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Learning to predict single-wall carbon nanotube-recognition

DNA sequences

Yoona Yang ', Ming Zheng? and Anand Jagota'”

DNA/single-wall carbon nanotube (SWCNT) hybrids have enabled many applications because of their special ability to disperse and
sort SWCNTs by their chirality and handedness. Much work has been done to discover sequences which recognize specific
chiralities of SWCNT, and significant progress has been made in understanding the underlying structure and thermodynamics of
these hybrids. Nevertheless, de novo prediction of recognition sequences remains essentially impossible and the success rate for
their discovery by search of the vast single-stranded DNA library is very low. Here, we report an effective way of predicting
recognition sequences based on machine learning analysis of existing experimental sequence data sets. Multiple input feature
construction methods (position-specific, term-frequency, combined or segmented term frequency vector, and motif-based feature)
were used and compared. The transformed features were used to train several classifier algorithms (logistic regression, support
vector machine, and artificial neural network). Trained models were used to predict new sets of recognition sequences, and
consensus among a number of models was used successfully to counteract the limited size of the data set. Predictions were tested
using aqueous two-phase separation. New data thus acquired were used to retrain the models by adding an experimentally tested
new set of predicted sequences to the original set. The frequency of finding correct recognition sequences by the trained model

increased to >50% from the ~10% success rate in the original training data set.
npj Computational Materials (2019)5:3 ; https://doi.org/10.1038/s41524-018-0142-3

INTRODUCTION

In recent years, machine learning has emerged as a powerful
general methodology with the ability to create well-performing
predictive models from data. In particular, these techniques have
become essential in bioinformatics because it is impractical to
transform manually large amounts of raw sequence data into
useful scientific knowledge, without requiring explicit program-
ming instruction. Many of the important bioinformatics problems
are well suited for classification algorithms, including gene
annotation,! protein function prediction,>® peptide binding
prediction,*> and DNA binding prediction.®

Single-wall carbon nanotubes (SWCNTs) comprise a family of
nanomaterials with remarkable electronic, optical, and mechanical
properties.” The structure of SWCNTs can be viewed as a cylinder
obtained by rolling a hexagonal graphene sheet. The properties of
SWCNTs are highly dependent on exactly how the graphene sheet
is rolled, which is identifiable by chiral indices (n,m); all synthetic
methods result in mixtures of different chiralities. Especially for
electronic and optical applications, chirality control of the SWCNTSs
is of critical importance®® A number of strategies for SWCNT
separation by their chirality have been developed,'®'? and
notable success has been achieved using special short DNA
sequences called recognition sequences.'>'* These recognize
specific corresponding partner SWCNTs by forming special hybrids
with sufficiently different physical and chemical properties to
enable their separation from mixtures.'> Furthermore, there is
evidence that special recognition DNA/SWCNT hybrids are also
effective as biosensors for specific molecular detection.'®™'8

Several studies have contributed to our understanding of the
structural basis for sequence-specific recognition. Computational
molecular modeling'®?® has established a number of ordered
structural motifs that single-stranded DNA (ssDNA) can adopt
when adsorbed onto an SWCNT. Single-molecule force spectro-
2425 and solution-based studies have provided quantitative
information on strength of association between ssDNA and
SWCNTs.2%?”7 Aqueous two-phase (ATP) separations have been
analyzed to quantify solubility of DNA-SWCNTs,'*?%%° and
fluorescence quenching studies have been used to infer wrapping
structures of recognition sequences.>

