

Optimizing the Network Diversity to Improve the
Resilience of Networks Against Unknown Attacks

Daniel Borbor a Lingyu Wang a Sushil Jajodia b Anoop Singhal c

aConcordia Institute for Information Systems Engineering, Concordia University,

Montreal, Quebec, Canada
bCenter for Secure Information Systems, George Mason University, Fairfax, Virginia,

USA
cComputer Security Division, National Institute of Standards and Technology,

Gaithersburg, Maryland, USA

Abstract

Diversity as a security mechanism is receiving renewed interest due to its potential for
improving the resilience of software and networks against previously unknown attacks.
Recent works show diversity can be modeled and quantifed as a security metric at the
network level. However, such efforts do not directly provide a solution for improving the
network diversity. On the other hand, existing network hardening approaches largely focus
on handling vulnerabilities and do not pay special attention to diversity. In this paper, we
propose an automated approach to diversifying network services under various cost con-
straints in order to improve the network’s resilience against unknown attacks. Specifcally,
we frst defne models for network services and their relationships, diversifcation options,
and the costs. We then formulate the optimization problem of diversifying network services
under given cost constraints. We devise optimization and heuristic algorithms for effciently
solving the problem, and we evaluate our approach through simulations.

Key words: Diversity, network security, optimization, zero day attack

1 Introduction

Today’s computer networks are increasingly important to the normal operation of
many important infrastructures, such as food supply, electricity grids, transporta-

Email addresses: d_borbor@ciise.concordia.ca (Daniel Borbo),
wang@ciise.concordia.ca (Lingyu Wang), jajodia@gmu.edu (Sushil
Jajodia).

Preprint submitted to Elsevier Science 21 July 2018

mailto:jajodia@gmu.edu
mailto:wang@ciise.concordia.ca
mailto:d_borbor@ciise.concordia.ca

tion, or communications and public safety systems. Protecting such mission critical
computer networks demands more than just preventing known attacks; it is equally
important to improve the resilience of such networks against the so-called zero-day
attacks exploiting previously unknown vulnerabilities. Although the deployment of
traditional defense mechanisms (i.e., frewalls, vulnerability scanners, IDSs, IPSs,
etc.) is instrumental in dealing with known attacks, such solutions usually depend
on prior knowledge about the attacks and may thus become less effective in dealing
with unknown attacks.

For that purpose, diversity has long been considered as a security mechanism for
hardening software systems against unknown vulnerabilities, e.g., running different
versions of the same software in parallel since an attacker is less likely to compro-
mise all of them [1] (a detailed review of related work will be given in Section 2).
While most existing works focus on diversity inside a single software system, some
more recent works show that diversity can also be modeled as a network-level secu-
rity metric, namely, network diversity [2,3]. Such works provide a way for formally
reasoning about the amount of network diversity in terms of its impact on secu-
rity, although they do not directly provide a solution for improving the network
diversity. On the other hand, there exist many efforts on automatically improving
the security of networks, namely, network hardening. Nonetheless, those existing
network hardening solutions largely focus on dealing with vulnerabilities and do
not pay special attention to diversity [4–6]. In contrast to those existing works, our
work focuses on optimizing the network diversity in the sense of maximizing its
positive impact on the resilience of networks against unknown attacks.

In this paper, we propose an automated approach to diversifying network services
under various cost constraints to improve a network’s resilience against unknown
attacks. Specifcally, we devise an extended resource graph model to capture net-
work services and their different instances. Such a model allows us to formulate the
diversifcation requirements and related cost constraints together in an optimization
problem. We apply standard optimization techniques on top of heuristic algorithms
to effciently solve the formulated problems for relatively large networks. To eval-
uate and compare the three different diversity metrics [2,3], we apply them to our
hardening problems and analyze their affect on the hardening results. We also eval-
uate our approach through simulations to study the effect of optimization parame-
ters on accuracy and running time and the effectiveness of optimization for different
types of networks. In summary, the main contributions of this paper are as follows:

• To the best of our knowledge, this is the frst automated solution for applying
formal network diversity metrics to improve the resilience of networks against
unknown attacks [2,3].

• We propose formal models for both network service diversifcation and its
cost, and we also discuss practical aspects of the diversifcation cost based on
Gartner’s TCO model [7] and on Emerson-Ponemon Institute’s cost of down-
time analysis [8].

2

• As evidenced by the simulation results, our optimization and heuristic algo-
rithms provide a relatively accurate and effcient solution for diversifying net-
work services while respecting various cost constraints.

• By focusing on optimizing diversity, our work provides a complementary so-
lution to existing network hardening approaches which typically focus on
dealing with vulnerabilities.

The preliminary version of this paper has previously appeared in [9]. In this pa-
per, we have substantially improved and extended the previous version. The most
signifcant extensions are the following. First, in addition to the shortest path-based
metric used in our preliminary version, we now apply all the three network diversity
metrics defned in [2,3] in order to evaluate and compare their different effect on
the hardening results (Section 3.1, Section 4, and Section 5). Second, we provide an
improved cost model and discuss practical aspects of such a model (Section 3.3).
Third, we employ new use cases to demonstrate the effect of different network
diversity metrics during hardening (Section 4.2). Fourth, we perform a series of
new simulations to evaluate and compare the additional network diversity metrics
(Section 5). Finally, we have introduced new examples and (e.g., the motivating
example in Section 1.1) improved the discussions throughout the paper.

The remainder of this paper is organized as follows: The rest of this section frst
builds the motivation through a running example. Section 2 reviews related work.
In Section 3, we present the model and formulate the optimization problem, and
in Section 4 we discuss the methodology and show case studies. Section 5 shows
simulation results and Section 6 concludes the paper.

1.1 Motivating Example

We frst consider a concrete example to demonstrate why diversifying network ser-
vices for a network infrastructure can be a tedious and error-prone task if done
manually, and why it would demand a systematic and automated approach, even if
the considered network is of a relatively small size. Figure 1 shows a hypothetical
network roughly based on Cisco’s cloud data center concept [10] as well as the
OpenStack architecture [11]. Despite its relatively small scale, it mimics a typical
cloud network, e.g., the network consists of different layers for web, application,
and database or storage services. The client layer connects the cloud network to the
internet through the CRS 7600; a frewall (ASA v1000) separates the external net-
work from the internal one. There is a security/authentication layer (authentication
server, Neutron server, etc.) in addition to the VM and application layer (Web and
application servers). Finally, a storage layer is separated and protected by another
frewall (ASA 5500) and an MDS 9000 [12].

We make the following assumptions about the network. We assume four different

3

types of users may connect to this network [13,12]: i) a normal cloud user (NU),
ii) a cloud tenant (CT), iii) a cloud provider (CP) and iv) a third party cloud provider
(CP3P). We assume the database servers are the most critical assets in the cloud and
would focus on potential attacks directed toward such servers. We use Amazon’s
multi-tier infrastructure concept [14] to inter-connect different VM servers. Fol-
lowing this model, for example, the normal user (NU) would frst connect to a web
server, then to an application server, before fnally connecting to a database server.
We assume that all VMs providing the same service will run on the same physi-
cal server cluster (e.g. all http VMs run on the http server cluster). Additionally,
we assume the network is secured against known vulnerabilities and we will not
consider exploits and conditions that involve the frewalls. Finally, all physical ma-
chines and VMs run ssh for maintenance. Figure 2 shows an attack graph for four
users who have different initial privileges (the tuple inside each oval represents the
exploit of a vulnerability from a source host to a destination, and each pair shown
in clear text represents a pre- or post-condition of such exploits).

ASA 550

ASA 550

ASA 550

ASA 550ASA 550

ASA 550

ASA 550

ASA 550

ASA 550

ASA 550

ASA 550

ASA 550

NORMAL
USER

CLOUD
TENANT

INTERNET CRS 7600

INTERNET

CLOUD
PROVIDER
3rd PARTY

DNS/NEUTRON
SERVERS

NEXUS 700

NEXUS 700

NEXUS 700

NEXUS 700NEXUS 700

Service Control
Embedded Services:
IDS/IPS/SSL/DDoS

NEXUS 500

NEXUS 500

NEXUS 500NEXUS 500

NEXUS 500

NEXUS 500

MDS 9000

MDS 9000

Authentification
Servers SSH
(h14)

Service Control
Embedded Services:
IDS/IPS/SSL/DDoS

STORAGE

STORAGE

STORAGE

STORAGE

STORAGE

STORAGE

STORAGE

STORAGE

Authentification
Servers SSH
(h14)

SSH Databas Nova
Neutron Agent
Ceilometer Agent

SSH File transferee
Nova Neutron Agent
Ceilometer Agent

SSH Application Nova
 Neutron Agent
Ceilometer Agent

SSH HTTP HTTPS
Nova Neutron Agent
Ceilometer Agent

SSH SMTP/SMTPS

POP3/IMAP
Nova Neutron Agent
Ceilometer Agent

Fig. 1. The example network.

