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The construction of large-scale quantum computers will require modular architectures that allow physical
resources to be localized in easy-to-manage packages. In this work we examine the impact of different graph
structures on the preparation of entangled states. We begin by explaining a formal framework, the hierarchical
product, in which modular graphs can be easily constructed. This framework naturally leads us to suggest a
class of graphs, which we dub hierarchies. We argue that such graphs have favorable properties for quantum
information processing, such as a small diameter and small total edge weight, and use the concept of Pareto
efficiency to identify promising quantum graph architectures. We present numerical and analytical results on the
speed at which large entangled states can be created on nearest-neighbor grids and hierarchy graphs. We also
present a scheme for performing circuit placement—the translation from circuit diagrams to machine qubits—on
quantum systems whose connectivity is described by hierarchies.
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I. INTRODUCTION

As quantum computers grow from the small, few-qubit
machines currently deployed to the large machines required
to realize useful, fault-tolerant computations, it will become
increasingly difficult for every physical qubit to be part of a
single contiguous piece of hardware. Just as modern classical
computers do not rely on a single unit of processing and mem-
ory, instead using various components such as CPUs, GPUs,
and RAM, we expect that a quantum computer will likewise
use specialized modules to perform different functions. At a
higher level, computers can be organized into clusters, data
centers, and cloud services which allow for a distributed
approach to computational tasks, another paradigm quantum
computers will no doubt emulate. Already there has been
significant interest in how quantum algorithms for elementary
operations such as arithmetic perform in distributed-memory
situations [1,2] and how to automate the design of quantum
computer architectures [3]. In addition, the construction of a
fault-tolerant quantum computer naturally suggests a separa-
tion of physical qubits into groups corresponding to logical
qubits, which makes modularity an attractive framework for
building fault-tolerant computers [4]. Modular and scalable
computing architectures have been explored for both ion trap
[5,6] and superconducting platforms [7–9].

In this paper we use tools from graph theory to discuss
benefits and drawbacks of different potential architectures for
a modular quantum computer. A graph-theoretic approach
allows us to flexibly examine a wide range of possible
arrangements quantitatively and allows for convenient
numerical simulation using existing software packages
designed for network analysis [10]. We especially wish to
focus on families of graphs that can scale with the desired
number of qubits. In general, we assume that connectivity,
i.e., being able to quickly perform operations between nodes,

is desirable in an architecture, but that building additional
graph edges is in some way costly or difficult, and so will try
to minimize the number of needed edges to achieve a highly
communicative graph.

We will make use of a previously described graph-theoretic
binary operation known as the hierarchical product [11,12].
We will use this iteratively to describe a new family of graphs
we dub “hierarchies.” We will show that hierarchies perform
well by many commonsense graph metrics and argue that
they would serve as a plausible and efficient basis for a quan-
tum computing architecture. Furthermore, we will demon-
strate that these graphs allow for easily implemented heuristic
procedures to assist in the compilation of quantum algorithms.

We will examine the performance of graphs in generating
large entangled states such as the multiqubit Greenberger-
Horne-Zeilinger (GHZ) state (also known as a cat state).
The GHZ state has perfect quantum correlations between
different qubits; it thus can be used to perform high-precision
metrology [13,14]. In addition, the creation of a GHZ state
can be used as part of a state-transfer protocol, which may be
useful as part of large quantum computations [15].

An additional property of GHZ state preparation and state
transfer which makes them a useful starting point is that, in
nearest-neighbor connected systems, performing these tasks
using unitary processes from an initial product state is limited
by the Lieb-Robinson bound [16,17]. It takes a time propor-
tional to the distance between two points to establish maximal
quantum correlation between them. By examining these tasks
on a range of different graphs, we hope to understand how
the graph structure can affect the limitations on quantum
processes caused by locality considerations. Prior work has
characterized the difficulty of creating graph states [18], but
preparation of such states is not limited by Lieb-Robinson
considerations.
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Our work in this paper should be contrasted with work
on entanglement percolation [19,20]. Entanglement percola-
tion describes the process of using low-quality entanglement
between adjacent nodes on a graph to create one unit of
long-range, high-quality entanglement (e.g., a Bell pair). The
use of entanglement percolation to prepare large cluster states
on a lattice was considered in Ref. [21]. The nature of en-
tanglement growth in complex networks was considered in
Refs. [22,23], showing that so-called “scale-free” networks
are particularly easy to produce large entangled states in.
We are interested in the overall capability of different graph
structures to perform large computations and in the use of
graph eigenvalue methods to understand the spread of quan-
tum information [24]. GHZ state preparation and state transfer
are just two possible benchmark tasks, and it is possible that
other tasks would result in different evaluations of relative
performance between graphs.

Our work should also be considered in the context of clas-
sical network theory, where much is known about complicated
graph structures [25–27]. It remains to be seen to what degree
classical network theory can be easily exported to the quantum
domain. Quantum effects such as the no-cloning theorem may
limit our ability to distribute information, or conversely we
can take advantage of teleportation by distributing quantum
bandwidth in anticipation of it actually being needed. As
further examples of how quantum and classical networks
differ, it has been shown that entanglement swapping may
be used to permit quantum networks to reshape themselves
into interesting and useful topologies [28]. It has also been
shown that, in general, the optimal strategy for entanglement
generation in quantum networks can be difficult to calcu-
late because many aspects of classical control theory do not
apply [29].

The structure of this paper is as follows. In Sec. II we will
introduce a binary operation on graphs known as the hierarchi-
cal product, describe how it can be used to produce families of
graphs we call hierarchies, and discuss the properties of these
hierarchies. In Sec. III we will compare hierarchies to other
families of graphs, examining how certain graph-theoretic
quantities scale with the total number of included qubits.
Readers who are not interested in graph theoretic details may
wish to skip much of these first two sections. In Sec. IV we
will use analytic and numerical methods to examine how long
is required to construct GHZ states spanning our graphs or
to transfer states across them, using Lieb-Robinson bounds
to connect graph-theoretic quantities to bounds on quantum
computing performance. Finally, in Sec. V we will show
how the unique structure of hierarchies allows for simple
heuristics to map qubits in an algorithm into physical locations
in hardware.

II. HIERARCHICAL PRODUCTS OF GRAPHS

A. Background and notation

One of the defining features of modularity in a network
is the presence of clusters of nodes that are well connected.
Qualitatively, a modular network can be partitioned into such
node clusters, or modules, that have a sparse interconnectivity.
In quantum networking, it is believed that fully connected

architectures will suffer greatly decreasing performance or
increasing costs as the number of nodes becomes larger, and
this motivates the search for alternative network designs. For
instance, Ref. [30] estimates that a single module of trapped-
ion qubits will likely contain no more than 10 to 100 ions,
noting that the speed at which gates are possible becomes
slower as the module is expanded. On the network scale,
we might imagine a network of nodes over longer distances
connected by quantum repeaters [31]. In such a network,
establishing direct links between every possible pair of N

nodes would require �(N2) sets of quantum repeaters, a
prohibitive cost as N becomes large.

The state of the art in quantum technologies, such as ion
traps and superconducting qubits, is the ability to control
a small number (≈10–100) of physical qubits using certain
fixed sets of one- and two-qubit operations. Instead of increas-
ing the size of these modules, one could instead build a net-
work out of many small modules that are connected at a higher
level in a sparse way, perhaps by optical communication links
[30].

Our first goal will be to describe modular architectures
in the language of graph theory. This will then allow us to
quantify and compare their connectivity properties against
other network designs, notably the nearest-neighbor grid ar-
chitecture.

Our detour into graph theory in this paper serves two
purposes. First, it will allow us to develop a rigorous way
to construct families of graphs which we believe are promis-
ing quantum computing architectures. Second, we will later
(beginning in Sec. IV) use these graph properties to connect
directly to physical bounds on the generation of states with
long-range quantum correlations; phrasing the properties of
quantum architectures as graphs allows us to make a direct
application of the Lieb-Robinson bound to these cases.

An unweighted graph G = (V,E) is conventionally spec-
ified by a set of vertices V and a set of edges between the
vertices E, where an edge between distinct vertices i and
j will be denoted by the pair (i, j ). In this paper, we use
the terms “vertex” and “node” synonymously. The order of
a graph is the total number of vertices in the graph |V |. It
will be useful for the purposes of this paper to work with
weighted graphs, where we specify a weight wij ∈ R for each
pair of vertices (i, j ) ∈ V × V . Two vertices i and j are said
to be disconnected if wij = 0, and connected by an edge with
weight wij �= 0 otherwise. Thus, unweighted graphs may be
thought of as graphs with unit weight on every edge.

Finally, the graphs we consider here will be simple,
meaning:

(i) The edges have no notion of direction. In other words,
wij = wji for all i, j ∈ V .

(ii) There are no self-edges, i.e., wii = 0 for all i ∈ V .
(iii) Any two vertices have at most one edge between

them.
Henceforth, graphs will be simple and weighted, unless

otherwise specified.
The information contained in a graph can be represented

as a matrix known as the adjacency matrix, whose rows and
columns are labeled by the vertices in V and whose entries
hold edge weights. Thus, the adjacency matrix is an n × n

matrix where |V | = n. The adjacency matrix AG (or simply
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A for shorthand) for a graph G is given by

Aij =
{

0, if i = j,

wij , if i �= j.
(1)

An important measure of local connectivity is given by the
valency vi of a node i, with vi = ∑n

j=1 wij . For unweighted
graphs, the valency of any node is simply the number of edges
incident at that node, otherwise known as the degree of the
node. We will also define the graph diameter δ(G) as the
maximization of the shortest distance between two nodes on
the graph over all pairs of nodes.

Graphs may also be described by the Laplacian. The
algebraic Laplacian L is given by

Lij =
{
vi, if i = j,

−wij , if i �= j.
(2)

The algebraic Laplacian is closely related to the adja-
cency matrix, since we may write L = � − A, where � =
diag(v1, . . . , vn) is the diagonal matrix of vertex valencies.
The eigenvalues of the algebraic Laplacian give us bounds on
various graph properties, as discussed further in Sec. II B 4.

Finally, we remark that the algebraic Laplacian should
not be confused with the normalized Laplacian L =
�−1/2L�−1/2, which is frequently seen in the network theory
literature. The algebraic properties discussed in the next sec-
tion (such as associativity of the hierarchical product) apply
to the adjacency matrix as well as the algebraic Laplacian, but
not to the normalized Laplacian.