Despite all this knowledge and understanding, we have
essentially no ability to predict ssDNA sequences that will form
recognition pairs with SWCNTs. Discovery of new recognition
sequences has relied upon systematic searches through the vast
sequence space of ssDNA. For example, Tu et al3' designed a
systematic search of the DNA library by sequence pattern
expansion, and achieved a success rate of ~7%. In another recent
study®® some sequence patterns were found in a directed and
limited search of a reduced (12-mer, T/C bases only) DNA library,
achieving somewhat better performance (success rate of ~10%).
We may surmise that the probability of finding a recognition
sequence, conditioned upon this sequence expansion scheme, is
no better than about 10%. Thus, although we have a lot of
physical understanding and a reasonable amount of data, our
ability to predict recognition sequences is still absent, and the
search process remains time-consuming and inefficient—the
number of distinct sequences in the sequence space is enormous.
(For the typical sequence lengths [ in the range 10-30, there are
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Overall scheme to develop a model to predict and test DNA recognition sequences. First, the training data set is collected using the
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ATP technique. If the DNA/CNT hybrid can allow partitioning one type of SWCNT in either the top or the bottom phase, that sequence is
labeled as a recognition sequence (“Y”). This is done via the NIR absorbance spectra of sorted fractions. Once the data are collected, the DNA
sequences and their labels are encoded to a numeric vector, which is called input feature construction. Then, the models with three different
types of classification algorithms are trained using the training set feature vectors. A generated query sequence set including all possible
sequences (~2'?) in the 12 mer C/T library are then classified using the trained models. Limitations due to small data set size are mitigated by
choosing the consensus of a number of models. The predicted recognition sequences are tested using the ATP technique again. The new data
are added to the existing labeled sequence data and the models are retrained. This procedure was repeated twice

10°-10'® distinct sequences.) Clearly, a different and more
systematic approach to sequence prediction is needed.

Here, we investigate a new approach to prediction of
recognition sequences using machine learning (ML) techniques.
The aim is to create models to classify query sequences as either
recognition or non-recognition. Multiple input feature construc-
tion methods including n-gram position-specific vector (psv), n-
gram term-frequency vector (tfv), combined or segmented tfv, and
motif-based features®>2 were used. The models were built using a
machine learning tool (WEKA).>* As an initial study for the work
presented in this manuscript, we manually tried all the algorithms
that the WEKA package provides for binary classification using
unigram and trigram psv features. This preliminary study showed
that artificial neural network and random-forest methods worked
best. However, both are of similar complexity. We decided to try
three different algorithms, each algorithm representing a different
level of complexity. Specifically, we used three different algo-
rithms: logistic regression (LR, simplest),>* support vector machine
(SVM, moderately complex),®® and artificial neural network (ANN,
most complex)®.

After training and validation using labeled data, they were used
to predict new recognition sequences. The relatively small data set
size, a common issue in applying machine learning techniques to
problems in materials science,”> was mitigated by choosing
consensus sequences from a number of models, i.e., we combined
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multiple models by cross-validation and selected the sequences
only from the intersection of each set of classifier results.
Predictions were tested experimentally using the ATP separation
technique.?” We retrained the model using the updated data set.
This cycle of prediction, testing, and retraining was repeated
twice. Models were built on DNA sequence information only. To
interpret the results in the context of previous computational'®*
and experimental work,'*?**° we examined discovered motifs
using saliency measures within the ANN models.

RESULTS AND DISCUSSION

Initial models—training, validation, prediction, and evaluation
The overall scheme of our approach is shown in Fig. 1. During the
first round of learning, the models were trained by using three
types of algorithms (LR, SVM, and ANN) with n-gram psv and tfv
(n=1-3) using the dataset described in data collection section
(listed in Table S1). The final models that gave the highest
precision were chosen. This is because precision is directly related
to the ability to find new recognition sequences (TP) correctly in
the experiment, which is the most labor-intensive and time-
consuming part of the entire process. The performance of models
is shown in Tables S2 and S3. Once a model was built, we
generated a query sequence set, including all possible sequences
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Table 1. DNA sequences predicted by our classifiers and tested using ATP separation
Initial models 1st retrained models
Name Sequence CNT species Class Name Sequence CNT species Class
S01 CTT CCC CCC CCT (7,3) Y S11 TTT TCC CCC CTC N
S02 CTT CCC CCC CCC N S12 TTT CCC CCC CTC (7,5) N*
S03 TTT CCC CCC CCC (6,4) Y S13 TTT TTC CCC CCT (9,6) N*
S04 TTT CCC CCC CCT N S14 TTT TTT CCC CCT (10,2) Y
S05 TTT TCC CCC CCT (10,4) Y S15 CCC CCC ccccTC (8,5) N*
S06 TTT TCC CCC CCC (8,5) Y S16 TTT CTC CCC CCT (7,6), (6,5) Y
S07 CTC CCT CCC CCT (7,6) N" S17 CCC ccccececect (8,5) N*
S08 CCT TTC CCC CCT N S18 CCC CCC CCC TTC (11,0) Y
S09 CCT TCC CCC CCT 9.7) N" S19 TTT TTC CCC CCC (8,5) Y
S10 CCC CCT CcCC CCT (7,5) Y S20 TTC TCC CCC CCT (8,5) Y
“Y" denotes recognition sequence and “N” denotes nonrecognition sequence. The superscript “*” denotes a marginal sequence due to its low yield or
selectivity. Recognition sequences are highlighted in bold. SWCNT species recognized by marginal sequences are italicized

