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Abstract 

Diversity as a security mechanism is receiving renewed interest due to its potential for 
improving the resilience of software and networks against previously unknown attacks. 
Recent works show diversity can be modeled and quantifed as a security metric at the 
network level. However, such efforts do not directly provide a solution for improving the 
network diversity. On the other hand, existing network hardening approaches largely focus 
on handling vulnerabilities and do not pay special attention to diversity. In this paper, we 
propose an automated approach to diversifying network services under various cost con-
straints in order to improve the network’s resilience against unknown attacks. Specifcally, 
we frst defne models for network services and their relationships, diversifcation options, 
and the costs. We then formulate the optimization problem of diversifying network services 
under given cost constraints. We devise optimization and heuristic algorithms for effciently 
solving the problem, and we evaluate our approach through simulations. 
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1 Introduction 

Today’s computer networks are increasingly important to the normal operation of 
many important infrastructures, such as food supply, electricity grids, transporta-
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tion, or communications and public safety systems. Protecting such mission critical 
computer networks demands more than just preventing known attacks; it is equally 
important to improve the resilience of such networks against the so-called zero-day 
attacks exploiting previously unknown vulnerabilities. Although the deployment of 
traditional defense mechanisms (i.e., frewalls, vulnerability scanners, IDSs, IPSs, 
etc.) is instrumental in dealing with known attacks, such solutions usually depend 
on prior knowledge about the attacks and may thus become less effective in dealing 
with unknown attacks. 

For that purpose, diversity has long been considered as a security mechanism for 
hardening software systems against unknown vulnerabilities, e.g., running different 
versions of the same software in parallel since an attacker is less likely to compro-
mise all of them [1] (a detailed review of related work will be given in Section 2). 
While most existing works focus on diversity inside a single software system, some 
more recent works show that diversity can also be modeled as a network-level secu-
rity metric, namely, network diversity [2,3]. Such works provide a way for formally 
reasoning about the amount of network diversity in terms of its impact on secu-
rity, although they do not directly provide a solution for improving the network 
diversity. On the other hand, there exist many efforts on automatically improving 
the security of networks, namely, network hardening. Nonetheless, those existing 
network hardening solutions largely focus on dealing with vulnerabilities and do 
not pay special attention to diversity [4–6]. In contrast to those existing works, our 
work focuses on optimizing the network diversity in the sense of maximizing its 
positive impact on the resilience of networks against unknown attacks. 

In this paper, we propose an automated approach to diversifying network services 
under various cost constraints to improve a network’s resilience against unknown 
attacks. Specifcally, we devise an extended resource graph model to capture net-
work services and their different instances. Such a model allows us to formulate the 
diversifcation requirements and related cost constraints together in an optimization 
problem. We apply standard optimization techniques on top of heuristic algorithms 
to effciently solve the formulated problems for relatively large networks. To eval-
uate and compare the three different diversity metrics [2,3], we apply them to our 
hardening problems and analyze their affect on the hardening results. We also eval-
uate our approach through simulations to study the effect of optimization parame-
ters on accuracy and running time and the effectiveness of optimization for different 
types of networks. In summary, the main contributions of this paper are as follows: 

• To the best of our knowledge, this is the frst automated solution for applying 
formal network diversity metrics to improve the resilience of networks against 
unknown attacks [2,3]. 

• We propose formal models for both network service diversifcation and its 
cost, and we also discuss practical aspects of the diversifcation cost based on 
Gartner’s TCO model [7] and on Emerson-Ponemon Institute’s cost of down-
time analysis [8]. 
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• As evidenced by the simulation results, our optimization and heuristic algo-
rithms provide a relatively accurate and effcient solution for diversifying net-
work services while respecting various cost constraints. 

• By focusing on optimizing diversity, our work provides a complementary so-
lution to existing network hardening approaches which typically focus on 
dealing with vulnerabilities. 

The preliminary version of this paper has previously appeared in [9]. In this pa-
per, we have substantially improved and extended the previous version. The most 
signifcant extensions are the following. First, in addition to the shortest path-based 
metric used in our preliminary version, we now apply all the three network diversity 
metrics defned in [2,3] in order to evaluate and compare their different effect on 
the hardening results (Section 3.1, Section 4, and Section 5). Second, we provide an 
improved cost model and discuss practical aspects of such a model (Section 3.3). 
Third, we employ new use cases to demonstrate the effect of different network 
diversity metrics during hardening (Section 4.2). Fourth, we perform a series of 
new simulations to evaluate and compare the additional network diversity metrics 
(Section 5). Finally, we have introduced new examples and (e.g., the motivating 
example in Section 1.1) improved the discussions throughout the paper. 

The remainder of this paper is organized as follows: The rest of this section frst 
builds the motivation through a running example. Section 2 reviews related work. 
In Section 3, we present the model and formulate the optimization problem, and 
in Section 4 we discuss the methodology and show case studies. Section 5 shows 
simulation results and Section 6 concludes the paper. 

1.1 Motivating Example 

We frst consider a concrete example to demonstrate why diversifying network ser-
vices for a network infrastructure can be a tedious and error-prone task if done 
manually, and why it would demand a systematic and automated approach, even if 
the considered network is of a relatively small size. Figure 1 shows a hypothetical 
network roughly based on Cisco’s cloud data center concept [10] as well as the 
OpenStack architecture [11]. Despite its relatively small scale, it mimics a typical 
cloud network, e.g., the network consists of different layers for web, application, 
and database or storage services. The client layer connects the cloud network to the 
internet through the CRS 7600; a frewall (ASA v1000) separates the external net-
work from the internal one. There is a security/authentication layer (authentication 
server, Neutron server, etc.) in addition to the VM and application layer (Web and 
application servers). Finally, a storage layer is separated and protected by another 
frewall (ASA 5500) and an MDS 9000 [12]. 

We make the following assumptions about the network. We assume four different 
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types of users may connect to this network [13,12]: i) a normal cloud user (NU), 
ii) a cloud tenant (CT), iii) a cloud provider (CP) and iv) a third party cloud provider 
(CP3P). We assume the database servers are the most critical assets in the cloud and 
would focus on potential attacks directed toward such servers. We use Amazon’s 
multi-tier infrastructure concept [14] to inter-connect different VM servers. Fol-
lowing this model, for example, the normal user (NU) would frst connect to a web 
server, then to an application server, before fnally connecting to a database server. 
We assume that all VMs providing the same service will run on the same physi-
cal server cluster (e.g. all http VMs run on the http server cluster). Additionally, 
we assume the network is secured against known vulnerabilities and we will not 
consider exploits and conditions that involve the frewalls. Finally, all physical ma-
chines and VMs run ssh for maintenance. Figure 2 shows an attack graph for four 
users who have different initial privileges (the tuple inside each oval represents the 
exploit of a vulnerability from a source host to a destination, and each pair shown 
in clear text represents a pre- or post-condition of such exploits). 
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Fig. 1. The example network. 