B. Hierarchical product

Here we will define the hierarchical product and illustrate
it with simple examples. For a fuller exposition, see Ref. [11],
where the hierarchical product of graphs was introduced. Note
that, in some contexts, the hierarchical product is also known
as the rooted product [12].

Given a graph G, let 1G denote the identity matrix on n =
|V | vertices. We will denote by DG an n × n diagonal matrix
with 1 as the first entry and zero everywhere else. Note that
there is no natural notion of order to graph vertices, so the
choice of “first” vertex must be specified explicitly. Graphs
with such a specified first vertex are called rooted graphs [32].
We write these matrices as

1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

1

1

. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎠

, D =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0

0

. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(3)

Definition II.1: Given graphs G and H , the hierarchical
product P = G � H is the graph on vertices VP = VG × VH

and edges EP ⊆ VP × VP specified by the adjacency matrix

AP = AG ⊗ DH + 1G ⊗ AH, (4)

or, equivalently, by the algebraic Laplacian

LP = LG ⊗ DH + 1G ⊗ LH . (5)

FIG. 1. A simple example of the hierarchical product G � H

between the cycle graphs G = C4 and H = C3. The first term in
Eq. (4), AG ⊗ DH , creates one copy of G on the vertex set formed
by the first vertices of each H copy, while the second term 1G ⊗ AH

creates the four copies of H .

We will often use the shorthand AP = AG � AH and LP =
LG � LH .

If G and H are graphs, then G � H may be thought of
as one copy of G with |G| copies of H , each attached to a
different vertex of G (see Fig. 1). Thus, G � H is a graph
which has |G| modules of |H | nodes each. The modules’
internal connectivity is described by H , and the modules are
connected to one another in a manner described by G. The
hierarchical product formalism therefore naturally produces
modular graphs. Its main advantage comes from the conve-
nience of working with the algebra at the level of adjacency
matrices and Laplacians, which in turn makes the computation
of important properties of such graphs straightforward.

We now present some properties of the hierarchical product
which make it an attractive formalism for practical applica-
tions in quantum networking.

1. Structural properties

At the level of adjacency matrices, the hierarchical product
is associative. Let A,B,C be three adjacency matrices. Then,

(A � B ) � C = A � (B � C). (6)

For a proof, we refer the reader to Ref. [11].
Associativity implies that a product of multiple graphs does

not depend on the order of evaluation. Therefore, we can un-
ambiguously take the hierarchical product over many graphs
to produce a graph of the form Gk � Gk−1 � · · · � G1. We
will refer to such graphs as hierarchies, and the ith graph in
the product Gi as the ith level of the hierarchy, enumerated
from the bottom level upwards (symbolically, from right to
left). In particular, if all Gi are equal to some graph G, then
we write

G�k := G � · · · G�︸ ︷︷ ︸
k−1 times

G. (7)

and refer to G�k as a depth-k (or k-level) hierarchy.
Note that the hierarchical product does not satisfy many

properties which are commonly assumed for operations on
matrices. In particular,

(1) Bilinearity: (A1 + A2) � B=A1⊗DB+A2 ⊗ DB+
1(A1+A2 ) ⊗ B �= A1 � B + A2 � B. Similarly, A � (B1 +
B2) �= A � B1 + A � B2.
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(2) Scalar multiplication: For any scalar α, (αA) � B =
αA ⊗ DB + 1A ⊗ B �= α(A � B ) �= A � (αB ). Note how-
ever that scalar multiplication is distributive in the following
way: α(A � B ) = (αA) � (αB ).

Hierarchical graphs are also instances of hyperbolic
graphs. The Gromov hyperbolicity [33], which measures cur-
vature and is small for a graph with large negative curvature,
is only a constant for hierarchical graphs. Since the hyperbol-
icity in general is at most half the graph diameter, whereas
in this case it is independent of the diameter, it is termed
constantly hyperbolic in the parlance of Ref. [34]. Hyper-
bolic graphs are seen in several real-world complex networks
[35,36], most notably the internet [37,38]. Hyperbolic lattices
have also been realized recently in superconducting circuits
[39].

Finally, hierarchies have low tree, clique, and rank widths,
which are each measures of the decomposibility of a graph
[40]. These structural properties imply efficient algorithms for
optimization problems expressible in monadic second-order
(MSO) logic—a class which, for arbitrary graphs, includes
several NP-hard problems. This feature could potentially be
used to solve circuit layout and optimization problems on
modular architectures without resorting to heuristics. We refer
the reader to Ref. [41] for details on these structural results.

2. Scalability

So far we have discussed hierarchies in which the edges in
different levels of the hierarchy are equally weighted. How-
ever, one useful generalization would be to allow the weight
of edges at each layer of the hierarchy to vary. The meaning
of this weight could vary depending on the context. In some
cases, weights can be used to quantify the costs of an edge
(cost weight). In others, we may wish to use weighted edges to
quantify the power or performance of a network, interpreting
edge weights as the strength of terms in a Hamiltonian or,
inversely, the time required to communicate between nodes
(time weight).

In this work we prefer to remain agnostic to the meaning of
the weights as much as is possible. When we calculate graph
properties in Sec. III, we will do so without reference to the
meaning of the weights. In general, we will allow a graph
to assign multiple kinds of weights to its edges, and each
type of weight might scale differently. For now, we define a
generalization of the hierarchical product which will allow us
to construct hierarchies that incorporate different weights at
different levels of the hierarchy.

Definition II.2: Given graphs G and H , and α ∈ R+, the
α-weighted hierarchical product P = G �α H is a graph on
vertices VP = VG × VH and edges EP ⊆ VP × VP specified
by the adjacency matrix

AP = αAG ⊗ DH + 1G ⊗ AH , (8)

or, equivalently, by the algebraic Laplacian

LP = αLG ⊗ DH + 1G ⊗ LH . (9)

We will often use the shorthand AP = AG �α AH , and LP =
LG �α LH .

As before, we may construct a k-level, weighted hierarchy
out of k base graphs G1, . . . ,Gk , and k weights αi, . . . , αk ≡

�α, so that the edges of the ith level graph Gi are weighted by
the ith component of �α, αi . The adjacency matrix of such a
hierarchy may be written as

A��αk :=
k∑

i=1

αi1[i+1. .k] ⊗ Ai ⊗ D[1. .i−1], (10)

where the subscripts [a . . b] on 1 and D are shorthand for the
Kronecker product of matrices over all descending indices in
the integer interval [a . . b]. For instance, D[1. .i−1] := DGi−1 ⊗
DGi−2 ⊗ · · · ⊗ DG1 .

Defined as above, a weighted hierarchy G��αk is uniquely
and efficiently specified by a real vector of weights �α ∈ Rk

+
and an ordered tuple of graphs (G1, . . . ,Gk ). It will be the
case that our analyses are unaffected by an overall scaling
of the weight vector, so that one may identify �α ≡ c�α for
any real scalar c. As convention, we will always normalize
by setting α1 = 1, which corresponds to assigning a unit-
weight multiplicative factor to the lowest-level graphs in the
hierarchy.

We can construct the adjacency matrix of the graph G��αk

by repeated application of the twofold product (Def. II.2)
in some well-defined way, analogous to Eq. (7). However,
unlike before, the weighted product is nonassociative, so we
must first define an order of operations for manifold weighted
products. Unless otherwise specified, we will always evaluate
a manifold product from right to left, which corresponds to
building the hierarchies from the bottom up, and is required
in order to ensure that this definition matches Eq. (10). For
example, in the threefold product A3 �α3 A2 �α2 (α1A1), we
will first evaluate the product A2 �α2 (α1A1), and then take
the product of A3, weighted by α3, with the resulting graph.
The final result is

α3A3 ⊗ D2 ⊗ D1 + α213 ⊗ A2 ⊗ D1 + α113 ⊗ 12 ⊗ A1.

(11)

In fact, a k-fold product, when evaluated this way, matches the
right-hand side of Eq. (10). Therefore, the k-level weighted
hierarchy can also be written unambiguously as

A��αk = Ak �αk
Ak−1 �αk−1 · · · �α2 (α1A1). (12)

Henceforth, the weight α1, which scales the lowest-level
adjacency matrix A1, will be dropped due to our normalization
choice of α1 = 1.

An important class of hierarchy graphs is one where the
level weights follow a geometric progression of weights, i.e.,
αi = αi−1. We will denote such hierarchies by G�αk , where
the scalar subscript α will be understood to mean the mutual
weighting between successive hierarchies. For α > 1, this
leads to a “fat tree” structure, while for α < 1, we instead
get a “skinny tree” for which the edge weights decrease
between consecutive levels from the leaves to the root. These
constructions are illustrated in Fig. 2, and mentioned because
fat trees are known to be a commonly used architecture in
classical networks [42].

Allowing a clear separation of the modular system into
hierarchical levels, each of which can be assigned unique edge
weight, enables straightforward discussion of computation
that occurs both within and between modules in a unified
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(a) (b)

FIG. 2. An illustration of the use of the hierarchical product to
produce (a) skinny and (b) fat trees. In each case, the hierarchy K

�α3
3

is drawn, with the thickness of edges illustrating the weight of those
edges. Depending on whether α < 1 or α > 1, this can lead to either
lower-weighted high-level edges as in (a) or higher-weighted ones as
in (b). Note that, for ease of visualization, here we break the usual
convention of taking the lowest-level edges as unit weight.

framework. When two nodes interact, we can assign this a
cost that depends on the edges between them.

3. Node addressal

A hierarchy on N nodes gives a natural labeling of the
nodes. Suppose the hierarchy H contains k levels and each
level is described by a graph G with |G| = n nodes, where
nk = N . Label the vertices of G by indices j = 0, 1, . . . , n −
1. Then, the adjacency matrix 1G ⊗ G (which corresponds to
n disjoint copies of G) has vertices which may be labeled as
(jk), where j, k = 0, 1, . . . , n − 1. The first label identifies
which copy of G the node occurs in, while the second identi-
fies where in G it appears. The same vertex labeling can then
be used for the two-level hierarchy G � G. In this manner,
the k-level hierarchy has nk vertices with labels of the form
(b1b2 · · · bk ), where bi ∈ {0, 1, . . . , n − 1} for all i. This is
essentially a k-digit, base-n representation of numbers from
0 to N = nk − 1, as illustrated in Fig. 3.

This node addressal scheme allows for each node to be
uniquely identified in a way that simultaneously describes
its connectivity to other nodes and allows for easy counting
of how many nodes lie in either the entire graph or in par-
ticular subgraphs. This addressal scheme will be important
for describing a variant of hierarchies in Sec. II B 5 and for
implementing the graphs in software, e.g., as used to generate
the numerical results in Sec. IV C.

