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Scientists must overcome fundamental measurement problems if microfluidic devices are to become
reliable and commercially viable. In particular, microfluidic devices require precise control over
operating conditions such as flow-rate, vv, which is difficult to measure continuously and in situ.
Given the small scales involved, state-of-the-art approaches generally require accurate models to
infer vv on the basis of indirect measurements. However, such methods necessarily introduce model-
form errors that dominate at the nL/min scale being targeted by the community. To address
these problems, we develop a robust and largely assumption-free scaling method that relates the
fluorescence efficiency I of fluorophores to vv through a dosage parameter ξ, which depends on the
flow rate and laser power. Notably, we show that this scaling relationship emerges as a universal
feature from a general class of partial differential equations (PDEs) describing the experimental
setup, which consists of an excitation beam and fluorescence detector. As a result, our approach
avoids uncertainties associated with most modeling assumptions, e.g. the exact system geometry, the
flow profile, the physics of fluorescence, etc. Moreover, the corresponding measurements remain
valid down to the scale of 10 nL/min, with some devices potentially capable of reaching 1 nL/min.
As an added benefit, the measurement procedure is mathematically simple, requiring a few trivial
computations, as opposed to the full solution of a PDE. To support these claims, we discuss and
quantify uncertainties associated with our method and present experimental results that confirm its
validity.

I. INTRODUCTION

Accurately measuring flow rates is critical to a vari-
ety of microfluidic applications such as droplet formation
[1], particle sorting [2], flow cytometry [3], and mixing [4].
However, precise measurements down to the µL/min and
nL/min scales are difficult to perform in many settings
such as “labs-on-a-chip,” where continuous, in-situ moni-
toring is often necessary for device control. In particular,
current techniques: (i) involve large and/or expensive
microscopes [5], (ii) require precise information about
the geometry of the microchannel (which may be expen-
sive to determine in mass-production settings),[5] and/or
(iii) lack high-throughput resolution down to the nL/min
scales.[6] As such, there are no commercially available
and easy-to-use measurement devices that can be de-
ployed in microfluidic settings at ultra-low flow rates.

Conceptually, the need for robust and inexpensive un-
certainty control is the key problem that all flow rate
measurement techniques attempt to address. The cur-
rent difficulty in achieving this arises from the belief
that a precise measurement must fully resolve the mi-
crofluidic flow channel (i.e. the microchannel). For ex-
ample, velocimetry-based approaches visualize individ-
ual streamlines,[6] whereas more indirect methods (e.g.
based on cantilevers) require expensive simulations and
detailed knowledge of the underlying system geometry.[5]
Both approaches, however, suffer from the fact that de-
vice fabrication uncertainties can propagate into the final
measurements in a manner that is inversely proportional
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to the flow rate. Thus, in order to perform accurate mea-
surements on increasingly small systems, the community
needs a new paradigm for controlling uncertainty, i.e. one
that does not rely on detailed and/or precise models.

To address these problems, we develop and test a
method of in-situ, fluorescence-based flow rate measure-
ments for microfluidic devices that obey scaling rela-
tionships derived from a general class of first-order par-
tial differential equations (PDE). In particular, we con-
sider devices of the type illustrated in Figs. 1 and 2 in
which a laser (or cascade thereof) induces fluorophores
to emit photons while also photobleaching some fraction
of the molecules. We show that under a variety of phys-
ically realizable conditions, the fluorescence efficiency I
has a one-to-one, injective relationship with the dosage
ξ = f(p)/vv, where f(p) is some function of the laser
power and vv is the volumetric flow rate. By determining
I(ξ) via a single-point calibration, we can use measure-
ments of this quantity to deduce vv, given the laser power
(which we control). Experimental results confirm the va-
lidity of this approach down to flow rates of 10 nL/min
and suggest that 1 nL/min is attainable.

A key goal of our work is to highlight the idea that
scaling-based measurements are a powerful theoretical
tool to overcome the experimental limitations associated
with microfluidic devices. In particular, our main re-
sult amounts to a mathematical proof that a flow rate
measurement can be performed absent any detailed in-
formation about the physics of fluorescence or the system
geometry.[7] As such, precise control over and uncertainty
quantification (UQ) of these aspects of the device is en-
tirely unnecessary, which reduces the burden associated
with both fabrication and data analysis. Stated differ-
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FIG. 1. Close-up view of an individual optofluidic flow-meter.
This device is made of PDMS and contains integrated waveg-
uides filled with optical adhesive (Norland 88). A narrow
waveguide delivers excitation light to fluorescein in a flow
channel while a wider waveguide collects emission light and
couples to a power meter (Newport 2936-R) through an emis-
sion filter. Flow channel cross section is 100 µm × 80 µm. See
Sec. VII for details on fabrication. See Fig. 2 for a schematic
of multiple devices in serial. See Fig. 3 for an example of a
flow-meter in operation.

ently, our scaling method facilitates accuracy by elimi-
nating errors associated with using the wrong model to
analyze data,[8] since our result applies uniformly to a
broad class thereof. Thus, virtually all of the measure-
ment uncertainty is shifted to the time-series data arising
from the fluorescence intensity signal, which can be ana-
lyzed using a variety of well-established tools.

As regards those uncertainties that are unavoidable,
we discuss their origins and propagation into final mea-
surements. Of note, our approach requires a calibration
in which the fluorescence efficiency I is measured at a
known flow rate by varying the laser power. This refer-
ence flow rate is assumed to be the lower limit of some
other well-established device, and importantly, is subject
to its own uncertainty. By means of an uncertainty prop-
agation argument, however, we arrive at the interesting
result that our scaling method only inherits the relative
(but not absolute) uncertainties associated with the ref-
erence measurement. In other words, our scaling method
can (in principle) attain the same relative accuracy as
a good reference measurement, but at much lower flow
rates.

While the approach we propose is useful for describ-
ing a wide range of measurement devices, it does have
certain limitations. In particular, the analysis requires
that the device operate in either a advection-dominated
or Taylor-Aris-diffusion regime. Physically, these restric-
tions amount to the requirement that the axial fluid mo-
tion be dominated by a single timescale, namely that of
the volumetric flow rate. Nonetheless, we present per-
turbation arguments and experimental results showing
that these regimes are easily accessible to typical mi-
crofluidic devices at flow rates of interest. Indeed, we

FIG. 2. Schematic of the microfluidic device we consider.
Fluid containing a fluorescent marker (e.g. fluorescein) flows
down the channel in the z-direction towards a 488 nm excita-
tion laser. Once in the laser-beam, fluorescein molecules emit
fluorescent 520 nm light, which is collected by an appropri-
ate detector. Several devices can be positioned in serial to
measure flow rates at different positions along the channel,
although only a single device is actually required to measure
the flow rate. The characteristic lengh of the laser profile in
the z-direction is denoted b, whereas the separation between
lasers is L. See Fig. 1 for a close-up view of an individual
optofluidic flowmeter.

anticipate that the Taylor-Aris regime could allow for
measurements of flow rates below the nL/min scale, the
latter being widely considered as an important goalpost
in microfluidics.

The rest of this manuscript is organized as follows. Sec-
tion II discusses a linear version of our model and high-
lights key assumptions. Section III derives the scaling
relationship that forms the basis for our measurement
technique. Section IV discusses a broad generalization of
the linear analysis that extends its validity the situation
in which the physics of photobleaching and fluorescence
is unknown and highly non-linear. Section V discusses
sources of uncertainty and presents a basic uncertainty
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propagation argument associated with the reference mea-
surement. Section VI discusses heuristic device optimiza-
tion considerations that facilitate measurements. Section
VII shows experimental results that confirm our theory.
Section VIII provides a broader discussion of our work
and reviews main conclusions.