To measure the network’s resilience against unknown zero-day attacks, we con-
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Fig. 2. The example network’s attack graph. 

sider the network diversity metrics [2,3]. While we will apply all the three network 
diversity metrics to cover different aspects of the diversity property, we will focus 
on the d2 metric in this example for simplicity. The d2 metric counts the number 
of distinct resources inside a network, while considering the uneven distribution of 
resources and varying degree of similarity between resources [3]. For simplicity, 
although the attacker may follow many paths to compromise the storage servers, 
here we only consider one of the web servers as the initial targets. We can observe 
that the attacker would need to exploit at least fve distinct zero-day vulnerabilities, 
one for the web server, one for the application server it connects to, one for the 
database server, one for the Xen server, and one to escalate privileges on each one 
of these servers 1 . Finally, we assume the administrator has the option of replacing 
the Web servers running IIS 10.0 with either Apache 2.4.23, NGINX 1.9, Litespeed 
5.0.14, Cherokee 1.2.104 or GWS 2.1; the database server running Oracle 10.gR2 
can be replaced with either MySQL 5.7.16, MSSQL 2014, Mongo 3.2, PostgreSQL 
9.1 or DB2 11.1; the OpenSSH 5.0.10 can be replaced with either Apache MINA 
1.0, GeorgiaSoftWorks 8.07, Copssh 5.5.3, Dropbear 2016 or Pragma 5.0. We also 
assume there are fve different instances for the application service and no change 
can be made to OpenStack. Finally, we assume any of these changes will incur a 
given installation/maintenance cost (we will discuss the cost model in more de-
tails later in Section 3). Based on above assumptions, we may consider potential 
network hardening scenarios as follows. 

If different software is considered likely to share common vulnerabilities, a similarity-
sensitive diversity metric may be needed [2,3]. 
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• Scenario 1: The administrator aims to optimally diversify the network (i.e., 
maximizing the aforementioned d2 metric) in order to render the network as 
resilient to zero-day attacks as possible. 

• Scenario 2: The same goal as in above Scenario 1, but under the constraint 
that the overall diversifcation cost must be less than a given budget. 

• Scenario 3: The same goal as in above Scenario 2, with an additional con-
straint that the SSH services cannot be replaced. 

• Scenario 4: The same goal as in above Scenario 3, with an additional con-
straint that replacing the IIS web server (h3) should be given a higher priority. 

• Scenario 5: The same goal as the above while considering multiple diversity 
metrics at the same time. 

Clearly, fnding the optimal hardening solution in those scenarios is not always 
straightforward even for such a toy example. Considering that the attacker may 
come under different user accounts armed with different initial privileges (e.g., as 
a cloud user, tenant, provider, or third-party provider), the problem becomes even 
more complicated. This shows the need for an automated approach, which will be 
the subject matter of this paper. 

2 Related Work 

In general, the security of networks may be qualitatively modeled using attack 
trees [5,15,16] or attack graphs [17,18]. A majority of existing quantitative models 
of network security focus on known attacks [19,20], while few works have tack-
led zero-day attacks [21,22,2,3] which are usually considered unmeasurable due to 
the uncertainties involved [23]. Early works on network hardening typically rely 
on qualitative models while improving the security of a network [18,4,24]. Those 
works secure a network by breaking all the attack paths that an attacker can follow 
to compromise an asset, either in the middle of the paths or at the beginning (dis-
abling initial conditions). Also, those works do not consider the implications when 
dealing with budget constraints nor include cost assignments, and tend to leave that 
as a separate task for the network administrators. 

One of the frst attempts to provide a systematic cost model to deal with budget 
constraints is by Gupta et al. [25]. The authors employed genetic algorithms to 
solve the problem of choosing the best set of security hardening options while re-
ducing costs. Dewri et a. [5] build on top of Gupta’s work to address the network 
hardening problem using a more systematic approach which consider both a single 
objective optimization problem and the multiple objective variations. Their work 
considers the damage of compromising any node in the cost model to determine 
the most cost-effective hardening solution. Later, in [15] and in [26], the authors 
extrapolate the network hardening optimization problem as vulnerability analysis 
with cost/beneft assessment and risk assessment, respectively. In [27], Poolsapp-
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asit et al. extend Dewri’s model to also consider dynamic conditions (conditions 
that may change or emerge while the model is running) by using Bayesian attack 
graphs to consider the likelihood of an attack. Unlike our work which focuses on 
optimizing the diversity, most of those existing work on network hardening focus 
on handling known vulnerabilities through disabling existing services. 

There exist many research works on extending attack trees and attack graphs to 
security metrics, as surveyed in [28]. A probabilistic metric is applied to attack 
graphs to obtain an overall attack likelihood for the network [30]. A Bayesian Net-
work (BN)-based security metric applies attack graphs to measure the security level 
of a network [31]. The metric converts the CVSS scores of vulnerabilities into at-
tack probabilities and then obtains the overall attack likelihood for reaching critical 
assets. The National Institute of Standards and Technology (NIST) highlights the 
importance of using a security metrics on cloud systems and provides frameworks 
and defnitions for this purpose [32]. Most of the works assign numeric scores to 
rank known vulnerabilities (mostly based on the CVSS) [29] in order to model the 
severity or impact that they may have on a network. This ranking is usually based 
on how likely and easily exploitable the known vulnerabilities are. This ranking, 
however, is not always possible for unknown vulnerabilities which lack the infor-
mation required for such a ranking. The k-zero-day safety metric [21,22] is the frst 
to address this limitation, which counts at least how many zero-day vulnerabilities 
are needed to compromise a critical asset without ranking them. 

There exists a rich literature on employing diversity for security purposes. The idea 
of using design diversity for tolerating faults has been investigated for a long time, 
such as the N-version programming approach [1], and similar ideas have been em-
ployed for preventing security attacks, such as the N-Variant system [33] and the 
behavioral distance approach [34]. In addition to design diversity and generated 
diversity, recent work employs opportunistic diversity which already exists among 
different software systems. For example, the practicality of employing OS diver-
sity for intrusion tolerance is evaluated in [35]. More recently, the authors in [2,3] 
adapt biodiversity metrics to networks and lift the diversity metrics to the network 
level. While those works on diversity provide a foundation to our work, they do 
not directly provide a systematic solution for improving diversity. Finally, our dis-
cussions are mostly based on a cloud network similar to what is introduced in [12] 
which applies different threat models to fctitious but realistic cloud infrastructures. 