4. Spectral properties

One of the tools frequently used in analyzing large net-
works is the spectral decomposition of the Laplacian. The
behavior of the largest eigenvalue, the first eigenvalue gap, and
the distribution of eigenvalues as a function of the network
parameters are some of the diagnostics that can provide key
information about dynamical processes on the network, and
can also be used as points of comparison between competing
network topologies [43].

The smallest eigenvalue of a Laplacian is always λ1 =
0, which corresponds to the uniform eigenvector �e1 =
(1, 1, . . . , 1). In ascending order, the eigenvalues of L may
be denoted by 0 = λ1 � λ2 � · · · � λN . We now state some

0

1 2
0

1 2
0

1 2
(122)

FIG. 3. Addressing nodes in the hierarchy, layer by layer. Shown
is a three-level hierarchy with the triangle graph K3 as its base. Each
vertex is represented as a three-digit number in base 3. The first digit
points to a node at the top level (red solid triangle), the second to a
location in the second level (blue dashed triangle), and finally, the last
digit (yellow dotted triangle) specifies the node location completely.

graph properties that can be related to the spectrum of L

[43,44].
The second eigenvalue λ2 is known as the algebraic con-

nectivity of the graph and is closely related to the expansion
and connectivity properties of the graph. Broadly, the larger
the value of λ2, the better the connectivity of the network. To
illustrate this point, consider the graph diameter δ(H ) which
can be bounded using λ2 as follows:

4

Nλ2
� δ(H ) � 2

⌈
� + λ2

4λ2
ln (N − 1)

⌉
, (13)

where � is the maximum degree of H . It can be seen that
a larger value for λ2 will lead to a smaller graph diameter.
We also have the following asymptotic bound on the mean
distance between nodes ρ̄(H ):

2

(N − 1)λ2(H )
+ 1

2
� ρ̄(H ) �

⌈
� + λ2

4λ2
ln (N − 1)

⌉
. (14)

Another important diagnostic of a network is given by the
Cheeger constant h(H ) [45], also called the isoperimetric
number or the graph conductance. This graph invariant is a
measure of how difficult the graph is to disconnect by cutting
edges. For a connected graph, this number is always positive.
As benchmark values, the complete graph KN has Cheeger
constant N/2 while a cycle graph CN has Cheeger constant
4/N . The relationship between λ2 and h(H ) can be seen
through the following bounds:

λ2

2
� h(H ) �

√
λ2(2� − λ2). (15)

Many other graph properties may be derived from the Lapla-
cian spectrum as well (see, e.g., Refs. [43,44]).
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For a large network, finding the eigenvalues can be numeri-
cally expensive. However, hierarchies have a special structure
which can be exploited for the evaluation of graph spectra.
Here we show (in Theorem II.1) that if the spectra of the base
graphs Li are known, then one can derive the spectrum of
the k-level hierarchy efficiently using a recursive procedure.
We first present two lemmas. The first lemma generalizes
Theorem 3.10 from Ref. [11], which states that the charac-
teristic polynomial φP (x) (= det [x1 − P ]) of an unweighted
hierarchical product of adjacency matrices A, B is given by

φP (x) = φB ′ (x)nAφA

(
φB (x)

φB ′ (x)

)
, (16)

where A′ (B ′) is the matrix A (B) with the first row and first
column removed, and nA = |GA| is the order of the graph A.
In fact, Eq. (16) applies to Laplacians as well as adjacency
matrices. The lemma below further generalizes this statement
to a weighted product of Laplacians.

Lemma II.1: Let K and L be two graph Laplacians with
characteristic polynomials given by φK (x) and φL(x), re-
spectively. Then, the characteristic polynomial φ�(x) of the
hierarchical product K �α L is given by

φ�(x) = [αφL′ (x)]nK φK

(
1

α

φL(x)

φL′ (x)

)
, (17)

where nk = dim {K}, and L′ is defined similar to A′ and B ′
above.

Proof. Denote the spectra of K and L by {κj } and {λj },
respectively. Recall that the α-weighted hierarchical product
may be written as

K �α L = αK ⊗ DL + 1K ⊗ L. (18)

If UK is a unitary that diagonalizes K , we conjugate the above
equation with the unitary UK ⊗ 1L, and look at the resulting
block matrix. Each block corresponds to an eigenvalue of
K , and thus the j th block is given by ακjDL + L. The full
spectrum may then be expressed as a disjoint union of the
block spectra,

spec(K �α L) =
|K|⊔
j=1

spec(ακjDL + L). (19)

Now we apply Eq. (16) to K �α L ≡ (αK ) � L and use
the fact that φαK (x) = det [x1 − αK] = αnK det [ x

α
1 − K] ≡

αnK φK ( x
α

). This yields Eq. (17), as desired.
Now we show that if the eigenvalues of K and the poly-

nomials φL and φL′ are known, then there is a straightforward
procedure to compute the eigenvalues of K �α L. �

Lemma II.2: Let K and L be graph Laplacians, as before.
Each eigenvalue of the product characteristic polynomial φ�

can be found as a solution of the equation

ακi = φL(x)

φL′ (x)
(20)

for some K-eigenvalue κi .
Proof. Any eigenvalue of the product graph must be a

zero of the left-hand side of Eq. (17) and, by equality, a
zero of the right-hand side. Now the degree of polynomial
φK is nK , which implies that the term of degree nK must

be nonzero. Thus, in the product φL′ (x)nK φK ( 1
α

φL(x)
φL′ (x) ), there

must be a term which is indivisible by the polynomial φL′ (x).
Therefore, the zero of the right-hand side cannot be a root of
the polynomial φL′ .

We are seeking values of x such that the polynomial
φK ( 1

α

φL(x)
φL′ (x) ) evaluates to zero. In other words, we are looking

for x such that the term 1
α

φL(x)
φL′ (x) is a root of φK . Therefore, we

solve Eq. (20) for x, for all roots κi of K . �
If the forms of φL and φL′ are known (and if each have suf-

ficiently low degree), then computing the roots of φ� becomes
tractable, even if K is a large matrix. This suggests a recursive
procedure for computing the spectrum of a k-level hierarchy,
by writing it as a product of the (k − 1)-level hierarchy with
the kth base graph. We now frame this as our main result of
this section:

Theorem II.1: Suppose we have a k-level hierarchy L��αk

described by base graph Laplacians L1, L2, . . . , Lk and
weights �α = (1, α2, . . . , αk ) as follows:

L��αk = Lk �αk
Lk−1 �αk−1 · · · �α3 L2 �α2 L1. (21)

Define a new set of weights �β = (1, β2, . . . , βk ) with βi =
αi/αi−1, and a new set of Laplacians Mk,Mk−1, . . . ,M1

recursively as

Mk = Lk,

Mi = Mi+1 �βi+1 Li.

Then, the following hold:
(1) M1 = L��αk .
(2) Any eigenvalue of Mi (for i < k) may be found as a

solution to the equation

βi+1μ
(i+1) = φLi

(x)

φL′
i
(x)

(22)

for some μ(i+1) ∈ spec{Mi+1}.
Proof. First, we prove statement 1. It can be seen that

Mk−1 = Mk �βk
Lk−1 = Lk �βk

Lk−1

= 1

αk−1
(αkLk ⊗ Dk−1 + αk−11k ⊗ Lk−1), (23)

Mk−2 = Mk−1 �βk−1 Lk−2

= 1

αk−2
(αkLk ⊗ Dk−1 ⊗ Dk−2 + αk−11k ⊗ Lk−1

⊗ Dk−2 + αk−21k−1 ⊗ 1k−2 ⊗ Lk−2), (24)

and so on, until we have an �α-weighted sum over all k of the
base graphs (with an overall denominator of α1 = 1), which is
precisely L��αk .

The proof of statement 2 follows as a direct consequence
of Lemma II.2, with K = Mi+1, L = Li, and α = βi+1. �

Theorem II.1 provides an algorithm to compute the spec-
trum of L��αk , namely:

(1) Compute the relative weight vector �β from �α.
(2) Start with i = k, where the spectrum of Mk = Lk is

known. Decrease i by one.
(3) Compute the spectrum of Mi from the known spectrum

of Mi+1 and Eq. (22). Decrease i by one.
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FIG. 4. Two topologies with the same number of nodes (28) and
edges (49). While the diameters for the two graphs are the same, are
they equally well connected? A comparison of the Cheeger constants
(see Table I) suggests that the left graph is less interconnected. This
is consistent with the spectral gap, which is smaller for the left graph,
indicating poorer connectivity.

(4) Perform step 3 repeatedly, halting at i = 0. Return the
spectrum of M1 = L��αk .

Therefore, given a large hierarchy, one can efficiently com-
pute the Laplacian eigenvalues and use them to find bounds
on important graph properties. This is a scalable technique
for obtaining figures of merit efficiently for hierarchies. Later,
in Sec. III we will present analytic results for some of these
figures of merit for simple hierarchies, but the results of the
current section can be used even in more complicated cases,
such as hierarchies that do not use the same G at every layer
or that have heterogeneous scaling parameters.

Due to the structural richness and heterogeneity of graphs,
it is not always easy to decide whether one graph is, for
instance, more connected than another graph. One aspect of
connectivity is how close the nodes are to one another, which
is captured by quantities like the diameter and mean distance.
In Fig. 4 we compare two graphs, C7 � K4 and K7 � C4,
which have an identical number of nodes (28) and edges (49).
The two graphs also have identical diameters (5 each), but the
mean distance for the left graph is smaller (see Table I). Under
these measures, the left graph appears better connected.

Better connectivity also corresponds to having fewer bot-
tlenecks in the graph, which corresponds to a larger Cheeger
constant. In Fig. 4, the graph on the right has a larger Cheeger
constant, as one would expect given that it has complete
connectivity between the seven modules. Note that this metric
of connectivity need not agree with the mean distance, as seen
in this example.

Similarly, a parameter-by-parameter comparison of the two
hierarchy graphs C13 � K5 and K13 � C5 (Table I) reveals

TABLE I. Comparison of topologies by connectivity measure. In
each case, the graphs being compared have an identical number of
nodes and edges. The better value for each comparison is underlined.

