Gas Separation Hot Paper

International Edition: DOI: 10.1002/anie.201809869 German Edition: DOI: 10.1002/ange.201809869

A Metal–Organic Framework with Suitable Pore Size and Specific Functional Sites for the Removal of Trace Propyne from Propylene

Libo Li, Hui-Min Wen, Chaohui He, Rui-Biao Lin, Rajamani Krishna, Hui Wu, Wei Zhou, Jinping Li, Bin Li,* and Banglin Chen*

Abstract: Separation of propyne/propylene (C_3H_4/C_3H_6) is more difficult and challenging than that of acetylene/ethylene (C_2H_2/C_2H_4) because of their closer molecular sizes. A comprehensive screening of a series of metal-organic frameworks with broad types of structures, pore sizes, and functionalities was carried out. UTSA-200 was identified as the best separating material for the removal of trace C_3H_4 from C_3H_4 $C_{3}H_{6}$ mixtures. Gas sorption isotherms reveal that UTSA-200 exhibits by far the highest C_3H_4 adsorption capacity (95 cm³ cm⁻³ at 0.01 bar and 298 K) and record C_3H_4/C_3H_6 selectivity, which was mainly attributed to the suitable dynamic pore size to efficiently block the larger C_3H_6 molecule whilst the strong binding sites and pore flexibility capture smaller $C_{3}H_{4}$. This material thus provides record purification capacity for the removal of C_3H_4 from a 1:99 (or 0.1:99.9, v/v) C_3H_4 C_3H_6 mixture to produce 99.9999 % pure C_3H_6 with a productivity of 62.0 (or 142.8) $mmolg^{-1}$.

Adsorptive separation based on porous materials opens the door to enable a possible transition from traditional energyintensive cryogenic distillation to the energy-efficient adsorbent-based separation for industrial gas separation and purification.^[1] Compared to conventional activated carbons and zeolites, the emerging microporous metal–organic frame-

[*]	Dr. L. Li, C. He, Prof. J. Li College of Chemistry and Chemical Engineering Taiyuan University of Technology Taiyuan 030024, Shanxi (China)
	Dr. L. Li, Dr. RB. Lin, Prof. B. Chen Department of Chemistry, University of Texas at San Antonio One UTSA Circle, San Antonio, TX 78249-0698 (USA) E-mail: banglin.chen@utsa.edu
	Prof. B. Li State Key Laboratory of Silicon Materials School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 (China) E-mail: bin.li@zju.edu.cn
	Dr. HM. Wen College of Chemical Engineering, Zhejiang University of Technology Zhejiang, 310014 (China) Prof. R. Krishna Van't Hoff Institute for Molecular Sciences, University of Amsterdam
	Science Park 904, 1098 XH Amsterdam (The Netherlands)
	Dr. H. Wu, Dr. W. Zhou NIST Center for Neutron Research National Institute of Standards and Technology Gaithersburg, MD 20899-6102 (USA)
D	Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/anie.201809869.

works (MOFs) have attracted immense attention for gas separation/purification in recent years owing to their fascinating tunability with respect to pore size, shape, and surface functionality.^[2] These features have enabled us to design target materials with the on-demand pore size and functionality for diverse gas separation and purification, including separation of CO_2/N_2 , CO_2/CH_4 , light hydrocarbons, C_2H_2/CO_2 , O_2/N_2 , CO/CO_2 , and so on.^[3]

Gas molecules with quite different molecular weights and thus vapor pressures or boiling points, for example, CO₂ and N₂, can be easily separated because of their different interactions with porous materials.^[4] Those gas molecules with similar molecular weights and vapor pressures are difficult and challenging to be separated.^[5] Ultramicroporous MOFs are superior to well-developed porous materials for gas separation/purification; this superiority is attributed to their power of the finely tuned pores to enforce the sieving effects and the readily immobilized functional sites on the pore surfaces to introduce the specific recognition with one of the gas molecules, and the interplay of dual functionalities of both the suitable size and functional site.^[6,7] Indeed, a few ultramicroporous MOFs have been discovered for the very challenging separations of C₂H₂/C₂H₄, C₂H₂/CO₂, C₂H₄/C₂H₆, and C₃H₄/C₃H₆ over the past several years.^[7] Compared with the separation of C_2H_2/C_2H_4 , the C_3H_4/C_3H_6 separation is more difficult and challenging. As shown in Scheme 1, acetylene and ethylene are the simplest alkyne and alkene with a three-dimensional (3D) size of $3.32 \times 3.34 \times 5.70$ and $3.28 \times 4.18 \times 4.84$ Å³, respectively. The kinetic diameter difference between C_2H_2 (3.3 Å) and C_2H_4 (4.2 Å) is about 0.9 Å.^[8] Propyne and propylene, also known as methylacetylene and