To measure the network’s resilience against unknown zero-day attacks, we con-

4

<NU,2> <http,2> <user,NU> <NU,3> <http,3>

http,NU,2 http,NU,3

<user,2> <user,3>

ssh,2,2 ssh,3,3

<root,2> <root,3><app,6> <2,6> <2,7> <app,7> <3,7> <CP3P,14> <OST,14> <CP,14>

<CP,10> <Xen,10>

Xen,CP,10

<user,10>

ssh,10,10

<root,10><10,11> <HOS,11> <CP,13> <OST,13>

app,2,6 app,2,7 app,3,7 OST,CP3P,14 OST,CP,14 HOS,10,11 OST,CP,13

<user,6> <user,7> <user,14> <user,11> <user,13>

ssh,6,6 ssh,7,7 ssh,14,14 ssh,11,11 ssh,13,13

<root,6> <6,8> <db,8> <7,8> <14,8> <root,7> <root,14> <7,9> <db,9> <14,9> <HOS,12> <11,12> <root,11> <ftp,5> <13,5> <root,13> <ftp,4> <13,4>

db,6,8 db,7,8 db,14,8 db,7,9 db,14,9 HOS,11,12 ftp,13,5 ftp,13,4

<user,8> <user,9> <user,12> <user,5> <user,4>

ssh,8,8 ssh,9,9 ssh,12,12 ssh,5,5 ssh,4,4

<8,1> <root,8> <14,1> <root,9> <9,1> <Xen,1> <12,1> <root,12> <root,5> <5,1> <root,4> <4,1>

Xen,8,1 Xen,14,1 Xen,9,1 Xen,12,1 Xen,5,1 Xen,4,1

<user,1>

ssh,1,1

<root,1>

NU
 Normal User

CP3P
Third Party Cloud Provider

CT
Cloud Tenant

CP
Cloud Provider

Fig. 2. The example network’s attack graph.

sider the network diversity metrics [2,3]. While we will apply all the three network
diversity metrics to cover different aspects of the diversity property, we will focus
on the d2 metric in this example for simplicity. The d2 metric counts the number
of distinct resources inside a network, while considering the uneven distribution of
resources and varying degree of similarity between resources [3]. For simplicity,
although the attacker may follow many paths to compromise the storage servers,
here we only consider one of the web servers as the initial targets. We can observe
that the attacker would need to exploit at least fve distinct zero-day vulnerabilities,
one for the web server, one for the application server it connects to, one for the
database server, one for the Xen server, and one to escalate privileges on each one
of these servers 1 . Finally, we assume the administrator has the option of replacing
the Web servers running IIS 10.0 with either Apache 2.4.23, NGINX 1.9, Litespeed
5.0.14, Cherokee 1.2.104 or GWS 2.1; the database server running Oracle 10.gR2
can be replaced with either MySQL 5.7.16, MSSQL 2014, Mongo 3.2, PostgreSQL
9.1 or DB2 11.1; the OpenSSH 5.0.10 can be replaced with either Apache MINA
1.0, GeorgiaSoftWorks 8.07, Copssh 5.5.3, Dropbear 2016 or Pragma 5.0. We also
assume there are fve different instances for the application service and no change
can be made to OpenStack. Finally, we assume any of these changes will incur a
given installation/maintenance cost (we will discuss the cost model in more de-
tails later in Section 3). Based on above assumptions, we may consider potential
network hardening scenarios as follows.

If different software is considered likely to share common vulnerabilities, a similarity-
sensitive diversity metric may be needed [2,3].

5

1

• Scenario 1: The administrator aims to optimally diversify the network (i.e.,
maximizing the aforementioned d2 metric) in order to render the network as
resilient to zero-day attacks as possible.

• Scenario 2: The same goal as in above Scenario 1, but under the constraint
that the overall diversifcation cost must be less than a given budget.

• Scenario 3: The same goal as in above Scenario 2, with an additional con-
straint that the SSH services cannot be replaced.

• Scenario 4: The same goal as in above Scenario 3, with an additional con-
straint that replacing the IIS web server (h3) should be given a higher priority.

• Scenario 5: The same goal as the above while considering multiple diversity
metrics at the same time.

Clearly, fnding the optimal hardening solution in those scenarios is not always
straightforward even for such a toy example. Considering that the attacker may
come under different user accounts armed with different initial privileges (e.g., as
a cloud user, tenant, provider, or third-party provider), the problem becomes even
more complicated. This shows the need for an automated approach, which will be
the subject matter of this paper.

2 Related Work

In general, the security of networks may be qualitatively modeled using attack
trees [5,15,16] or attack graphs [17,18]. A majority of existing quantitative models
of network security focus on known attacks [19,20], while few works have tack-
led zero-day attacks [21,22,2,3] which are usually considered unmeasurable due to
the uncertainties involved [23]. Early works on network hardening typically rely
on qualitative models while improving the security of a network [18,4,24]. Those
works secure a network by breaking all the attack paths that an attacker can follow
to compromise an asset, either in the middle of the paths or at the beginning (dis-
abling initial conditions). Also, those works do not consider the implications when
dealing with budget constraints nor include cost assignments, and tend to leave that
as a separate task for the network administrators.

One of the frst attempts to provide a systematic cost model to deal with budget
constraints is by Gupta et al. [25]. The authors employed genetic algorithms to
solve the problem of choosing the best set of security hardening options while re-
ducing costs. Dewri et a. [5] build on top of Gupta’s work to address the network
hardening problem using a more systematic approach which consider both a single
objective optimization problem and the multiple objective variations. Their work
considers the damage of compromising any node in the cost model to determine
the most cost-effective hardening solution. Later, in [15] and in [26], the authors
extrapolate the network hardening optimization problem as vulnerability analysis
with cost/beneft assessment and risk assessment, respectively. In [27], Poolsapp-

6

asit et al. extend Dewri’s model to also consider dynamic conditions (conditions
that may change or emerge while the model is running) by using Bayesian attack
graphs to consider the likelihood of an attack. Unlike our work which focuses on
optimizing the diversity, most of those existing work on network hardening focus
on handling known vulnerabilities through disabling existing services.

There exist many research works on extending attack trees and attack graphs to
security metrics, as surveyed in [28]. A probabilistic metric is applied to attack
graphs to obtain an overall attack likelihood for the network [30]. A Bayesian Net-
work (BN)-based security metric applies attack graphs to measure the security level
of a network [31]. The metric converts the CVSS scores of vulnerabilities into at-
tack probabilities and then obtains the overall attack likelihood for reaching critical
assets. The National Institute of Standards and Technology (NIST) highlights the
importance of using a security metrics on cloud systems and provides frameworks
and defnitions for this purpose [32]. Most of the works assign numeric scores to
rank known vulnerabilities (mostly based on the CVSS) [29] in order to model the
severity or impact that they may have on a network. This ranking is usually based
on how likely and easily exploitable the known vulnerabilities are. This ranking,
however, is not always possible for unknown vulnerabilities which lack the infor-
mation required for such a ranking. The k-zero-day safety metric [21,22] is the frst
to address this limitation, which counts at least how many zero-day vulnerabilities
are needed to compromise a critical asset without ranking them.

There exists a rich literature on employing diversity for security purposes. The idea
of using design diversity for tolerating faults has been investigated for a long time,
such as the N-version programming approach [1], and similar ideas have been em-
ployed for preventing security attacks, such as the N-Variant system [33] and the
behavioral distance approach [34]. In addition to design diversity and generated
diversity, recent work employs opportunistic diversity which already exists among
different software systems. For example, the practicality of employing OS diver-
sity for intrusion tolerance is evaluated in [35]. More recently, the authors in [2,3]
adapt biodiversity metrics to networks and lift the diversity metrics to the network
level. While those works on diversity provide a foundation to our work, they do
not directly provide a systematic solution for improving diversity. Finally, our dis-
cussions are mostly based on a cloud network similar to what is introduced in [12]
which applies different threat models to fctitious but realistic cloud infrastructures.

3 Model

We frst introduce the extended resource graph model to capture network services
and their relationships, then we present the diversity control and cost model, fol-
lowed by the metrics and the problem formulation.

7

3.1 Extended Resource Graph

The frst challenge is to model different resources, such as services (e.g., Web
servers) that can be remotely accessed over the network, different instances of each
resource (e.g., Apache and IIS), and the causal relationships existing among re-
sources (e.g., a host is only reachable after an attacker gains a privilege to another
connected host). For this purpose, we will extend the concept of resource graph
introduced in [2,3], which is syntactically equivalent to attack graphs, but models
network resources instead of known vulnerabilities as in the latter. Specifcally, we
propose the extended resource graph to introduce the notion of Service Instance to
indicate which instance (e.g., Apache) of a service (e.g., Web server) is being used
on a host. Like the original resource graph, we only consider services that can be
remotely accessed.