Graph invariant C7 � K4 vs K7 � C4 C13 � K5 vs K13 � C5

Number of edges 49 49 143 143
Number of nodes 28 28 65 65
Diameter 5 5 8 5
Mean distance 2.68 2.71 4.77 3.23
Cheeger constant 0.17 1.0 0.07 1.4
Spectral gap λ2 0.16 0.46 0.04 0.34

FIG. 5. A demonstration of how our hierarchical product can be
truncated to avoid requiring many interconnections at one node. As
the hierarchy grows, the graph is duplicated and then attached to a
subset of nodes in a larger version of the base graph G.

that, while both graphs are two-level hierarchies with the
same number of nodes and edges, K13 � C5 has the smaller
diameter, smaller mean distance, larger Cheeger constant, and
a larger spectral gap, all of which indicate better connectivity.
While structural comparisons for the above examples can be
carried out simply by inspection or a quick calculation of
graph quantities, general hierarchies may be far too complex
to compare this way. In practice, when choosing a modular
topology with the best connectivity, one might hope for a
single, balanced measure of connectivity that relates to aspects
such as node distance and bottleneckedness and is easy to
compute. The spectral gap λ2 meets these requirements. It is
asymptotically related to the other invariants discussed here
via upper and lower bounds in Eqs. (13)–(15). Furthermore,
λ2 can be efficiently computed using the recursive procedure
described earlier in this section.

5. Truncated hierarchical product

In some scenarios, there may be physical or technological
limitations on the total number of interconnections allowed at
a single node of a quantum computer. In our framework, this
manifests as a restriction on the maximum degree of a node.
We believe that hierarchical structures can still prove useful in
this context, but (as we will see in Sec. III) the hierarchy we
have described thus far has a maximum degree which grows
linearly with the number of levels of the hierarchy.

We now introduce an architecture which maintains the
hierarchical properties but also has a bounded maximum node
degree (i.e., maximum node degree that does not go to infinity
as the number of levels goes to infinity). To model such
an architecture, we modify the hierarchical product G1 �

G2. Whereas previously, |G1| copies of G2 were connected
according to G1, we now bring together |G1| − 1 copies,
which we connect according to G1, and add the root node
of G1 without an associated subhierarchy (see Fig. 5). When
extended to a many-level hierarchy, this means that every node
will be connected to, at most, two levels, and so its degree
will not grow as the hierarchy grows. We will denote this
truncated hierarchical product by G1 � G2, and its weighted
version as G1 �α G2. It can be written algebraically in terms
of adjacency matrices by adopting a more general definition
of the hierarchical product.

Definition II.3: Given rooted graphs G and H , the
weighted truncated hierarchical product P = G �α H is a
graph on vertices VP = VG × VH and edges EP ⊆ VP × VP
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specified by the adjacency matrix

AP = αAG ⊗ DH + PG ⊗ AH, (25)

or, equivalently, the algebraic Laplacian

LP = αLG ⊗ DH + PG ⊗ LH . (26)

Here PG is a projector onto all nodes in G except the root
node. At the level of adjacency matrices, we may also write
AP = AG �α AH . An unweighted version G � H can be ob-
tained by setting α = 1.

An illustration of this architecture can be found in Fig. 5.
From this definition, we naturally derive both unweighted and
weighted truncated hierarchies G�k and G��αk . We note that a
generalization of this definition to allow an arbitrary projector
(rather than one that only excludes the root node) is possible,
but we do not consider such a case in this paper.

The addressing scheme outlined in Sec. II B 3 can also be
used for truncated hierarchies. However, since many nodes do
not sit atop subhierarchies in this case, not all node addresses
are valid. We will assume that the node in the ith level which
connects to the level above it has a zero in the ith digit
of its address. In a truncated hierarchy, each node whose
address contains a zero (representing the “root” of a hierarchy)
must have only zeros in all following positions, as it does
not contain any further subhierarchies. The base-n addressal
scheme can thus be used to specify which nodes are present in
a truncated hierarchy.

Note that the truncated hierarchical product adds nodes
more slowly than (although with the same scaling as) the
hierarchical product structure specified at the beginning of
Sec. II B. When we perform graph comparisons in Sec. III,
we will consider all cost functions and optimizations in terms
of the total number of nodes so that the two architectures can
be compared fairly.

III. GRAPH COMPARISONS

Having developed the machinery to construct hierarchies,
we will now evaluate them against other potential archi-
tectures. Any evaluation is impossible to do in an absolute
sense, since what properties are desirable in a graph and
how serious the cost of improving them is will depend on
both the application as well as the physical system under
consideration. In general, we assume that the most desirable
quality of a graph is some measure of connectivity or the
ease with which the graph can transport information between
nodes. Note that it is always possible to translate between
quantum circuit architectures with some overhead. A detailed
atlas summarizing these overheads can be found in Ref. [46].

We will look at the scenario of state transfer, which is an
important subroutine that may need to be carried out if an
algorithm requires gates to be performed between two qubits
that are not directly connected. We consider the worst-case
state transfer time on a given graph, which allows us to
evaluate graphs without reference to any particular quantum
algorithm. If we are interested in the time taken for state
transfer in the graph, an appropriate metric can be the diameter
of the graph δ(H ) under the assumption that information
transfer takes unit time along any edge in the graph. The
diameter then captures the maximum distance, and hence the

maximum time required for information to travel between any
two nodes in the system.

For graphs produced by the weighted hierarchical product,
we will also consider a diameter which takes into account
edge weight. This “weighted diameter” δw(H ) can be found
by considering all pairs of nodes j, k and identifying the two
whose least-weighted connecting path has the highest sum
weight of edges. If we consider a path between two nodes
j and k to be a set of nodes P = {j, v1, v2, . . . , vn, k} with a
weight W (P ) given by the sum wj,v1 + wv1,v2 + · · · + wvn,k ,
then the weighted diameter can be written as

δw(H ) = max
j,k

min
P

W (P ). (27)

One way to grasp why the weighted diameter is a useful
quantity is to consider the time weights of edges, where the
weight signifies the time required to perform a gate between
two connected qubits. In this case, the weighted diameter is
the maximum time it will take us to perform a chain of two-
qubit gates that connects two different qubits (for instance,
using SWAP operations to bring the two qubits to adjacent
positions and then performing the final desired operation).

However, optimizing only with respect to connectivity
yields a trivial result, because a fully connected graph is obvi-
ously most capable of communicating information between
any two points. Therefore, we will consider a number of
different possible “costs” associated with physical implemen-
tations of graphs. One potential input to the cost function is the
maximum degree of a graph �(H ). As discussed in the pre-
vious section, we want to avoid needing to connect too many
different communication channels to a single node. Another
is total edge weight w(H )—if it costs time, energy, money,
coherence, or effort to produce communication between two
nodes, we should try to use as few communication channels
as possible.

We now walk through the calculations for several impor-
tant graph quantities for several graphs: an all-to-all connected
graph, a cycle graph, a star graph, a square grid, a hierarchy
graph with scaling parameter α, and a truncated version of
that same hierarchy graph. We calculate how quantities scale
with the total number of nodes N . For ease of calculation,
we assume that N nodes fit in the architecture of the current
graph; for instance, we assume N = 	d for some integer 	 for
a d-dimensional square graph. All results of this section are
compiled in Table II, and examples of the graphs for small N

are illustrated in Fig. 6.

A. Graph calculations

1. Complete graph KN

Since all nodes in a complete graph [Fig. 6(a)] have edges
between them, the diameter is simply 1. This comes at the
cost of very high maximum degree N − 1, as every node is
connected to all N − 1 other nodes. The total weight of every
edge is the same, and there are N (N − 1)/2 edges because
every pair of nodes has a corresponding edge. Therefore, the
total edge weight scales as �(N2).

062328-8



UNITARY ENTANGLEMENT CONSTRUCTION IN … PHYSICAL REVIEW A 98, 062328 (2018)

TABLE II. Summary of scalings of important graph properties with total node number N . All entries describe only the scaling of the
leading coefficient with d , n, and N .

Graph H Diameter δ Weighted diameter δw Maximum degree � Total edge weight w(H )

KN const. const. N N2

SN const. const. N N

CN N N const. N

Square grid, d-dim dN 1/d dN 1/d d dN

K�αk
n , α �= n logn N max

(
2

1−α
, N logn α

)
n logn N nNmax (1,logn α)

K�αk
n , α = n logn N max

(
2

1−α
, N logn α

)
n logn N nN logn N

K
�αk
n+1, α �= n logn N max

(
2

1−α
, N logn α

)
n nNmax (1,logn α)

K
�αk
n+1, α = n logn N max

(
2

1−α
, N logn α

)
n nN logn N

2. Cycle graph CN

In a cycle graph [Fig. 6(b)], the diameter is 
N/2�, the
distance to the opposite side of the circle. The maximum
degree is only 2, and the total weight of the edges is likewise
only N . This graph is thus able to reduce the cost factors
associated with the complete graph, but at the cost of a much
higher asymptotic diameter.

3. Star graph SN

The star graph is the graph which has a single central node
connected to all others [Fig. 6(c)]. Like the complete graph,
it also has a constant diameter, although this diameter is two
rather than one. The maximum degree of the star graph is N −
1, the same as the complete graph. However, the star graph
improves over the complete graph, as it has a lower total edge
weight of N − 1 rather than ( N

2 ). Thus, we have improved the
cost asymptotically without affecting the overall scaling of the
diameter of the graph.

The example of SN raises a complication which we do
not attempt to quantify in this paper. In a realistic distributed
quantum computer, we expect that a significant amount of
operations need to be performed at the same time and need to

(a) (b) (c)

(d) (e) (f)

FIG. 6. Illustration of the graph structures considered in this
section, each with nine nodes except (f). (a) The complete graph
K9. (b) The cycle graph C9. (c) The star graph S9. (d) The nearest-
neighbor grid in two dimensions. (e) The hierarchical product K�2

3 .
(f) The truncated hierarchical product of Sec. II B 5, K�2

3 .

be scheduled on the graph. But in the star graph, all operations
between nodes must pass through the single central hub. This
is likely to lead to a scheduling bottleneck when performing
general quantum algorithms. While we do not attempt to treat
scheduling of such algorithms on the network in this paper, in
future work we hope to consider these complications, which
will at times make the star graph unsuitable for real-world
use. An experimental comparison of the star graph and the
complete graph in existing five-qubit quantum computers can
be found in Ref. [47]. In those experiments, the requirement
that all information be shuttled through a central node for
the SN connectivity made high-fidelity execution of quantum
algorithms more difficult.