Scheme 1. Comparison of molecular size and kinetic diameter difference of C_2H_2/C_2H_4 and C_3H_4/C_3H_6 .

Angew. Chem. Int. Ed. 2018, 57, 15183-15188

methylethylene, have a larger size of $4.16 \times 4.01 \times 6.51$ and $4.65 \times 4.16 \times 6.44$ Å³. C₃H₄ is a linear molecule, and C₃H₆ has a curved shape. Despite different shapes, the relatively bulky methyl group makes the kinetic diameter difference between the pair C₃H₄ and C₃H₆ (4.2 and 4.6 Å) much closer (nearly 0.4 Å) than C₂H₂/C₂H₄.^[2a] The smaller the size difference between the pair of molecules is, the more difficult the separation will be.

Removal of trace C_3H_4 (1000 or 10000 ppm) from C_3H_4 / C₃H₆ mixtures is one of the most important separation processes to produce polymer-grade C₃H₆ gas (the C₃H₄ impurity should be lower than 5 ppm), a prime olefin raw material for petrochemical production. Microporous materials for C₃H₄/C₃H₆ separation have not been well-explored, with only the ELM-12, SIFSIX-3-Ni (SIFSIX = hexafluorosilicate (SiF_6^{2-}) and ZU-62 having been reported.^[9] While these materials exhibit high C₃H₄ adsorption capacity, they only exhibit moderately high gas-separation performance because of the comparatively large pores to include both C_3H_4 and C₃H₆ molecules, thus limiting the productivity of the desired C3H6 product. Targeting high performance porous materials can not only significantly enhance the C3H6 productivity, but also increase the purity of the C₃H₆ product, thus reduce the energy cost for this important industrial separation. Adsorption selectivity and uptake capacity are the two most important criteria that are directly related to productivity and purity, but it is very difficult to target materials with both high values (so-called trade-off). To realize high selectivity and adsorption uptake simultaneously, ideal MOFs should have suitable pore size and specific functionality that can discriminate the difference in size and physical properties between the two molecules. While rational design of microporous MOFs with desired high productivity for C_3H_4/C_3H_6 separation is quite difficult, we thus systematically screened a series of porous MOFs with different structures, pore sizes, and pore-surface functionalities for this separation. To our surprise, the material UTSA-200 ([Cu(azpy)₂(SiF₆)]_n, azpy = 4,4'-azopyridine),^[7b] which we recently realized for the highly efficient C_2H_2/C_2H_4 separation, turned out to be very powerful as well for the more difficult C_3H_4/C_3H_6 separation. Our detailed studies comprehensively affirm its benchmark separation performance with the record C_3H_4 uptake capacity (95 cm⁻³ cm⁻³ at 0.01 bar and 298 K), gas selectivity (over 20000), and C_3H_6 productivity (62.0 and 142.8 mmol g⁻¹ for 1:99 and 0.1:99.9 mixtures).

We first selected 20 different MOFs to examine their C₃H₄ and C₃H₆ adsorption properties and then superficially evaluate their separation potential (see the Supporting Information, Table S1 for detailed structural parameters). As shown in the Supporting Information, Figure S1, achieving the looked-for efficient separation is indeed very challenging for C_3H_4/C_3H_6 separation, and the examined MOFs almost show unsatisfactory separation properties. Despite the daunting challenge, some reported MOFs with strong binding sites toward C3H4 (SIFSIX-1-Cu, SIFSIX-2-Cu-i, SIFSIX-3-Ni, and ELM-12) exhibit steep adsorption of C₃H₄ at the lowpressure region over C₃H₆, leading to the benchmark selectivity reported so far. However, their pore sizes allow the passage of both C_3H_4 and C_3H_6 , thus delimiting their high gas selectivities.^[9] UTSA-200, with a smaller aperture size of 3.4 Å, exhibits an exceptionally high C₃H₄ uptake but very little C_3H_6 adsorption at the low-pressure region (Figure 1), offering the potential to be the best candidate for C_3H_4/C_3H_6 separation.