<NU,2> <http,2> <user,NU> <http,3> <NU,3>

 http,NU,2 http,NU,3

<user,2> <user,3>

 ssh,2,2 ssh,2,3

<2,7><app,6> <2,6> <root,2> <app,7> <3,7> <root,3>

 app,2,6 app,2,7 app,3,7

<user,6> <user,7>

 ssh,6,6 ssh,7,7

<root,6> <6,8> <6b,8> <7,8> <root,7> <7,9> <db,9>

 db,6,8 db,7,8 db,7,9

<user,8> <user,9>

 ssh,8,8 ssh,9,9

<root,8> <8,1> <Xen,1> <root,9> <9,1>

 Xen,8,1 Xen,9,1

<use,1>

 ssh,1,1

<root,1>

V http,2

1 Apache 2.4

2 IIS 8.5

3 NGINX 1.9

4 Litespeed 5.0

V http,3

1 Apache 2.4

2 IIS 8.5

3 NGINX 1.9

4 Litespeed 5.0

V ssh,2

1 MINA 2.0.14

2 OpenSSH 7.4

3 Copssh 5.8

4 Attachmate 8

V ssh,3

1 MINA 2.0.14

2 OpenSSH 7.4

3 Copssh 5.8

4 Attachmate 8

V app,7

Security Center 5.6

V ssh,6

1 MINA 2.0.14

2 OpenSSH 7.4

3 Copssh 5.8

4 Attachmate 8

V ssh,7

1 MINA 2.0.14

2 OpenSSH 7.4

3 Copssh 5.8

4 Attachmate 8

V app,6

Security Center 5.6 11

V DB,8

2 MSQL 2012

3 PostgreSQL 9

MySQL 5.71

V DB,9

2 MSQL 2012

3 PostgreSQL 9

MySQL 5.71

V ssh,8

1 MINA 2.0.14

2 OpenSSH 7.4

3 Copssh 5.8

4 Attachmate 8

V ssh,9

1 MINA 2.0.14

2 OpenSSH 7.4

3 Copssh 5.8

4 Attachmate 8

V Xen,1

XenServer 7.11

V ssh,1

1 MINA 2.0.14

2 OpenSSH 7.4

3 Copssh 5.8

4 Attachmate 8

Fig. 3. The extended resource graph of our running example.

8

The extended resource graph of the running example is shown in Figure 3. Similar
to the attack graph discussed in the previous section, in Figure 3, each pair shown
in plaintext is a security-related condition (e.g., connectivity ⟨source, destination⟩
or privilege ⟨privilege, host⟩). Each exploit node (shown as an oval) is a tuple that
consists of a service running on a destination host, the source host, and the destina-
tion host (e.g., the tuple ⟨http, 1, 2⟩ indicates a potential zero-day vulnerability in
the http service on host 2, which is exploitable from host 1). The small one-column
table beside each exploit indicates the current service instance using a highlighted
index (e.g., 1 means Apache and 2 means IIS) and other potential instances in
lighter text. The edges point from pre-conditions to an exploit (e.g., from ⟨1, 2⟩
and ⟨http, 2⟩ to ⟨http, 1, 2⟩), and from the exploit to its post-conditions (e.g., from
⟨http, 1, 2⟩ to ⟨user, 2⟩).

A design choice here is whether to associate the service instance concept with a
condition indicating the service (e.g., ⟨http, 2⟩) or the corresponding exploits (e.g.,
⟨http, 1, 2⟩). While it is more straightforward to have the service instance defned
as the property of a condition, which can then be inherited by the corresponding
exploits, we have opted to defne this property as a label for the exploit nodes
in the graph, because this will make it easier to calculate the number of distinct
services along a path which is critical to our metrics, as we will explain later. One
complication then is that we must ensure all exploits with the same service and
destination host (e.g., ⟨http, 1, 2⟩ and ⟨http, 3, 2⟩) to be associated with the same
service instance. Defnitions 1 and 2 formally introduce these concepts.

Defnition 1 (Service Pool and Service Instance) Denote S the set of all services
and Z the set of integers, for each service s ∈ S, the function sp(.) : S → Z gives
the service pool of s which represents all available instances of that service.

Defnition 2 (Extended Resource Graph) Given a network composed of

• a set of hosts H ,
• a set of services S, with the service mapping serv(.) : H → 2S ,
• the collection of service pools SP = {sp(s) | s ∈ S},
• and the labelling function v(.) : E → SP , which satisfes ∀hs ∈ S ∀h ′ s ∈

S, v(⟨s, hs, hd⟩) = v(⟨s, h ′ s, hd⟩) (meaning all exploits with common service
and destination host must be associated with the same service instance, as
explained earlier).

Let E be the set of zero-day exploits {⟨s, hs, hd⟩ | hs ∈ H, hd ∈ H, s ∈ serv(hd)},
C be the set of pre- and post-conditions of the exploits in E, and Rr ⊆ C × E and
Ri ⊆ E × C be the collection of pre- and post-conditions in C. We call the labeled
directed graph, ⟨G(E ∪ C, Rr ∪ Ri), v⟩ the extended resource graph.

9

3.2 Diversity control

We employ the notion of diversity control as a model for diversifying one or more
services in the resource graph. Since we represent the service instance using inte-
gers, it will be straightforward to regard each pair of service and destination host
on which the service is running as an optimization variable, and formulate diversity
control vectors using those variables as follows. We note that the number of opti-
mization variables present in a network will depend on the number of conditions
indicating services, instead of the number of exploits (since many exploits may
share the same service instance, and hence the optimization variable). Since we
only consider remotely accessible services in the extended resource graph model,
we would expect in practice the number of optimization variables to grow linearly
in the size of network (i.e., the number of hosts). We will further evaluate and dis-
cuss the scalability of our solution in Section 5.

Defnition 3 (Optimization Variable and Diversity Control) Given an extended
resource graph ⟨G, v⟩, ∀e ∈ E, v(e) is an optimization variable. A diversity con-
trol vector is the integer valued vector V⃗ = (v(e1), v(e2), ..., v(e|E|).

Changing the value of an optimization variable has an associated diversifcation
cost and the collection of such costs is given in a diversity cost matrix in a self-
explanatory manner. Like in most existing works (e.g., [5,27,15]), we assume an
administrator can estimate the diversifcation costs based on monetary, temporal,
and scalability criteria like i) installation cost, ii) operation cost, iii) training cost,
iv) system downtime cost and, v) incompatibility cost. Taking this criteria as a point
of reference, subsection 3.3 provides a guideline on how to instantiate our cost
model and how to calculate these diversifcation costs.

The following defnes the diversity cost, diversity cost matrix, and the total diversity
cost.

Defnition 4 (Diversifcation Cost and Diversity Cost Matrix) Given s ∈ S and
sp(s), the cost to diversify a service by changing its service instance inside the ser-
vice pool is called the diversifcation cost. The collection of all the costs constraints
associated with changing services in S are given as a diversity cost matrix DCM
in which the element at ith row and jth column indicates the diversifcation cost
of changing the ith service instance to be the jth service instance. Let vs(ei) be the
service associated with the optimization variable v(ei) and V⃗

0 the initial service in-
stance values for each of the exploits in the network. The total diversifcation cost,
Qd, given by the diversity vector V⃗ is obtained by

|E|∑
⃗Qd = DCMvs(ei)(V⃗

0(i), V (i))

i=1

10

We note that the above defnition of diversifcation cost between each pair of service
instances has some advantages in practice. For example, we can easily imagine
cases in which the cost is not symmetric, i.e., changing one service instance to
another (e.g., from Apache to IIS) carries a cost that is not necessarily the same
as the cost of changing it back (from IIS to Apache). Our approach of using a
collection of two-dimensional matrices allows us to account for cases like this.

Moreover, our cost model can be used to specify many different types of cost con-
straints which can be added to the base formula. For example, an administrator
might have confgured service groups to group related services together (e.g., SIP,
RTP, and RTSP) and a change in one service might also affect the others. In other
words, the way our costs are calculated allow them to be derived as a function of
the status of other services or conditions.

Another important advantage of our model is the inclusion of negative costs. While
at a frst glance this concept may not seem self-evident, the inclusion of negative
cost values can be interpreted as an incentive to opt for a specifc option. For exam-
ple, an administrator may want to phase out the use of rsh in favor of a more secure
protocol like ssh. This can be easily represented by negative cost values within our
two-dimensional matrix which effectively subtracts costs from the total hardening
cost.

3.3 Cost Estimation

Although how administrators may choose to instantiate their cost models will even-
tually depend on their specifc applications and needs, the general methodology for
deriving a baseline cost will still be valuable. Therefore, we make use of Gartner’s
2003’s Total Cost of Ownership (TCO) analysis report [7] and Emerson-Ponemon
Institute’s 2016’s analysis report on the cost of data center outages [8] to discuss
how a realistic estimation of real world costs may be obtained for diversifying one
or more services.

Based on Gartner’s report, a company’s costs can be divided into two main cate-
gories: Base costs and ongoing costs. The base costs are mostly associated with
planning costs that include, but are not limited to, server/software acquisition and
installation costs. The ongoing costs are the costs of having a server or a service
up and running. The ongoing costs are further divided into direct and indirect costs
which include operational costs and downtime costs, respectively. A more detailed
list can be seen in Table 1. It can be observed that direct costs (like security man-
agement costs, changes in upgrade costs or productions costs), as well as indirect
costs (like downtime cost), are costs that need to be considered before diversify-
ing a service. An administrator may apply such a TCO model to his/her specifc
scenario to calculate the total costs for diversifcation.

11

In practice, it might also be infeasible for an administrator to apply the entire TCO
model to calculate the diversifcation costs. Instead, he/she may decide to estimate
the cost using one or more aspects of the model, e.g., the ongoing costs, as a ref-
erence point. Additionally, it is shown that the ongoing costs alone will incur, on
average, around 85% of the total costs of ownership, and therefore using only the
ongoing costs to estimate diversifcation costs could give a reasonable estimation
of the total cost.

For example, we consider one particular indirect ongoing cost, namely, the system
downtime cost. In Emerson-Ponemon’s 2016’s [8] report on the downtime costs of
a data center, the impact that downtime costs can have on a network is highlighted.
Such industry benchmarks and insights would allow a system administrator to make
the right business decisions to minimize costly downtimes while hardening the net-
work. An estimation of the system downtime is provided in [36] as follows:

¯ ˘R ×hrqhr(dt) Raf

• qhr(dt) is the estimated average cost of one hour of downtime,
• Eq(hr) is the estimated average employee costs per hour. It is the total salaries

¯

¯
¯

= Eq(hr) × Ĕ
af + ¯

Where

and benefts of employees per week divided by the average number of working
hours. It is the total revenue per week divided by average number of open
hours.