(~2'%). These were then classified as recognition or non-
recognition sequence using each of our previously trained models.
Each model typically predicted hundreds of recognition
sequences, still far too many to test. Furthermore, because our
training set is small relative to the size of the query sequence set
(i.e. 82 vs. 4014), one needs to be wary of overfitting. To resolve
these issues, we combined multiple models by cross-validation;
sequences for experimental testing were selected only from the
intersection of each set of classifier results.

We experimentally tested the ten most frequently occurring
sequences among the sequences predicted to be recognition by
our classifiers (Table 1). We identified five sequences (labeled “Y")
that lead to partitioning of only one particular (n,m) SWCNT
species with high yield. Figure 2 shows the absorbance spectra of
the purified SWCNT species by the five sequences and the starting
material. In each spectrum of the purified species, the observed
sharp peaks correspond to the characteristic optical transitions of
a particular (n,m) species. Considering the prediction efficiency,
this is a remarkable result, with prediction efficiency of 50%, a
significant improvement over the ~10% frequency of recognition
sequences in the training set*® We also found two marginal
sequences that could not safely be classified as recognition
sequence because they had insufficient yield or selectivity
although they did show enrichment of a particular (n,m) SWCNT
species in a given phase. These sequences were labeled as non-
recognition sequence in order to maximize stringency of “Y” labels
in the training set.

The previously trained models were then evaluated based on
their prediction errors on the newly tested sequences using Eq. (1)
(depicted as a heat map in Figure S2(a)). The total prediction errors
among the models using psv are not significantly different from
each other, while the models using tfv showed considerable
difference. Compared within the same input feature construction
method, the trigram ANNs are better on both, showing a
normalized prediction error of 0.38 and 0.423 for psv and tfv,
respectively.

Retrained models—training, validation, and prediction

In the second round of learning, the training set was updated by
including newly determined sequences by ATP separation, and
the models were retrained. Ten new recognition sequences
(S11-5S20) were predicted and tested experimentally.

Although most retrained models showed improved validation
performance (Tables S4 and S5), the actual prediction perfor-
mance of 50% remained the same as that of the initial models
(Table 1, Fig. 2). Note that only one sequence was determined as

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

non-recognition sequence and the remaining four were deemed
marginal (Table 1). This indicates that the retrained models
performed somewhat better than initial models but not well
enough to drastically increase the prediction efficiency. Four of
ten predicted sequences interestingly have an ability to purify
(8,5) species. Evidently, our retrained models are likely to predict
recognition sequences for the (8,5) species.

Design of improved models

In the first round, to find optimal models, we used cross-validation.
Although cross-validation is designed to minimize overfitting,
there is still some concern because the validation set is not
independent of the training set. In the second phase, we estimate
the model performance based on the prediction errors calculated
using a newly tested sequence set that is independent of training
sets.

Figure S2(b) shows the prediction errors of the retrained
models. In general, the models with tfv gave smaller error than
models with psv. For the models with psv, bigram ANN, and
trigram ANN and LR perform much better (with the error of 0.394,
0.405, and 0.42, respectively) than others. Among the models with
tfv, trigram LR and ANN showed smaller error of 0.317 and 0.324.

Although the prior models already showed very good
performance, we explored improved training methods to further
enhance the prediction accuracy in the next round of experi-
ments. First, we selected and focused on tfv, for its ability to
handle sequences of different lengths. Next, we dropped the use
of SVM since validation results revealed that SVM models are
generally poor (Tables S2-S5 and Figure S2). We also found that
the models with small n-gram of psv and tfv showed poor
performance (Tables S2-S5), so higher n-gram (n = 3-5) tfv were
examined in second retrained models. For ANN models, in most
cases we found best performance with a single layer. Additionally,
given the size of our training set, we restricted N, to be single and
Np, to be no larger than twice the size of the feature vector to
avoid overfitting.