A. Notation and terminology

We use the following notation and terminology
throughout:

• We refer to the z-axis as the axial direction, while
we refer to the x-y plane as the radial direction.

• r = (x, y, z) denotes a coordinate in R3.

• c denotes the concentration of unbleached fluo-
rophores.

• c0 denotes the total concentration of fluorophores,
bleached and unbleached. Therefore, c0 − c is the
concentration of bleached fluorophores.

• D denotes the diffusion coefficient of fluorophores.

• p is a dimensionless parameter corresponding to the
laser power. In particular, we restrict 0 ≤ p ≤ 1,
where p = 0 corresponds to the laser being off,
and p = 1 corresponds to the laser being at full
power. When considering a system with more than
one laser, we denote the corresponding laser powers
as pk.

• Ik(t) denotes the (time-dependent) fluorescence-
intensity signal collected at the kth laser.

• Ik = Ik(t→∞)/pk is the steady-state fluorescence
efficiency, i.e. the fluorescence per-unit-laser-power
associated with the intensity collected at the kth
laser.

• vv denotes the volumetric flow rate.

• ξ = f(p)/vv is a scaling parameter that we refer
to as the dosage, where f(p) is a function of the
laser power that has units of inverse time.[9] We
generally assume that f(p) is a monotone increas-
ing function (see below) in p. Thus increasing the
laser power or decreasing the flow rate increases the
dosage. For systems with more than one laser, we
denote the corresponding dosages as ξk = f(pk)/vv.

• A monotone increasing (decreasing) function f(x)
is one for which f(x1) ≥ f(x2) [f(x1) ≤ f(x2)] if
x1 > x2.

• A strongly monotone increasing (decreasing) func-
tion is one for which f(x1) > f(x2) [f(x1) < f(x2)]
if x1 > x2.

• A bijection f(x) on a domain U is a function such
that every f in the range f(U) corresponds to ex-
actly one element x in U . A strongly monotone
function is a bijection.[10]

II. ASSUMPTIONS AND MODEL EQUATIONS

In order to make the analysis that follows more acces-
sible, we begin with a simplified model of the device that
assumes photobleaching and fluorescence depend linearly
on the concentration c of the fluorescent molecule (fluo-
rescein in our experiments). While this assumption is
not strictly necessary, it has the benefit of allowing us
to write formally exact expressions for the measurement
signal I. In Sec. IV, we distill this model to its essence
by showing that the full weight of our analysis applies
even when photo-bleaching and fluorescence are highly
non-linear processes, provided they are monotone in c.

A. System geometry and flow-profile

Consider a flow channel (or duct) oriented in such a
way that the fluid travels in the z-direction. The channel
cross-section lies in the perpendicular x−y plane and has
a characteristic width w. Let N laser beams be placed
along the z-direction, with adjacent beams separated by
a “center-to-center” distance L. Assume that L is larger
than the beam-length b (in the z-direction), so that no
two beams overlap; see Figs. 1 and 2. We denote L as
the characteristic length of the device, where L = b is the
length of a single laser if N = 1, and L = NL if N > 1.
We also assume that the flow is laminar and Poiseuille,
and that the channel dimensions are constant over the
distance L.

As the flow is Poiseuille, we may assume that its veloc-
ity profile can be expressed as vvu(x, y), where u(x, y) is a
fixed function that describes the position-dependence of
the flow. This factorization implies that u(x, y) satisfies

1 =

∫
dx dy u(x, y), (1)

an observation that is useful in a certain limiting case.
Before continuing, we note that the assumption of

Poiseuille flow requires the Reynolds number R to be
sufficiently small, i.e. R . 103. For the system under
consideration,

R =
vcw

µk
=

vv
wµk

, (2)

where vc = vv/w
2 is the characteristic linear velocity of

the flow and µk is the kinematic viscosity of the fluid.
Thus, a proportional decrease in both vv and w keeps R
the same. In Sec. VI, we consider these quantities in the
context of the experimental setup.
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FIG. 3. Microscope view of a typical flow-meter in operation
at different flow rates. The laser is labeled 488 nm, while the
fluorescence collector is labeled 520 nm. Note that decreasing
the flow-rate increases the amount of bleaching.

B. Linear model equations

With the geometry described above, we can express
the system evolution via the equations

∂tc = D∇2c− vvu(x, y)∂zc−
∑
k

pkφk(r)c (3a)

∂xc = ∂yc = 0 r ∈ ∂U (3b)

c→ c0 z → ±∞ (3c)

c(r, t = 0) = c0 (3d)

Ik(t) =

∫
dr pkφk(r)c(r, t). (3e)

Interpretation of Eq. (3a) is straightforward: unbleached
particles diffuse at a constant rate D, advect at the ve-
locity vvu(x, y), and are destroyed at a rate of f(pk) =
pkφk(r) by the kth laser, where φk(r) ≥ 0 character-
izes the relative intensity of laser-light in the channel.
Equation (3b) states that no fluorophores leave the chan-
nel through its boundary ∂U , while Eq. (3c) forces the
concentration of unbleached molecules to tend towards
its initial value far from the experimental lasers along
the flow direction. The measured intensity of fluores-
cent light at the kth laser, given by Eq. (3e), is simply
the “sum over probabilities” (i.e. an integral) that un-
bleached particles fluoresce. See also Fig. 3.

We note in passing that the term φk(r) plays multi-
ple roles in this model. In addition to characterizing the
intensity of light, it also accounts for: (i) the probabil-
ity of a molecule being photobleached [Eq. (3a)]; (ii) the
probability of fluorescing [Eq. (3e)]; and (iii) geometrical
factors associated with the fraction of fluorescent photons
that actually arrive at the detector [Eq. (3e)]. While we
have no reason to believe that the same φk describes all
of these effects, it is reasonable (in the context of a lin-
ear model) to assume that they are proportional to φk.

As such, we may informally view Ik as the fluorescence
intensity scaled by the bleaching rate, or vice versa. How-
ever, such considerations play no role in our final mea-
surement procedure, an observation that amounts to one
of our key conclusions. These points in particular will
become more apparent in Sec. IV when we generalize to
arbitrary bleaching and fluorescence models.

C. First-order models

For the purposes of measurement, Eqs. (3a) and (3e)
are difficult to work with by virtue of the diffusion term.
That is, the defining characteristic of diffusion is its abil-
ity to smear out signals, which often manifests as noise.
At a minimum, this motivates us to seek operating con-
ditions in which diffusion is (effectively) negligible. We
consider two distinct regimes: (i) D → 0, i.e. slow diffu-
sion; and (ii) the limit of fast radial diffusion.