• Eaf is the estimated fraction of employees affected by the downtime,
• Rhr is the estimated average revenue per hour, and
• Raf is the estimated fraction revenue affected by the downtime.

Depending on the exact methodology for diversifying services, the different down-
time components may have a signifcant (e.g., replacing a popular desktop software

˘
¯
˘

may affect a large fraction of employees, and hence lead to a large Ēq(hr) × Ĕ
af

value) or negligible (e.g., replacing a server-side service through live migration
does not result in much revenue loss, and hence R̄hr × R̆

af could be very small)
value. Some of those measures, such as the Fraction Employees Affected by Outage
and the Fraction Revenue Affected by Outage, might not be readily available and
need to be based on an educated guess on plausible ranges.

As an example to better illustrate this, we discuss the reported 2015 revenue for
Amazon. This revenue was reported at approximately $107 billion [37] with ap-
proximately 250,000 employees for that same year [38]. From this information,
the approximate revenue per hour (considering that Amazon is a 24/7 business)
is about $12M. Assuming an average annual salary of an employee being around
$100,000 then we can have approximate yearly expenditure of $25B on salaries
or approximately $471M per week for all staff. If we consider that an Amazon
employee works on average 50 hours per week, then the average expenditure per
salary per hour is around $9.4M per hour. We assume that if an outage for the

12

Gartner’s TCO’s base costs

Cost of Hardware

Acquisition costs Cost of OS
Planning costs Cost of Application
(Approx. 15%
of TCO) Hardware setup

Installation costs OS installation

Application installation

Gartner’s TCO’s ongoing costs

Planned downtime
Downtime costs Indirect costs Unplanned downtime

(Approx. 50%
of TCO) Casual learning

End-user costs
Peer and self support

Communication fees

Leased asset fees
Operational costs

IS commodity expenditures

Insurance

Help desk

Request and problem management

Support costs Casual learning

Training

Operating costs

Change planning

Asset management
Changes in Direct costs Product evaluation and testing upgrade costs (Approx. 35%

of TCO) Product procurement and
implementation

User administration

Security and virus protection
Security
management LAN/WAN troubleshooting/repair
and failure Disaster planning and recovery
control costs

Hardware maintenance fees

Event management

Monitoring costs Performance management

Physical site management

Application management
Production

Storage management control costs
Traffc management

Table 1
Gartner’s TCO Costs

ftp services affects 84% of the revenue, that would equate to a loss of around
$10M. If it affects 85% of the employees, then that would equate to approximately
$8M. Thus, the total revenue loss for an outage would be valued at approximately
q̄ hr(dt) = $9.4M × 0.85 + $12M × 0.84 = $18M . This value can be used as a base
monetary reference to defne the costs to diversify the ftp service.

13

Finally, while this kind of estimation provides a good starting point toward a real-
istic diversity cost for network administrators and security consultants, it can cer-
tainly be refned, e.g., by considering outage prevention mechanisms.

3.4 Diversity Metrics

We will apply the network diversity metrics originally proposed in [3] to mea-
sure the level of resilience against unknown attacks. We demonstrate the effect of
diversifcation in terms of each of the three d-diversity metrics through two exam-
ples. Example 1 (before diversifcation) shows an extended resource graph where
none of the services have been diversifed; on the other hand, Example 2 (after di-
versifcation) shows an extended resource graph where all the services have been
diversifed.

First, the d1 metric basically counts the number of distinct resources in a network
while considering the uneven distribution of resources. This metric is mostly used
to evaluate the scale of potential infection by a malware, and it is also a building
block of the other two metrics.

Defnition 5 (Effective Richness and d1-Diversity [3]) In an extended resource graph ∑ n⟨G(E ∪ C, Rr ∪ Ri), v⟩ let t = i=1 2
−n | serv(hi)) | (total number of service in-

|hi:sj ∈serv(hi))|stances), and let pj =
t (1 ≤ i ≤ n, 1 ≤ j ≤ n) (relative frequency

of each resource). We defne the network’s diversity a d1 = r(
t
G) where r(G) is the

network’s effective richness of the services, defned as r(G) =

1 ∏ n pi
1 pi

In Figure 4, Example 1 shows that all three http services share the same service
instance. The same thing can be said for all four ssh services. For Example 2 in
the same fgure, there is only one instance per unique service. From this example,
it is clear that d1 metric provides a general measure for the level of diversity among
services and for the resilience of networks against zero-day attacks, although it does
not consider any relationships between the services.

Unlike the d1 metric, the d2 metric more specifcally measures diversity against
a given critical asset based on the least attacking effort required to compromise
said asset. Partially based on the k-zero-day safety metric [22], this second metric
is more suitable to measure a network’s capability to resist zero-day attacks that
require multiple related attacks in an attack path.

For the d2 metric, we describe the concept of attack path in Defnition 6 and how
they are used within the extended resource graph. By analyzing the different attack

14

Fig. 4. d1 metric example.

paths in the extended resource graph, Example 1 in Figure 5 shows that the mini-
mum number of distinct services is three and the minimum number of steps when
considering all attack paths is seven. In contrast, Example 2 on the same Figure
shows these values to be both seven. By using Defnition 7, we can see that the
d2 metric increases when services are diversifed. The greater the value of the d2

metric, the better the resilience against zero-day attacks with respect to the given
critical asset.

15

Defnition 6 (Attack Path [3]) Given an extended resource graph ⟨G(E ∪C, Rr ∪
Ri), v⟩, we call CI = c : c ∈ C, (@e ∈ E)((e, c) ∈ Ri) the set of initial conditions.
Any sequence of zero day exploits e1, e2, · · · , en is called an attack path in G, if
(∀i ∈ [1, n])((c, ei) ∈ Rr → (c ∈ Ci ∨ (∃j ∈ [1, i1])((ej , c) ∈ Ri))), and for any
c ∈ C, we use seq(c) for the set of attack paths e1, e2, · · · , en : (en, c) ∈ Ri.

Defnition 7 (d2-Diversity [3]) Given an extended resource graph ⟨G(E ∪C, Rr ∪
Ri), v⟩ and a goal condition cg ∈ C, for each c ∈ C and q ∈ seq(c), denote
R(q)fors : s ∈ R, rappearsinq, the network diversity is defned as (where min(.)
returns the minimum value in a set) d2 = minq∈seq(cg)d1(R(q))

In contrast to the d2 metric, which models the least attacking effort, the d3 metric is
a conditional probability that depicts the average attack effort (likelihood) required
by an attacker to compromise a critical asset. This Bayesian network-based metric
is intended as a complementary metric to the d2 metric in measuring diversity with
respect to a given critical asset.

Defnition 8 (d3 Diversity) Given an extended resource graph ⟨G(E ∪ C, Rr ∪
Ri), v⟩,

∧
(1) for each e ∈ E, a given conditional probability P (e | c = T RUE),c:(c,e)∈Rr∧
(2) conditional probabilities P (e | c = F ALSE) = 0,c:(c,e)∈Rr

(3) conditional probabilities P (c | e = T RUE ∧ (e, c) ∈ Ri) = 1, and
(4) for any e1, e2 ∈ E involving the same service s, conditional probabilities ∧

P (e1 | e2 = T RUE∧(c) = T RUE) and P (e2 | e1 = T RUE∧ and c:(c,e2)∈Rr c = c:(c,e1)inRr

T RUE)),

Given any cg ∈ C, the network diversity d3 is defned as d3 =
p
p

′
where p denotes

the conditional probability of cg being satisfed given that all the initial conditions
are true, and p ′ denotes the probability of cg being satisfed given that all initial
conditions are true and the above fourth set of probabilities are not given (i.e.,
without considering the effect of reusing any exploit).

Figure 6 presents how diversifying services can affect the probability of compro-
mising the critical asset (< root, 4 >). In the resource graph, we have added two
additional nodes to express the probability that an attacker can compromise a ser-
vice with multiple instances (named <Can do httpv=1>, and <Can do sshv=1>.
Next to each of the exploits, we have added the initial probabilities that the attacker
can exploit. Below the attack graph, we have added the marginal probability distri-
bution of some nodes to show how diversifying services can affect the d3 metric.
We can see that, as we diversify the network further, the probability to compromise
the critical asset decreases.

16

Fig. 5. d2 metric example.

3.5 Problem formulation

A closer look at Figure 3 to Figure 6 shows that if we increase the number of distinct
resources in a network, its overall resilience is increased. This is refected for all
three d-diversity metrics. To maximize the resilience of a network, the d1 and d2

17

Fig. 6. d3 metric example.

values also need to be maximized, while the d3 value needs to be minimized. This
can be achieved by changing the service instances if we respect the available budget
of cost.

For example, taking Figure 6 as a reference, let’s assume that an administrator
has an available budget of $7.8k, and the cost to diversify the ssh service from
MINA 2.0.14 (service instance v = 1) to OpenSSH 7.4 (v = 2), Copssh 5.8 (v =
3) or Attachmate 8 (v = 4) is $7.8k, $1.2k, and $3.4k respectively. We can see

18

that changing ⟨ssh, 3, 3⟩ from instance v = 1 to v = 2 would respect the budget
and would increase values of the network’s d-diversity metrics. We may also see
that this is not the optimal solution, since we could also replace ⟨ssh, 2, 2⟩ and
⟨ssh, 4, 4⟩ with instances v = 3 and v = 4, respectively, further increasing the
d-diversity metrics and still respecting the available budget.