4. Square grid graph

We consider now a square grid (i.e., a hypercubic lattice)
in d dimensions [Fig. 6(d)]. Here the diameter is d(N1/d − 1),
since this is the distance from the point in one corner labeled
(1, 1, 1, . . . ) to the opposite corner at (N1/d , N1/d , . . . ) (note
that diagonal moves are not allowed). The maximum degree
depends on the dimension, as each interior node is connected
to 2d other nodes. The total edge weight can be found
by considering that each node on the interior of the graph
corresponds with exactly d edges, and it is these edges that
dominate as N → ∞. Therefore, the total edge weight scales
as �(dN ).

5. Hierarchy graph G��α k

As the hierarchy graph [Fig. 6(e)] is built recursively, it is
easiest to calculate its properties using recursion relations. We
consider a graph that has k levels to it, so that given a base
graph G and n = |G|, then the overall graph has nk nodes.

First, we calculate the unweighted diameter of a k-level hi-
erarchy, which we denote by δ(G��αk ). Since all subhierarchies
are rooted at their first vertex, we will need to keep track of the
eccentricity of the root node, which we denote by ε(F ) for any
subhierarchy F . The eccentricity of any graph node is defined
as the maximum distance from that node to any other node in
the graph F . Here we fix ε(F ) to be the root eccentricity for
the graph in question.

Now we write recursion relations for two quantities, the
unweighted diameter δ(G��αi ) of an i-level hierarchy for some
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intermediate i, and the eccentricity ε(G��αi ) of the top-level
root node of the current i-level hierarchy.

Consider a diametric path in an i-level hierarchy. This path
must ascend and descend the entire hierarchy. That is, using
the notation of Sec. II B 3, two maximally separated qubits
have addresses that are different in their first digit. Such a
path can always be partitioned into three disjoint pieces, the
terminal two of which each lie in some (i − 1)-level sub-
hierarchy, while the middle piece lies in the current top (i.e.,
ith) level. These three pieces must be independently maximal,
since the path is diametric. The middle piece maximizes to the
diameter of the top-level graph, which is simply δ(G). The
two sublevel pieces each maximize to the root eccentricity
of the (i − 1)th level subhierarchy, which is precisely the
quantity ε(G��α (i−1)). Therefore, our first recursion reads

δ(G��αi ) = 2ε(G��α (i−1)) + δ(G). (28)

The ith level root eccentricity may be found by a similar
argument. Partition the most eccentric path (starting at the
top level root node) into two pieces, one which lies at the top
level, and the other which lies exclusively in the lower levels.
Maximizing both pieces, one gets

ε(G��αi ) = ε(G��α (i−1)) + ε(G). (29)

Solving the second relation, we get ε(G��αi ) = iε(G). By
substitution, the first recursion has the solution

δ(G��αk ) = 2(k − 1)ε(G) + δ(G). (30)

Since the total number of levels is given by k = logn N ,
and the graph diameter is no greater than twice the eccen-
tricity of any node, we conclude that the diameter scales
as �[ε(G) logn N ] for a general graph G. If we specifically
examine the case when G is a complete graph of order
n, δ(G) = 1, and ε(G) = 1, and the exact expression is
δ(G��αk ) = 2 logn(N ) − 1.

Next we calculate the maximum degree. Again, we proceed
by recursion. Iterating the hierarchical product to some level
i can be viewed as attaching a copy of the graph G��α (i−1) to
every point in the graph G. Therefore, the degree of every
root node in the (i − 1) level subhierarchies increases by the
degree of the corresponding node in graph G. The maximal
increase achievable thus is the maximum degree �(G) of
graph G. Since the root node for an i-level subhierarchy has
i distinct copies of G attached to it, its degree is given by
i deg(g1), where g1 is the root node of G. Then the i-level
maximum degree can be expressed as

�(G��αi ) = max{(i − 1)deg(g1) + �(G),�(G��α (i−1))} (31)

· · · = max
0�j�i−1

{j deg(g1) + �(G)} (32)

= (i − 1)deg(g1) + �(G), (33)

where the second step was obtained by recursion. For a gen-
eral G, this gives the maximum degree scaling as �(G��αk ) =
�(logn N ). For K��αk

n , the root degree and the maximum
degree of the base graph Kn are both n − 1, so �(K��αk

n ) =
(n − 1) logn N .

Now we consider the total edge weight of the hierarchy.
We compute this by a recursion relation, first by duplicating
the existing edge weight at i − 1 levels by n (the number of

smaller hierarchies we must bring together) and then adding
new edges. If the edges at level i have weight αi , we can write
this as

w(G��αi ) = nw(G��α (i−1)) + αiw(G). (34)

By counting the number of subhierarchies with different
weights, we find the following form for the total edge weight
of the weighted hierarchy:

w(G��αk ) = w(G)
k∑

i=1

αi |G|k−i . (35)

This can be verified by checking that it satisfies the recursion
relation Eq. (34). If we now specialize to the case where G =
Kn and αi = αi−1, we find

w
(
K�αk

n

) = n(n − 1)

2

k∑
i=1

αi−1nk−i . (36)

This behavior can be broken into three regimes. For α = n,
every term in the sum is identical, and the overall scaling is
�(nN logn N ). Otherwise, we can perform the geometric sum
to obtain

w
(
K�αk

n

) = n(n − 1)

2

nk − αk

n − α
. (37)

Here the scaling will depend on the relative size of n and
α. For n > α, the first term in the numerator dominates, and
w(K�αk

n ) = �(nN ). Otherwise, we can write αk = N logn α

and find w(K�αk
n ) = �(nN logn α ).

Finally, we calculate the weighted diameter of a k-level
hierarchy δw(G��αk ), just as for the unweighted diameter, by
solving recursion relations for the quantities δw(G��αi ) and
εw(G��αi ), which are, respectively, the weighted diameter and
weighted root eccentricity for an i-level weighted hierarchy.
Here note that the top level (at any intermediate stage i) is
weighted by αi . Therefore, the recursion for the weighted
diameter is modified to

δw(G��αi ) = 2εw(G��α (i−1)) + αiδw(G). (38)

Similarly, the recursion for the weighted eccentricity becomes

εw(G��αi ) = εw(G��α (i−1)) + αiεw(G), (39)

which has the solution εw(G��αi ) = εw(G)
∑i

j=1 αj . Finally,
we have

δw(G��αk ) = 2εw(G)
k−1∑
j=1

αj + δw(G)αk. (40)

For G = Kn and αi = αi−1, this becomes

δw(K�αk
n ) = 2

k−1∑
i=1

αi−1 + αk−1 (41)

= αk + αk−1 − 2

α − 1
. (42)

Therefore, the scaling of the weighted diameter with N has
two regimes, depending on α. For α < 1 the geometric sum
converges as i → ∞ to 2

1−α
. This means that for α < 1, a

constant time suffices to traverse the entire hierarchy no matter
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how large it is. For α = 1 the weighted diameter is equal to
the (unweighted) diameter, which we have already computed.
For α > 1, δw scales as αk−1 = N logn α/α ∼ N logn α . Note
that the last scaling only applies if α does not scale with
n. Since n > 1 and α > 1, this exponent logn α is always
positive. Therefore, the total edge weight is asymptotically
always either constant (for α < 1) or growing (for α � 1), as
expected.

6. Truncated hierarchy G��α k

Finally, we look at how the results above are modified if we
use the truncated hierarchical product discussed in Sec. II B 5
[Fig. 6(f)]. Although many of the calculations in terms of the
number of levels k are similar to those for the nontruncated
hierarchy, it is no longer the case that k = logn N . In order to
compare graphs fairly, we will need to recalculate the order of
G��αk so that results in this section can be written in terms of
the total number of nodes N .

Under the node addressal scheme of Sec. II B 3, the nodes
of a truncated hierarchy are in one-to-one correspondence
with base-n strings of length k that only have trailing zeros.
As before, a 0 label points to a root node, but since root nodes
do not bear subhierarchies due to truncation, all subsequent
labels are forced to be 0. In other words, we only label nodes
using strings of the form (l1l2 · · · li00 · · · 0) for some i � k,
and lj �= 0 for all j � i. The number of such strings with
i nonzero labels followed by (k − i) zero labels is (n − 1)i .
Therefore, the total number of nodes is

N =
k∑

i=0

(n − 1)i . (43)

Since N = �[(n − 1)k], many quantities of a truncated hier-
archy with a base graph of order n + 1 have the same scaling
with the number of nodes N as those for a nontruncated
hierarchy with a base graph of order n.

In terms of the number of levels k, the maximum diameter
will be proportional to k, just as it was in Sec. III A 5. It
follows that the diameter scales with the total number of nodes
as δ = �(logn−1 N ) for a truncated hierarchy.

On the other hand, truncation offers a large improvement
in the maximum degree of the hierarchy. As discussed in
Sec. II B 5, the maximum degree of the truncated hierarchy
is �(G��αk ) = 2�(G), which is constant in N .

The edge weight recursion relation is simply n − 1 copies
of the current graph and then new, additional edges:

w(G��αi ) = (n − 1)w(G��α (i−1)) + αiw(G). (44)

This is identical to the recursion relation for the standard
hierarchy, Eq. (34), except that there are now only n − 1
copies, and also, for a given number of qubits N , the number
of levels k may be different by constant factors and terms.
Thus, the only modification to the recursion relation is to
replace n with n − 1, and the solution of the relation is
otherwise identical. This means that none of the asymptotic
scaling with k is affected, and the scaling with N is only
affected by changing the total number of levels required to
construct a graph of N nodes.

The recursion relation for weighted diameter is similar to
Eq. (38). Due to truncation, one needs to make a careful

(a)

(b)

FIG. 7. An illustration of the embedding of a hierarchy on a (a)
one- or (b) two-dimensional lattice of qubits. In both cases, the length
of an edge doubles at every level of the hierarchy, but the scaling
in total edge length used changes from �(N log2 N ) to �(N ) when
going from one to two dimensions. In d = 3, a similar hierarchy with
doubling length scales connects modules of eight qubits.

comparison of paths that do or do not terminate at the root
node of the top level, but in any case the weighted diameter’s
scaling with k is the same as the nontruncated weighted
diameter’s scaling. The weighted diameter scaling with N can
thus be found from Eq. (42), using the appropriate value of k

for truncated hierarchies with N nodes.

B. Choosing among graphs

1. Graph embeddings

The long list of comparisons summarized in Table II can
make it difficult to see exactly when different graphs are
preferable. To make our calculations more concrete, we would
like to compare concrete scenarios for the connection of qubits
arranged on a grid in d dimensions. Specifically, in each
dimension (d = 1, 2, and 3), we examine a hierarchy that
is embedded into the grid, comparing its properties to the
same grid but with nearest-neighbor connections. We consider
building modules where each small module is a complete
graph of size n, laid out in cubes on the grid so that the side
length of the cube is n1/d . The d = 1 and d = 2 cases with
n = 2d are illustrated in Fig. 7.