1. Limiting case of slow diffusion

Consider a rescaling of Eq. (3a) as follows. Denote
x = wχ, y = wγ, and z = Lζ, and let A = L/w be
the axial aspect ratio of the duct. Rewriting Eq. (3a) in
these variables yields

ct =
D

L2

[
A2(cχ,χ + ∂γ,γ) + cζ,ζ

]
− vvu

L
cζ −Bc, (4)

where B =
∑
k pkφk(r) is the bleaching term. Next,

define u = u/w2, and recall that vv/w
2 is the charac-

teristic linear velocity of the flow profile. Dividing by
this last quantity and letting t̃ and B̃ be the correspond-
ing rescaled time and bleaching function (whose precise
forms are not important here), we find

ct̃ = P−1cζζ + P−1
eff (cχχ + cγγ)− ucζ + B̃c, (5)

where

P =
vvL
w2D

(6a)

Peff =
P

A2
=

vv
LD

(6b)

are the Peclet and effective Peclet numbers, respectively.
Physically, P characterizes the relative rates of axial
transport versus axial diffusion; Peff characterizes the rel-
ative rates of axial transport versus radial diffusion.

A few comments are in order. First, when both P
and Peff are large, singular perturbation arguments tell
us that omitting the diffusion terms results in errors
that are O(P−1 + P−1

eff ). Therefore, we (approximately)
minimize the error by minimizing this sum as a func-
tion of the duct geometry and L. Assuming, a fixed
cross-sectional area w2, diffusion constant D, and vol-
umetric flow rate, we find that L = w, or equivalently
A = 1, minimizes the sum P−1 +P−1

eff . This implies that
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P = Peff = vv/LD = vv/wD, i.e. the two Peclet num-
bers are equal. Physically, this observation is interesting
because at first glance, it is counter-intuitive. Naively
one expects that we should make L as small as possible
because doing so reduces the time for diffusion to act,
thereby reducing noise. However, considering that we
can also express P as the ratio of characteristic diffu-
sion and advection times (i.e. P = τD/τv), one see that
at short distances, axial diffusion acts faster than advec-
tion, so that we in fact increase noise by making L too
small.

Second, when considering an optimal geometry (i.e.
A = 1), we conclude that for a fixed Peclet number, de-
creasing the volumetric flow rate requires a proportional
decrease in w. In other words, a system for which vv = 1
µL/min and w = 100 microns has the same Peclet num-
ber as a system for which vv = 10 nL/min and w = 1 mi-
cron. As we will see, this imposes practical lower bounds
on the volumetric flow rates that we can realistically hope
to model in this regime.

Assuming now that the Peclet numbers are sufficiently
large, we drop the second order derivatives to arrive at
the reduced model

cτ = −u(x, y)cz −
∑
k

ξkφk(r)c, (7)

where τ = vvt. Since Eq. (7) contains no derivatives in
either x or y, these quantities have effectively become
free parameters of the model, as opposed to independent
variables. As such, we may henceforth assume that their
values are fixed.

2. Limiting case of fast radial diffusion

The Peclet numbers given in Eqs. (6a) and (6b) have
a reciprocal dependence on the length-scale L. As such,
it is possible to take a limit in which P ∝ Lvv/w2 →∞
and Peff ∝ vv/L → 0, which, importantly, encompasses
the case vv → 0. In this situation, Eq. (3a) reverts to the
singular limit

ct̃ = P−1
eff (cχχ + cγγ)− ucζ + B̃c, (8)

when expressed in terms of the rescaled variables of the
previous section. In this limit, diffusion only takes place
in the radial direction, and importantly, does so at a
rate that is fast relative to advection. With this physical
picture in mind, we now show that Eq. (8) amounts to a
special case of Eq. (7).

Assume that Peff � 1 and express c as a power series
of the form

c = c(0) + Peffc
(1) + P 2

effc
(2)... =

∑
j

c(j)P jeff , (9)

where c(j) are perturbations to the concentration field
that we must determine systematically. Inserting this

expansion into Eq. (8) and applying the principle of dom-
inant balance,[11] we find to O(P−1

eff ) that

c(0)
χ,χ + c(0)

γ,γ = 0. (10)

As ζ does not appear in this equation, we find (by virtue
of the no-flux boundary conditions) that c(0) = c(0)(ζ) is
a function only of ζ. However, this is not sufficient to
actually determine the leading order concentration. To
do this, we consider the O(1) term of Eq. (8),

c
(0)

t̃
= (c(1)

χ,χ + c(1)
γγ )− uc

(0)
ζ + B̃c(0), (11)

which couples c(0) and c(1). Next, integrate Eq. (11) over
χ and γ. Applying the no-flux boundary conditions elim-
inates the first-order correction to c, yielding the PDE

c(0)
τ = −a−1c(0)

z −
∑
k

ξkφ̄k(r)c(0) (12)

where a =
∫

dxdy is the cross-sectional area and φ̄k(z) =
a−1

∫
dx dy φk(x, y, z) is the normalized radial average of

the intensity profile. Note that in arriving at Eq. (12) we
have also invoked Eq. (1).

Several comments are in order. For one, Eq. (12) is of
the same form as Eq. (7), except that the velocity profile
is now a constant and the laser intensity is a function of
z alone. As such, any analysis applicable to the more
general Eq. (7) also applies to Eq. (12). Physically, we
can understand this singular limit as follows. As Peff → 0
and P →∞, radial diffusion is so fast (compared to ad-
vection) that any given fluorophore explores the entire
radial dimension of the flow profile before advancing sig-
nificantly in the flow direction. In other words, it “sees”
the average flow velocity, which is a constant. By Eq. (9),
we anticipate that this approximation has errors on the
order of Peff , which can be controlled through device con-
struction.

As an interesting aside, we note that under certain ex-
perimentally attainable conditions, the flow-profile u can
be independent of the radial coordinates.[12] If the laser
profile φ(r) = φ(z) is likewise only a function of the axial
variable, it is possible to integrate Eq. (8) directly in x
and y without the need to perform a perturbation expan-
sion in the spirit of Eq. (9). In retrospect, this is perhaps
not surprising, since a constant velocity profile and laser
intensity effectively reduce the physics of light-matter in-
teractions to a one-dimensional problem. Nonetheless, it
is reassuring that the analysis holds in this degenerate
case.

III. SCALING RELATIONSHIPS AS THE BASIS
FOR MEASUREMENT

Stated simply, the goal of building and modeling the
measurement device is to be able to associate a given flow
rate vv with one or more measured intensity curves Ik(t).
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Because any given signal Ik(t) is generated as a time-
series of data, however, we face the prospect of mapping
a function to a scalar, which may not be straightforward
if Ik(t) is noisy. This motivates us to instead study the
relationship between vv and Ik,s = Ik(t → ∞); that is,
we treat the steady-state (and thus scalar) intensity as
the desired measurement, ignoring any transient effects
associated with, e.g. turning on a laser or injecting fluo-
rophores.

We therefore set cτ = 0 in Eq. (7), which yields the
expression

cz = − 1

u(x, y)

∑
k

ξkφk(r)c. (13)

Recalling that u(x, y) and φk(r) are fixed and indepen-
dent of the volumetric flow rate, we see that the govern-
ing equation depends only on the dosage rate ξk = pk/vv.
In other words, simultaneously decreasing the power and
flow rate by the same factor leaves the concentration of
unbleached fluorophores unchanged.