As demonstrated here and in Section 1.1, for any realistic networks, it will not
be feasible to manually perform such calculations and obtain the optimal results.
Therefore, in the following, we formulate the problem of obtaining the optimal
d-diversity as three different optimization problems.

Problem 1 (d1 Optimization Problem) Given an extended resource graph ⟨G, v⟩,
fnd a diversity control vector V⃗ which maximizes min(d1(⟨G(V⃗), v⟩)) subject to
the constraint Q ≤ B, where B is the available budget and Q is the total diversif-
cation cost as given in Defnition 4.

Problem 2 (d2 Optimization Problem) Given an extended resource graph ⟨G, v⟩,
fnd a diversity control vector V⃗ which maximizes min(d2(⟨G(V⃗), v⟩)) subject to
the constraint Q ≤ B, where B is the available budget and Q is the total diversif-
cation cost as given in Defnition 4.

Problem 3 (d3 Optimization Problem) Given an extended resource graph ⟨G, v⟩,
fnd a diversity control vector V⃗ which minimizes max(d3(⟨G(V⃗), v⟩)) subject to
the constraint Q ≤ B, where B is the available budget and Q is the total diversif-
cation cost as given in Defnition 4.

Since our problem formulation is based on an extended version of the resource
graph, which is syntactically equivalent to attack graphs, many existing tools de-
veloped for the latter (e.g., the tool in [39] has seen many real applications to enter-
prise networks) may be easily extended to generate the extended resource graphs
we need as inputs. Additionally, our problem formulation assumes a very general
budget B and cost Q, which allows us to account for different types of budgets
and cost constraints that an administrator might encounter in practice, as will be
explained in the following section.

4 Methodology

This section details the optimization and heuristic algorithms used for solving the
formulated diversifcation problems and describes a few use cases.

19

4.1 Optimization Algorithm

Our frst task is to select an optimization algorithm that is suitable for solving the
hardening problem. Roughly speaking, there exist mainly two types of optimiza-
tion algorithms: Conventional methods or exact algorithms and meta-heuristic ap-
proaches [40]. Exact (gradient-based) algorithms, such as Lagrangian relaxation
and branch and bound, consider all the solution spaces to give a global solution
[41]. However, it is well known that most of these methods require to satisfy math-
ematical properties like convexity or differentiability [42], which may not always
be applicable to our problem. The problem we want to solve includes different
if-then-else constructs to account for the different cost constraints used, and thus,
an algorithm that allows to insert this construct is necessary. Meta-heuristic ap-
proaches, such as genetic algorithm, particle swarm optimization, imperialist com-
petitive algorithm, etc., consider some parts of the solution space to reach a global
optimum or near-solution optima, which provides an advantage when dealing with
discrete variable spaces [41], which closely match the requirement of our harden-
ing problem. They provide a simple and robust search method and optimization
technique. Because the problem we want to solve uses variables that are defned as
discrete, a meta-heuristic approach is needed.

The genetic algorithm (GA) provides a simple and clever way to encode candi-
date solutions to the problem [43]. One of the main advantages is that we do not
have to worry about explicit mathematical defnitions (which allow for a quick im-
plementation). For our automated optimization approach, we chose GA, which is
popular among the different evolutionary algorithms due to certain characteristics:
It requires little information to search effectively in a large search space in contrast
to other optimization methods (e.g., the mixed integer programming [41]); and that
it uses both crossover and mutation operators which makes its population more di-
verse and thus more immune to be trapped in some local optima. While our work
was inspired by [5], our main difference and contribution is that we focus on service
diversifcation and not on disabling services.

The extended resource graph is the input to our automated optimization algorithm
where the function to be optimized (ftness function) is each of the three d-diversity
metrics applied to the extended resource graph. One important point to consider
when optimizing the d metric functions on the extended resource graph is that, for
each generation of the GA, the graph’s service instance labels will dynamically
change. This in turn will change the value of d-diversity metrics since the actual
confguration of the graph may have changed with each successive generation of
the GA. Our optimization tool takes this into consideration. For the d2 metric we
note one limitation. Our optimization tool does not provide a priority if there are
more than one shortest path that provide the optimized d2 since the optimization
only aims at maximizing the minimum d2.

20

The constraints are defned as a set of inequalities in the form of q ≤ b, where q
represents one or more constraint conditions and b represents one or more budgets.
These constraint conditions can be overall constraints (e.g., the total diversity cost
Qd) or specifc constraints to address certain requirements or priorities while diver-
sifying services (e.g., the cost to diversify http services should be less than 80%
of the cost to diversify ssh; if it is strongly encouraged to use OpenSSH 7.4 for
the ssh service, it’s cost could be represented with a negative cost (credit) and thus
incentivizing its selection; etc.). Those constraints are specifed using the diversity
control matrix.

The number of independent variables used by the GA (genes) are the optimization
variables given by the extended resource graph. For our network hardening prob-
lem, the GA will be dealing with integer variables representing the selection of a
hardening option. Because v(e) (optimization variable) is defned as an integer, the
optimization variables need to be given a minimum value and a maximum value.
This range is determined by the number of instances provided in the service pool of
each service. The initial service instance for each of the services and the initial set
of frewall rules are given by the extended resource graph while the fnal diversity
control vector V⃗ is obtained after running the GA.

4.2 Use Cases

In the following, we demonstrate different use cases of our method with varying
cost constraints and hardening options. For these use cases, the population size
defned for our tool is set to be at least the value of optimization variables (more
details will be provided in the coming section). This way we ensure the individuals
in each population span the search space. We ensure the population diversity by
testing with different settings in genetic operations (like crossover and mutation).
Specifcally, for the use cases discussed below, we have used the following algo-
rithm parameters: population size = 100, number of generations = 150, crossover
probability = 0.8, and mutation probability = 0.2.

Use Case A: Qd ≤ $300K with individual constraints per service. We start with
the simple case of one overall budget constraint (refer to Figure 7). There are 14
different services-based optimization variables. The solution provided by the GA
for each one of the diversity metrics is d1 = 0.555458, d2 = 3.464102, and d3 =
3.12 × 10−7 . The total incurred cost was $276K which is within the budget Qd

(Qd ≤ $300K).

On the other hand, if we assign individual budgets per services, while maintain-
ing the overall budget Qd ≤ $300K, the optimization results will be quite dif-
ferent. In this case, assume the budget to diversify the http services cannot ex-
ceed $100K (qhttp ≤ $100K); for ssh, it cannot exceed $100K (qftp ≤ $100); for

21

1 Apache 2.4

4 Litespeed 5.0

1 MINA 2.0.14

2 OpenSSH 7.4

1 MINA 2.0.14

4 Attachmate 8

1 MINA 2.0.14

3 Copssh 5.8

3 PostgreSQL 9

MySQL 5.71

2 MSQL 2012

MySQL 5.71

1 MINA 2.0.14

2 OpenSSH 7.4

1 MINA 2.0.14

3 Copssh 5.8

1 MINA 2.0.14

3 Copssh 5.8

<NU,2> <http,2> <user,NU> <http,3> <NU,3>

1 http,NU,2 1 http,NU,3

<user,2> <user,3>

1 ssh,2,2 1 ssh,2,3

<2,7><app,6> <2,6> <root,2> <app,7> <3,7> <root,3>

1 app,2,6 1 app,2,7 1 app,3,7

<user,6> <user,7>

1 ssh,6,6 1 ssh,7,7

<root,6> <6,8> <6b,8> <7,8> <root,7> <7,9> <db,9>

1 db,6,8 1 db,7,8 1 db,7,9

<user,8> <user,9>

1 ssh,8,8 1 ssh,9,9

<root,8> <8,1> <Xen,1> <root,9> <9,1>

1 Xen,8,1 1 Xen,9,1

<use,1>

1 ssh,1,1

<root,1>

V http,2

2 IIS 8.5

3 NGINX 1.9

V http,3

1 Apache 2.4

2 IIS 8.5

3 NGINX 1.9

4 Litespeed 5.0

V ssh,2

3 Copssh 5.8

4 Attachmate 8

V ssh,3

2 OpenSSH 7.4

3 Copssh 5.8

V app,7

Security Center 5.6

V ssh,6

1 MINA 2.0.14

2 OpenSSH 7.4

3 Copssh 5.8

4 Attachmate 8

V ssh,7

2 OpenSSH 7.4

4 Attachmate 8

V app,6

Security Center 5.6 11

V DB,8

2 MSQL 2012

V DB,9

3 PostgreSQL 9

V ssh,8

3 Copssh 5.8

4 Attachmate 8

V ssh,9

2 OpenSSH 7.4

4 Attachmate 8

V Xen,1

XenServer 7.11

V ssh,1

2 OpenSSH 7.4

4 Attachmate 8SHORTEST PATH

Fig. 7. Use Case A: General and individual budget constraints.

app, it cannot exceed $25K (qssh ≤ $25K); fnally, for db, it cannot exceed $25K
(qsmtp ≤ $25K). The solution provided by the GA for each one of the diversity
metrics are d1 = 0.436101, d2 = 3.266839, and d3 = 3.01 × 10−8 . We can see that
by enforcing individual budget constraints the network’s resilience against zero-
day attacks can still be optimized but the additional budget constraints might not
allow to achieve the best diversity metric possible.