The overall optimization was previously performed on the
precision because it is more important to classify actual non-
recognition sequence incorrectly (i.e., low FP) than to classify
actual recognition sequence incorrectly (i.e, high FN) when we
test the predicted sequences in the lab. However, a better
indicator of model quality should account for both FP and FN, so
F' and S scores were subsequently used for optimization.
Furthermore, additional feature construction methods were
examined as described in Feature construction section.

npj Computational Materials (2019) 3
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Fig. 2 Absorbance spectra of SWCNT species purified by ATP using
new sequences and the starting CoMoCAT (EG150X) mixture. The
SWCNT species have been identified by their E;; and E,, peak
positions (M, for metallic species). Each spectrum is normalized at
the E;, peak position (M;; for metallic species) and the baseline level
of each spectrum was manually offset for visual clarity

Motifs were searched for by the motif-mining tool, MERCI,>?
with the minimal occurrence frequency for positive sequences f,
and the maximal occurrence frequency for negative sequences fy.
To avoid overfitting, the length of motifs is limited to be 5—7
bases for recognition motifs and five bases for nonrecognition
motifs. In order to calculate the conditional probabilities, all
possible motifs were found by setting f to be 1 (i.e., a motif occurs
at least once in the positive set) and fy to be the maximum
number, 83 for second updated training set (i.e., a motif occurs
anywhere in the negative set). Motifs (Figure S1) were ranked
according to their conditional probabilities of recognition
(denoted as “Y”) or non-recognition (denoted as “N”) sequences
given motif, P(Y or N|motif), and top ten motifs were chosen for
both sets (Table S7).

npj Computational Materials (2019) 3

Table 2. Top five second retrained models showing best performance

Algorithms Feature Optimization Precision Recall F' score

0.600
0.480
0.556

0.632
0.632
0.526

0.615
0.545
0.541

ANN tfvs
LR Motif (Lyec < 6)
ANN

Ny=11,y=1

Combined
tfv, 3

Segmented
tfvz3

Combined
;o3

Ny =4

ANN Np=9 0.556 0.526 0.541

ANN Np,=9 0.529 0474 0.500

Finally, we retrained the models using LR and ANN with simple
tfv, combined or segmented tfv, and motif-based features using
the updated training set (Table S8 and Figure S3).

Top five models that gave the highest F' scores are listed in
Table 2. In general, ANN showed better performance than LR, and
trigram tfv and motif-based features showed high performance.
ANN with simple trigram tfv (tfvs) shows the best performance,
while the combined bigram and trigram tfv (tfv,_3) and bi-
segmented trigram tfv (tfv,3) show third best performances. It is
interesting that combined or segmented trigram tfv do not
perform better than simple tfv, even though they already contain
simple tfv inside. This implies that irrelevant features can cause
poor performance, which leads to the need for a saliency analysis.

Saliency analysis and overall observations

The saliency measures can be used to identify important input
features. Figure S6 shows that the saliency of segmented tfv,;
ANN models is high in the features of the first and last segment
(i.e., at the ends of the sequences). Previous studies on the
displacement of ssDNA by surfactants®®?’ suggest that the
difference between recognition and non-recognition sequences
is due to structural differences at sequence ends. Saliency results
support that experimental finding.

Saliency also can be used to study model performance by
examining the number of irrelevant features, defined by when the
standard deviation is larger than the mean value. We rank models
by the ratio of the irrelevant to total features. The top four models
with lowest irrelevant feature ratio are tfvs;, motif-based feature
with Liec <7, the combined tfv,_3 and tfv;_,_3. These four are also
the top four ANN models based on the validation results.

Figure S8 shows the n-gram frequency of the final training set.
Recognition sequences evidently contain higher frequency of
“CCC", especially in the newly discovered sequences (red box).
This is consistent with a previous experimental finding.®

CONCLUSION

The DNA/SWCNT hybrid system comprises a vast set of sequence/
(n,m) combinations. A small fraction of these form recognition
pairs that allow separation of individual (n,m) SWCNT from a
mixture. Our considerable knowledge about their structure and
thermodynamics has not previously translated into an ability to
predict recognition sequences. Here, we systematically applied
machine learning techniques to predict recognition sequences.
For simplicity and illustrative purposes, we restricted ourselves to
12-mer sequences with a 2-letter alphabet (C & T). ML models
were trained on available data, and retrained twice based on new
experimental data. We showed a remarkable increase in the
frequency of recognition sequences from 10% in the original
training set to >50% in the model-predicted sequence sets.