To see this more explicitly, we construct a formally
exact solution to the steady-state equation. In particu-
lar, Eq. (13) has been reduced to an ordinary differential
equation that can be integrated exactly. One finds

cs(r) = c0 exp

[
−
∑
k

ξkΦk(r)

]
, (14)

where

Φk(x, y, z) =
1

u(x, y)

∫ z

0

dz′ φk(x, y, z′) (15)

and z = 0 is some position upstream of the first laser
(cf. Fig. 2). Physically, we interpret ξkΦk as the total
dosage of radiation from the kth laser received by a flu-
orophore molecule as it travels down the channel. Note
that Φk(x, y, z ≤ 0) = 0, while Φk(x, y, z ≥ zmax) =
Φk,s(x, y) is independent of z for some zmax, since the
laser beams only illuminate a narrow strip. In other
words, ξkΦk,s(x, y) is the total dosage of radiation de-
livered to a molecule having completely passed the kth
laser. It is important to note in particular that Φk ≥ 0
and that Φk,s > 0.

Given Eq. (14), the steady-state fluorescence intensity
collected at the kth laser is given by

Ik :=
Ik,s
pk

=

∫
Uk

dr c0 φk(r) exp

− k∑
j=1

ξjΦj(r)

 , (16)

where Uk is the domain illuminated by the laser.[13] Note
that for k > 1, the sum appearing in the integral reduces
to

k∑
j=1

ξjΦj(r) = ξkΦk(r) +

k−1∑
j=1

ξjΦj,s(x, y) (17)

by virtue of the fact that the fluorescein molecules have
completely passed the first k − 1 lasers and now reside
entirely in the kth.

Recall that we interpret the scaled intensity Ik as the
fluorescence per unit of laser-power. Critically, it is
straightforward to show that Ik is a strictly monotone
decreasing function of the scaling parameters ξk = pk/α,
given that the Φk(r) are positive in the domains Uk.
To understand this physically, note that increasing the
dosage bleaches more particles, so that fewer are available
to fluoresce; thus, the fluorescence efficiency decreases
per unit of input power. Consider also that the inten-
sity Ik only depends on the power of the first k lasers.
Mathematically, we can express these observations by
noting that the scaled intensity Ik takes the arguments
(ξ1, ξ2, ..., ξk). If we further require that the laser powers
are coupled (which can be achieved experimentally via
wave-guide splitters), then we find that pk = pfk, where
p is the power shared by all lasers and fk is the fixed
fraction received by the kth. Under these conditions, Ik
reduces to a simpler function

Ik(ξ1, ξ2, ..., ξk)→ Ik(ξ), (18)

which is a function of only one similarity variable.
Practically speaking, Eq. (18) can be used as the basis

for a measurement device as follows. First, assume that
we can measure the volumetric flow rate vv using some
second device, and refer to this rate as the reference rate
vr. We desire vr to be at the lower limit (for example)
of the measurement capability of this latter device, since
the goal is to extend measurement capabilities to lower
flow rates using I. Knowing vr, we then vary the power
p, which amounts to changing ξ = p/vr. While doing
this, we measure the intensity Ik, which thereby maps
out the function Ik(ξ). See Fig. 4.

To actually measure an unknown vv, we reverse the
above procedure, fixing p = pm and varying the flow rate.
Given the intensity measurement Im associated with this
flow rate, we use the previously-determined mapping
ξ 7→ Ik to identify the corresponding ξm = pm/vv, which
thereby determines

vv =
pm
ξm

. (19)

where pm is fixed and known. Note that by definition of
ξ, we can rewrite Eq. (19) as

vv =
pm
pc
vr (20)

where pc is the power for which ξm = pc/vr is satisfied.
From Eq. (20), we observe that measuring flow rates less
than vr entails decreasing the measurement power pm <
pc, since the ratio α = pm/pc < 1. In other words, we
only define ξ on the domain [0, 1/vr], so that decreasing
vv relative to vr requires a proportional decrease or more
in p to stay in this domain. See Fig. 4.

We emphasize that the procedure leading to Eq. (19)
takes place without any explicit knowledge of: (i) the
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FIG. 4. Illustration of device calibration and measurement.
Top: To calibrate the device, fix the flow rate at a known
value and vary the power while measuring I. This generates
the curve I(ξ). Bottom: To determine an unknown flow rate,
fix the power at a known value and measure the intensity I.
Because I(ξ) is a bijection, there is a unique ξ corresponding
to the measured I, from which we compute vv = p/ξ.

system geometry; (ii) the laser profile; or (iii) the rates
of fluorescence. All that has been assumed are order-of-
magnitude estimates of the system size, as well as lin-
earity of the bleaching and fluorescence processes. As
such, the analysis is essentially immune to uncertainties
arising from these sources and can be performed without
the need to precisely control the device fabrication. In
essence, we have actually avoided these problems by di-
rectly measuring the steady-state of Eq. (3e), which is a
projection of the full solution of Eq. (3a) onto a scalar.

IV. GENERALIZATION TO NONLINEAR
MODEL

In general, we have no reason to believe that bleaching
is linear in the laser power. In fact, experimental evidence
suggests that for widely available fluorophores, such pro-
cesses often occur through reaction pathways that involve
multiple photons, and hence have a dependence on p
and/or ξ that is non-linear.[14–18] Fortunately, the anal-
ysis discussed in the previous section is easily generalized
to account for such cases.

Returning to Eqs. (7) and (3e), we replace the linear
interaction terms with a model of the form

cτ = −u(x, y)cz − g(ξ)B(c, r) (21)

I =

∫
dr F (c, r) (22)

where ξ = f(p)/vv is a possibly nonlinear function of p,
and B(c, r) and F (c, r) are functions of c(r) with compact
support in some domain of r that we call the laser. We
assume that g(ξ), B(c, r), and F (c, r) are independent of
time, since these functions characterize generic proper-
ties of light-matter interactions. We further assume that
B(c, r): (i) is non-negative and bounded; and (ii) van-
ishes (i.e. B → 0) as c→ 0.[19] We likewise assume that
f(p) ≥ 0, g(ξ) > 0 and F (c, r) ≥ 0 are strongly monotone
functions in p, ξ and c, respectively.

While these conditions may seem abstract, they have
straightforward interpretations. Physically, monotonic-
ity entails that higher concentrations and laser powers
lead to more bleaching and fluorescence. Moreover, the
compact support assumption amounts to the requirement
that bleaching and fluorescence only happen within some
finite region that we call the laser. These assumptions are
in fact so general that for most systems, there are likely
few (if any) grounds upon which to challenge them. It
is worth noting, however, that we have assumed that the
fluorescence is linear in laser power by virtue of the scal-
ing in I. This is likely reasonable in that fluorescence is
generally understood to occur through spontaneous emis-
sion following absorption of a single photon.[20]

Given these assumptions, we seek to show that I is a
bijection of ξ, since this is all that is needed to define
the measurement signal. In particular, first note that
Eq. (21) admits a steady-state, solution. Setting ct = 0 in
Eq. (21) yields a nonlinear ordinary differential equation

u(x, y)cz = −g(ξ)B(c), (23)

which has a unique and continuous solution.[21] Formally,
this solution can be expressed as

c(x, y, z) =
−g(ξ)

u(x, y)

∫ z

0

dz′B(c(x, y, z′), r). (24)

Using the monotonicity of B and g (along with continu-
ity of c), it is then possible to show that c is in fact a
strongly monotone decreasing function of the dosage; see
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Appendix A. This coupled with the monotonicity of F
proves that I(ξ) is a bijection, as required.