As shown, the length of an edge must increase by a factor
of n1/d (2 in Fig. 7) at every level of the hierarchy in order
to make these hierarchies possible. Therefore, to determine
the total length of wire used, we can use a cost weight with
α = n1/d . Keeping factors of N only, Table II shows that for
d = 1, we expect a total cost weight �(N logn N ), while for
the higher-dimensional cases we expect a total cost weight
�(N ) [48]. For the d-dimensional grid, this total cost weight
is always �(N ).

Now, to consider the performance of the two graphs, we
must fix a separate scaling factor for the time weight β. There
are several options which might be reasonable for different
physical applications. If β = 1, i.e., all links act identically
in terms of time required to traverse them, then the weighted
diameter of the hierarchy is simply �(logn N ). Another option
would be to take β = α, i.e., to assume that links take as
long to move through as they are long. In this case, we find
that the hierarchy’s weighted diameter scales as �(N1/d ),
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meaning that the hierarchy and nearest-neighbor graphs match
in performance.

We may also want to allow hierarchies to make use of the
“fat tree” concept to produce a better-performing graph [42].
Suppose that we allow ourselves to “spend more” on higher-
level links, causing their cost weight to increase with a factor
α, but improving their performance so that the time weight
scales with the factor β = 1/α. In this case, the question is
what range of α allows for the hierarchy to perform better than
the nearest-neighbor grid (lower time-weighted diameter) for
less cost (lower total edge cost weight)? (Note that this cost
weight includes any contribution from “lengthening” wires at
higher levels of the hierarchy.)

To answer the first, we compare the two asymptotic di-
ameter scalings Nmax(0,logn 1/α) and N1/d . This suggests that
if α � n−1/d , the hierarchy will allow for faster traversal
than the nearest-neighbor grid. However, we wish to avoid
causing the hierarchy to have a total cost weight that scales
worse than �(N ), which requires logn α < 1. We find that a
winning hierarchy can be constructed if α lies in the range
α ∈ [n−1/d , n). The optimal α is as large as possible but
less than n; at that point an additional logarithmic factor is
introduced to the total cost weight scaling.

In these cases, we have not allowed the nearest-neighbor
grid to modify the weight (either kind) of its links. This is
because any modification in its cost or time weight enters
simply as a constant factor; if the individual links have weight
c instead of 1, the overall weighted diameter is just cN1/d

while the total cost weight is just cN . Of course, one can
apply different constants to each figure of merit, or apply c

to one and 1/c to the other. In order to make the nearest-
neighbor grid match the performance of the hierarchy, the
unit-length time weight would have to be N logn(α)−1/d while
the unit-length cost weight must not scale with N .

2. Pareto efficiency

Our calculation of various graph parameters suggests that
the hierarchy architecture offers significant advantages over
others. One way to make this comparison more exact is to
appeal to the economics concept of Pareto efficiency, which is
used to designate an acceptable set of choices in multiparame-
ter optimization [49]. A choice is Pareto efficient if switching
to a different choice will cause at least one parameter to be-
come worse. Suppose we eliminate all constants to focus only
on the scaling with N for three parameters: weighted diameter,
maximum degree, and total edge weight. By removing these
constants, we assume that the small multiplicative factors they
provide will not influence decision making. For simplicity, we
will assume that both cost and time weights scale with the
same factor α.

For comparison one could ask: what minimum number of
edges is required for a graph on N nodes to have maximum
degree � and diameter δ? Reference [50] answers this op-
timization question partially, and constructs what are known
as porcupine graphs which achieve the optimum, illustrated
in Fig. 8. We observe here that qualitatively, porcupines are
modular, since they may be described by attaching trees
to the nodes of a complete graph. In particular, the graph
K√

N � S√
N is a porcupine graph that achieves a diameter

FIG. 8. An example of a porcupine graph as defined in Ref. [50],
in this case K4 � S4.

δ = 3 and a maximum degree of � = 2(
√

N − 1) with the
minimal number of edges.

We summarize the scalings of these graphs in Table III.
Assume that n1/d � α � 1. In this case, we can find the
Pareto-efficient solutions by noting which options can be
eliminated. We see that KN is strictly worse than SN and can
be eliminated; SN is then dominated by the porcupine. CN is
dominated by the square grid, which has identical scaling of
total weight and degree but lower diameter. The square grid,
in turn, is dominated by the hierarchy due to the assumptions
we have made on α. This means that the two Pareto-efficient
choices in this case are the truncated hierarchy and the porcu-
pine graph. If we chose any option besides these two, we could
improve the scaling with respect to N without any trade-off by
switching to one of them. While this framework does not offer
a decision rule to choose between the porcupine and K�αk

n , the
latter is clearly preferable if our aim is to create a modular
quantum system that does not rely on a few centralized nodes.
We stress that this optimization procedure is only intended to
evaluate the quantities and graphs introduced, and the Pareto-

TABLE III. An illustration of the scaling with N of three key
parameters to be used in Pareto optimization. Here δw is the weighted
diameter, � is the maximum degree, and w is the total edge weight of
the graph. A star (�) has been placed next to the two graphs we find
to be Pareto efficient. We have also included the α = 1 (unweighted)
hierarchy in the final row, as it has a different scaling for the weighted
diameter. Our Pareto efficiency judgment is made assuming n1/d �
α � 1.

Graph δw � w

KN const. N N2

SN const. N N

CN N const. N

Square grid N 1/d const. N

� K√
N � S√

N const.
√

N N

� K
�αk
n+1

{
α �= 1

α = 1

N logn α const. N

logn N const. N
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efficient choices will change if other figures of merit or other
graphs are included in the optimization.

3. Optimality of diameter for hierarchical graphs

The use of K�αk
n may be further motivated via the degree-

diameter problem [51] (for a survey, see Ref. [52]). Given a
graph with a maximum allowed degree � on each node and
diameter no greater than δ, the degree-diameter problem asks
for the maximum number of nodes N (�, δ) that such a net-
work could hold. This problem is practically well motivated
in the design of networks, and may be answered for special
classes of graphs. The Moore bound, which is a bound for
general graphs, states that the number of nodes N is at most
�(�−1)δ−2

�−2 . This means that for a constant maximum degree
� � 3, the diameter satisfies δ = �(log N ), meaning that
hierarchical graphs have an optimal diameter up to a constant
factor. Tighter bounds on the number of nodes may be shown,
for instance, when the tree width of the graph is bounded.

Reference [53] shows that graphs with small tree widths t

and an odd diameter δ satisfy

N (�, δ; t ) ∼ t (� − 1)
δ−1

2 . (45)

As discussed towards the end of Sec. II B 1, hierarchies have
low tree widths. In particular, the tree width of the truncated
hierarchy K�αk

n is at most n − 1. Next, the diameter of the
truncated hierarchy K�αk

n is δ(k) = 2k − 1 (which is odd),
and the maximum degree is �(k) = 2(n − 1). Comparing the
number of nodes in this hierarchy N (k) to the node capacity
N [�(k), δ(k); n − 1] as in Eq. (45), we get

N (k)

N [�(k), δ(k); n − 1]
� nk

(n − 1)(2n − 3)k−1 . (46)

Keeping the total number of nodes N fixed, consider two
limits: one, a shallow hierarchy in which the number of levels
k is O(1), and two, a deep hierarchy, in which the size n of
the base graph is O(1) [i.e., k = O(log N )]. We see that when
the hierarchy is shallow, the right side of Eq. (46) is �(1),
which indicates optimality. For a deep hierarchy, the above

ratio scales as 2− logn N = N
−1

log(n) , which is polynomially sub-
optimal. However, when n = 3, the ratio in Eq. (46) is again
�(1), and the truncated hierarchy K

�αk
3 is degree-diameter

optimal in this case.

IV. ENTANGLED STATE CONSTRUCTION

A. Setup

Although some of the graph properties calculated in the
previous section give a heuristic sense for the capabilities
of the hierarchical graph versus the nearest neighbor or all-
to-all graphs, we would like to examine their performance
directly in terms of a quantum information processing task.
The task we have chosen as a benchmark is the creation of a
many-qubit GHZ state. Since this entangled state is difficult
to create across long distances when using nearest-neighbor
interactions, we hope that it can serve as a useful yet basic
benchmark for processing quantum information with unitary
evolution [15]. As shown in Ref. [15], preparation of a GHZ
state also provides a means of transferring a state across

the graph. Thus, the results of this section also bound state
transfer time. However, in this work, unlike Ref. [15], we
focus on the use of discrete unitary operations (gates) rather
than Hamiltonian interactions. This means that we cannot take
advantage of the many-body interference which provided a
speed-up in Ref. [15].

Using GHZ state creation as a benchmark for potential
quantum architectures allows us to use physical limitations
(represented by the Lieb-Robinson bound) to place compu-
tational limits on information processing. The GHZ state is
directly useful on its own [13–15], but even in systems which
do not directly produce the GHZ state, it is likely that quantum
operations will require the creation of long-range correlations
between distant sites. For example, the same physical bounds
which govern the creation of the GHZ state also restrict the
speed at which topological order can be produced [16]. We
focus on the GHZ state as an easy-to-analyze example for
the problem of creating these nonlocal correlations, but we
stress that our results generalize to any state which possesses
nonlocal correlations of the kind whose creation is limited by
the Lieb-Robinson bound.

We adopt a framework in which every vertex of the graph
represents one logical qubit, while an edge of the graph
represents the ability to perform a two-qubit gate between
nodes. For the purposes of this work, we assume that we can
ignore single-qubit operations, instead focusing on the cost
imposed by the required two-qubit gates between nodes.

B. Analytical results for deterministic
entanglement generation

In order to create the GHZ state, we assume that we begin
with all qubits in the state |0〉 except for one qubit that
we place in the initial state |+〉. By performing controlled-
NOT operations between this qubit and its neighbors, a GHZ
state of those qubits is created. The state can be expanded
by continuing to use further CNOT operations to expand
the “bubble” of nodes contained in the GHZ state until it
eventually spans the entire graph. For state transfer, we instead
assume the initial state |ψ〉 to be transferred sits on one qubit,
which is then transferred through the graph using SWAP
operations until it reaches its destination.

