html
Inverse cotangent \acot@@{z} arccot(z) ArcCot[$0] https://reference.wolfram.com/language/ref/ArcCot.html

arctan(1/z)
I/2 * ln( (z-I)/(z+I) )

Inverse Hyperbolic
Trigonometric Functions Inverse hyperbolic sine \asinh@@{z} arcsinh(z) ArcSinh[$0] https://reference.wolfram.com/language/ref/ArcSinh.html

Inverse hyperbolic cosine \acosh@@{z} arccosh(z) ArcCosh[$0] https://reference.wolfram.com/language/ref/ArcCosh.html
Inverse hyperbolic tangent \atanh@@{z} arctanh(z) ArcTanh[$0] https://reference.wolfram.com/language/ref/ArcTanh.html
Inverse hyperbolic secant \asech@@{z} arcsech(z) ArcSech[$0] https://reference.wolfram.com/language/ref/ArcSech.html
Inverse hyperbolic cosecant \acsch@@{z} arccsch(z) ArcCsch[$0] https://reference.wolfram.com/language/ref/ArcCsch.html
Inverse hyperbolic cotangent \acoth@@{z} arccoth(z) ArcCoth[$0] https://reference.wolfram.com/language/ref/ArcCoth.html

POM

Translator

latex-translator.jar

• special-numbers-lexicon.txt
• special-functions-lexicon.txt
• ...

Notes: The PoM-tagger generates the PPT based on lexicon and JSON files. The PPT will be
translated to different CAS

Figure 2.
Process diagram
of a forward
translation process

\JacobiP{\alpha}{\beta}{n}@{\cos@{a \Theta}}

Sequence

\JacobiP
DLMF-Macro
Maple: Jacobi($2, $0, $1, $3)
Meaning: Jacobi polynomial
DLMF-Link: dlmf.nist.gov/
18.3#T1.t1.r2
...

\alpha

LaTeX-Command
Alphabet: Greek
Meanings: Second 
Feigenbaum 
constant OR ... 

\beta
LaTeX-Command
Alphabet: Greek
Meanings: ...

n
Letter
Alphabet: Latin
...

@
At
Tex-equivalent:
\mathatsign

Sequence

\cos
DLMF-Macro
Maple: cos($0)
Meaning: Cosine 
function
...

@
At
Tex-equivalent:
\mathatsign

Sequence

a
Letter
Alphabet: Latin
...

\Theta
LaTeX-Command
Alphabet: Greek
...

Figure 3.
The PPT for the
Jacobi polynomial
example (1) using the
DLMF/DRMF LaTeX
macro. Each leaf
contains information
from the lexicon files
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This idea appears to be a practical and elegant solution, but it has a significant drawback. It
cannot be used to translate functions. Since the arguments of functions are following siblings
in the PPT, the algorithm needs to look ahead when a leaf is a known function, e.g., in the case
of a semantic macro with arguments (see Figure 3). Algorithm 1 is an improved version with
lookahead functionality:

If the root r is a leaf, it still can be translated as a leaf. Eventually, some of the following
siblings are needed to translate r. The list of following_siblings in Line 3 might be reduced to
avoid multiple translations for one node. If r is not a leaf, it contains one or more children.
We can call the ABSTRACT_TRANSLATOR recursively for the children. Once we have
translated r, we can go a step further and translate the next node. Line 8 checks if there are
following siblings left and calls the ABSTRACT_TRANSLATOR recursively in such cases.
Translated expressions are stored by the TEO object. Algorithm 1 is a simplified version of
the translator process. The Lines 3 and 6 process the translations for each node. Table VI
gives an overview of all the different node types the root r can be. A more detailed
explanation of the types can be found in Youssef (2017).

The BNF grammar defines some basic grammatical rules for generic LaTeX macros,
such as for \frac, \sqrt. There is a hierarchical structure for those symbols similar to the
structure in expression trees. As already mentioned, some of these types can be translated
directly, such as Greek letters, while others are more complex, such as
semantic LaTeX macros. The translator delegates the translation to specialized
sub-translators. This delegation process is implemented in Lines 3 and 6 of Algorithm 1.
Subsection 5.3 discusses these classes in more detail.