Figure 1. a) The pore aperture and pore chemistry of SIFSIX materials. b) Associated C_3H_4 and C_3H_6 adsorption isotherms at 298 K.

15184 www.angewandte.org

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Angew. Chem. Int. Ed. 2018, 57, 15183-15188

Structural analysis revealed that pore sizes in SIFSIX-1-Cu, SIFSIX-2-Cu-i, and SIFSIX-3-Ni range from microporous (8.0 Å) to ultra-microporous (4.2 Å, Figure 1a),^[7a, 10] indeed allowing both C₃H₄ and C₃H₆ to enter the pores. The doubly interpenetrated UTSA-200 possesses much smaller channels of 3.4 Å.^[7b] This static pore size is notably less than both of C_3H_4 and C_3H_6 , which might induce the selective sieving toward the larger C3H6 molecules when the framework flexibility and thus slightly enlarged pore sizes are taken into the account. Furthermore, there exist a large number of SiF_6^{2-} anions around the channels that show much stronger binding affinity toward alkynes over alkenes.^[7a,9b] These structural features on UTSA-200 might be responsible for the exceptional performance for C_3H_4/C_3H_6 separation. Bulk purity of UTSA-200 sample was confirmed by powder X-ray diffraction (PXRD) patterns and the measured surface area (Supporting Information, Figure S2).^[11]

All of these SIFSIX materials show steep and high C_3H_4 uptakes over C_3H_6 at 298 K (Figure 1 b). When the pore size was gradually reduced from SIFSIX-1-Cu to UTSA-200, the C_3H_4 sorption isotherms at low-pressure region (0–0.01 bar) become steeper and steeper (Figure 2 a). The C_3H_4 capture capacity at 0.01 bar increases in the order of SIFSIX-1-Cu < SIFSIX-2-Cu-I < SIFSIX-3-Ni < UTSA-200 (Figure 2 b), wherein UTSA-200 shows the highest value of 95 cm³cm⁻³. Even under an ultralow C_3H_4 partial pressure (1000 ppm), the C_3H_4 uptake capacity of UTSA-200 can reach 83 cm³ cm⁻³, still notably higher than SIFSIX-3-Ni (75 cm³ cm⁻³). SIFSIX-2-Cu-i (11 cm³ cm⁻³), and ZU-62 (5.2 cm³ cm⁻³). In comparison to other top-performing materials, UTSA-200 also sets

new benchmarks at both 0.01 and 0.001 bar (Figure 2c; Supporting Information, Figure S3), making it the most promising material for the trace C_3H_4 removal. In contrast, UTSA-200 shows an ignorable C_3H_6 uptake at 0.01 bar (Figure 2b), and little C_3H_6 uptake up to 0.4 bar (10.5 cm³ cm⁻³), which is dramatically lower than SIFSIX-2-Cu-i (61.2 cm³ cm⁻³), SIFSIX-3-Ni (85.1 cm³ cm⁻³) and ZU-62 (69.7 cm³ cm⁻³) at 0.4 bar. The fine-tuned pore size of UTSA-200 indeed supports the molecular exclusion of C_3H_6 at low pressures. Most importantly, the sieving effect of C_3H_6 can be strengthened with the temperature increased to 318 K while the low-pressure C_3H_4 uptake capacity can be retained (Supporting Information, Figure S5), indicating its bright promise for C_3H_4/C_3H_6 separation at a broader operation temperature.

Ideal adsorbed solution theory (IAST) was utilized to calculate the adsorption selectivity of these materials for a 1:99 (v/v) C_3H_4/C_3H_6 mixture at 298 K. UTSA-200 exhibits an extraordinary high selectivity of over 20000 (Figure 2 d; Supporting Information, Figure S7), significantly higher than the previous benchmark ELM-12 (83), SIFSIX-3-Ni (76), and ZU-62 (48). It should be noted that the selectivity of UTSA-200 can be only used for the qualitative comparison. As shown in the Supporting Information, Figure S8, the uptake ratio of C_3H_4/C_3H_6 for UTSA-200 at 0.01:0.01 and 0.01:0.99 bar can reach 149.5 and 2.49, respectively. Both values are the highest among the indicated MOFs, further confirming its best C_3H_4/C_3H_6 selectivity. Furthermore, UTSA-200 also exhibits the record C_3H_4 uptake (2.88 mmolg⁻¹) for adsorption from this mixture (Figure 2e).