We first consider a graph which has been assigned time
weights, so that a gate between two linked edges can be
performed deterministically in a time given by the weight of
the edge between them. We assume that one node can act
as the control qubit for several CNOT operations at once.
Therefore, according to our protocol above, the time tGHZ

required to construct the GHZ state is found by identifying
the qubit that will take the longest to reach from the initial
qubit by hopping on the graph. A similar argument holds for
the state transfer time.

This implies that a GHZ state can be created, or a state
transferred, in time that scales like the (time-)weighted ec-
centricity of the node we choose as the initial |0〉 + |1〉
state. However, if we take the further step in our analysis
of maximizing over weighted eccentricities (identifying the
worst-case starting node), then the time will simply be the
weighted diameter of the graph as calculated in the previ-
ous section. Note that the difference between the best-case
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weighted eccentricity (the weighted graph radius) and the
worst-case weighted eccentricity (the weighted graph diam-
eter) over all nodes is at most a factor of 2—if we look at the
midpoint of the path that realizes the graph diameter, its dis-
tance to the endpoints of the path is bounded by the radius—so
from the perspective of how this time scales asymptotically
with N , the two are interchangeable.

C. Numerical results for probabilistic
entanglement generation

As shown in the previous subsection, in a deterministic
setting of entanglement generation where a gate between two
nodes of our graph H can be performed in fixed time, the
time required to create a GHZ state is equal to the weighted
diameter δw(H ). However, in many situations in long-distance
quantum information processing, probabilistic or heralded
methods might be used instead. We might suppose that, in a
small time step, the network succeeds in performing a desired
two-qubit gate with probability p (and that we know whether
the gate succeeded or not). Upon failure, one can try perform-
ing the gate again in the next time step without having to
rebuild the state from the beginning. In this setting, we expect
that the scaling will likely be similar to the deterministic case
but more difficult to calculate exactly. Fortunately, it is easy
to re-interpret the meanings of the edge weights to account
for this.

The main complication arising from the inclusion of uni-
taries that do not get completed in a fixed amount of time is
that multiple paths between two nodes can all contribute to the
total probability that entanglement has been produced, making
it a harder problem to solve exactly. However, we can turn to
numerical simulation to get an idea of the behavior. In the
following, we define a new edge weight called the probability
weight pij which is the probability of success of edge (i, j ) in
one time step.

The algorithm for simulating the creation of a GHZ state is
as follows:

(i) At each time step t , identify the subgraph F of nodes
that have already joined the GHZ state.

(ii) For each edge between a GHZ node i ∈ F and a non-
GHZ node j /∈ F , identify the probability edge weight pij .
With probability pij , allow node j to join the GHZ state in the
current time step t .

(iii) Once all edges have been tested, repeat the procedure
for the next time step on the new, possibly larger, set of GHZ
nodes.

A single number p0 is chosen as the base probability,
so that the probability weights on the lowest level are p0,
and edges on the ith level of the hierarchy succeed with
probability p0α

i−1. Note that we must fix α < 1. As a first step
toward evaluating the performance of a graph, we estimate
its time weights as wij = 1/pij , the time required to perform
a two-qubit unitary on average. The overall estimate of the
expected time taken is then δw/p0, where δw is the time taken
for the deterministic case with time weights scaling by a factor
β = 1/α at each level. We find that this predicts very well
the rate at which the GHZ state can be constructed over a
wide range of α values (Fig. 9). The expected time remains
�(N logn(1/α) ).

FIG. 9. Graph-theoretic predictions and simulation of tGHZ for
the hierarchy K

�αk
3 at various α, and a two-dimensional nearest-

neighbor (NN) grid; p0 = 0.1. The
√

N fit shows the scaling of tGHZ

for the nearest-neighbor case, with a prefactor in the range suggested
by the text’s argument. Note that since n = 3, the crossover for the
hierarchy to asymptotically outperform the nearest-neighbor grid is
at α � 1/

√
3 ≈ 0.58, which is seen in the numerical results. Code

for generating this figure can be found at [54].

For graphs with multiple potential paths between two
nodes, such as a two-dimensional grid, the expected time is
not simply the deterministic time scaled by the extra time
factor the probabilistic setup requires in each step. We can
however still bound the expected time to build the GHZ state
E[tGHZ] above and below for a graph H . We will bound it
above by considering a modified graph in which the only
path between the initial qubit and the qubit farthest from the
starting point has distance δw(H ). Such a path completes
in time δw(H )/p0 on average. Since H has strictly more
paths than this, the expected time will be lower. However,
the shortest path between the initial and final qubits has total
distance δw(H ), which would take time δw(H ) to complete
even if p0 = 1 and all gates were deterministic. Therefore,
no path can finish faster than this, and the expected outcome
over all possible paths cannot improve over δw(H ). We can
therefore write the following restriction on the expected time:

δw(H ) � E[tGHZ] � δw(H )

p0
, (47)

where E[·] denotes the expected value. This implies
E[tGHZ] = �[δw(H )]. Therefore, although the prefactor is
difficult to calculate, we can tell that the time required to
complete the creation of a GHZ state on the nearest-neighbor
graph with d = 2 is �(

√
N ). This scaling implies that the

condition for the hierarchy to outperform the nearest-neighbor
grid in 2D is α � n−1/2, which is reflected in Fig. 9.

Using the GHZ-creation time and state transfer as ex-
amples, we can see many of the advantages of hierarchical
graphs as network topologies. Such architectures are able to
rapidly incorporate a very large number of qubits (exponential
in the number of hierarchy levels), while the time-weighted
diameter (and thus communication time) grows linearly with
the number of levels. Since the weighted diameter is not
substantially changed even if we use the truncated hierarchical
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product of Sec. II B 5, these benefits can also be realized in
that setup.

V. CIRCUIT PLACEMENT ON HIERARCHIES

A final reason we believe hierarchies could be a useful
way to organize modular quantum systems is that they may be
able to take advantage of straightforward methods for circuit
placement. Circuit placement is a problem that arises when
a quantum circuit or algorithm must be translated onto a
physical system [55]. Suppose we are given a specification
for a quantum algorithm in the form of a circuit diagram, and
we wish to run that algorithm on a given quantum computer
(which presumably has enough quantum memory to perform
that algorithm). In order to translate the circuit into instruc-
tions for our machine, we must identify each algorithm qubit
with a machine qubit and then determine how the individual
quantum gates can be realized in our machine [56].

Circuit placement is an important part of the quantum
software stack, just as the compilation to machine code is
in classical computers. By placing qubits which must operate
on each other often close together in the real-world machine,
we can minimize the amount of time spent performing long-
range quantum gates. However, this problem is generally quite
difficult for arbitrary instances and in fact has been shown to
be NP complete [55].

However, since we are interested in the subproblem of
circuit placement on hierarchies, it is possible that the hard-
ness results of Ref. [55] do not apply and the exact solution
can be found in polynomial time, just as the problem can
be solved tractably in linear qubit chains [57]. Whether or
not an exact algorithm exists, we can appeal to heuristics to
efficiently place circuits as well as possible. Such an approach
is promising because hierarchies are extremely structured with
clear prioritization of clustering between small groups of
qubits, which can be recognized in the algorithm and matched
to the physical architecture.

To explain further, we consider the following model. We
suppose that we begin with a weighted circuit graph C with
a vertex set VC and an edge set EC , in which an edge exists
between two vertices if there is at least one two-qubit gate
between them in the circuit, with the weight of the edge
corresponding to the number of gates. We then specify a
machine graph M with vertex set VM and edge set EM , in
which each edge (u, v) indicates that the machine can perform
two-qubit gates between u and v.

We now seek a mapping f : VC → VM that assigns al-
gorithm qubits to machine qubits. A mapping f has a total
cost found by considering, for every edge in EC between
vertices ci and cj , the shortest-path distance between f (ci )
and f (cj ) in M , multiplying that distance by the weight
of the edge in C and summing over all edges. Thus, it
captures the total distance that must be traversed by all gates
in order to execute the circuit when the current mapping is
used. Reducing this is expected to reduce the amount of time
spent performing SWAP gates in order to connect two distant
qubits. Performing this mapping is an important subroutine
in any quantum programming framework, and at least one
existing quantum compiler has a “mapper” phase that takes

into account the actual graph that a program must be compiled
onto [58].

Our cost function is a choice made from convenience, and
others are possible. Using this cost function ignores several
important aspects of quantum circuits. First, our cost function
does not account for the fact that a different mapping might
allow for more parallelism, since it evaluates the cost of each
gate individually. In addition, we take the circuit graph C as
a given, when in fact many different circuits exist for any
given quantum operation. In fact, it is likely that optimization
of C could be performed, possibly by using the structure of
M itself. A more realistic model for circuit placement may
require a back-and-forth in which a circuit is first placed,
then optimized, then re-placed, and so forth. A more advanced
placement algorithm may even permit the swapping of qubits
throughout the circuit, thus optimizing the placement of the
quantum algorithm without constructing a circuit connectivity
graph as an intermediate step.

For this paper we will ignore these concerns and proceed
with a heuristic approach to circuit placement for hierarchies.
We describe our algorithm as “partition and rotate,” as it re-
quires these two basic subroutines. First, qubits are partitioned
into subhierarchies by examining whether they are connected
by many gates in C. This process continues recursively, with
each partition being subdivided and so on until every qubit
is identified with its point in the hierarchy. This top-down
process is then followed by a bottom-up process in which
each small cluster is rotated so that its most-communicative
qubit is at the root of the subhierarchy, and then the partitions
themselves are rotated, and then clusters of clusters, etc.
Ideally, this results in a mapping in which every qubit is
(a) placed close to qubits it needs to communicate with and
(b) placed in easy access to other modules if that qubit requires
such access. We will now explore in detail these subroutines
and the circuit speed-ups that result. We will place algorithms
on a machine graph M which we take to be defined by K�k

n for
some integer k. Note that we examine unweighted hierarchies,
but these methods can be applied to weighted hierachies as
well.

A. Partitioning

For the first step of our algorithm, we wish to divide
the computational graph C into n subgraphs which are as
disconnected as possible. In addition, since we wish to assign
each node in C to physically separate and limited qubit
registers, it is important that each of the subsets has precisely
|C|/n nodes. This problem is known as balanced graph
partitioning, and the problem of finding the optimal solution is
NP complete for n � 3 [59]. However, heuristic methods exist
which approximate the solution, and are widely used in the
field of parallel computing and circuit design [60]. We have
illustrated this process in Fig. 10.