5.2 Problems with the lookahead approach
The lookahead functionality appears to solve the problems for functions. However, there is a
problem with the lookahead functionality that Section 3 did not address. In some cases, the
arguments of a function do not follow but precede the function node.

If we intently examine mathematical notations, we discover many different types of
notations used to represent formulae. Table VII illustrates the expression (a+b)x in different
notations. The Normal Polish Notation [9] (hereafter called prefix notation) places the
operator to the left of/before its operands. The Reverse Polish Notation [10] (hereafter called
postfix notation) does the opposite and places the operator to the right of/after
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its operands. The infix notation is commonly used in arithmetic and places the operator
between its operands. This only makes sense if the operator is a binary operator.

In mathematical expressions, notations are mostly mixed, depending on the case and
number of operands. For example, infix notation is common for binary operators (+, −, ·,
mod, etc.), while functional notations are conveniently used for any kind of functions (sin,
cos, etc.), and the postfix notation is often common for unary operators (2!, −2, etc.).
Sometimes the same symbol is used in different notations to distinguish different meanings.
For example, the “−” as a unary operator is used in prefix notation to indicate the negative
value of its operand, such as in “−2”. Of course, “−” can also be the binary operator for
subtraction, which is commonly used in infix notation.

Since it is more convenient to parse expressions using uniform notations, most
programming languages (and CAS as well) internally use prefix or postfix notation and do
not mix the notations in one expression. The common practice in science is to use mixed
notations in expressions. Since the PoM has rarely implemented mathematical grammatical
rules, it takes the input as it is and does not build an expression tree. It parses all four

Notation Expression

Infix (a+ b) · x
Prefix · + a b x
Postfix a b+ x ·
Functional ·(+ (a, b), x)

Table VII.
The mathematical
expression “(a+b) · x”
in infix, prefix, postfix
and functional
notation

Node type Explanation Example

r has
children

Sequence Contains a list of expressions a+b is a sequence with three children
(a, + and b)

Balanced
expression

Similar to a sequence. But in this case
the sequence is wrapped by \left
and \right delimiters. Note that
normal parentheses do not create
balanced expressions

\left(a+b \right) is a balanced
expression with three children
(a, + and b)

Fraction All kinds of fractions, such as\frac,
\ifrac, etc.

\ifrac{a}{b} is a fraction with two
children (a and b)

Binomial Binomials \binom{a}{b} has two children
(a and b)

Square root The square root with one child \sqrt{a} has one child (a)
Radical with a
specified index

nth root with two children \sqrt[a]{b} has two children
(a and b)

Underscore The underscore “_” for subscripts The sequence a_b has two children
(a and “_”). The underscore itself “_” has
one child (b)

Caret The caret “^” for superscripts or
exponents. Similar to the underscore

The sequence a^b has two children (a and
“^”). The caret itself “^” has one child (b)

r is a
leaf

DLMF/DRMF
LaTeX macro

A semantic LaTeX macro \JacobiP, etc.

Generic LaTeX
macro

All kinds of LaTeX macros \Rightarrow,\alpha, etc.

Alphanumerical
expressions

Letters, numbers and general strings Depends on the order of symbols. ab3 is
alphanumerical, while 4b are two nodes
(4 and b)

Symbols All kind of symbols “@”, “*”, “+”, “!”, etc.
Note: Note that this table groups some types together for a better overview
Source: For a complete list and a more detailed version see Youssef (2017)

Table VI.
A table of all kinds of
nodes in a PoM
syntax tree
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examples from Table VII to four different PPTs rather than to one unique expression tree. In
general, this is not a problem for our translation process since most CAS are familiar with
most common notations. The translator does not need to know that a and b are the operands
of the binary operator “+” in a + b. The translator could simply translate the symbols in a +
b in the same order as they appear in the expression and the CAS would understand it.
However, there are two new problems with this approach:

(1) The translated expression is only syntactically correct if the input expression was
syntactically correct.

(2) We cannot translate expressions to CAS which use non-standard notations.