Use Case B: Qd ≤ $124K while qhttp + qssh ≤ $100K. While use case A shows
how individual cost constraints can affect the optimization of the diversity metrics,
in practice not all services may be of concern and some may have negligible cost.
This use case models such a scenario by assigning a combined budget restriction
for only the http and ssh services, i.e., the cost incurred by diversifying these two
services should not exceed $100K.

The solution provided by the GA for each one of the diversity metrics is d1 =

22

0.436101, d2 = 3.266839, and d3 = 2.74 × 10−8 . Here the combined http/ssh
budget constraint of $100K is also satisfed.

1

4

1

2

1

2

1

2

4

1

4

1

3

4

3

2

1

1

2

1

3

1

3

1

4

1

2

1

2

1

4

1

3

1

2

3

4

3

1

2

3

1

1

2

1

2

3

1

3

<NU,2> <http,2> <user,NU> <http,3> <NU,3>

 http,NU,2 http,NU,3

<user,2> <user,3>

 ssh,2,2 ssh,2,3

<2,7><app,6> <2,6> <root,2> <app,7> <3,7> <root,3>

 app,2,6 app,2,7 app,3,7

<user,6> <user,7>

 ssh,6,6 ssh,7,7

<root,6> <6,8> <6b,8> <7,8> <root,7> <7,9> <db,9>

 db,6,8 db,7,8 db,7,9

<user,8> <user,9>

 ssh,8,8 ssh,9,9

<root,8> <8,1> <Xen,1> <root,9> <9,1>

 Xen,8,1 Xen,9,1

<use,1>

 ssh,1,1

<root,1>

V

2

3

V

3

4

V

3

4

V

3

V

2

3

V

2

V

1

V

2

1

V

3

V

3

4

V

2

4

V

1

V

2

4

V

2

3

V

3

4

V

3

4

V

2

3

V

1

V

1

V

1

V

2

4

V

V

2

V

V

3

4

V

4

V

2

4

V

1

Fig. 8. Use Case B and Use Case C.

Use Case C: Qd ≤ $300K while qssh ≤ 0.8 · qhttp. This fnal case deals with scenar-
ios where some services might have a higher priority over others. The constraint in
this use case is that the total incurred cost while diversifying the ssh service should
not exceed 80% of what is incurred by diversifying the http service.

The solution provided by the GA for each one of the diversity metrics is d1 =

23

0.527833, d2 = 2.828427, and d3 = 1.84 × 10−6 . While the value of the d1 metric
increased to 0.527833, the d2 and d3 metrics both decreased. In this case the budget
conditions are also satisfed

d-diversity metric value based use case scenarios

Use Case Scenario d1 d2 d3 value
value value

Use Case A 0.5554583.464102 3.12 ×
10−7

General + Individual 0.4361013.266839 3.01 ×
Budgets 10−8

Use Case B 0.4361013.266839 2.74 ×
10−8

Use Case C 0.5278332.828427 1.84 ×
10−6

Table 2
d-diversity metric values for different use case scenarios.

Based on the results shown in Table 2, it is interesting to note how the different
d-diversity metrics behave in response to budget constraints. When certain budget
constraints are applied, it is possible that while one d-diversity metric decreases
in value (e.g. d2’s value from use case B to use case C), the others could increase
(e.g. d1’s value from use case B to C) and vice-versa. This is to be expected as the
different d-diversity metrics measure different properties of the network so those
metrics might need to be taken into consideration at the same time. Also, as seen
from the above use cases, our model and problem formulation makes it relatively
straightforward to apply any standard optimization techniques, not limited to GA,
in order to optimize the diversity while dealing with different budget constraints.

4.3 Heuristic Algorithm

For all the test cases described above, the calculation of the d2 diversity metric relies
on the assumption that all the attack paths are readily available. However, this is not
always the case in practice. Due to the well known complexity that resource graphs
have inherited from attack graphs due to their common syntax [2,3], it is usually
computationally infeasible to enumerate all the available attack paths in a resource
graph for large networks. Therefore, we design a heuristic algorithm to reduce the
search complexity when calculating d2, by only storing the m-shortest paths at each
step [20], as depicted in Figure 9 and detailed below.

24

Procedure Heuristic m-shortest
Input: Extended resource graph ⟨G, v⟩, critical asset cg , number of paths m,

diversifed diversity control vector, D
Output: σ(cg)
Method:
1. Let vlistbe any topological sort of G
5. While all vlist elements are unprocessed
6. If c ∈ CI and c is unprocessed
7. Let σ(c) = c
8. Mark c as processed
9. Else if e ∈ E (e is not processed) and (∀c ∈ C)((c, e) ∈ Rr ⇒ c is processed)
10. Let {c ∈ C : (c, e) ∈ Rr } = {c1, c2, . . . , cn}
11. Let α(e) = a1 ∪ a2 . . . ∪ e : ai ∈ σ(ci), 1 ≤ i ≤ n

′ ′ ′13. Let α ′ (ov(e)) = a ∪ a2 . . . ∪ e : a ⊢ ai, 1 ≤ i ≤ n1 i
12. If n > m
13. Let σ(e) = ShortestM(⟨α(e), | Unique(α ′ [ov(e)]) | ⟩,m))
14. Else
15. σ(e) = a1 ∪ a2 . . . ∪ e : ai ∈ σ(ci), 1 ≤ i ≤ m
16. Mark e as processed
17. Else (c s.t. (e, c) ∈ Ri and c is unprocessed)

′ ′ ′18. If (∀e ∈ E)((e , c) ∈ Ri ⇒ e is processed)∪
19. Let α(c) = σ(e ′)∪e ′ s.t. (e ′ ,c)∈Ri

20. Let α ′ (c) = σ(ov(e ′))′ e s.t. (e ′ ,c)∈Ri
21. If length(α(c)) > m
22. Let σ(c) = ShortestM(⟨α(c), | Unique(α ′ [ov(c)]) | ⟩,m))
23. Else ∪
24. Let σ(c) = σ(e ′)

e ′ s.t. (e ′ ,c)∈Ri
25. Mark c as processed
26. Return σ(cg)

Fig. 9. A Heuristic algorithm for calculating m-shortests paths

The algorithm on Figure 9, which has lineal complexity (O(N)), is the one used
to check for the m-shortest paths for all three d-diversity metrics. This algorithm
starts by topologically sorting the graph (line 1) and proceeds to go through each
one of the nodes on the resource graph collection of attack paths, as set of exploits
σ(), that reach that particular node. The main loop cycles through each unprocessed
node. If a node is an initial condition, the algorithm assumes that the node itself is
the only path to it and it marks it as processed (lines 6-8). For each exploit e, all
its preconditions are placed in a set (line 10). The collection of attack paths α(e)
is constructed from the attack paths of those preconditions (lines 10 and 11). In a
similar way, σ ′ (ov(e)) is constructed with the function ov() which, aside of using
the exploits includes value of element of the diversity control vector that supervises
that exploit.

If there are more than m paths to that node, the algorithm will use the function
Unique to frst look for unique combinations of service and service instance in
α ′ (ov(e)). Then, the algorithm creates a dictionary structure where the key is a
path from α(e) and the value is the number of unique service and service instance
combinations given by each one of the respective paths in α ′ (ov(e)). The function
ShortestM() selects the top m keys whose values are the smallest and returns the
m paths with the minimum number of distinct combination of services and service
instances (line 13). If there are less than m paths, it will return all of the paths
(line 15). After this, it marks the node as processed (line 16). The process is similar
when going through each one of the intermediate conditions (lines 17-24). Finally,

25

the algorithm returns the collection of m paths that can reach the critical asset cg. It
is worth noting that the algorithm does not make any distinction in whether or not a
particular path has a higher priority over another when they share the same number
of unique service/service instance combinations.

5 Simulations

In this section, we show simulation results. All simulations are performed using a
computer equipped with a 3.0 GHz CPU and 8GB RAM in the Python 2.7.10 envi-
ronment under Ubuntu 12.04 LTS and MATLAB 2015b’s GA toolbox. To generate
many resource graphs for simulations, we frst construct a small number of seed
graphs based on realistic networks and then generate larger graphs from those seed
graphs by injecting new hosts and assigning resources in a random but realistic
fashion (e.g., the number of pre-conditions of each exploit is varied within a small
range since real world exploits usually have a constant number of pre-conditions).
The resource graphs were used as the input for the optimization toolbox where the
objective function is to maximize the diversity metrics d1 and d2, and to minimize
the d3 metric, subject to budget constraints.

To determine the genetic operators, we used the hill climbing algorithm. Our sim-
ulations show that, using the GA with a crossover probability of 80%, a mutation
rate of 20%, and setting the number of generations to 70 will be suffcient. Addi-
tionally, our experiences also show that, because our largest resource graph had a
diversity control vector of fewer than 100 variables, we could set the population
size equal to 200; nevertheless, we believe that when dealing with a larger number
of optimization variables, the population size should be at least twice the number
of variables.

The complexity of our proposed solution will depend on the objective function, the
population size, and the length of diversity control vector. While the calculation
for d1 metric is straightforward, the calculation for d2 is NP-hard since the sub-
problems of fnding the shortest paths (over which the d2 metric is to be evaluated)
in resource graphs is already intractable by the well know results in attack graphs
[2,3] and the common syntax between resource graphs and attack graphs. We will
therefore rely on the heuristic algorithm presented in Section 4.3 for this purpose.
Figure 10 shows that the processing time for d2 metric increases almost linearly
as we increase the number of optimization variables or the parameter m of the
heuristic algorithm. The results show that the algorithm is relatively scalable.