From a practical standpoint, it is important to note
that the measurement procedure is slightly modified in
the non-linear case if f(p) 6= p. Specifically, we find that

vv = αvr =
f(pm)

f(pc)
vr (25)

so that knowledge of f is required to compute the flow
rate. This situation may arise, for example, if the laser
intensity is strong enough for bleaching to occur through
multi-photon pathways,[14, 15, 20] and for many fluo-
rophores the precise form of f(p) remains unknown. As
we demonstrate in Sec. VII, however, it is possible to
determine these functions by means of multiple datasets
obtained from several known flow rates operating near
the lower limit of the reference device. Alternatively,
new experiments can be designed to elicit f(p), since this
quantity is flow rate independent; see Sec. VIII C.

V. UNCERTAINTY QUANTIFICATION

In Secs. II C and II C 2, we discussed uncertainties aris-
ing from the singular perturbation approximations in
which the various Peclet numbers take limiting values.
Sections III and IV also demonstrated that character-
istic (but not exact!) length scales are sufficient to es-
tablish the existence of the measurement signal. If we
temporarily assume that such uncertainties are negligi-
ble, the only remaining potential sources are: (i) the ref-
erence flow rate vr; the laser power p and function f(p);
and intensity measurements I. Of these, uncertainty in
the reference flow rate is the most interesting, since we
cannot necessarily control it through better experimen-
tal procedures. We therefore explore its impact on our
measurement.

For convenience, we restrict our attention to a single
laser and drop the subscript k. Assuming that p, f(p),
and I have known, exact values, we recall that an un-
known flow rate is determined via the expression

vv = αvr. (26)

Generally speaking, the goal of this calibration exercise
is to measure vr at the upper limit of our device using
a tool for which vr is a lower limit. Thus, we assume
that α < 1. Letting vr = v̄r + εr, where v̄r is the true
flow-velocity and εr is the uncertainty associated with
the reference measurement, we see that

vv = v̄v + αεr, (27)

where v̄v = αv̄r < v̄r. Remarkably, this implies that the
relative error of our flow-meter is the same as that of
the calibration device; i.e. αε/v̄v = ε/v̄r. Thus, in the
idealized case, the scaling method reduces the absolute
magnitude of the measurement error while keeping the
relative error constant.

In practice, Eq. (27) may underestimate the uncer-
tainty in vv by virtue of the fact that neither I nor
α = f(pm)/f(pc) can be determined exactly. This is-
sue in particular is likely to be important for traceable
and commercial applications of the procedure we discuss.
However, the corresponding UQ is a challenging task in
and of itself and depends on factors external to the device
fabrication, e.g. the quality of a given power-sensor. As
such, consideration of these issues is beyond our current
scope and will be pursued in a subsequent manuscript.
When discussing experimental results, however, we indi-
rectly estimate the effects of such uncertainties and their
propagation into final measurements; see Sec. VII.

VI. ESTIMATES OF REYNOLDS AND PECLET
NUMBERS FOR PRACTICAL DEVICES

Validity of the scaling method relies on being in a
advection-dominated or Taylor-Aris regime. In this sec-
tion, we explore the feasibility of constructing devices
that meet these requirements.

Recall that

R =
vv
wµk

, (28a)

P = A
vv
wD

(28b)

Peff =
vv
LD

(28c)

where A = L/w is the aspect ratio. At 293 K, the kine-
matic viscosity for water is roughly µk = 1× 10−6 m2/s.
The diffusion coefficient for a fluorophore such as fluores-
cein is roughly D = 4×10−10 m2/s. If we take vv = V ×1
microliter per second (i.e. 1 × 10−9 m3/s), w = W × 1
micron (i.e. 1× 10−6 m), and L = L× 1 micron, we find
that

R =
V

W
× 103, (29a)

P = A
V

4W
× 107 (29b)

Peff =
V

4L
× 107. (29c)

For an aspect ratio A = 1, the last two reduce to
P = Peff = (V/4W ) × 107. Thus, for a flow of one mi-
croliter per second (V = 1) and a channel width of 100
microns (W = 100), we find R = 10 and P = 2.5 × 104,
which is well within the regime of interest. Dividing by
60 corresponds to a flow rate of 1 microliter per minute,
for which P ≈ 400. In such circumstances, we anticipate
that errors associated with neglecting diffusion should
be on the order of P−1 . 1%. A device with such di-
mensions could even conceivably operated down to 100
nL/min, although errors may grow upwards of a few per-
cent.

Reducing the volumetric flow rate to 1 nanoliter per
second (i.e. V = 0.001) and the system dimensions to
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W = 1 micron yields R = 1 and P = 2.5 × 103. In re-
ality, it is probably difficult to achieve a beam width of
1 micron, so that such a device would likely have only a
single laser. In this setup, 1 nL/min may in fact be pos-
sible, although P ≈ 40 implies that uncertainties would
not necessarily be negligible. However, it is likely that
reducing the characteristic device width down to 200 nm
or possibly even 400 nm would be sufficient to yield ac-
ceptable uncertainties.

In order to reach even lower flow rates, two options
exist. First, it is possible to use a slower-diffusion
fluorescein-based compound,[22–24] which can reduce the
Peclet numbers (and thereby also the uncertainties) by
up to a factor of 60. In this situation, a advection-
dominated device with W = 100 would have diffusion
errors on the order of 1/24000 at 1 µL/min. Pushing
down to 10 nL/min should therefore only introduce er-
rors on the order of roughly 1/250. Decreasing the chan-
nel width to W = 10 would correspondingly allow one to
reach 1 nL/min with the same errors from diffusion.

An alternative is to use a Taylor-Aris flow-meter with
regular fluorescein. Letting V = 10−4 (corresponding
to 6 nL/min), W = 1, L = A = 10000 (correspond-
ing to a beam-length of 1 cm) gives R < 1, P > 105,
and Peff . 1/40. In this scenario, the Taylor-Aris device
would have diffusion-errors comparable to a advection-
dominated device. Further reducing the flow rate would,
however, improve the accuracy of the Taylor-Aris device
while degrading that of its advection-dominated counter-
part. Thus, there may be an overlap regime where both
devices can be used, which has implications for calibra-
tion; see Sec. VIII B.

VII. EXPERIMENTAL VALIDATION OF THE
THEORY

A. Experimental Methods

1. Photolithography and device fabrication

To test the validity of the scaling approach, we con-
structed optofluidic flowmeters as illustrated, for ex-
ample, in Fig. 1. Figures 3 and 5 show related
devices in operation. These optofluidic flowmeters
were fabricated from master templates by micromold-
ing of poly(dimethylsiloxane) (PDMS) (Sylgard 184, Dow
Corning) using soft lithography methods.[25, 26] Pho-
tolithography was conducted at the Center of Nanoscale
Technology (CNST) at the National Institute of Stan-
dards and Technology (NIST).[27]

Briefly, a 100 mm silicon wafer was coated with 100 µm
thick layer of photoresist (SU-8 2075, Microchem, West
Borough, MA, USA). Topographic patterns were created
in SU8-coated wafers following laser pattern writing (Hei-
delberg Instruments DWL 2000) and development (in
SU8 developer, Microchem). Master wafers were then
derivatized with trichloro-1, 1, 2, 2, perflorocytylsilane

(Sigma-Aldrich, St. Louis, MO, USA) in a vacuum cham-
ber to facilitate release of materials cast on the patterns.
Sylgard 184 elastomer (10:1 base:crosslinker) was poured
over the silicon master wafer and cured overnight at 75
C. A flat piece of PDMS was also cast in a petri dish to
serve as the substrate for the bottom of the microchan-
nels. Prior to bonding, inlet ports were created using a
0.75 mm Harris Micro-Punch. PDMS layers were bonded
together following treatment with oxygen plasma (Plas-
matic Systems Inc, USA). The waveguide channels of the
device were filled with optical adhesive (Norland Optical
Adhesive 88, Norland Products, Cranbury NJ) and de-
gassed. Stripped and cleaved optical fibers (FG105UCA,
Thorlabs, Newton, NJ, USA) were inserted into the ta-
pered ends of the waveguide channel followed by curing
of optical adhesive with a UV lamp. See the companion
paper Ref. 28 for more details on fabrication. See also
Refs. 29 and 30 for related methods.