Problem 1 should be obvious. Since we want to develop a translation tool and not a
verification tool for mathematical LaTeX expressions, we can assume syntactically correct
input expressions and produce errors otherwise. Problem 2 is more complex. If a user wants
to support a CAS that uses prefix or postfix notation by default, the translator would fail in
its current state. Supporting CAS with another notation would be a part of future work.

Nonetheless, adopting different notations, in some situations, could also solve
potential ambiguities. Consider the two potentially ambiguous examples in Table VIII.
While a scientist would probably just ask for the right interpretation of the first example,
Maple automatically computes the first interpretation. On the other hand, LaTeX
automatically disambiguates the first example by only recognizing the very next element
(single symbols or sequences in curly brackets) for the superscript and therefore displays
the second interpretation. The second example should not be misinterpreted since this
notation is the standard interpretation in science for the double factorial. We wrote the
second interpretation with parentheses for pointing out that we mean the double factorial in
this case. However, surprisingly, Maple computes the first interpretation (the factorial of the
factorial of n) again rather than the common standard interpretation.

In most cases, parentheses can be used to disambiguate expressions. We used them in
Table VIII to clarify the different interpretations in Example 2. Note that the use of
parentheses will not always resolve a mistaken computation. For example, there is no way
to add parentheses to force Maple to compute “n!!” as the double factorial function. Even
“(n)!!” will be interpreted as “(n!)!”. Rather than using the exclamation mark in Maple, one
could also use the functional notation. For example, the interpretations “(2!)!” and “(2)!!” can
be distinguished in Maple by using factorial( factorial(2)) and doublefactorial(2),
respectively. We define the translations as follows:

n!/
Maple

factorial nð Þ;

n!!/
Maple

doublefactorial nð Þ:
Algorithm 1 does not allow this translation right now. It has no access to previously
translated nodes in its current state. This problem is solved by the TEO that stores and
groups translated objects as lists. This allows one to access the latest translated expression
and use it as the argument for the factorial function. Table IX shows three examples for the
TEO list that groups some tokens.

Text format expression First interpretation Second interpretation

1: 4^2! 42! 42!
2: n!! (n!)! (n)!!
Note: One expression in a text format can potentially be interpreted in different ways

Table VIII.
Potentially ambiguous

examples using the
factorial and double

factorial symbols
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5.3 Sub-translators
The SequenceTranslator translates the sequence and balanced expressions in the PPT.
If a node n is a leaf and the represented symbol is an open bracket (parentheses, square
brackets and so on), the following nodes are also taken as a sequence. Combined with the
recursive translation approach, the SequenceTranslator also checks balancing of
parentheses in expressions. An expression such as “(a]” produces a mismatched
parentheses error. On the other hand, this is a problem for real interval expressions such as
“[a,b)”. In the current version, the program cannot distinguish between mismatched
parentheses and half-opened, half-closed intervals. Whether an expression is an interval or
another expression is difficult to decide and can depend on the context. Also, the
parentheses checker could simply be deactivated to allow mismatched parentheses in an
expression. Another option is to use interval macros, e.g., \intcc@{a}{b}¼ [a,b].

The SequenceTranslator also handles positions of multiplication symbols. There are a
couple of obvious choices to translate multiplication. The most common symbol for
multiplications is still the white space (or no space between the tokens), as explained
previously. Consider the simple expression “2nπ”. The PPT generates a sequence node with
three children, namely, 2, n and π. This sequence should be interpreted as a multiplication of
the three elements. The SequenceTranslator checks the types of the current and next nodes
in the tree to decide if it should add a multiplication symbol or not. For example, if the
current or next node is an operator, a relation symbol or an ellipsis, there will be no
multiplication symbol added. However, this approach implies an important property.
The translator interprets all sequences of nodes as multiplications as long as it is not defined
otherwise. This potentially produces strange effects. Consider an expression such as “f(x)”.
Translating this to Maple will give f*(x). But we do not consider this translation
to be wrong, because there is a semantic macro to represent functions. In this case,
the user should use \f{f}@{x} instead of f(x) to distinguish between f as a function call
and f as a symbol.