Figure 2. a) Experimental C_3H_4 and C_3H_6 adsorption isotherms of SIFSIX-2-Cu-i (black), SIFSIX-3-Ni (blue), and UTSA-200 (red) at 298 K in the region of 0–0.05 bar. b) Comparison of C_3H_4 and C_3H_6 uptake at 0.01 bar for the SIFSIX materials. c) A comparison of C_3H_4/C_3H_6 uptake ratio at 0.01:0.01 bar for UTSA-200 and other indicated MOFs. d) IAST selectivity and e) IAST calculated C_3H_4 uptake capacity of the indicated MOFs from 1:99 (v/v) gas mixtures. f) DFT-D calculated structure and binding site of UTSA-200 \subset_3H_4 . The different nets are highlighted in purple and gray for clarity. Cu cyan, Si dark green, F red, N blue, C gray, H white, C in C_3H_4 orange.

Angew. Chem. Int. Ed. 2018, 57, 15183-15188

To understand the origin of the ultra strong C₃H₄ adsorption and effective C₃H₆ sieving, we performed detailed modeling studies using first-principles dispersion-corrected density functional theory (DFT-D) method on UTSA-200. The static pore size of UTSA-200, based on the crystal structure, is about 3.4 Å,^[7b] which is much smaller than both C_3H_4 (4.2 Å) and C_3H_6 (4.6 Å).^[2a] As shown in the Supporting Information, Figure S9, after adsorption of C₃H₄ molecules, the N=N bond and pyridine rings on the azpy exhibit an obvious rotation and distortion, which enlarges the pore to about 4.2 Å, thereby allowing the passing of a C_3H_4 molecule. Calculations also show that each adsorbed C3H4 molecule is bound by two SiF₆²⁻ sites from different nets through cooperative C-H…F and C=H…F H-bonding, with the short distance of 2.179 and 2.239/2.459 Å (Figure 2 f). Owing to the larger size of C₃H₆, the pore needs to be expanded more for the passage (Supporting Information, Figure S10). The calculated static binding energies for C₃H₄ and C₃H₆ are 62.3 kJ mol⁻¹ and 45.4 kJ mol⁻¹, respectively. The framework thus has much stronger binding with C3H4 molecule than C₃H₆, as further confirmed by the higher experimental isosteric heat of adsorption (Q_{st}) for C_3H_4 (Supporting Information, Figure S11). This kind of subtle guest-assisted pore opening is primarily dictated by the interaction strength of the adsorbate framework: the stronger the intermolecular interactions are, the lower the gate-opening pressure will be.^[6b,12] Therefore, attributed to the smaller size and the stronger interactions with the framework, C₃H₄ molecule might open the pore easily to result in the ultrastrong C_3H_4 adsorption. Conversely, the larger size and weaker interactions of C_3H_6 molecule make the pore opening more difficult and thereby to be size-excluded, especially at the lowpressure region.

High-resolution neutron powder diffraction (NPD) measurements were further performed on a C_3D_4 -loaded sample of UTSA-200 at 298 K to confirm the calculated C_3H_4 binding sites. The data indicate that C_3D_4 adsorption indeed induced a lot of local framework distortion in the sample (to accommodate the large gas molecules), resulting in lower overall crystal symmetry. Consequently, it became impractical to perform a rigorous Rietveld refinement of the NPD data. Fortunately, it is still possible to qualitatively compare the experimental data with the simulated NPD pattern based on a model structure built upon the DFT-D calculation results. As shown in the Supporting Information, Figure S12, the two agree reasonably well, and thus strongly support the validity of the DFT-D determined C_3H_4 binding configuration.