To design an improved model, detailed analyses were carried
out. Performance was measured in terms of evaluation parameters
(F' score) by cross-validation and prediction errors on the newly
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tested sets. Often model performance depends strongly on choice
of sequence representation by input features. We chose a number
of feature representation methods including tfv, psv, and mixed
models. These methods have competing advantages when it
comes to capturing information embedded in a set of sequences.
When predicting new sequences to be tested experimentally, we
chose on the basis of consensus of a number of methods, on the
notion that the intersection of predictions made by different
models would mitigate the limitations of our data set size and
feature encoding schemes.

Among individual models, prediction performance of the tfv
models was generally better than psv; trigram tfv models showed
smaller prediction error. Based on these analyses, we directed
attention to ANN and LR using tfv. We also explored new input
feature construction methods such as combined or segmented tfv,
and motif-based features. We obtained highly encouraging
models that showed an improved F' score of ~27% when
compared to the best previous model. In general, the ANN
algorithm in combination with trigram tfv showed the best
performance.

As aids to model interpretation, we investigated the discovered
motif and feature saliency. We found that the top ranked motifs
found with no motif-length limitation contained at least eight
bases. This result may suggest that at least eight bases are needed
to tightly wrap around SWCNT to exhibit a specific binding
characteristic. According to the saliency analysis, the sequence at
the ends contributes more to the classification, consistent with
experiment.%%’

One may question the representation of recognition DNA
sequence prediction as a binary classification problem, since each
pairs with a different SWCNT. Success despite this assumption
indicates that recognition sequences may share common features
although individual recognition sequences recognize a particular
(n, m) species. Although our model is promising, we believe that
there is considerable room for improvement. For example,
recognition sequences differ in terms of selectivity, represented
by purification yield. Some special sequences are known to be
capable of separating enantiomers?®. Yet, in the current model,
these are all assigned the same label/score.

Y. Yang et al.

npj

These considerations suggest future research in two major
directions: one is to develop resolution-based multi-level classifi-
cation. For example, multi-level classification would allow us to
capture improvement in the model between the first and second
rounds of experiment by allowing cases labeled as N* to be
accounted for as their own level of classification. The other is the
study of methods for the interpretability of ML models such as
saliency analysis. More broadly, bio/nano hybrid materials made of
inorganic nanostructures and sequence-defined polymers such as
DNA and peptides represent an emerging class of materials that
have many promising applications. Design of this new class of
material inevitably has to solve the challenging problem of
efficient exploration of a vast sequence space. The learnings we
obtained in this work should provide some insight to the more
general sequence selection problem.

METHODS
Data collection

The available data on ssDNA sequences that form recognition pairs with
specific SWCNTs have been obtained under varying conditions (e.g.,
solution conditions), sequence lengths (~8-30), and classification methods
(ion-exchange chromatography, ATP, etc). Here, we chose a recently
reported set of sequences®® that were all handled under identical
conditions. To reduce complexity, in this set the DNA base type was
restricted to the 2-letter (Thymine;T/Cytosine;C) alphabet and DNA length
was fixed to be 12 bases. This set initially contained nine recognition
sequences (labeled as “Y”) and 73 nonrecognition sequences (labeled as
“N").