The translation process for the DLMF/DRMF LaTeX macros is complex, so there is a
special class, the MacroTranslator, that handles those nodes in the PPT. Algorithm 2
explains the MacroTranslator without error handling. It has extracted necessary
information from the PPT, such as how many arguments this function has, in Line 2. It
also processes the following siblings to translate the arguments. The MacroTranslator
will be called in Line 3 in Algorithm 1, since the macro is a leaf node in the PPT. The
following cases describe the different kinds of the following siblings after a semantic
macro node. Those can be:

• an exponent, such as for “42” right after the macro node (Line 5);

• an optional parameter in square brackets right after the macro node or after an
exponent (Line 9);

• a parameter in curly brackets (a sequence node in the PPT) if none of the above and
no “@” symbols were passed (Line 14);

• “@” symbols (Line 15); and

• a variable in curly brackets (a sequence node) after the “@” symbols were passed (Line 16).

Input Expression TEO List

a+b [a,+,b]
(a+b) [(a+b)]
(a/b)−2 [(a)/(b), −, 2]

Table IX.
How the TEO list
groups
subexpressions
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All cases before the “@” symbols are optional. The MacroTranslator removes all
following siblings according to the number of expected parameters and variables.
Parameter and variable nodes are translated separately. If an exponent was registered
right after the semantic macro node, it will be shifted to the end in Line 19. The macro
itself will be translated by putting all translated parameters and variables into the
translation pattern (Line 18).

Following siblings after the macro was translated (with all arguments) do not belong
to the semantic macro. If the next node is an exponent, the translated macro is the base.
Table X shows an example for the translation of the trigonometric cosine function with
multiple exponents.

Semantic LaTeX Maple

Text Representation \cos4n@{x}4m /
Maple ((cos(x))4(n))4 m

Displayed As cosn(x)m (cos(x)n)m

Table X.
A trigonometric cosine
function example with
exponents before and

after the argument
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6. Maple to semantic LaTeX translator
In this section, we will discuss several techniques to access the parse tree of Maple’s
input. The translation process from this parse tree then follows the same principle
as for the forward translations. Instead of writing a custom Maple syntax parser, we use
Maple’s internal data structure to obtain the syntax tree of the input [11]. Maple allows
several different input styles. The 1D input is mainly used for programming purposes and is
also used to perform our translations. Internally, Maple uses a Directed Acyclic Graph
(DAG) for syntax trees.

Each node in the DAG stores its children and has a header which defines the type and the
length of the node. Consider the polynomial x2+x. Figure 4 illustrates the internal DAG
representation with headers and arguments.

One can access the internal data structure of expressions via the ToInert command,
which returns the InertForm. The InertForm format is a nested list [12] of the internal DAG
for the given expression. Some of the important types for the nodes are specified in Table XI.
The translator uses the OpenMaple (Bernardin et al., 2016, §14.3) Application Programming
Interface for interacting with Maple’s kernel implementation.

6.1 Automatic changes of inputs in Maple
Maple evaluates inputs automatically and changes the input into an internal representation.
This internal representation may differ to the input. One example has already been given
with Figure 4, where each summand of a sum is stored with a factor. Here is a list of all
internal changes that occur for inputs:

• Maple evaluates input expressions immediately.

• There is no data type to represent square roots such as
ffiffiffi
x

p
(or n-th roots). Maple stores

roots as an exponentiation with a fractional exponent. For example,
ffiffiffi
x

p
is stored as x1/2.

SUM INTPOS 1

POWER INTPOS 2

NAME x

Figure 4.
The internal
Maple DAG
representation
of x2 + x

Type Explanation

SUM Sums. Internally stored with factors for each summand, i.e., “x+y” would be stored as “x·1+y·1”
PROD Products
EXPSEQ Expression sequence is a kind of list. The arguments of functions are stored in such sequences
INTPOS Positive integers
INTNEG Negative integers
COMPLEX Complex numbers with real and imaginary part
FLOAT Float numbers are stored in the scientific notation with integer values for the exponent n and

the significant m in m·10n

RATIONAL Rational numbers are fractions stored in integer values for the numerator and positive integers
for the denominator

POWER Exponentiation with expressions as base and exponent
FUNCTION Function invocation with the name, arguments and attributes of the function
Source: See Bernardin et al. (2016) for a complete list

Table XI.
A subset of important
internal Maple
data types
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• There is no data type for subtractions, only for sums. Negative terms are changed to
absolute values times “−1”. For example, x−y is stored as x+y·(−1).