2. Materials and equipment used during operation

A fiber-coupled diode laser (488 nm-60 mW, Omicron-
Laserage, Rodgau-Dudenhofen Germany) and photode-
tectors (918D-SL-OD2R, Newport Corporation, Irvine,
CA, USA) coupled to a power meter (2936-R, Newport
Corporation) were attached to fibers to deliver and mea-
sure light, respectively, from optofluidic devices. Flu-
orescein (30181, Sigma Aldrich, St. Louis, MO, USA;
F36915, Thermo Fisher Scientific) was mixed in phos-
phate buffered saline (Thermo Fisher Scientific). Volu-
metric flow rates were controlled via gravity on a mo-
torized Z-stage (LTS300, Thorlabs) or a syringe pump
(Pump 11 Pico Plus Elite, Harvard Apparatus, Hollis-
ton, MA, USA) and monitored in series with a calibrated
flow meter (LG16-0150D or LG16-0430D, Sensirion AG,
Staefa ZH, Switzerland) or a microbalance (XE105T
Mettler-Toledo GmbH, Greifensee, Switzerland). The
complete system was controlled via Labview software.
Although not necessary for actual measurements, an op-
tical microscope (Zeiss Axio Zoom.V16) was used to im-
age the fluorescence emission of fluorescein by the optical
waveguides. See the companion paper Ref. 28 for more
details on equipment and operation.

B. Results and Data Analysis

Using the microfluidic devices described above, we re-
alized flow rate measurements for a solution of fluores-
cein, a fluorescent dye that, when stimulated by 488 nm
light, emits 520 nm light. Critically, for our measurement
process, fluorescein is also destroyed when the molecules
receive high dosage of light (either due to high excitation
power or slow velocity through the excitation beam), as
illustrated in Fig. 5. Due to no-slip boundary condition
of pressure driven flow in this device, a parabolic veloc-
ity profile is created across the channel. Molecules on
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FIG. 5. Microscopy images of different flow rates exposed to 488 nm laser light (15 mW). At high flow rates, fluorescein
molecules move through the laser quickly and do not photobleach, thus showing the profile of the excitation light through
the channel (LEFT). As flow rate decreases, light dosage increases and photobleaching becomes evident, particularly near the
channel walls where flow velocity is slowest.

edge of the channel have zero velocity and are quickly
bleached, while molecules at the center of the channel
move the fastest and are bleached further downstream (if
at all). We explored the scaling relationship across differ-
ent dosages by measuring fluorescence efficiency across a
range of excitation powers and flow rates. Namely, ex-
citation laser was stepped from 0 to 15 mW in 5% in-
crements for each flow rates tested between roughly 5
nl/min to 1000 nl/min. A plot of fluorescence efficiency
versus dosage is shown in Fig. 6. As dosage increased, ei-
ther due to increased laser power or decreased flow rate,
more fluorescein molecules photobleached, resulting in a
decreased fluorescence efficiency.

To characterize the accuracy of measurements made
on the basis of the scaling argument, we used 4 datasets
(corresponding to flow rates of roughly 740 nL/min, 612
nL/min, 485 nL/min, and 358 nL/min) to generate a
“master curve” by fitting the data to a convex, piece-
wise linear function; see Fig. 6, as well as Appendix B
for details of the fitting routine. Here the use of a convex
function is motivated by the linear model Eq. (16), as well
as empirically observed properties of the data. Of note,
we set f(p) = p1.174 as determined by the optimization
routine discussed in Appendix B, which is consistent with
the values found in Ref. 17. Importantly, the dosages as
determined via the Sensirion flow meter have 5% relative
error or less at the calibration flow rates, which is consis-
tent with variation of the data about the master curve.
To convert this to uncertainty in flow rates, we observe
that

vv =
f(p)

ξ̄ ± εξ
≈ f(p)

ξ̄

[
1∓ εξ

ξ̄

]
, (30)

where ξ̄ is the expected value of ξ and εξ is a correspond-
ing uncertainty. Notably, Eq. (30) implies that to leading
order, the relative uncertainty in dosage is equal to the
relative uncertainty in the volumetric flow rate. Based
on the theory of Sec. V, we therefore expect a lower limit
on the uncertainty of the scaling measurements to be 5%.

To test this on flow rates below the calibration rates,
we used a gravimetric correction (i.e. based on the height

of the source water column) to provide reference flow
rates, which are accurate to 5% down to 10 nL/min and
10% at 5 nL/min.[28] Next, we used the master curve
and Eq. (25) to measure flow rates using our optofluidic
flowmeter and then computed the relative errors

εrel =
vgrav − vopto

vgrav
, (31)

where vgrav is the gravimetric estimate and vopto is the
optofluidic measurement. See Fig. 7 for results of this
exercise.[31] Remarkably, the optofluidic flowmeter is to
accurate relative to the gravimetric measurements to
within roughly 6 % down to 28 nL/min. Moreover, exam-
ination of the figure shows that the 5 nL/min efficiencies
also fall onto the collapsed data, suggesting that viable
measurements can be performed down to this flow rate.
A more detailed analysis of such measurements and their
corresponding uncertainties is reserved for a forthcoming
manuscript.

VIII. DISCUSSION AND CONCLUSIONS

A. Comparison with other measurement
techniques

1. On model-form errors

It is a general fact that all measurements, no matter
how simple, require an underlying model to convert raw
data into an estimate of the quantity of interest. Thus,
the UQ community has come to recognize that model-
form error – i.e. the discrepancy between a model and
reality – is a fundamental part of any uncertainty bud-
get. With this in mind, one of our main objectives is to
demonstrate that our scaling approach eliminates a large
portion of such uncertainties and thereby improves the
robustness of flow rate measurements. We highlight this
conclusion by way of comparison.

In more detail, consider a generic setting in which: (i)
a model takes the system geometry and/or other param-
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FIG. 6. Example of an experimentally obtained master calibration curve (black) for a flowmeter of the type illustrated in Fig. 1.
Fluorescence efficiency (emission per excitation power) was measured in 5% increments of laser power from 0 mW to 15 mW at
four flow rates (740 nL/min, 610 nL/min, 485 nL/min, 360 nL/min), which were recorded on a height-corrected Sensirion (HCS)
flowmeter with 5% uncertainty. For clarity, horizontal error bars in the data points are not shown, but would span an interval
of ±5 % of the dosage of a given data point. The master curve was generated using the convex optimization routine discussed
in Appendix B. The insets provide a more details on variation in the data, which is a surrogate for uncertainties associated with
the measurement procedure. Top Left: Error in the measured efficiences relative to the master curve (i.e. “vertical residuals”).
Note that the relative errors are bounded by roughly 1 %, consistent with the specifications of the Newport Power Meter. Top
Right: Error in the measured dosages relative to the master curve (i.e. “horizontal residuals”). The error in the data relative
to the curve is on the order of 5 % or less, consistent with the HCS.

eters λ as inputs and determines vv as an output; and (ii)
subsequently uses this flow rate (or the underlying model
solution) to predict the outcome (i.e. raw signal) S of an
idealized measurement. Typically such approaches are
used as the basis for measurement in the same way as
our scaling approach. That is, S has a one-to-one corre-
spondence with vv, but subject to the assumption that the
model exactly describes the experimental setup. Without
loss of generality, we can recast this observation by stat-
ing that vv = vv(λ, S) is a function of both S and the
model parameters λ, where the latter are assumed to be
known exactly.