Our method for performing circuit placement on hierar-
chies relies on a subroutine that performs balanced graph par-
titioning. There are many algorithms and software packages
from which to choose. Here we have used a software package
called Metis, which implements an algorithm called recursive
bipartitioning [60,61].
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FIG. 10. Illustration of how we might divide a hypothetical
graph into smaller clusters. This process is repeated many times,
recursively.

We begin by supposing that we have the circuit graph C

and we wish to identify groups of |C|/n nodes which have
high connection to each other but low connection outside of
the group. This is accomplished by finding a balanced graph
partition in which the weight of the edges connecting each
group is minimized. If we call the initial set of all nodes S,
then we wish to identify subsets S0, S1, . . . , Sn. In terms of
the addressal scheme of Sec. II B 3, all the nodes in set Si will
have have digit i in their base-n representation. In the next
section we will discuss the choice of which digit to assign to
each set.

Once the subsets Si are found, partitioning can be run
again on that relevant subgraph, creating n new subsets of this
subset. Eventually every node in the graph will be identified
with a lowest-level module of size n, a next-level module of
size n2, and so forth.

Here we have used a generalized, preexisting algorithm
for graph partitioning. It is possible that the specifics of
this problem, and the possibility of co-designing the precise
quantum circuit implementing the algorithm (and thus C)
with the architecture, enable more specific, better-performing
approaches.

B. Rotation

Drawing partitions between qubits is not enough to fully
specify their placement into a hierarchy. If we consider using
the i-digit representation, we can imagine that partitioning
essentially describes the process of deciding, from a set of
qubits, which ones will share a digit in the next level. How-
ever, these digits are more than arbitrary markers, because
there is one node in any subhierarchy which connects to the
hierarchy above. This node (which we say has digit 0) has
privileged access to communication with other subhierarchies.
Therefore, in order for our circuit placement to succeed, we
should ensure that the qubit on top of each subhierarchy is the
one which requires the most access.

In order to do this, we implement a second subroutine,
the “rotate” part of the algorithm. This is called rotation
because, once we know which qubits will be together in a
module, we must choose how to orient them relative to the
larger modular structure. Whereas partitioning is top-down
(the full graph is broken into small subgraphs which are then
themselves partitioned), rotation is bottom-up. Suppose the
modular structure is K�k

n . We begin with sets of n qubits and
must choose which will be the top of each smallest instance
of Kn. We then take each partition of n instances of Kn and

FIG. 11. An illustration of how and why the process of rotation
works in our circuit placement algorithm. In this diagram, red links
represent gates to be performed (edges in C) and black ones are
available communicative links (edges in M). In the graph C, the
qubits 1, 2, and 3 are all connected, and 3 is connected with 4.
These qubits have been correctly placed into clusters (1, 2, 3) and
(4). However, if they are not rotated correctly (see left), the link
between 3 and 4 can become quite long, necessitating a long-range
quantum gate. By properly rotating (right), the gate between links 3
and 4 becomes much shorter, improving the placement.

decide which instance of Kn will connect to the next level up,
and so on. This process is illustrated in Fig. 11.

Note that the general structure of our algorithm is to first
go down the hierarchy, partitioning nodes, and then to go up,
rearranging subhierarchies in the proper order. We perform
this procedure only once to obtain our circuit mapping.

C. Results

Now that the placement algorithm is specified, we turn
toward examining its performance on quantum circuits. We
consider two separate questions. First, we investigate whether
the algorithm is effective—does it actually reduce, relative to
a random assignment, the amount of distance that must be tra-
versed in a circuit to execute all the requested gates? Second,
we will examine whether the algorithm executes efficiently on
a classical computer. This second point is important because
in general the problem can be solved by brute-force search,
but such a search requires a time O(N !) to perform (although,
as we stated earlier, it is possible that an exact algorithm exists
with a lower time cost for the special case of hierarchies).

To investigate the above concerns, we examine the algo-
rithm’s performance on random circuits. For each trial, we
first generate a random circuit of Ng two-qubit gates on N

total qubits. The precise type of two-qubit gate is irrele-
vant in this framework. Likewise, single-qubit gates require
no communication overhead, so we do not consider them.
The random circuit then implies a computational graph C,
where, as described above, the vertices represent the algorithm
qubits and the edge weights represent the number of gates
that must be applied between each pair of qubits. Once this
computational graph has been generated, we first attempt to
map it blindly to the hierarchy graph, using the addressing
scheme of Sec. II B 3 and an arbitrary order of the graph
C. Then, we apply partition-and-rotate and calculate the new
cost function. By comparing the cost function between these
two, we develop an idea of how much long-range quantum
information processing is eliminated by partition-and-rotate.
We perform this several times to build up statistics on average
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FIG. 12. Plot of the average ratio (total gate distance after
partition-and-rotate)/(total gate distance before) given 100 trials each
for different numbers of random gates and random qubits. Error bars
represent one standard deviation. As the number of gates begins
to saturate the number of qubits, the possible improvement from
optimization begins to decrease.

time costs and average improvement. Code which performs
circuit placement and generates the profiling figures included
in this section can be found at [54].

In our simulations, we test hierarchies K�k
3 up to

729 qubits (k = 6). We find that as gates are added, the
improvement over the initial cost is decreased. This is sen-
sible, because as more randomly placed gates are present,
different node mappings become more similar. Such an effect
will likely not be present for quantum algorithms which do
not have their gates placed randomly. For cases in which
the number of gates is significantly fewer than the number
of qubits, partition-and-rotate is able to significantly reduce
the cost function. We find that 100 gates can be placed on
a 729 qubit hierarchy with a total cost less than 20% of
the original on average. When 1000 gates are placed on a
729 qubit hierarchy, the final cost is still only 40% of the initial
one. Results for K�4

3 , K�5
3 , and K�6

3 can be seen in Fig. 12.

FIG. 13. Average run times over 100 trials for partition-and-
rotate on a 2015 MacBook Pro with a 2.6 GHz processor [61]. Each
line represents an increasing number of gates for a constant circuit
size as measured by the number of qubits. Error bars represent one
standard deviation.

FIG. 14. Average run times over 100 trials for partition-and-
rotate on a 2015 MacBook Pro with a 2.6 GHz processor [61]. Each
line represents an increasing number of qubits for a constant number
of gates. Error bars represent one standard deviation.

Next, we examine the time required to place such a circuit.
Our code, most of which is written in Python3 but which
uses a C implementation of Metis for graph partitioning, can
place 1000 gates on a 729-qubit hierarchy in roughly 2 s when
running on a 2015 MacBook Pro [61]. Although the algorithm
seems naturally suited to parallelization, our implementation
uses only a single core. Our current implementation appears
to scale with the number of qubits as O(N ) and not to
depend on the number of gates included at all once there are a
sizable number of gates. We illustrate these two relationships
in Figs. 13 and 14. These times compare favorably to the times
reported in Ref. [55], with much optimization still possible in
our implementation.

Note that using random graphs as described above means
that our results may not be valid for more general quantum
algorithms. It is possible that practical quantum algorithms
have structure that makes them either particularly amenable
or particularly difficult for partition-and-rotate algorithms to
place, depending on the actual algorithm being examined.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have developed the theory of hierarchies
using the existing binary operation of the graph hierarchical
product. We have shown that hierarchies may be a promising
architecture for large quantum information processing sys-
tems. To demonstrate this, we analyzed both properties of the
underlying graph (such as diameter, maximum degree, total
edge weight) as well as the time it would require to perform
a representative quantum information process (constructing
the GHZ state/state transfer) in both deterministic and prob-
abilistic settings. We have also computed and tabulated these
properties for many other graphs which appear as poten-
tial architectures, for comparison. We have shown that, for
much of parameter space, hierarchies have favorable scalings
in cost and performance with the total number of qubits
N compared to these competitors. Also, since hierarchical
graphs are hyperbolic, they share many of the advantages
of hyperbolic graphs such as efficient routing schemes [62],
network security [63], and node addressal [64].
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We have also presented a conceptually simple circuit place-
ment algorithm which allows for simple optimization using
existing graph-partitioning software packages. Our partition-
and-rotate algorithm scales well with the number of qubits and
gates in the circuit and reliably reduces the total distance that
needs to be traversed by random quantum circuits, which we
verified by simulation.

One significant limitation of our analysis in this paper
has been that we remained confined to unitary operations.
Nonunitary operations (for instance, measurements which
are then fed forward to choose future unitary operations)
are capable of establishing long-range correlations like those
present in the GHZ state much more quickly than unitary ones
if measurements and classical communication are fast. In the
future we hope to extend our results into nonunitary domains
[65].

In addition, we have made the assumption that the primary
way in which quantum architectures will differ is the speed
with which two qubits can communicate (as represented by
our time weights on edges). Another important case might
be one in which the primary way edges are enhanced is by
improving bandwidth or duplicating nodes to provide parallel
routes rather than affecting gate speed directly. For some
schemes, our abstract notion equating the time of a two-
qubit gate with the edge weight may still be a useful tool
of analysis, but in other cases bandwidth and speed may
not be interchangeable. We intend to undertake the analysis
appropriate for this case in a future manuscript [65].

In this paper we limited ourselves to consideration of a
few quantum processes (generation of a large entangled state
or transfer of a state across the graph), which might not
be representative of other, more general distributed quantum
information tasks. Some algorithms, such as Shor’s algo-
rithm, are known to be able to run with little additional
overhead even on one-dimensional, nearest-neighbor graphs
[66]. Therefore, when selecting an architecture for a practical
quantum computer, care will need to taken to select the proper
benchmarking task.

In future work we hope to look at a wider variety of
quantum circuits and use those to better benchmark differ-
ent modular architectures. In addition, we hope to gain a

better understanding of the treatment of probabilistic links for
general graphs. For instance, as we discussed briefly when
assessing the star graph SN , one real concern in a networked
setting is whether some parts of the network will form bot-
tlenecks. To analyze the impact of this in a general way will
require a better understanding of realistic quantum algorithms
and the demands they place on a network. Analyzing more
complex quantum algorithms could also shed light on the
performance of partition-and-rotate placement algorithms in
realistic settings when sequencing and scheduling also enter
into consideration.

Finally, in addition to asking ourselves how current circuits
and algorithms can be executed on highly modular systems,
we also hope to explore the possibility that highly modular ar-
chitectures open up new possibilities for parallelized quantum
algorithms. For instance, Ref. [67] shows that quantum fan-
out gates can be used to parallelize gate sequences, decreasing
the time to perform an algorithm at the cost of requiring
additional memory qubits. Hierarchies could implement such
schemes by using high-level connections to perform the initial
fan-out gates and then performing the various parallelized
operations in each individual module.
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