3 Model 

We frst introduce the extended resource graph model to capture network services 
and their relationships, then we present the diversity control and cost model, fol-
lowed by the metrics and the problem formulation. 
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3.1 Extended Resource Graph 

The frst challenge is to model different resources, such as services (e.g., Web 
servers) that can be remotely accessed over the network, different instances of each 
resource (e.g., Apache and IIS), and the causal relationships existing among re-
sources (e.g., a host is only reachable after an attacker gains a privilege to another 
connected host). For this purpose, we will extend the concept of resource graph 
introduced in [2,3], which is syntactically equivalent to attack graphs, but models 
network resources instead of known vulnerabilities as in the latter. Specifcally, we 
propose the extended resource graph to introduce the notion of Service Instance to 
indicate which instance (e.g., Apache) of a service (e.g., Web server) is being used 
on a host. Like the original resource graph, we only consider services that can be 
remotely accessed. 
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Fig. 3. The extended resource graph of our running example. 
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The extended resource graph of the running example is shown in Figure 3. Similar 
to the attack graph discussed in the previous section, in Figure 3, each pair shown 
in plaintext is a security-related condition (e.g., connectivity ⟨source, destination⟩ 
or privilege ⟨privilege, host⟩). Each exploit node (shown as an oval) is a tuple that 
consists of a service running on a destination host, the source host, and the destina-
tion host (e.g., the tuple ⟨http, 1, 2⟩ indicates a potential zero-day vulnerability in 
the http service on host 2, which is exploitable from host 1). The small one-column 
table beside each exploit indicates the current service instance using a highlighted 
index (e.g., 1 means Apache and 2 means IIS) and other potential instances in 
lighter text. The edges point from pre-conditions to an exploit (e.g., from ⟨1, 2⟩ 
and ⟨http, 2⟩ to ⟨http, 1, 2⟩), and from the exploit to its post-conditions (e.g., from 
⟨http, 1, 2⟩ to ⟨user, 2⟩). 

A design choice here is whether to associate the service instance concept with a 
condition indicating the service (e.g., ⟨http, 2⟩) or the corresponding exploits (e.g., 
⟨http, 1, 2⟩). While it is more straightforward to have the service instance defned 
as the property of a condition, which can then be inherited by the corresponding 
exploits, we have opted to defne this property as a label for the exploit nodes 
in the graph, because this will make it easier to calculate the number of distinct 
services along a path which is critical to our metrics, as we will explain later. One 
complication then is that we must ensure all exploits with the same service and 
destination host (e.g., ⟨http, 1, 2⟩ and ⟨http, 3, 2⟩) to be associated with the same 
service instance. Defnitions 1 and 2 formally introduce these concepts. 

Defnition 1 (Service Pool and Service Instance) Denote S the set of all services 
and Z the set of integers, for each service s ∈ S, the function sp(.) : S → Z gives 
the service pool of s which represents all available instances of that service. 

Defnition 2 (Extended Resource Graph) Given a network composed of 

• a set of hosts H , 
• a set of services S, with the service mapping serv(.) : H → 2S , 
• the collection of service pools SP = {sp(s) | s ∈ S}, 
• and the labelling function v(.) : E → SP , which satisfes ∀hs ∈ S ∀h ′ s ∈ 

S, v(⟨s, hs, hd⟩) = v(⟨s, h ′ s, hd⟩) (meaning all exploits with common service 
and destination host must be associated with the same service instance, as 
explained earlier). 

Let E be the set of zero-day exploits {⟨s, hs, hd⟩ | hs ∈ H, hd ∈ H, s ∈ serv(hd)}, 
C be the set of pre- and post-conditions of the exploits in E, and Rr ⊆ C × E and 
Ri ⊆ E × C be the collection of pre- and post-conditions in C. We call the labeled 
directed graph, ⟨G(E ∪ C, Rr ∪ Ri), v⟩ the extended resource graph. 
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3.2 Diversity control 

We employ the notion of diversity control as a model for diversifying one or more 
services in the resource graph. Since we represent the service instance using inte-
gers, it will be straightforward to regard each pair of service and destination host 
on which the service is running as an optimization variable, and formulate diversity 
control vectors using those variables as follows. We note that the number of opti-
mization variables present in a network will depend on the number of conditions 
indicating services, instead of the number of exploits (since many exploits may 
share the same service instance, and hence the optimization variable). Since we 
only consider remotely accessible services in the extended resource graph model, 
we would expect in practice the number of optimization variables to grow linearly 
in the size of network (i.e., the number of hosts). We will further evaluate and dis-
cuss the scalability of our solution in Section 5. 

Defnition 3 (Optimization Variable and Diversity Control) Given an extended 
resource graph ⟨G, v⟩, ∀e ∈ E, v(e) is an optimization variable. A diversity con-
trol vector is the integer valued vector V⃗ = (v(e1), v(e2), ..., v(e|E|). 

Changing the value of an optimization variable has an associated diversifcation 
cost and the collection of such costs is given in a diversity cost matrix in a self-
explanatory manner. Like in most existing works (e.g., [5,27,15]), we assume an 
administrator can estimate the diversifcation costs based on monetary, temporal, 
and scalability criteria like i) installation cost, ii) operation cost, iii) training cost, 
iv) system downtime cost and, v) incompatibility cost. Taking this criteria as a point 
of reference, subsection 3.3 provides a guideline on how to instantiate our cost 
model and how to calculate these diversifcation costs. 

The following defnes the diversity cost, diversity cost matrix, and the total diversity 
cost. 

Defnition 4 (Diversifcation Cost and Diversity Cost Matrix) Given s ∈ S and 
sp(s), the cost to diversify a service by changing its service instance inside the ser-
vice pool is called the diversifcation cost. The collection of all the costs constraints 
associated with changing services in S are given as a diversity cost matrix DCM 
in which the element at ith row and jth column indicates the diversifcation cost 
of changing the ith service instance to be the jth service instance. Let vs(ei) be the 
service associated with the optimization variable v(ei) and V⃗ 

0 the initial service in-
stance values for each of the exploits in the network. The total diversifcation cost, 
Qd, given by the diversity vector V⃗ is obtained by 

|E|∑ 
⃗Qd = DCMvs(ei)(V⃗

 
0(i), V (i)) 

i=1 

10 



We note that the above defnition of diversifcation cost between each pair of service 
instances has some advantages in practice. For example, we can easily imagine 
cases in which the cost is not symmetric, i.e., changing one service instance to 
another (e.g., from Apache to IIS) carries a cost that is not necessarily the same 
as the cost of changing it back (from IIS to Apache). Our approach of using a 
collection of two-dimensional matrices allows us to account for cases like this. 

Moreover, our cost model can be used to specify many different types of cost con-
straints which can be added to the base formula. For example, an administrator 
might have confgured service groups to group related services together (e.g., SIP, 
RTP, and RTSP) and a change in one service might also affect the others. In other 
words, the way our costs are calculated allow them to be derived as a function of 
the status of other services or conditions. 

Another important advantage of our model is the inclusion of negative costs. While 
at a frst glance this concept may not seem self-evident, the inclusion of negative 
cost values can be interpreted as an incentive to opt for a specifc option. For exam-
ple, an administrator may want to phase out the use of rsh in favor of a more secure 
protocol like ssh. This can be easily represented by negative cost values within our 
two-dimensional matrix which effectively subtracts costs from the total hardening 
cost. 