• Floating point numbers are stored using scientific notation with a mantissa and an
exponent in the base 10. For example, 3.1 is internally represented as 31 · 10−1.

• There is only a data type for rational numbers (fractions with an integer numerator
and a positive integer denominator), but not for general fractions, such as (x + y)/(z).
This will be automatically changed to (x+y)·z−1.

There are unevaluation quotes implemented to avoid evaluations on input expressions.
Table XII gives an example how unevaluation quotes work.

Since we want to keep a translated expression similar to the input expression, we
implemented some cosmetic rules for backward translations which solve or reduce the
effects due to the list of changes above:

• We use unevaluation quotes to suppress evaluations of the input.

• We perform a reordering of factors and summands so that negative factors appear in
front of the summand. This gives us the opportunity to translate x−y to x−y instead
of x+y·(−1).

• We introduced new internal data types MYFLOAT and DIVIDE to translate floats and
fractions in more convenient notations.

The translation process then follows the same principle as for the forward translations.
Since the syntax tree of Maple is an expression tree, we do not need to implement special
reordering or grouping algorithms to perform backward translations. Translations for
functions are also realized via patterns and placeholders. Figure 5 illustrates the backward
translation process for the Jacobi polynomial example from Table I.

7. Evaluation
We implemented three approaches to evaluate whether a translation was appropriate or
inappropriate:

(1) Round trip tests: translates expressions back and forth and analyzes the changes.

(2) Function relation tests (symbolical): translates mathematically proven equivalent
expressions from one system to a CAS and evaluates whether the relation remains
valid via symbolical equivalence checks.

(3) Numerical tests: takes the same equations from Approach 2 but evaluates them on
specific numerical values to test whether the translation was appropriate.

7.1 Round trip tests
A round trip test always starts with a valid expression either in semantic LaTeX or in
Maple. A translation from one system to another is called a step. A complete round trip
translation (two steps) is called one cycle. A fixed point representation (or short fixed point)
in a round trip translation process is a string representation that is identical to all string

Without unevaluation quotes With unevaluation quotes

Input expression: sin(Pi)+2−1 sin(Pi)+2−1
Stored expression: 1 sin(Pi)+1

Table XII.
Example of

unevaluation quotes
for 1D Maple input

expressions
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representations in the following cycles. Table XIII illustrates an example of a round trip test
which reaches a fixed point for the mathematical expression:

cos aYð Þ
2

: (11)

Step 4 is identical to step 2, and since the translator is a deterministic algorithm, it can be easily
shown that steps 2 and 3 are fixed point representations for semantic LaTeX and Maple.

There is currently only one exception known where a round trip test does not reach a
fixed point representation: Legendre’s incomplete elliptic integrals (DLMF (19.2.4-7)) are
defined with the amplitude ϕ in the first argument in the DLMF, while Maple takes the
trigonometric sine of the amplitude as the first argument. The forward and backward
translations are defined as:

\EllIntF@ \phi
� �

kf g /
Maple

EllipticF sin phið Þ;kð Þ; (12)

\EllIntF@\asin@ \phi
� �

kf g /
Maple

EllipticF phi;kð Þ; (13)

Translation Process

MAPLE

O
penM

aple A
P

I

Maple expression as string

JacobiP(n, alpha, beta, cos(a*Theta))

[JacobiP, n, alpha, beta, [cos, [product, [a, Theta]]]]

\betan \alpha

\JacobiP{\alpha}{\beta}{n}@{\cos@{a\Theta}}

JacobiP n alpha beta [cos, [product, [a, Theta]]]

cos [product, [a, Theta]]

product [a, Theta]

a\Theta

N
ested List

M
yInertF

orm

Maple Object

InertForm

\JacobiP{ \alpha \beta n }

}

}@{ \cos@{a\Theta}

\cos@{ a\Theta

}{ }{

Notes: The input string is converted by the Maple kernel into the nested list representation.
This list is translated by subtranslators (blue and red arrows). A function translation (bold blue
arrows) is again realized using translation patterns to define the position of the arguments
(red arrows)