Transient breakthrough simulations were first conducted for UTSA-200 and the indicated MOFs in fixed-bed adsorption processes to determine the feasibility of C_3H_4/C_3H_6 separation. The 1:99 (v/v) C_3H_4/C_3H_6 mixture was employed as feeds to mimic the industrial process conditions. As depicted in Figure 3 a, efficient separations were realized with all the examined MOFs, whereby C_3H_6 first eluted through the bed to yield a polymer-grade gas, and then C_3H_4 broke through from the bed at a certain time τ_{break} . Owing to the record selectivity and C_3H_4 uptake capacity, UTSA-200 exhibits the longest τ_{break} value, several times higher than that in SIFSIX-3-Ni, ELM-12, and ZU-62 (Supporting Information, Figure S13). During the time $0-\tau_{break}$, the pure C_3H_6

Figure 3. a) Transient breakthrough simulations of C_3H_4/C_3H_6 (1:99, v/v) mixture on UTSA-200 versus some benchmark materials at 298 K. b) Plots of the productivity of pure C_3H_6 from C_3H_4/C_3H_6 mixtures in the simulated breakthrough for the indicated MOFs. c) Experimental breakthrough curves for 1:99 (v/v) mixture under a flow of 2.0 mLmin⁻¹ at 298 K and 1.01 bar. d) The C_3H_6 productivity from C_3H_4/C_3H_6 mixtures of the indicated MOFs, with C_3H_4 concentration less than 1 ppm. e) Experimental breakthrough curves for a 0.1:99.9 (v/v) mixture. f) Retained time of C_3H_6 in cycling tests of UTSA-200 for a 1:99 (v/v) mixture.

15186 www.angewandte.org

DCh

productivity by UTSA-200 can reach $367.2 \text{ mol } \text{L}^{-1}$ (Figure 3b), which is notably higher than that of SIFSIX-3-Ni, ZU-62, and ELM-12.

Experimental breakthrough studies were performed in a packed column of activated UTSA-200 under flow (2.0 mLmin^{-1}) of binary C₃H₄/C₃H₆ (1:99, v/v) mixtures at 298 K, and compared with the indicated MOFs. The breakthrough data depicted in Figure 3c clearly demonstrate that UTSA-200 can effectively separate C_3H_4/C_3H_6 mixtures: the C₃H₆ gas passed through the adsorption bed immediately, while C3H4 was retained in the packed column over 710 min g^{-1} . This breakthrough time of C_3H_4 is three times longer than that of SIFSIX-2-Cu-i, ELM-12, and SIFSIX-3-Ni. These experimental data are consistent well with the simulated results. The concentration of C3H4 in the outlet effluent was even below 1 ppm up to 700 min (Supporting Information, Figure S14), which is notably less than the acceptable level of less than 5 ppm for polymer-grade C_3H_6 gas. It is to be noted that this deep removal of C_3H_4 from 1:99 (v/v) mixture is unable to be achieved for most selected MOFs (such as MOF-74 series, Cu-BTC, ZIF-8, MIL-100) owing to their unsatisfied selectivity (Supporting Information, Figure S15). Among the viable MOFs, the C₃H₆ production of UTSA-200 from the outlet effluent for a given cycle was calculated to be record high of 62.9 mmol g^{-1} (Figure 3d; Supporting Information, Table S14), far exceeding those observed in SIFSIX-3-Ni (19.6 mmolg⁻¹) and ELM-12 $(15.8 \text{ mmol g}^{-1})$. For C₃H₄/C₃H₆ mixture containing ultralow C_3H_4 concentration (1000 ppm), UTSA-200 also exhibits the best separation performance with the record C₃H₆ production of 143.8 mmol g⁻¹, as illustrated in Figure 3e and the Supporting Information, Table S15. Finally, the separation performance of UTSA-200 can be recycled at least 7 times (Figure 3 f; Supporting Information, Figures S17–S22).