To test our predicted sequences experimentally, we utilized the ATP
separation technique. Preparation of DNA/SWCNT hybrids and ATP
separation followed the protocols described in ref. 3”. Briefly, COMoCAT
SWCNTs (1 mg, SG65i grade and EG150X grade; Southwest Nanotechnol-
ogies) were suspended in 1 mL of deionized water with 0.1 M NaCl (Sigma-
Aldrich) and 2 mg ssDNA (Integrated DNA Technologies). The DNA/SWCNT
mixture was dispersed using tip sonication with a power output of 8 W for
1.5 h in an ice bath. The dispersion was then centrifuged at 16,000 x g for
1.5h and the supernatant was collected. Typically, an ATP system
comprising 7.76% PEG (MW 6 kDa, Alfa Aesar) and 15% polyacrylamide
(PAM, 10 kDa, Sigma-Aldrich), denoted as PEG/PAM, was used for SWCNT
separation, but 16% poly(vinylpyrrolidone) (PVP, MW 10kDa, Sigma-

[ n-gram based

) |
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=123ty for tfvsd || 4 (seg seq,,) ={0.4, 0.4, 0.2, 0}, - Motif * ’ can identify
tfvy( +segy,) ={ } both sequence Aand B not C.
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A AN J

* Extracted by MERCI®
* Invariant with position in sequence.
* Contain agap(_)
* Maximum motif length is
4 — 6 bases for recognition motifs,
5 bases for non-recognition motifs.
* Feature vector is formed using
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a givensequence S:
m occurs in seq.S

i,
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mfv(8) = {am1 (S), amz (S), ..., amao (9}
Ex. sequence A = TCT
sequence B=CTTTCT

“motif-discover tool (ref. 32)

Fig.3 Overview of input feature construction methods explored. Feature types can be broadly categorized into two types: n-gram-based and
pattern-based. The n-gram feature vectors represent DNA sequences as a collection of n-gram entities in a position-specific manner (psv), in
terms of appearance frequency (tfv), or some combination of these two. In the pattern-based feature vector, following discovery of motifs in
the training set, the DNA sequences are represented by the occurrence or absence of a given motif in that sequence
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Aldrich) and 11% Dextran 70 (DX, MW ~70 kDa, TCl) ATP system, denoted
as PVP/DX, was used for some of the DNA/SWCNT hybrids. Both DX and
PVP were used as DNA/SWCNT partition modulators. UV—vis—NIR
absorbance measurements were performed on a Varian Cary 5000 spectro-
photometer over the wavelength range of 200—1400 nm.

Feature construction

We wish to build models that predict the class to which a sequence
belongs (i.e, recognition or non-recognition). Choice of sequence
representation by features is important for classifier algorithms to function
well. We investigated several input feature construction (or sequence
encoding) methods: position-specific vector (psv), term frequency vector
(tfv), combined tfv, segmented tfv, and motif-based feature vector (mfv),
described schematically in Fig. 3.

A common input feature construction technique in bioinformatics is
fixed-length overlapping n-gram analysis, which breaks sequences into
subsequences using various types of vocabulary, in the case of DNA the
nucleotides or the codon types.®® Using the method, sequences can be
represented by overlapping n-gram patterns.

The position-specific vector (psv) encoding method uses an indicator
vector to represent each n-gram word at each position. Thus, a given
sequence S can be represented by psv,(S) = {wi,wp, ... ,w;}, where
wj; € n-gram vocabulary; / is the number of positions that is given by (L —
n+1); L is sequence length. For example, for the sequence A= TTCTCC,
with n=2, w;e{TT,TC,CT,CC} and psv,(A) = {TT,TC,CT,TC,CC}. To
enter into the ML models, the psv is converted into binary features using
the one-attribute-per-value approach (i.e., {TT, TC, CT, CC}~{(1,0,0,0),
(0,1,0,0),..., (0,0,0,1))) by a built-in function in WEKA.>®> The psv represents
the entire base position information but is not suitable for long sequences
as the size of the feature vector becomes large. In addition, sequences with
different lengths cannot be compared easily, because they result in feature
vectors of different sizes.

The term frequency vector (tfv) defines the feature vector using the
frequency of the n-gram in the sequence. For sequence A,
tfv,(A) = {1/5,2/5,1/5,1/5}. The tfv method loses global positional
sequence information—several different sequences correspond to the
same tfv—unless the word length approaches that of the sequence itself.
The psv method, on the other hand, contains the complete sequence
information in that there is a 1-1 mapping between psv and the original
sequence, but by treating each base as a feature it does not capture more
complex features very efficiently. The tfv method is computationally
inexpensive, and can accommodate different sequence lengths.>® How-
ever, it has a limitation that many sequences give the same tfv, eg,
tfv;(Th2) = tfv1(Ti3) = {1,0}, especially for small n.