Figure 5.
A scheme of the
backward translation
process from Maple
for the Jacobi
polynomial expression
P a;bð Þ
n cos aYð Þð Þ

Steps semantic LaTeX/ Maple representations

0 \frac{\cos@{a\Theta}}{2}
1 (cos(a*Theta))/(2)
2 \frac{1}{2}\idot\cos@{a\idot\Theta}
3 (1)/(2)*cos(a*Theta)
4 \frac{1}{2}\idot\cos@{a\idot\Theta}

Table XIII.
A round trip test
reaching a fixed point
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and the round trip translations produce infinite chains of sine and inverse sine calls because
there are no evaluations involved.

The round trip tests are very successful, but they only detect errors in string
representations. However, because of the simplification techniques of fixed points, we are able
to at least detect logical errors in one system: Maple. On the other hand, these tests cannot
determine logical errors in the translations between the two systems. Suppose we mistakenly
defined an inappropriate forward and backward translation for the sine function:

\sin@ \phi
� �

2
Maple

cos phið Þ; (14)

\cos@ \phi
� �

2
Maple

sin phið Þ: (15)

In that case the round trip test would not detect any errors but reaches a fixed point
representation.

7.2 Function relation tests
The DLMF is a compendium for special functions and orthogonal polynomials and lists
many relations between the functions and polynomials. The idea of this evaluation
approach is to translate an entire relation and test whether the relation remains valid after
performing the stranslations.

With this idea, we can detect inappropriate translations such as in Equations (14) and
(15). Consider the DLMF equation for the sine and cosine function (DLMF (4.21.2)):

sin uþvð Þ¼ sin u cos vþ cos u sin v: (16)

Assume the translator would forward translate the expression based on Equations (14)
and (15). Then:

\sin@ uþvf g/Maple
cos uþvð Þ; (17)

\sin@@ uf g\cos@@ vf g/Maple
cos uð Þ� sin vð Þ; (18)

\cos@@ uf g\sin@@ vf g/Maple
sin uð Þ� cos vð Þ: (19)

This produces the equation in Maple:

cos uþvð Þ ¼ cos u sin vþ sin u cos v; (20)

which is wrong. Since the expression is correct before the translation, we conclude
that there was an error during the translation process and our defined translations
were inappropriate.

There are two essential problems with this approach. Testing whether expressions are
appropriate representations of each other is a challenging task for CAS and they often have
difficulties testing simple equations symbolically. For example, consider (DLMF (4.35.34)):

sinh xþ iyð Þ ¼ sinh x cos yþ i cosh x sin y;

as a difference of the left- and right-hand sides cannot be simplified to zero by default.
Furthermore, this approach only checks forward translations because there is no way to
automatically check whether two LaTeX expressions are appropriate or inappropriate
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representations of each other (again this could become feasible with our translator).
We use Maple’s simplify function to check if the difference of the left-hand side and the
right-hand side of the equation is equal to zero. In addition, we use simplify and check if
the division of the right-hand side by the left-hand side returns a numerical value or not.
The simplification function is the most powerful function to check whether two
expressions are appropriate representations in Maple. However, there are several cases
where simplification fails. Because of implementation details, there are some techniques
that help Maple to find possible simplifications. For example, we can force Maple to
convert the formula:

sinh x þ sin x; (21)

to an appropriate representation using their exponential representations, namely:

1
2
ex� 1

2
e�x� 1

2
i eix� e�ix� �

: (22)

With such pre-conversions, we are able to improve the simplification process in Maple.
However, the limitations of the simplify function are still the weakest part of this verification
approach. Consider the complex example (DLMF (12.7.10)):

U 0; zð Þ ¼
ffiffiffiffiffi
z
2π

r
K1=4

1
4
z2

	 