3.3 Cost Estimation 

Although how administrators may choose to instantiate their cost models will even-
tually depend on their specifc applications and needs, the general methodology for 
deriving a baseline cost will still be valuable. Therefore, we make use of Gartner’s 
2003’s Total Cost of Ownership (TCO) analysis report [7] and Emerson-Ponemon 
Institute’s 2016’s analysis report on the cost of data center outages [8] to discuss 
how a realistic estimation of real world costs may be obtained for diversifying one 
or more services. 

Based on Gartner’s report, a company’s costs can be divided into two main cate-
gories: Base costs and ongoing costs. The base costs are mostly associated with 
planning costs that include, but are not limited to, server/software acquisition and 
installation costs. The ongoing costs are the costs of having a server or a service 
up and running. The ongoing costs are further divided into direct and indirect costs 
which include operational costs and downtime costs, respectively. A more detailed 
list can be seen in Table 1. It can be observed that direct costs (like security man-
agement costs, changes in upgrade costs or productions costs), as well as indirect 
costs (like downtime cost), are costs that need to be considered before diversify-
ing a service. An administrator may apply such a TCO model to his/her specifc 
scenario to calculate the total costs for diversifcation. 
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In practice, it might also be infeasible for an administrator to apply the entire TCO 
model to calculate the diversifcation costs. Instead, he/she may decide to estimate 
the cost using one or more aspects of the model, e.g., the ongoing costs, as a ref-
erence point. Additionally, it is shown that the ongoing costs alone will incur, on 
average, around 85% of the total costs of ownership, and therefore using only the 
ongoing costs to estimate diversifcation costs could give a reasonable estimation 
of the total cost. 

For example, we consider one particular indirect ongoing cost, namely, the system 
downtime cost. In Emerson-Ponemon’s 2016’s [8] report on the downtime costs of 
a data center, the impact that downtime costs can have on a network is highlighted. 
Such industry benchmarks and insights would allow a system administrator to make 
the right business decisions to minimize costly downtimes while hardening the net-
work. An estimation of the system downtime is provided in [36] as follows: 

¯ ˘R ×hrqhr(dt) Raf 

• qhr(dt) is the estimated average cost of one hour of downtime, 
• Eq(hr) is the estimated average employee costs per hour. It is the total salaries 

¯ 

¯ 
¯ 

= Eq(hr) × Ĕ 
af + ¯ 

Where 

and benefts of employees per week divided by the average number of working 
hours. It is the total revenue per week divided by average number of open 
hours. 

• Eaf is the estimated fraction of employees affected by the downtime, 
• Rhr is the estimated average revenue per hour, and 
• Raf is the estimated fraction revenue affected by the downtime. 

Depending on the exact methodology for diversifying services, the different down-
time components may have a signifcant (e.g., replacing a popular desktop software 

˘
¯ 
˘ 

may affect a large fraction of employees, and hence lead to a large Ēq(hr) × Ĕ 
af 

value) or negligible (e.g., replacing a server-side service through live migration 
does not result in much revenue loss, and hence R̄hr × R̆ 

af could be very small) 
value. Some of those measures, such as the Fraction Employees Affected by Outage 
and the Fraction Revenue Affected by Outage, might not be readily available and 
need to be based on an educated guess on plausible ranges. 

As an example to better illustrate this, we discuss the reported 2015 revenue for 
Amazon. This revenue was reported at approximately $107 billion [37] with ap-
proximately 250,000 employees for that same year [38]. From this information, 
the approximate revenue per hour (considering that Amazon is a 24/7 business) 
is about $12M. Assuming an average annual salary of an employee being around 
$100,000 then we can have approximate yearly expenditure of $25B on salaries 
or approximately $471M per week for all staff. If we consider that an Amazon 
employee works on average 50 hours per week, then the average expenditure per 
salary per hour is around $9.4M per hour. We assume that if an outage for the 
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Gartner’s TCO’s base costs 

Cost of Hardware 

Acquisition costs Cost of OS 
Planning costs Cost of Application 
(Approx. 15% 
of TCO) Hardware setup 

Installation costs OS installation 

Application installation 

Gartner’s TCO’s ongoing costs 

Planned downtime 
Downtime costs Indirect costs Unplanned downtime 

(Approx. 50% 
of TCO) Casual learning 

End-user costs 
Peer and self support 

Communication fees 

Leased asset fees 
Operational costs 

IS commodity expenditures 

Insurance 

Help desk 

Request and problem management 

Support costs Casual learning 

Training 

Operating costs 

Change planning 

Asset management 
Changes in Direct costs Product evaluation and testing upgrade costs (Approx. 35% 

of TCO) Product procurement and 
implementation 

User administration 

Security and virus protection 
Security 
management LAN/WAN troubleshooting/repair 
and failure Disaster planning and recovery 
control costs 

Hardware maintenance fees 

Event management 

Monitoring costs Performance management 

Physical site management 

Application management 
Production 

Storage management control costs 
Traffc management 

Table 1 
Gartner’s TCO Costs 

ftp services affects 84% of the revenue, that would equate to a loss of around 
$10M. If it affects 85% of the employees, then that would equate to approximately 
$8M. Thus, the total revenue loss for an outage would be valued at approximately 
q̄  hr(dt) = $9.4M × 0.85 + $12M × 0.84 = $18M . This value can be used as a base 
monetary reference to defne the costs to diversify the ftp service. 
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Finally, while this kind of estimation provides a good starting point toward a real-
istic diversity cost for network administrators and security consultants, it can cer-
tainly be refned, e.g., by considering outage prevention mechanisms. 

3.4 Diversity Metrics 

We will apply the network diversity metrics originally proposed in [3] to mea-
sure the level of resilience against unknown attacks. We demonstrate the effect of 
diversifcation in terms of each of the three d-diversity metrics through two exam-
ples. Example 1 (before diversifcation) shows an extended resource graph where 
none of the services have been diversifed; on the other hand, Example 2 (after di-
versifcation) shows an extended resource graph where all the services have been 
diversifed. 

First, the d1 metric basically counts the number of distinct resources in a network 
while considering the uneven distribution of resources. This metric is mostly used 
to evaluate the scale of potential infection by a malware, and it is also a building 
block of the other two metrics. 

Defnition 5 (Effective Richness and d1-Diversity [3]) In an extended resource graph ∑ n⟨G(E ∪ C, Rr ∪ Ri), v⟩ let t = i=1 2
−n | serv(hi)) | (total number of service in-

|hi:sj ∈serv(hi))|stances), and let pj = 
t (1 ≤ i ≤ n, 1 ≤ j ≤ n) (relative frequency 

of each resource). We defne the network’s diversity a d1 = r( 
t
G) where r(G) is the 

network’s effective richness of the services, defned as r(G) = 

1 ∏ n pi 
1 pi 

In Figure 4, Example 1 shows that all three http services share the same service 
instance. The same thing can be said for all four ssh services. For Example 2 in 
the same fgure, there is only one instance per unique service. From this example, 
it is clear that d1 metric provides a general measure for the level of diversity among 
services and for the resilience of networks against zero-day attacks, although it does 
not consider any relationships between the services. 