From a measurement perspective, this joint depen-
dence is problematic insofar as vv gains additional un-
certainties arising from our inability to perfectly know
λ. Moreover, we anticipate that for a fixed method of
characterizing the system dimensions, their correspond-
ing relative uncertainty increases with decreasing system
sizes and can in fact be unbounded.[32] In contrast to the
scaling method, uncertainties in vv can therefore be large,
if not divergent. Ultimately, we attribute this problem to

a breakdown of the assumption that the model describes
the experiment, i.e. that we know λ with any meaningful
certainty.

A simple example illustrates this point. Assume that
for a fixed system geometry, a model computes the
z-component v of the fluid velocity of a steady-state
Poiseuille flow by solving

vxx + vyy = −Pz (32)

where the duct has a square cross-section, Pz is the pres-
sure gradient in the z-direction, and all of the relevant
physical constants have been set to one. For complete-
ness, we also posit a generic boundary condition of the
form B(v) = 0, where B (which has nothing to do with
bleaching in this context) is some function of v and its
derivatives.

Now, typical measurements of the system geometry
(e.g. using microscopy) return the position of the bound-
ary to within some absolute uncertainty, so that we may
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FIG. 7. Master curve shown in Fig. 7, but superimposed on a collection of datasets having flow rates down to roughtly 5
nL/min as measured by the height-corrected Sensirion (HCS). For clarity, horizontal error bars are not shown but would span
5% of the dosage value of each datapoint, with the exception of the 5 nL/min data, for which the error bars would be 10%.
Note that all of the data collapses onto a single curve that is well-described by the master curve at low dosages. As a result,
we can use the measurement procedure described in Sec. III (with f(p) = p1.174) to estimate flow rates down to roughly 28
nL/min. The inset shows the errors in these measurements relative to the HCS, which remarkably agree to within 6 % for all
measurements.

write

0 ≤x, y ≤ a± εa (33)

for some constant a and its associated uncertainty εa. For
our purposes, however, it is more convenient to express
the upper bound in terms of the relative uncertainty

ra = εa/a (34)

which implies x ≤ a(1±ra) and similarly for y. Rescaling
Eq. (32) in terms of the boundary values by defining

x = (1± ra)x̂ (35a)

y = (1± ra)ŷ (35b)

now yields

(v̂x̂x̂ + v̂ŷŷ) = −pz (36a)

0 ≤ x, y ≤ a, (36b)

where v̂ = v/(1±ra)2 is the “true” value of the flow rate.
To understand better how the error ra has propagated

into v, note that setting ra = 0 (for fixed a) corresponds
to an absolute error of zero, i.e. an ideal, accurate solu-
tion. Therefore, taking the ratio v/v̂−1 = ±ra+r2

a shows
that the relative error in the velocity goes as r2

a for large

relative uncertainty. However, this uncertainty grows as
we shrink the system dimensions, so that the model’s abil-
ity to match the experimental setup diminishes with size.
Thus, model-form error eventually dominates the mea-
surement.

In contrast to this, the scaling approach we advocate
remains faithful to the underlying experiment, even as
the system-size decreases. Ultimately this arises from
the fact that the method does not actually need to
know the system size except to within perhaps a fac-
tor of two, or in more illuminating terms, to within 100
% relative error. More generally, the scaling approach
makes fewer and more general assumptions than many
other techniques. That being said, our approach still
suffers from its own unique sources of uncertainty, e.g.
arising from fluorescence intensity measurements. Ar-
guably these signals will decrease in magnitude as system
sizes become smaller, but alternatives exist for address-
ing this problem, e.g. increasing the fluorescein concen-
tration. Nonetheless, a more in-depth comparative study
is needed to assess the relative accuracy of the scaling ap-
proach; we leave such work for an upcoming manuscript.
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2. Practical issues of fabrication and operation

It is noteworthy that Eq. (19) only assumes: (i) a fixed
system geometry, laser profile, and fluorescence detector;
(ii) a Pouiseille flow at reasonable Reynolds number; and
(iii) information about the bleaching rate dependence on
power, i.e. f(p). From a practical standpoint these as-
sumptions impose few requirements on the fabrication
process, which facilitates scalability of the measurement
procedure. Indeed, our initial measurement devices were
cast from PDMS using a process that could easily be
scaled in an industrial setting.

In contrast, methods that invoke detailed models to
measure flow rates (e.g. in the spirit of the previous
section) invariably require accurate characterization of
the device geometry. Notably, non-destructive and fully
three-dimensional characterization (e.g. using tomogra-
phy) may be too expensive for individual commercial
products. It is more likely that such techniques would
rely on “make-it and break-it” characterization of sev-
eral representative devices to inform statistical models
of the device geometry, which contribute to the uncer-
tainty budget as described above. Moreover, non-trivial
geometries would likely require numerical PDE solvers
to predict raw measurement signals corresponding to vv.
Importantly, the scaling approach avoids these fabrica-
tion and operation issues altogether.

Questions of economics aside, the scaling method is
also attractive because it offers the possibility of small-
scale, continuous, and in-situ measurement capabilities,
which are currently an elusive goal in the microfluidics
community. As illustrated in Sec. VII, waveguides needed
to carry the laser-light and fluorescence signals are on
the same length-scale as the microchannel and can be in-
serted into the device in a non-obtrusive manner. Thus,
it is straightforward to incorporate multiple flow-meters
into any given channel at different points along the flow-
path, or even measure flow rates in separate forks of a
channel. The corresponding fluorescence signals are like-
wise straightforward to measure using commercial (and
relatively inexpensive) power meters. Notably, this level
of simplicity should facilitate automation of measure-
ments.

B. Bootstrapping device calibration

Back-of-the-envelope calculations and experimental re-
sults indicate that any given device may have a domain of
validity encompassing at least two orders of magnitude
in flow rates. The exception to this is the postulated
Taylor-Aris device, which does not have a theoretical
lower-bound on flow rate, although practical consider-
ations will likely enforce one.

With this in mind, we recognize that the domain-
of-validity of a given device can be extended through
a “serial-bootstrap” fabrication. In particular, we can
imagine N flow-meters in series with one another along a

channel that discretely decreases in width between each
meter. This can be done in such a way that the domains
of validity of any adjacent meters partially overlap, but
with each downstream meter able to measure lower flow
rates. The overlap in measurement capabilities means
that the first meter can be used to calibrate the second,
which can be used to calibrate the third, and so on. A
benefit of this approach is that we can obtain two sepa-
rate (but not completely independent) measurements of
a flow rate when it falls into the domains-of-validity of
two adjacent meters. Given that microfluidic channels
can foul and otherwise be degraded, this redundancy al-
lows a certain degree of diagnostic capability to assess
the status of a given measurement device.