; (23)

where U(0, z) is the parabolic cylinder function and Kn(z) is the modified Bessel function of
the second kind. Both functions are well-defined in both systems and we can define a direct
translation for Equation (23). The modified Bessel function of the second kind has
its branch cut in Maple and in the DLMF at zo0. However, the argument of K contains a z2.
If |ph (z)| ∈ (π/2, π) the value of the right-hand side of Equation (23) would be no longer on the
principal branch. Maple will still compute the principal values independently of the value of
z and the translation:

\BesselK \frac 1f g 4f gf g@ \frac 1f g 4f gz^2f g/Maple
BesselK 1=4; 1=4

� ��z^2� �
; (24)

is inappropriate if |ph (z)| ∈ (π/2, π). One should instead use the analytic continuation for the
right-hand side of Equation (23). To evaluate such complex cases, the previous checks for
appropriate representations in CAS are insufficient. We implement numerical tests as an
additional step.

7.3 Numerical tests
Consider the difference of the left- and right-hand sides of Equation (23), namely:

D zð Þ :¼ U 0; zð Þ�
ffiffiffiffiffi
z
2π

r
K1=4

1
4
z2

	 

: (25)

Table XIV presents four numerical evaluations for D(z), one value for each quadrant in the
complex plane.

Considering machine accuracy and the default precision to ten significant digits, we can
regard the first and last values as 0 differences. While this evaluation is very powerful,
it has a significant problem. Even when all tested values return 0, it does not prove that
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Equation (23) was appropriately translated. When the values are different from 0, it does
indicate that there might be an error satisfying one of the four cases (Cohl et al., 2018):

(1) the numerical engine tests invalid combinations of values;

(2) the translation was inappropriately defined;

(3) there may be an error in the DLMF source; and

(4) there may be an error in Maple.

7.4 Results
There are currently 685 DLMF/DRMF LaTeX macros [13] in total, and 665 of them were
implemented in the translator engine. We defined forward translations to Maple for 201 of
the macros and backward translations from Maple for 195 functions.

The DLMF provides a data set of LaTeX expressions with semantic macros. We
extracted 4,087 equations from the DLMF and applied our round trip and relation tests on
them. The translator was able to translate 2,405 [14] (58.8 percent) of the extracted equations
without errors. Simplification techniques of Maple were successfully verified for 660
(27.4 percent) of the translated expressions. We applied additional numerical tests for the
remaining 1,745 equations. For 418 (24 percent) of them, the numerical tests were valid.
More detailed results for numerical and symbolical tests were presented in Cohl et al. (2018).

The evaluation techniques have proven to be very powerful for evaluating CAS and
online mathematical compendia such as the DLMF. During the evaluations, we were able to
detect several errors in the translation and evaluation engine, and also discovered two errors
in the DLMF and one error in Maple’s simplify function.

The numerical test engine was able to discover a sign error in Equation (DLMF (14.5.14)) [15]:

Q�1=2
n cos yð Þ ¼ � p

2siny

� �1=2 cos nþ 1=2
� �� �

y
� �
nþ 1=2

� � : (26)

The error can be found on Olver et al. (2010, p. 359) and has been fixed in the DLMF
with version 1.0.16. The same engine also identified a missing comma in the constraint of
(DLMF (10.16.7)). The original constraint was given by 2n ≠ −1, −2 −3,… , with a missing
comma after the −2.

We have also noticed that our testing procedure is able to identify errors in CAS procedures,
namely the Maple simplify procedure. The left-hand side of (DLMF (7.18.4)) is given by:

dn

dzn
ez

2
erfc z

� �
; n ¼ 0; 1; 2; . . .;

where e is the base of the natural logarithm, and erfc is the complementary error function. Our
translation correctly produces:

diff
�
exp zð Þ^ 2ð Þðð Þ�erfc zð ÞÞ; z$ nð Þ��:�

z D(z)

1+i 2·10−10 − 2·10−10 i
−1+i 2.222121916 − 1.116719816 i
−1−i 2.222121913 + 1.116719816 i
1−i 2·10−10 + 2·10−10 i

Table XIV.
Four numerical

evaluations of D (z) in
Maple
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However, the Maple 2016 simplify function falsely returns 0 for the translated left-hand side.
Maplesoft has confirmed in a private communication that this is indeed a defect in Maple
2016. Furthermore, although the nature of the defect changes, the defect still persists in
Maple 2018 as of the publication of this manuscript.