Unlike the d1 metric, the d2 metric more specifcally measures diversity against 
a given critical asset based on the least attacking effort required to compromise 
said asset. Partially based on the k-zero-day safety metric [22], this second metric 
is more suitable to measure a network’s capability to resist zero-day attacks that 
require multiple related attacks in an attack path. 

For the d2 metric, we describe the concept of attack path in Defnition 6 and how 
they are used within the extended resource graph. By analyzing the different attack 
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Fig. 4. d1 metric example. 

paths in the extended resource graph, Example 1 in Figure 5 shows that the mini-
mum number of distinct services is three and the minimum number of steps when 
considering all attack paths is seven. In contrast, Example 2 on the same Figure 
shows these values to be both seven. By using Defnition 7, we can see that the 
d2 metric increases when services are diversifed. The greater the value of the d2 

metric, the better the resilience against zero-day attacks with respect to the given 
critical asset. 
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Defnition 6 (Attack Path [3]) Given an extended resource graph ⟨G(E ∪C, Rr ∪ 
Ri), v⟩, we call CI = c : c ∈ C, (@e ∈ E)((e, c) ∈ Ri) the set of initial conditions. 
Any sequence of zero day exploits e1, e2, · · · , en is called an attack path in G, if 
(∀i ∈ [1, n])((c, ei) ∈ Rr → (c ∈ Ci ∨ (∃j ∈ [1, i1])((ej , c) ∈ Ri))), and for any 
c ∈ C, we use seq(c) for the set of attack paths e1, e2, · · · , en : (en, c) ∈ Ri. 

Defnition 7 (d2-Diversity [3]) Given an extended resource graph ⟨G(E ∪C, Rr ∪ 
Ri), v⟩ and a goal condition cg ∈ C, for each c ∈ C and q ∈ seq(c), denote 
R(q)fors : s ∈ R, rappearsinq, the network diversity is defned as (where min(.) 
returns the minimum value in a set) d2 = minq∈seq(cg )d1(R(q)) 

In contrast to the d2 metric, which models the least attacking effort, the d3 metric is 
a conditional probability that depicts the average attack effort (likelihood) required 
by an attacker to compromise a critical asset. This Bayesian network-based metric 
is intended as a complementary metric to the d2 metric in measuring diversity with 
respect to a given critical asset. 

Defnition 8 (d3 Diversity) Given an extended resource graph ⟨G(E ∪ C, Rr ∪ 
Ri), v⟩, 

∧
(1) for each e ∈ E, a given conditional probability P (e | c = T RUE),c:(c,e)∈Rr∧
(2) conditional probabilities P (e | c = F ALSE) = 0,c:(c,e)∈Rr 

(3) conditional probabilities P (c | e = T RUE ∧ (e, c) ∈ Ri) = 1, and 
(4) for any e1, e2 ∈ E involving the same service s, conditional probabilities ∧ 

P (e1 | e2 = T RUE∧( c) = T RUE) and P (e2 | e1 = T RUE∧ and c:(c,e2)∈Rr c = c:(c,e1)inRr 

T RUE)), 

Given any cg ∈ C, the network diversity d3 is defned as d3 =
p
p 

′ 
where p denotes 

the conditional probability of cg being satisfed given that all the initial conditions 
are true, and p ′ denotes the probability of cg being satisfed given that all initial 
conditions are true and the above fourth set of probabilities are not given (i.e., 
without considering the effect of reusing any exploit). 

Figure 6 presents how diversifying services can affect the probability of compro-
mising the critical asset (< root, 4 >). In the resource graph, we have added two 
additional nodes to express the probability that an attacker can compromise a ser-
vice with multiple instances (named <Can do httpv=1>, and <Can do sshv=1>. 
Next to each of the exploits, we have added the initial probabilities that the attacker 
can exploit. Below the attack graph, we have added the marginal probability distri-
bution of some nodes to show how diversifying services can affect the d3 metric. 
We can see that, as we diversify the network further, the probability to compromise 
the critical asset decreases. 
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Fig. 5. d2 metric example. 

3.5 Problem formulation 

A closer look at Figure 3 to Figure 6 shows that if we increase the number of distinct 
resources in a network, its overall resilience is increased. This is refected for all 
three d-diversity metrics. To maximize the resilience of a network, the d1 and d2 
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Fig. 6. d3 metric example. 

values also need to be maximized, while the d3 value needs to be minimized. This 
can be achieved by changing the service instances if we respect the available budget 
of cost. 

For example, taking Figure 6 as a reference, let’s assume that an administrator 
has an available budget of $7.8k, and the cost to diversify the ssh service from 
MINA 2.0.14 (service instance v = 1) to OpenSSH 7.4 (v = 2), Copssh 5.8 (v = 
3) or Attachmate 8 (v = 4) is $7.8k, $1.2k, and $3.4k respectively. We can see 
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that changing ⟨ssh, 3, 3⟩ from instance v = 1 to v = 2 would respect the budget 
and would increase values of the network’s d-diversity metrics. We may also see 
that this is not the optimal solution, since we could also replace ⟨ssh, 2, 2⟩ and 
⟨ssh, 4, 4⟩ with instances v = 3 and v = 4, respectively, further increasing the 
d-diversity metrics and still respecting the available budget. 

As demonstrated here and in Section 1.1, for any realistic networks, it will not 
be feasible to manually perform such calculations and obtain the optimal results. 
Therefore, in the following, we formulate the problem of obtaining the optimal 
d-diversity as three different optimization problems. 

Problem 1 (d1 Optimization Problem) Given an extended resource graph ⟨G, v⟩, 
fnd a diversity control vector V⃗ which maximizes min(d1(⟨G(V⃗ ), v⟩)) subject to 
the constraint Q ≤ B, where B is the available budget and Q is the total diversif-
cation cost as given in Defnition 4. 

Problem 2 (d2 Optimization Problem) Given an extended resource graph ⟨G, v⟩, 
fnd a diversity control vector V⃗ which maximizes min(d2(⟨G(V⃗ ), v⟩)) subject to 
the constraint Q ≤ B, where B is the available budget and Q is the total diversif-
cation cost as given in Defnition 4. 

Problem 3 (d3 Optimization Problem) Given an extended resource graph ⟨G, v⟩, 
fnd a diversity control vector V⃗ which minimizes max(d3(⟨G(V⃗ ), v⟩)) subject to 
the constraint Q ≤ B, where B is the available budget and Q is the total diversif-
cation cost as given in Defnition 4. 