C. Limitations and open problems

As suggested throughout, a key limitation of the scal-
ing approach is the requirement that the system be in
a advection-dominated or Taylor-Aris regime. While we
have demonstrated that such devices can in fact be con-
structed, there are several additional assumptions that
may be problematic.

In particular, the analysis assumes that the system ge-
ometry is independent of the flow rate. For small changes
around vr, this assumption is likely valid. However, chan-
nels made from flexible, polymeric materials may deform
under higher pressures needed to reach fast flow rates.
Thus, consideration should be given to the operating
regimes and elastic modulus of the materials to ensure
that such issues do not affect measurements.

A somewhat prominent assumption of our model is the
requirement that Ik,s be scaled by p in order to deter-
mine the measurement signal I. Physically, we expect
the linear approximation to be valid for dilute solutions
of fluorescein, since the majority of the light is likely to
pass through the fluid. In other words, we anticipate that
only an infinitesimal number of photons are absorbed, so
that an increase in p should yield a proportional increase
in fluorescence. Mathematically this assumption can be
relaxed by postulating that

Is =

∫
drh(p)F (c, r), (37)

where h(p) is some monotone function in the laser power,
which leads to a modified definition I = Is/h(p). Thus,
the choice of h(p) becomes a modeling assumption that
must be validated against experimental data. To the
best of our understanding, model-form error associated
with this choice cannot be eliminated without more in-
formation about the physics of photobleaching and fluo-
rescence.

Lastly, we recognize that some microfluidic settings
require measurements of vv in systems with unsteady
and/or variable flow rates. While the steady-state as-
sumption would seem to exclude our approach in such
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cases, further specification of what we mean by “vari-
able” is necessary. In particular, upon changing the flow
rate there is some characteristic time over which the fluo-
rescence signal reverts to its steady-state value. Provided
the rate of change of the flow rate is slow relative to this
characteristic time, our method is likely applicable. How-
ever, further exploration of this topic is beyond the scope
of this work and is reserved for a future manuscript.

Acknowledgements: The authors wish to thank Drs.
Ryan Evans, John Wright, Charles Romine, and Geof-
frey McFadden for useful discussions during the prepara-
tion of this manuscript. We also thank Steve Meek and
James Hands for help with device fabrication. This work
is a contribution of the National Institute of Standards
and Technology, and as such, is not subject to copyright
in the United States of America.

Appendix A: Monotonicity Lemma

Consider the differential equation

dc

dz
= −g(ξ)B(c, z), (A1)

where

• ξ > 0;

• 0 < B(c, z) < M for c > 0 and 0 ≤ z ≤ zmax for
some maximum value of z and M <∞;

• B(0, z) = 0;

• g(ξ) > 0 is strongly monotone in ξ.

• B(c, z) is continuous and differentiable in c and z;

• and c(0) = c0 for some constant c0 > 0 and all ξ.

We show that for fixed z > 0, c is strictly monotone
decreasing in ξ.

Proof by contradiction: The hypotheses above im-
ply that there exists a unique solution c to Eq. (A1);
moreover, this c is continuous and has a continuous
derivative.[21] With this in mind, it is obvious that c
is a monotone decreasing function of z. Moreover, it is
clear that for a fixed z, c can be parameterized in terms
of ξ. Finally, note that c > 0 for all z > 0, since B is
positive and bounded, but also vanishes as c→ 0.

Now, let c1 be the solution corresponding to ξ1 and c2
the solution corresponding to ξ2. Let ξ1 > ξ2 and recall
that c1(z) = c2(z) = c0 for z = 0. Note therefore that
the difference

d(c1 − c2)

dz

∣∣∣∣∣
z=0

= [g(ξ2)− g(ξ1)]B(c0, 0) < 0 (A2)

by monotonicity of g. Moreover, c1 − c2 is continuous
and has a continuous derivative. Thus, there exists a δ
such that

d(c1 − c2)

dz
< 0 (A3)

for all z ∈ [0, δ]. Integrating, we find that c1 − c2 < 0 for
all z ∈ (0, δ]. Thus, there exists some finite domain over
which c1 < c2.

Now, two possibilities exist. Either c1 < c2 for all z > 0
or there is some first point z0 > δ such that c1(z0) =
c2(z0). In the former case, we have the required condition
that c is monotone decreasing in ξ for fixed z. So we only
consider the second case.

If z0 is the first point for which c1 = c2 (aside from
z = 0), then we have again that

d(c1 − c2)

dz

∣∣∣∣∣
z=z0

< 0 (A4)

since B(c1, z0) = B(c2, z0). Again by continuity of c and

its derivative, there exists some δ0 such that d(c1−c2)
dz <

0 for all x ∈ [z0 − δ0, z0]. Since c1(z0 − δ0) − c2(z0 −
δ0) < 0 by assumption, integrating from z0 − δ0 to z0

yields the conclusion that c1(z0) − c2(z0) < 0, which is
a contradiction. Thus, c1 does not intersect c2 at any
z > 0.

Appendix B: Convex Reconstructions of the Master
Curve

Without any detailed knowledge of the system geom-
etry or laser profile, it is impossible to predict the exact
functional form of the fluorescence efficiency. However,
Eq. (16) and Fig. 6 have the general property of being
convex, which, loosely speaking, means that the second
derivative of I(ξ) is non-negative. With this in mind,
we can generate an analytical representation of master
curve in terms of the solution to a convex optimization
problem.

Specifically, let (ξi, Ii) denote an ordered pair of dosage
and efficiency values associated with the ith experiment,
and assume that we have N such pairs (i.e. 1 ≤ i ≤ N).
We posit that the Ii have some errors relative to a true
value Îi, which we wish to estimate. Importantly, we
postulate that these Îi all lie on a convex function Î(ξ)
that interpolates the available data.

Now, in general there is no unique convex function that
fits a set of data by minimizing an objective function
such as the sum-of-squared-differences.[33] However, the

piecewise linear function that interpolates the Îi is an
upper bound on all such convex functions. Moreover,
in the case of a dense grid of dosages ξi, the variation
between all such curves is negligible. From a practical
standpoint, it is therefore sufficient to solve the quadratic
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programming problem that minimizes the objective

L =
1

2
Î

T
I Î − 2Î

T
I (B1a)

AÎ ≥ 0 (B1b)

as a function of Î, where I is the N ×N identity matrix,
IT = (I1, I2, ..., IN ), etc. Here A is a matrix having
rows that correspond to second-order finite differences.
Of note, when the dosages ξi are not uniformly spaced
(as is the case with our data), the jth row of A has
elements that solve the linear system

Aj,j−1 +Aj,j +Aj,j+1 = 0 (B2a)

Aj,j−1(ξj−1 − ξj) +Aj,j+1(ξj+1 − ξj) = 0 (B2b)

Aj,j−1(ξj−1 − ξj)2 +Aj,j+1(ξj+1 − ξj)2 = 1, (B2c)

which is valid for 1 < j < N and comes from the require-
ment that AI be a “central” second-order finite differ-
ence of I on the nonuniform grid of ξ. For j = 1 and
j = N , analogous linear systems can be derived for non-
central finite differences to determine the corresponding
matrix elements. This task is left as an exercise for the
reader.

To determine the functional form of f(p), we refor-
mulate the optimization by allowing ξi = f(pi)/vi for
some function f parameterized in terms of unknown co-
efficients (vi are the corresponding flow rates). In our
case, we set f(p) = pq for an unknown power q and mini-

mize the objective L(Î, q) as a function of the efficiencies
and q.
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