For d3 diversity metric, calculating the marginal probability with the Bayesian net-
work within the objective function is also an NP-hard optimization problem due to
the Cook Levin theorem [44]. For the simulations where the d3 metric is evaluated,
we use OpenBayes. However, because of its well known limitations [45], the com-

26

m
(the parameter for the number of shortest paths for the heuristic algorithm)

1 2 3 4 5 6 7 8 9

P
ro

ce
ss

in
g

tim
es

 (
s)

1

2

3

4

5

6

7

8

9

10
Number of selected minimum paths

5 optimization variables
10 optimization variables
15 optimization variables
20 optimization variables
25 optimization variables
32 optimization variables

Fig. 10. d2 Processing time.

putation of d3 may become prohibitive for large graphs, as shown in Figure 11. To
reduce the computational overhead for the optimization of the d3 metric, we were
inspired by [46] to use graphs with cluster structures. The beneft of this approach
is that smaller subgraphs (which could represent subnetworks) may be processed
separately, which helps to overcome the limitations of OpenBayes to some extent.
On the other hand, approximate Bayesian inferences might need to be employed
for even larger graphs.

The number of nodes
50 100 150 200 250 300 350 400 450

P
ro

ce
ss

in
g

tim
es

(s

)

0

500

1000

1500

2000

2500
d3 processing times

Fig. 11. d3 Processing times (s).

Because our heuristic algorithm takes only the m-shortest paths to calculate the d2

diversity metric, the accuracy is an important issue to be considered. Here the accu-
racy refers to the approximation ratio between the result obtained for the d2 metric
using our heuristic algorithm and that of simply enumerating and searching all the
paths while assuming all services and service instances are different (dHeuristic). A

dBruteF orce

ratio close to 1 indicates that our algorithm can provide a solution that is closer to
the one provided by enumerating all paths (brute force), and the diversity control
vector provided by the GA is used to calculate the accuracy. Figure 12 evaluates the
accuracy through simulations. From the results, we can see that when we increase
the number of paths considered at each step (m) , the accuracy of the optimized
d2 metric gets closer to the one provided by brute force. We can additionally see
that if the m value is greater than or equal to 6, the approximation ratio reaches an
acceptable level. For the following simulations, we have settled with an m value of
9.

27

The number of generations
50 100 150 200 250 300 350 400 450 500

A
cc

ur
ac

y

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8
54 nodes

m=1
m=2
m=3
m=4
m=5
m=6
m=7
m=8
m=9

Fig. 12. Accuracy vs m (parameter of the heuristic algorithm).

We also consider the ratio between the difference in the d-diversity metrics before
and after optimization, (dOptimized−dNotOptimized), which will be called the gain of the

dNotOptimized

d-diversity metrics (or simply the gain). The gain provides us with an idea on how
much room there is to improve the security with respect to given cost constraints
using our method. Figure 13 shows the results when the diversity control vector
has different numbers of service instances to take from (i.e., different sizes of the
service pools). In this simulation, we only consider graphs with a relative high dif-
ference in the length of the shortest path before and after all services are diversifed
using the algorithm.

2 4 6 8 10 12 14 16 18 20

d2
 G

ai
n

fa
ct

or

0

1

2

3

4
91 hosts, 53 nodes, 17 optimization variables

m=6
m=7
m=8
m=9

The number of minimum service instances available
2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 c
os

t i
nc

ur
re

d

200

300

400

500

600

m=6
m=7
m=8
m=9

Fig. 13. The effect of available services on a node.

We can see an increasing gain in the d2 value after optimization, when more service
instances are available. However, this trend begins to stall after a certain point. From
this observation it can be inferred that the number of available service instances will
affect the difference between the maximum d2 value possible and the minimum d2,
but such an effect also depends on the size of the network (or the extended resource
graph), so increasing the number of available service instances does not always
help.

Figures 14 and 15 compare the values and the corresponding gain between the d1

and d2 metrics. We can see that their average values as well as their average gain

28

both exhibit a similar trend. Therefore, we will focus more on the d2 metric from
now on.

The number of variables
30 40 50 60 70 80 90 100 110 120 130

M
et

ric
 v

al
ue

0

1

2

3

4

5

6

7

Average gain for d1 and d2 versus the number of
optimization variables

d1 Gain

d2 Gain

Fig. 14. Average optimized value for d1 and d2 based on number of optimization variables.

The number of optimization variables
30 40 50 60 70 80 90 100 110 120 130

M
et

ric

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The d1 and d2 metrics versus
Number of optimization variables

d1
d2

Fig. 15. Average gain of d1 and d2 based on number of optimization variables.

In Figure 16, we analyze the average gain of d2 in the optimized results for differ-
ent sizes of graphs. In this fgure, we can see that we have a good enough gain for
graphs with a relatively high number of nodes. As expected, as we increase the size
of the graphs, the gain will decrease if we keep the same optimization parameters,
as well as the same amount of diversifable services. In Figure 17, we analyze the
average gain of the d3 metric for different sizes of graphs. Like with the d2 met-
ric, the increase in the number of nodes will reduce the amount of optimization
available to the metric.

The number of Nodes
[10,30) [30,50) [50,60) [60,100) [100,200) [200,300) [300,400) [400,500)

G
ai

n

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Average Gain

Fig. 16. The average d2 gain vs the number of nodes.

29

The number of nodes
50 100 150 200 250 300 350 400 450 500

G
ai

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Average d3 gain

Fig. 17. Average d3 gain based on the number of nodes.

Figures 18 to 23 show the optimization results for networks with different char-
acteristics (and hence different shapes of resource graphs). First, we examine net-
works with different levels of protection which is refected as the relative depth of
a resource graph. While it may be diffcult to exactly defne the depth of a resource
graph, we have relied on the relative distance, i.e., the difference of the shortest
path before and after all services are diversifed. There is a relative linear increase
in the gain as we increase the relative distance in the shortest path. While this does
not provide an accurate description of the graph’s shape, it does provide an idea of
how much additional security may be obtained through diversifcation for different
networks, as shown in Figures 18, 19, and 20.

The distance in shortest path
4 5 6 7-8 9 10 11-12

G
ai

n

1

1.5

2

2.5

3

3.5

4
d2 gain based on shortest path

Fig. 18. Average d2 gain based on relative distance of shortest path.

The distance in shortest path
3 4 5 6 7 8 9 10

G
ai

n

1.5

2

2.5

3

3.5

4

4.5
d1 gain based on shortest path

Fig. 19. Average d1 gain based on relative distance of shortest path.

30

The distance in shortest path
3 3.5 4 4.5 5 5.5 6 6.5 7

G
ai

n

0.3

0.4

0.5

0.6

0.7

0.8

0.9
d3 gain based on shortest path

Fig. 20. Average d3 gain based on relative distance of shortest path.

Finally, in Figures 21, 22, and 23, we can see the effect of the network’s degree
of exposure which is defned as the number of exploits that are initially reachable
by the attacker (i.e., the frst layer of exploits in resource graphs). As we increase
the degree of exposure, the gain in optimization decreases in almost a linear way.
That is, there will be less room for diversifcation if the network is more exposed.
Combining those last two sets of results, we can conclude that networks that are
already well guarded, in the sense of having a relatively larger depth and a lower
degree of exposure, will in fact enjoy more opportunities for further improving the
security through service diversifcation.

The number of vulnerabilities directly under attacker
1 1.5 2 2.5 3 3.5 4 4.5 5

G
ai

n

0.6

0.8

1

1.2

1.4

1.6

1.8

2
d2 gain based on number of exploits

Fig. 21. Average d2 gain based on directly reachable vulnerabilities.

The number nodes accessible to attacker
2 4 6 8 10 12 14 16 18

G
ai

n

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
d1 gain based on number of exploits

Fig. 22. Average d1 gain based on directly reachable vulnerabilities.

31

The number of services reachable from attacker
4 6 8 10 12 14 16 18

G
ai

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8
d3 gain based on number of exploits

Fig. 23. Average d3 gain based on directly reachable vulnerabilities.

6 Conclusion

In this paper, we have formulated optimizing the service diversity as an optimiza-
tion problem using three network diversity metrics, which led to an automated
diversity-based network hardening approach against zero-day attacks. This auto-
mated approach used a heuristic algorithm that helped to manage the complexity
of computing the three diversity metric values as well as limiting the time for opti-
mization to an acceptable level. We have shown some sample cost constraints while
our model and formulation would allow for other practical scenarios to be speci-
fed and optimized. We have tested the scalability and accuracy of the proposed
algorithms through simulation results, and we have also discussed how the gain in
the d-diversity metrics value will be affected by the number of available service
instances in the service pools and different sizes and shapes of the resource graphs.

We discuss several aspects of the proposed automated optimization technique where
additional improvements and evaluations are possible.

• While this paper focuses on diversifying services within a traditional network,
a future step is to extend this approach to emerging networks such as SDN-
based virtual networks.

• We will consider other optimization algorithms in addition to GA to compare
and search for more effcient and effective solutions to our problem.

• Since the three d-diversity metrics measure different network properties, a
natural future direction would be to provide multi-objective optimization so-
lutions.