Since our problem formulation is based on an extended version of the resource 
graph, which is syntactically equivalent to attack graphs, many existing tools de-
veloped for the latter (e.g., the tool in [39] has seen many real applications to enter-
prise networks) may be easily extended to generate the extended resource graphs 
we need as inputs. Additionally, our problem formulation assumes a very general 
budget B and cost Q, which allows us to account for different types of budgets 
and cost constraints that an administrator might encounter in practice, as will be 
explained in the following section. 

4 Methodology 

This section details the optimization and heuristic algorithms used for solving the 
formulated diversifcation problems and describes a few use cases. 
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4.1 Optimization Algorithm 

Our frst task is to select an optimization algorithm that is suitable for solving the 
hardening problem. Roughly speaking, there exist mainly two types of optimiza-
tion algorithms: Conventional methods or exact algorithms and meta-heuristic ap-
proaches [40]. Exact (gradient-based) algorithms, such as Lagrangian relaxation 
and branch and bound, consider all the solution spaces to give a global solution 
[41]. However, it is well known that most of these methods require to satisfy math-
ematical properties like convexity or differentiability [42], which may not always 
be applicable to our problem. The problem we want to solve includes different 
if-then-else constructs to account for the different cost constraints used, and thus, 
an algorithm that allows to insert this construct is necessary. Meta-heuristic ap-
proaches, such as genetic algorithm, particle swarm optimization, imperialist com-
petitive algorithm, etc., consider some parts of the solution space to reach a global 
optimum or near-solution optima, which provides an advantage when dealing with 
discrete variable spaces [41], which closely match the requirement of our harden-
ing problem. They provide a simple and robust search method and optimization 
technique. Because the problem we want to solve uses variables that are defned as 
discrete, a meta-heuristic approach is needed. 

The genetic algorithm (GA) provides a simple and clever way to encode candi-
date solutions to the problem [43]. One of the main advantages is that we do not 
have to worry about explicit mathematical defnitions (which allow for a quick im-
plementation). For our automated optimization approach, we chose GA, which is 
popular among the different evolutionary algorithms due to certain characteristics: 
It requires little information to search effectively in a large search space in contrast 
to other optimization methods (e.g., the mixed integer programming [41]); and that 
it uses both crossover and mutation operators which makes its population more di-
verse and thus more immune to be trapped in some local optima. While our work 
was inspired by [5], our main difference and contribution is that we focus on service 
diversifcation and not on disabling services. 

The extended resource graph is the input to our automated optimization algorithm 
where the function to be optimized (ftness function) is each of the three d-diversity 
metrics applied to the extended resource graph. One important point to consider 
when optimizing the d metric functions on the extended resource graph is that, for 
each generation of the GA, the graph’s service instance labels will dynamically 
change. This in turn will change the value of d-diversity metrics since the actual 
confguration of the graph may have changed with each successive generation of 
the GA. Our optimization tool takes this into consideration. For the d2 metric we 
note one limitation. Our optimization tool does not provide a priority if there are 
more than one shortest path that provide the optimized d2 since the optimization 
only aims at maximizing the minimum d2. 

20 



The constraints are defned as a set of inequalities in the form of q ≤ b, where q 
represents one or more constraint conditions and b represents one or more budgets. 
These constraint conditions can be overall constraints (e.g., the total diversity cost 
Qd) or specifc constraints to address certain requirements or priorities while diver-
sifying services (e.g., the cost to diversify http services should be less than 80% 
of the cost to diversify ssh; if it is strongly encouraged to use OpenSSH 7.4 for 
the ssh service, it’s cost could be represented with a negative cost (credit) and thus 
incentivizing its selection; etc.). Those constraints are specifed using the diversity 
control matrix. 

The number of independent variables used by the GA (genes) are the optimization 
variables given by the extended resource graph. For our network hardening prob-
lem, the GA will be dealing with integer variables representing the selection of a 
hardening option. Because v(e) (optimization variable) is defned as an integer, the 
optimization variables need to be given a minimum value and a maximum value. 
This range is determined by the number of instances provided in the service pool of 
each service. The initial service instance for each of the services and the initial set 
of frewall rules are given by the extended resource graph while the fnal diversity 
control vector V⃗ is obtained after running the GA. 

4.2 Use Cases 

In the following, we demonstrate different use cases of our method with varying 
cost constraints and hardening options. For these use cases, the population size 
defned for our tool is set to be at least the value of optimization variables (more 
details will be provided in the coming section). This way we ensure the individuals 
in each population span the search space. We ensure the population diversity by 
testing with different settings in genetic operations (like crossover and mutation). 
Specifcally, for the use cases discussed below, we have used the following algo-
rithm parameters: population size = 100, number of generations = 150, crossover 
probability = 0.8, and mutation probability = 0.2. 

Use Case A: Qd ≤ $300K with individual constraints per service. We start with 
the simple case of one overall budget constraint (refer to Figure 7). There are 14 
different services-based optimization variables. The solution provided by the GA 
for each one of the diversity metrics is d1 = 0.555458, d2 = 3.464102, and d3 = 
3.12 × 10−7 . The total incurred cost was $276K which is within the budget Qd 

(Qd ≤ $300K). 

On the other hand, if we assign individual budgets per services, while maintain-
ing the overall budget Qd ≤ $300K, the optimization results will be quite dif-
ferent. In this case, assume the budget to diversify the http services cannot ex-
ceed $100K (qhttp ≤ $100K); for ssh, it cannot exceed $100K (qftp ≤ $100); for 
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Fig. 7. Use Case A: General and individual budget constraints. 

app, it cannot exceed $25K (qssh ≤ $25K); fnally, for db, it cannot exceed $25K 
(qsmtp ≤ $25K). The solution provided by the GA for each one of the diversity 
metrics are d1 = 0.436101, d2 = 3.266839, and d3 = 3.01 × 10−8 . We can see that 
by enforcing individual budget constraints the network’s resilience against zero-
day attacks can still be optimized but the additional budget constraints might not 
allow to achieve the best diversity metric possible. 

Use Case B: Qd ≤ $124K while qhttp + qssh ≤ $100K. While use case A shows 
how individual cost constraints can affect the optimization of the diversity metrics, 
in practice not all services may be of concern and some may have negligible cost. 
This use case models such a scenario by assigning a combined budget restriction 
for only the http and ssh services, i.e., the cost incurred by diversifying these two 
services should not exceed $100K. 

The solution provided by the GA for each one of the diversity metrics is d1 = 
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0.436101, d2 = 3.266839, and d3 = 2.74 × 10−8 . Here the combined http/ssh 
budget constraint of $100K is also satisfed. 
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Fig. 8. Use Case B and Use Case C. 

Use Case C: Qd ≤ $300K while qssh ≤ 0.8 · qhttp. This fnal case deals with scenar-
ios where some services might have a higher priority over others. The constraint in 
this use case is that the total incurred cost while diversifying the ssh service should 
not exceed 80% of what is incurred by diversifying the http service. 