8. Conclusion and future work
During this project we uncovered several problems that need to be solved before providing a
translation of mathematical expressions between two systems. The translator concept has
proven itself by discovering errors in the online DLMF compendia and the test cases have
also shown how difficult it is to validate translated expression. Our validation techniques
also assume the correctness of simplification and computational algorithms in CAS.
However, combining those techniques and automatically running translation checks not
only can discover errors in mathematical compendia but can also detect errors in
simplifications or computations of the CAS.

The tasks for future work are diverse. The main task is to improve the translator by
implementing more functions and features. For example, for the current state, only
translations to Maple’s standard function library were implemented. Maple allows one to
load extra packages dynamically and therefore support an enhanced set of functions. This
feature would drastically increase the number of possible translations. With such
improvements, further work on evaluation techniques become worthwhile to evaluate the
DLMF and CAS. Increasing the amount of translatable formulae in the DLMF and
improving the verification techniques are also parts of ongoing projects.

The translator was designed to be easily extendable. This allows one to implement
translations for other CAS without much effort. However, most LaTeX sources, such as in
arXiv, are given in generic LaTeX. Semantic LaTeX, which is a prerequisite for
our translator is currently prevalent in the DLMF and DRMF projects alone. Without
exclusively given semantic information, the translator is not able to translate functions.
Currently, we are working on mathematical information retrieval techniques which will
allow for an extension of the translator to generic LaTeX inputs.

Further improvements for numerical tests could be to perform tests for specific (critical)
values (Beaumont et al., 2007) with respect to the involved functions. Beamont and
collaborators tested identities for multivalued elementary functions by choosing sample
points from regions with respect to branch cuts for functions. Choosing sample points from
those regions could significantly improve the success rate of the numerical tests.

Notes

1. The mention of specific products, trademarks, or brand names is for purposes of identification
only. Such mention is not to be interpreted in any way as an endorsement or certification of such
products or brands by the National Institute of Standards and Technology, nor does it imply that
the products so identified are necessarily the best available for the purpose. All trademarks
mentioned herein belong to their respective owners.

2. The selected CAS Maple, Mathematica, Matlab and SageMath provide import and/or export
functions for LaTeX: Maple, http://www.maplesoft.com/support/help/Maple/view.aspx?
path=latex (accessed June 2017); Mathematica, https://reference.wolfram.com/language/tutorial/
GeneratingAndImportingTeX.html (accessed June 2017); Matlab, http://www.mathworks.com/
help/symbolic/latex.html (accessed June 2017); SageMath, http://doc.sagemath.org/html/en/
tutorial/latex.html (accessed June 2017).

3. There is no adequate definition for what interactive documents are. However, this name is widely used
to describe electronic document formats that allow for interactivity to change the content in real time.
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4. Wolfram Research; Computable Document Format (CDF); http://www.wolfram.com/cdf/, July 2011.

5. An abbreviation for SageMath.

6. Named according to the Part-of-Speech-Taggers in Natural Language Processing (NLP).

7. http://www.maplesoft.com/support/help/maple/view.aspx?path=diff (accessed July 2018).

8. Named according to the Part-of-Speech-Taggers in NLP.

9. Also known as prefix notation, Warsaw Notation or Łukasiewicz notation. It was invented by
J. Łukasiewicz in 1924 to create a parenthesis-free notation (Hamblin, 1962). Note that this
notation is indeed parenthesis-free as long as all operators have the same arity.

10. Also known as postfix notation. Also invented by J. Łukasiewicz. Same as NPN it does not need
parenthesis as long as all operators have the same arity.

11. A license of Maple is mandatory to perform backward translations. Our translator uses the
version Maple 2016.

12. The nested list is a tree representation of a DAG that splits nodes with multiple parents into
multiple nodes so that each node has only one parent node.

13. The DLMF/DRMF semantic macros are still a work in progress, and the total number is
constantly changing.

14. All percentages are approximately calculated.

15. The equation had originally been stated as shown in Equation (26). The error was reported on
April 10, 2017.
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