Through a comprehensive screening of broad types of MOFs, we demonstrated herein an ultra-microporous MOF, UTSA-200, as the best separating material for the removal of trace C_3H_4 from C_3H_4/C_3H_6 mixtures. The foregoing results revealed that UTSA-200 exhibits both the unprecedented high C₃H₄ capture capacity and separation selectivity, setting new benchmarks for any material reported so far. This exceptional separation performance is attributed to the framework flexibility originated from the rotation of pyridine rings inside the pores and the strong binding sites that can selectively block the larger C₃H₆ but capture large amount of the preferred smaller C₃H₄ at low-pressure region. Breakthrough experiments confirmed that UTSA-200 can completely remove trace C_3H_4 from 1:99 and 0.1:99.9 (v/v) mixtures, affording the record-high C₃H₆ production scale with 99.9999% purity. This work not only reports the best porous material for C3H4/C3H6 separation, but also demonstrates that framework flexibility can be utilized to target some very challenging gas separations, thus fully fulfilling the promise of emerging microporous MOFs for gas separations in the future.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (21606163, 21576006) and the Welch Foundation (grant AX-1730).

Conflict of interest

The authors declare no conflict of interest.

Keywords: gas separation \cdot porous materials \cdot propylene purification \cdot propyne \cdot size sieving

How to cite: Angew. Chem. Int. Ed. 2018, 57, 15183–15188 Angew. Chem. 2018, 130, 15403–15408

- [1] a) D. S. Sholl, R. P. Lively, *Nature* 2016, *532*, 435–437; b) S. Chu,
 Y. Cui, N. Liu, *Nat. Mater.* 2017, *16*, 16–22; c) J. Y. S. Lin, *Science* 2016, *353*, 121–122.
- [2] a) J. R. Li, R. J. Kuppler, H. C. Zhou, *Chem. Soc. Rev.* 2009, *38*, 1477–1504; b) H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, *Science* 2013, *341*, 974–986; c) P. Li, N. A. Vermeulen, C. D. Malliakas, D. A. Gómez-Gualdrón, A. J. Howarth, B. L. Mehdi, A. Dohnalkova, N. D. Browning, M. O'Keeffe, O. K. Farha, *Science* 2017, *356*, 624–627; d) B. Li, M. Chrzanowski, Y. Zhang, S. Ma, *Coord. Chem. Rev.* 2016, *307*, 106–129.
- a) J.-R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 2012, 112, 869-[3] 932; b) X. Zhao, Y. Wang, D. S. Li, X. Bu, P. Feng, Adv. Mater. 2018, 30, 1705189; c) H. Sato, W. Kosaka, R. Matsuda, A. Hori, Y. Hijikata, R. V. Belosludov, S. Sakaki, M. Takata, S. Kitagawa, Science 2014, 343, 167-170; d) P.-Q. Liao, N.-Y. Huang, W.-X. Zhang, J.-P. Zhang, X.-M. Chen, Science 2017, 356, 1193-1196; e) H. Wang, X. Dong, J. Lin, S. J. Teat, S. Jensen, J. Cure, E. V. Alexandrov, Q. Xia, K. Tan, Q. Wang, D. H. Olson, D. M. Proserpio, Y. J. Chabal, T. Thonhauser, J. Sun, Y. Han, J. Li, Nat. Commun. 2018, 9, 1745; f) X. Han, H. G. W. Godfrey, L. Briggs, A. J. Davies, Y. Cheng, L. L. Daemen, A. M. Sheveleva, F. Tuna, E. J. L. McInnes, J. Sun, C. Drathen, M. W. George, A. J. Ramirez-Cuesta, K. M. Thomas, S. Yang, M. Schröder, Nat. Mater. 2018, 17, 691-696; g) J. W. Yoon, H. Chang, S.-J. Lee, Y. K. Hwang, D.-Y. Hong, S.-K. Lee, J. S. Lee, S. Jiang, T.-U. Yoon, K. Kwac, Y. Jung, R. S. Pillai, F. Faucher, A. Vimont, M. Daturi, G. Férey, C. Serre, G. Maurin, Y.-S. Bae, J.-S. Chang, Nat. Mater. 2017, 16, 526-531; h) D. A. Reed, B. K. Keitz, J. Oktawiec, J. A. Mason, T. Runčevski, D. J. Xiao, L. E. Darago, V. Crocellà, S. Bordiga, J. R. Long, Nature 2017, 550, 96-100; i) H.-M. Wen, L. Li, R.-B. Lin, B. Li, B. Hu, W. Zhou, J. Hu, B. Chen, J. Mater. Chem. A 2018, 6, 6931-6937; j) Y.-S. Bae, C. Y. Lee, K. C. Kim, O. K. Farha, P. Nickias, J. T. Hupp, S. T. Nguyen, R. Q. Snurr, Angew. Chem. Int. Ed. 2012, 51, 1857-1860; Angew. Chem. 2012, 124, 1893-1896.
- [4] K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, *Chem. Rev.* 2012, *112*, 724–781.
- [5] K. Adil, Y. Belmabkhout, R. S. Pillai, A. Cadiau, P. M. Bhatt, A. H. Assen, G. Maurin, M. Eddaoudi, *Chem. Soc. Rev.* 2017, 46, 3402–3430.
- [6] a) P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, *Nature* 2013, 495, 80–84; b) A. Cadiau, K. Adil, P. M. Bhatt, Y. Belmabkhout, M. Eddaoudi, *Science* 2016, 353, 137–140; c) H. Wang, X. Dong, E. Velasco, D. H. Olson, Y. Han, J. Li, *Energy Environ. Sci.* 2018, 11, 1226–1231.