The solution provided by the GA for each one of the diversity metrics is d1 = 
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0.527833, d2 = 2.828427, and d3 = 1.84 × 10−6 . While the value of the d1 metric 
increased to 0.527833, the d2 and d3 metrics both decreased. In this case the budget 
conditions are also satisfed 

d-diversity metric value based use case scenarios 

Use Case Scenario d1 d2 d3 value 
value value 

Use Case A 0.5554583.464102 3.12 × 
10−7 

General + Individual 0.4361013.266839 3.01 × 
Budgets 10−8 

Use Case B 0.4361013.266839 2.74 × 
10−8 

Use Case C 0.5278332.828427 1.84 × 
10−6 

Table 2 
d-diversity metric values for different use case scenarios. 

Based on the results shown in Table 2, it is interesting to note how the different 
d-diversity metrics behave in response to budget constraints. When certain budget 
constraints are applied, it is possible that while one d-diversity metric decreases 
in value (e.g. d2’s value from use case B to use case C), the others could increase 
(e.g. d1’s value from use case B to C) and vice-versa. This is to be expected as the 
different d-diversity metrics measure different properties of the network so those 
metrics might need to be taken into consideration at the same time. Also, as seen 
from the above use cases, our model and problem formulation makes it relatively 
straightforward to apply any standard optimization techniques, not limited to GA, 
in order to optimize the diversity while dealing with different budget constraints. 

4.3 Heuristic Algorithm 

For all the test cases described above, the calculation of the d2 diversity metric relies 
on the assumption that all the attack paths are readily available. However, this is not 
always the case in practice. Due to the well known complexity that resource graphs 
have inherited from attack graphs due to their common syntax [2,3], it is usually 
computationally infeasible to enumerate all the available attack paths in a resource 
graph for large networks. Therefore, we design a heuristic algorithm to reduce the 
search complexity when calculating d2, by only storing the m-shortest paths at each 
step [20], as depicted in Figure 9 and detailed below. 
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Procedure Heuristic m-shortest 
Input: Extended resource graph ⟨G, v⟩, critical asset cg , number of paths m, 

diversifed diversity control vector, D 
Output: σ(cg ) 
Method: 
1. Let vlistbe any topological sort of G 
5. While all vlist elements are unprocessed 
6. If c ∈ CI and c is unprocessed 
7. Let σ(c) = c 
8. Mark c as processed 
9. Else if e ∈ E (e is not processed) and (∀c ∈ C)((c, e) ∈ Rr ⇒ c is processed) 
10. Let {c ∈ C : (c, e) ∈ Rr } = {c1, c2, . . . , cn}
11. Let α(e) = a1 ∪ a2 . . . ∪ e : ai ∈ σ(ci), 1 ≤ i ≤ n 

′ ′ ′13. Let α ′ (ov(e)) = a ∪ a2 . . . ∪ e : a ⊢ ai, 1 ≤ i ≤ n1 i 
12. If n > m 
13. Let σ(e) = ShortestM(⟨α(e), | Unique(α ′ [ov(e)]) | ⟩,m)) 
14. Else 
15. σ(e) = a1 ∪ a2 . . . ∪ e : ai ∈ σ(ci), 1 ≤ i ≤ m 
16. Mark e as processed 
17. Else (c s.t. (e, c) ∈ Ri and c is unprocessed) 

′ ′ ′18. If (∀e ∈ E)((e , c) ∈ Ri ⇒ e is processed)∪ 
19. Let α(c) = σ(e ′ )∪e ′ s.t. (e ′ ,c)∈Ri 

20. Let α ′ (c) = σ(ov(e ′ ))′ e s.t. (e ′ ,c)∈Ri 
21. If length(α(c)) > m 
22. Let σ(c) = ShortestM(⟨α(c), | Unique(α ′ [ov(c)]) | ⟩,m)) 
23. Else ∪ 
24. Let σ(c) = σ(e ′ )

e ′ s.t. (e ′ ,c)∈Ri 
25. Mark c as processed 
26. Return σ(cg ) 

Fig. 9. A Heuristic algorithm for calculating m-shortests paths 

The algorithm on Figure 9, which has lineal complexity (O(N)), is the one used 
to check for the m-shortest paths for all three d-diversity metrics. This algorithm 
starts by topologically sorting the graph (line 1) and proceeds to go through each 
one of the nodes on the resource graph collection of attack paths, as set of exploits 
σ(), that reach that particular node. The main loop cycles through each unprocessed 
node. If a node is an initial condition, the algorithm assumes that the node itself is 
the only path to it and it marks it as processed (lines 6-8). For each exploit e, all 
its preconditions are placed in a set (line 10). The collection of attack paths α(e) 
is constructed from the attack paths of those preconditions (lines 10 and 11). In a 
similar way, σ ′ (ov(e)) is constructed with the function ov() which, aside of using 
the exploits includes value of element of the diversity control vector that supervises 
that exploit. 

If there are more than m paths to that node, the algorithm will use the function 
Unique to frst look for unique combinations of service and service instance in 
α ′ (ov(e)). Then, the algorithm creates a dictionary structure where the key is a 
path from α(e) and the value is the number of unique service and service instance 
combinations given by each one of the respective paths in α ′ (ov(e)). The function 
ShortestM() selects the top m keys whose values are the smallest and returns the 
m paths with the minimum number of distinct combination of services and service 
instances (line 13). If there are less than m paths, it will return all of the paths 
(line 15). After this, it marks the node as processed (line 16). The process is similar 
when going through each one of the intermediate conditions (lines 17-24). Finally, 

25 



the algorithm returns the collection of m paths that can reach the critical asset cg. It 
is worth noting that the algorithm does not make any distinction in whether or not a 
particular path has a higher priority over another when they share the same number 
of unique service/service instance combinations. 

5 Simulations 

In this section, we show simulation results. All simulations are performed using a 
computer equipped with a 3.0 GHz CPU and 8GB RAM in the Python 2.7.10 envi-
ronment under Ubuntu 12.04 LTS and MATLAB 2015b’s GA toolbox. To generate 
many resource graphs for simulations, we frst construct a small number of seed 
graphs based on realistic networks and then generate larger graphs from those seed 
graphs by injecting new hosts and assigning resources in a random but realistic 
fashion (e.g., the number of pre-conditions of each exploit is varied within a small 
range since real world exploits usually have a constant number of pre-conditions). 
The resource graphs were used as the input for the optimization toolbox where the 
objective function is to maximize the diversity metrics d1 and d2, and to minimize 
the d3 metric, subject to budget constraints. 

To determine the genetic operators, we used the hill climbing algorithm. Our sim-
ulations show that, using the GA with a crossover probability of 80%, a mutation 
rate of 20%, and setting the number of generations to 70 will be suffcient. Addi-
tionally, our experiences also show that, because our largest resource graph had a 
diversity control vector of fewer than 100 variables, we could set the population 
size equal to 200; nevertheless, we believe that when dealing with a larger number 
of optimization variables, the population size should be at least twice the number 
of variables. 