Previous work?® suggests that both frequency and position informa-
tion could be important for sequence prediction, and so we considered a
new encoding scheme that combines features of psv and tfv. The basic
idea of the method is to divide a sequence into m (m €[1,L]) smaller
segments of roughly equal length /s (l;=L/m). We construct a tfv for
each segment, and then tfv for the entire sequence S in the
following way to include position information of each segment:
tfvmn(S) = {tfvy(seq,), tfva(seq,), ... , tfvy(seg,,)}. Contribution to the
tfv from terms that straddle segment boundaries are made according
to a weighted average of their occupancy in either segment.
For example, for sequence A, where m=2 and n=2, segment 1=
TTC, segment 2=TCC, and overlapped segment=CT, so
tfvs5(A) = [{1/2.5,1/2.5,0.5/2.5,0},{0,1/2.5,0.5/2.5,1/2.5}].

With a similar purpose in mind, but in a simpler way, a combined tfv
method was also investigated. Using n-grams with different n, different
properties can be captured. For example, unigram is based only on the
base frequency, while trigram captures some of the location information as
well as their frequency. Thus, by combining different n-gram features, one
can capture more information. The combined tfv can be formed as
following: tfv;_5_.._«(S) = {tfv;(S), tfv2(S), ... , tiv(S)}.

We next considered features based on motifs. The basic hypothesis of
this method is that there are recurring patterns or motifs in the DNA
sequence which recognize a special type of SWCNT. We employed a motif-
discovery tool called MERCI*? to search for motif patterns. In order to
systematically select discriminative motif features, we ranked the motifs
based on their conditional probabilities that a sequence is labeled “Y”",
given motif: P(Y|motif). The top ten recognition and non-recognition
motifs were chosen for use as features. Maximum motif lengths were
limited to 5-7 bases for recognition motifs and five bases for nonrecogni-
tion motifs. The extracted motifs were coded as a 20-dimensional binary
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feature vector, mfv. Entry m is set to “1” if motif m occurs in a given
sequence and “0” otherwise.

Note that the range of all feature vectors were rescaled to the range in
[—1, 1] to weigh all features equally.

Learning, validation, and evaluation

We began by evaluating a number of common learning algorithms for
binary classification: logistic regression (LR) with ridge estimator,*® support
vector machine (SVM) using sequential minimal optimization (SM0),*" and
feedforward artificial neural network (ANN). To build and validate the
classification models, we employed the open-source machine learning tool
WEKA®>,

To optimize the artificial neural network models, we trained them with
different numbers of hidden layers (N) and hidden nodes (Nj).
Additionally, we optimized the cost factor y, the ratio of false positive to
false negative “cost” to vary from “1”. By maximizing y, we reduce the
chance of failure in follow-up experiments.

We also tried automated ML packages to explore all models and adjust
the hyperparameters automatically using the Auto-WEKA*? and “h20"*
AutoML packages. Both packages return choices for algorithms and
hyperparameters—examples are provided in SI. However, because of lack
of transparency, we decided to focus on the three chosen algorithms along
with “manual” optimization of hyperparameters.

The performance of each of the classifiers was evaluated using a
standard tenfold cross-validation. Because the sample set is relatively
small, and examples with the “Y” label smaller still, we chose not to use
strategies that include training, test, and validation subsets. Instead of so
splitting the training set, we tested our models by using them to predict
new sets of sequences that were tested experimentally. Evaluation results
can be examined by the confusion matrix, which reports the number of
true positive (TP), false positive (FP), false negative (FN), and true negative
(TN) predictions. To measure prediction quality, we computed the

. ) - _
conventional evaluation parameters such as precision (Prch—HFP),

_ _ TP 1 1 __ 2Prc-R
recall (R = TH—FN) or F' score <F score = PrHR).
In addition, the performance was evaluated using the area under the
receiver operating characteristic (ROC) curve, known as AUC.
To validate the models with newly identified sequences, normalized

prediction error E is calculated by

|t —t|
E:ZT. (1)

Here, t. is the prediction probability for each instance calculated by the
classifier and t is the experimentally determined truth value, “1” for
recognition sequences, “~1” for nonrecognition sequences, and “0" for
marginal sequences, and n is the number of instances.
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