Angew. Chem. Int. Ed. 2018, 57, 15183-15188

- [7] a) X. Cui, K. Chen, H. Xing, Q. Yang, R. Krishna, Z. Bao, H. Wu, W. Zhou, X. Dong, Y. Han, B. Li, Q. Ren, M. J. Zaworotko, B. Chen, *Science* 2016, *353*, 141–144; b) B. Li, X. Cui, D. O'Nolan, H.-M. Wen, M. Jiang, R. Krishna, H. Wu, R.-B. Lin, Y. S. Chen, D. Yuan, H. Xing, W. Zhou, Q. Ren, G. Qian, M. J. Zaworotko, B. Chen, *Adv. Mater.* 2017, *29*, 1704210; c) R.-B. Lin, L. Li, H. Wu, H. Arman, B. Li, R.-G. Lin, W. Zhou, B. Chen, *J. Am. Chem. Soc.* 2017, *139*, 8022–8028; d) J. Lee, C. Y. Chuah, J. Kim, Y. Kim, N. Ko, Y. Seo, K. Kim, T. H. Bae, E. Lee, *Angew. Chem. Int. Ed.* 2018, *57*, 7869–7873; *Angew. Chem.* 2018, *130*, 7995–7999.
- [8] C. R. Reid, K. M. Thomas, J. Phys. Chem. B 2001, 105, 10619– 10629.
- [9] a) L. Li, R.-B. Lin, R. Krishna, X. Wang, B. Li, H. Wu, J. Li, W. Zhou, B. Chen, *J. Am. Chem. Soc.* **2017**, *139*, 7733–7736; b) L. Yang, X. Cui, Q. Yang, S. Qian, H. Wu, Z. Bao, Z. Zhang, Q. Ren, W. Zhou, B. Chen, H. Xing, *Adv. Mater.* **2018**, *30*, 1705374; c) L. Yang, X. Cui, Z. Zhang, Q. Yang, Z. Bao, Q. Ren, H. Xing,

Angew. Chem. Int. Ed. **2018**, *57*, 13145–13149; *Angew. Chem.* **2018**, *130*, 13329-13333.

- [10] O. Shekhah, Y. Belmabkhout, K. Adil, P. M. Bhatt, A. J. Cairns, M. Eddaoudi, *Chem. Commun.* **2015**, *51*, 13595–13598.
- [11] a) D. O'Nolan, A. Kumar, M. J. Zaworotko, J. Am. Chem. Soc. 2017, 139, 8508-8513; b) D. O'Nolan, D. G. Madden, A. Kumar, K.-J. Chen, T. Pham, K. A. Forrest, E. Patyk-Kazmierczak, Q.-Y. Yang, C. A. Murray, C. C. Tang, B. Space, M. J. Zaworotko, Chem. Commun. 2018, 54, 3488-3491.
- [12] a) C. Gücüyener, J. van den Bergh, J. Gascon, F. Kapteijn, J. Am. Chem. Soc. 2010, 132, 17704–17706; b) N. Nijem, H. Wu, P. Canepa, A. Marti, K. J. Balkus, Jr., T. Thonhauser, J. Li, Y. J. Chabal, J. Am. Chem. Soc. 2012, 134, 15201–15204.

Manuscript received: September 1, 2018

Accepted manuscript online: September 21, 2018

Version of record online: October 15, 2018