The complexity of our proposed solution will depend on the objective function, the 
population size, and the length of diversity control vector. While the calculation 
for d1 metric is straightforward, the calculation for d2 is NP-hard since the sub-
problems of fnding the shortest paths (over which the d2 metric is to be evaluated) 
in resource graphs is already intractable by the well know results in attack graphs 
[2,3] and the common syntax between resource graphs and attack graphs. We will 
therefore rely on the heuristic algorithm presented in Section 4.3 for this purpose. 
Figure 10 shows that the processing time for d2 metric increases almost linearly 
as we increase the number of optimization variables or the parameter m of the 
heuristic algorithm. The results show that the algorithm is relatively scalable. 

For d3 diversity metric, calculating the marginal probability with the Bayesian net-
work within the objective function is also an NP-hard optimization problem due to 
the Cook Levin theorem [44]. For the simulations where the d3 metric is evaluated, 
we use OpenBayes. However, because of its well known limitations [45], the com-
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m 
(the parameter for the number of shortest paths for the heuristic algorithm) 
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Fig. 10. d2 Processing time. 

putation of d3 may become prohibitive for large graphs, as shown in Figure 11. To 
reduce the computational overhead for the optimization of the d3 metric, we were 
inspired by [46] to use graphs with cluster structures. The beneft of this approach 
is that smaller subgraphs (which could represent subnetworks) may be processed 
separately, which helps to overcome the limitations of OpenBayes to some extent. 
On the other hand, approximate Bayesian inferences might need to be employed 
for even larger graphs. 
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Fig. 11. d3 Processing times (s). 

Because our heuristic algorithm takes only the m-shortest paths to calculate the d2 

diversity metric, the accuracy is an important issue to be considered. Here the accu-
racy refers to the approximation ratio between the result obtained for the d2 metric 
using our heuristic algorithm and that of simply enumerating and searching all the 
paths while assuming all services and service instances are different ( dHeuristic ). A 

dBruteF orce 

ratio close to 1 indicates that our algorithm can provide a solution that is closer to 
the one provided by enumerating all paths (brute force), and the diversity control 
vector provided by the GA is used to calculate the accuracy. Figure 12 evaluates the 
accuracy through simulations. From the results, we can see that when we increase 
the number of paths considered at each step (m) , the accuracy of the optimized 
d2 metric gets closer to the one provided by brute force. We can additionally see 
that if the m value is greater than or equal to 6, the approximation ratio reaches an 
acceptable level. For the following simulations, we have settled with an m value of 
9. 
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Fig. 12. Accuracy vs m (parameter of the heuristic algorithm). 

We also consider the ratio between the difference in the d-diversity metrics before 
and after optimization, (dOptimized−dNotOptimized ), which will be called the gain of the 

dNotOptimized 

d-diversity metrics (or simply the gain). The gain provides us with an idea on how 
much room there is to improve the security with respect to given cost constraints 
using our method. Figure 13 shows the results when the diversity control vector 
has different numbers of service instances to take from (i.e., different sizes of the 
service pools). In this simulation, we only consider graphs with a relative high dif-
ference in the length of the shortest path before and after all services are diversifed 
using the algorithm. 
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Fig. 13. The effect of available services on a node. 

We can see an increasing gain in the d2 value after optimization, when more service 
instances are available. However, this trend begins to stall after a certain point. From 
this observation it can be inferred that the number of available service instances will 
affect the difference between the maximum d2 value possible and the minimum d2, 
but such an effect also depends on the size of the network (or the extended resource 
graph), so increasing the number of available service instances does not always 
help. 

Figures 14 and 15 compare the values and the corresponding gain between the d1 

and d2 metrics. We can see that their average values as well as their average gain 
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both exhibit a similar trend. Therefore, we will focus more on the d2 metric from 
now on. 
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In Figure 16, we analyze the average gain of d2 in the optimized results for differ-
ent sizes of graphs. In this fgure, we can see that we have a good enough gain for 
graphs with a relatively high number of nodes. As expected, as we increase the size 
of the graphs, the gain will decrease if we keep the same optimization parameters, 
as well as the same amount of diversifable services. In Figure 17, we analyze the 
average gain of the d3 metric for different sizes of graphs. Like with the d2 met-
ric, the increase in the number of nodes will reduce the amount of optimization 
available to the metric. 
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Fig. 16. The average d2 gain vs the number of nodes. 
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Fig. 17. Average d3 gain based on the number of nodes. 

Figures 18 to 23 show the optimization results for networks with different char-
acteristics (and hence different shapes of resource graphs). First, we examine net-
works with different levels of protection which is refected as the relative depth of 
a resource graph. While it may be diffcult to exactly defne the depth of a resource 
graph, we have relied on the relative distance, i.e., the difference of the shortest 
path before and after all services are diversifed. There is a relative linear increase 
in the gain as we increase the relative distance in the shortest path. While this does 
not provide an accurate description of the graph’s shape, it does provide an idea of 
how much additional security may be obtained through diversifcation for different 
networks, as shown in Figures 18, 19, and 20. 
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The distance in shortest path
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Finally, in Figures 21, 22, and 23, we can see the effect of the network’s degree 
of exposure which is defned as the number of exploits that are initially reachable 
by the attacker (i.e., the frst layer of exploits in resource graphs). As we increase 
the degree of exposure, the gain in optimization decreases in almost a linear way. 
That is, there will be less room for diversifcation if the network is more exposed. 
Combining those last two sets of results, we can conclude that networks that are 
already well guarded, in the sense of having a relatively larger depth and a lower 
degree of exposure, will in fact enjoy more opportunities for further improving the 
security through service diversifcation. 
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The number of services reachable from attacker
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6 Conclusion 

In this paper, we have formulated optimizing the service diversity as an optimiza-
tion problem using three network diversity metrics, which led to an automated 
diversity-based network hardening approach against zero-day attacks. This auto-
mated approach used a heuristic algorithm that helped to manage the complexity 
of computing the three diversity metric values as well as limiting the time for opti-
mization to an acceptable level. We have shown some sample cost constraints while 
our model and formulation would allow for other practical scenarios to be speci-
fed and optimized. We have tested the scalability and accuracy of the proposed 
algorithms through simulation results, and we have also discussed how the gain in 
the d-diversity metrics value will be affected by the number of available service 
instances in the service pools and different sizes and shapes of the resource graphs. 

We discuss several aspects of the proposed automated optimization technique where 
additional improvements and evaluations are possible. 

• While this paper focuses on diversifying services within a traditional network, 
a future step is to extend this approach to emerging networks such as SDN-
based virtual networks. 

• We will consider other optimization algorithms in addition to GA to compare 
and search for more effcient and effective solutions to our problem. 

• Since the three d-diversity metrics measure different network properties, a 
natural future direction would be to provide multi-objective optimization so-
lutions. 
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