Acknowledgements. Authors with Concordia University are partially supported by
the Natural Sciences and Engineering Research Council of Canada under Discov-
ery Grant N01035. Sushil Jajodia was supported in part by the National Science
Foundation under grant IIP-1266147; by the Army Research Offce under grants
W911NF-13-1-0421 and W911NF-13-1-0317; and by the Offce of Naval Research
under grants N00014-15-1-2007 and N00014-13-1-0703.

32

Disclaimer Commercial products are identifed in order to adequately specify cer-
tain procedures. In no case does such identifcation imply recommendation or en-
dorsement by the National Institute of Standards and Technology, nor does it imply
that the identifed products are necessarily the best available for the purpose.

References

[1] A. Avizienis and L. Chen, “On the implementation of n-version programming for
software fault tolerance during execution,” in Proc. IEEE COMPSAC, vol. 77, 1977,
pp. 149–155.

[2] L. Wang, M. Zhang, S. Jajodia, A. Singhal, and M. Albanese, “Modeling network
diversity for evaluating the robustness of networks against zero-day attacks,” in
ESORICS 2014. Springer, 2014, pp. 494–511.

[3] M. Zhang, L. Wang, S. Jajodia, A. Singhal, and M. Albanese, “Network diversity:
A security metric for evaluating the resilience of networks against zero-day attacks,”
IEEE Transactions on Information Forensics and Security (TIFS), vol. 11, no. 5, pp.
1071–1086, 2016.

[4] L. Wang, S. Noel, and S. Jajodia, “Minimum-cost network hardening using attack
graphs,” Computer Communications, vol. 29, no. 18, pp. 3812–3824, 2006.

[5] R. Dewri, N. Poolsappasit, I. Ray, and D. Whitley, “Optimal security hardening using
multi-objective optimization on attack tree models of networks,” in Proceedings of the
14th ACM conference on Computer and communications security. ACM, 2007, pp.
204–213.

[6] D. Borbor, L. Wang, S. Jajodia, and A. Singhal, “Surviving unpatchable vulnerabilities
through heterogeneous network hardening options,” pp. 1–29, 03 2018.

[7] L. Mieritz and B. Kirwin, “Defning gartner total cost of ownership,” L. Mieritz, B.
Kirwin, 2005.

[8] “Cost of data center outages. data center performance benchmark series,” http://www.
ponemon.org/blog/2016-cost-of-data-center-outages/, Jan, 2016.

[9] D. Borbor, L. Wang, S. Jajodia, and A. Singhal, “Diversifying network services
under cost constraints for better resilience against unknown attacks,” in IFIP Annual
Conference on Data and Applications Security and Privacy. Springer, 2016, pp.
295–312.

[10] K. Bakshi, “Cisco cloud computing-data center strategy, architecture, and solutions,”
CISCO White Paper. Retrieved October, vol. 13, p. 2010, 2009.

[11] T. Fifeld, D. Fleming, A. Gentle, L. Hochstein, J. Proulx, E. Toews, and J. Topjian,
OpenStack Operations Guide. ” O’Reilly Media, Inc.”, 2014.

33

https://ponemon.org/blog/2016-cost-of-data-center-outages
http://www

[12] N. Alhebaishi, L. Wang, S. Jajodia, and A. Singhal, “Threat modeling for cloud data
center infrastructures,” in International Symposium on Foundations and Practice of
Security. Springer, 2016, pp. 302–319.

[13] N. Gruschka and M. Jensen, “Attack surfaces: A taxonomy for attacks on cloud
services,” in Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference
on. IEEE, 2010, pp. 276–279.

[14] J. Barr, “Building three-tier architectures with security groups,” https://aws.amazon.
com/blogs/aws/building-three-tier-architectures-with-security-groups/, June, 2010.

[15] R. Dewri, I. Ray, N. Poolsappasit, and D. Whitley, “Optimal security hardening on
attack tree models of networks: a cost-beneft analysis,” International Journal of
Information Security, vol. 11, no. 3, pp. 167–188, 2012.

[16] I. Ray and N. Poolsapassit, “Using attack trees to identify malicious attacks from
authorized insiders,” in ESORICS 2005. Springer, 2005, pp. 231–246.

[17] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based network
vulnerability analysis,” in Proceedings of the 9th ACM Conference on Computer and
Communications Security. ACM, 2002, pp. 217–224.

[18] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing, “Automated generation
and analysis of attack graphs,” in Security and privacy, 2002. Proceedings. 2002 IEEE
Symposium on. IEEE, 2002, pp. 273–284.

[19] L. Wang, A. Singhal, and S. Jajodia, “Measuring the overall security of network
confgurations using attack graphs,” in Data and Applications Security XXI. Springer,
2007, pp. 98–112.

[20] M. Albanese, S. Jajodia, and S. Noel, “Time-effcient and cost-effective network
hardening using attack graphs,” in Dependable Systems and Networks (DSN), 2012
42nd Annual IEEE/IFIP International Conference on. IEEE, 2012, pp. 1–12.

[21] L. Wang, S. Jajodia, A. Singhal, and S. Noel, “k-zero day safety: Measuring the
security risk of networks against unknown attacks,” in ESORICS 2010. Springer,
2010, pp. 573–587.

[22] L. Wang, S. Jajodia, A. Singhal, P. Cheng, and S. Noel, “k-zero day safety: A network
security metric for measuring the risk of unknown vulnerabilities,” Dependable and
Secure Computing, IEEE Transactions on, vol. 11, no. 1, pp. 30–44, 2014.

[23] J. McHugh, “Quality of protection: measuring the unmeasurable?” in Proceedings of
the 2nd ACM workshop on Quality of protection. ACM, 2006, pp. 1–2.

[24] L. Wang, M. Albanese, and S. Jajodia, Network Hardening: An Automated Approach
to Improving Network Security. Springer Publishing Company, Incorporated, 2014.

[25] M. Gupta, J. Rees, A. Chaturvedi, and J. Chi, “Matching information security
vulnerabilities to organizational security profles: a genetic algorithm approach,”
Decision Support Systems, vol. 41, no. 3, pp. 592–603, 2006.

34

https://aws.amazon

[26] S. Wang, Z. Zhang, and Y. Kadobayashi, “Exploring attack graph for cost-beneft
security hardening: A probabilistic approach,” Computers & security, vol. 32, pp. 158–
169, 2013.

[27] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic security risk management using
bayesian attack graphs,” Dependable and Secure Computing, IEEE Transactions on,
vol. 9, no. 1, pp. 61–74, 2012.

[28] M. Pendleton, R. Garcia-Lebron, J.-H. Cho, and S. Xu, “A survey on systems security
metrics,” ACM Comput. Surv., vol. 49, no. 4, pp. 62:1–62:35, Dec. 2016. [Online].
Available: http://doi.acm.org/10.1145/3005714

[29] P. Mell, K. Scarfone, and S. Romanosky, “Common vulnerability scoring system,”
Security & Privacy, IEEE, vol. 4, no. 6, pp. 85–89, 2006.

[30] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia, “An attack graph-based
probabilistic security metric,” in IFIP Annual Conference on Data and Applications
Security and Privacy. Springer, 2008, pp. 283–296.

[31] M. Frigault, L. Wang, A. Singhal, and S. Jajodia, “Measuring network security using
dynamic bayesian network,” in Proceedings of the 4th ACM workshop on Quality of
protection. ACM, 2008, pp. 23–30.

[32] “Nist special publication 500-307: Cloud computing service metrics description
(2015),” https://www.nist.gov/sites/default/fles/documents/
itl/cloud/RATAX-CloudServiceMetricsDescription-DRAFT-20141111.pdf, Accessed
September, 2017.

[33] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-
Tuong, and J. Hiser, “N-variant systems: a secretless framework for security through
diversity,” in Usenix Security, vol. 6, 2006, pp. 105–120.

[34] D. Gao, M. K. Reiter, and D. Song, “Behavioral distance measurement using hidden
markov models,” in Recent Advances in Intrusion Detection. Springer, 2006, pp.
19–40.

[35] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro, “Os diversity for
intrusion tolerance: Myth or reality?” in Dependable Systems & Networks (DSN), 2011
IEEE/IFIP 41st International Conference on. IEEE, 2011, pp. 383–394.

[36] A. Gunasekaran, Organizational Advancements through Enterprise Information
Systems: Emerging Applications and Developments: Emerging Applications and
Developments. IGI Global, 2009.

[37] “Amazon.com, inc. revenue and earnings per share (eps),” http://www.nasdaq.com/
symbol/amzn/revenue-eps/, June, 2017.

[38] “Number of amazon.com employees from 2007 to 2016,” https://www.statista.com/
statistics/234488/number-of-amazon-employees/, June, 2017.

[39] S. Jajodia, S. Noel, and B. O’Berry, “Topological analysis of network attack
vulnerability,” in Managing Cyber Threats: Issues, Approaches and Challenges,
V. Kumar, J. Srivastava, and A. Lazarevic, Eds. Kluwer Academic Publisher, 2003.

35

https://www.statista.com
https://amazon.com
http://www.nasdaq.com
https://Amazon.com
https://www.nist.gov/sites/default/files/documents
http://doi.acm.org/10.1145/3005714

[40] P. Festa, “A brief introduction to exact, approximation, and heuristic algorithms for
solving hard combinatorial optimization problems,” in Transparent Optical Networks
(ICTON), 2014 16th International Conference on. IEEE, 2014, pp. 1–20.

[41] H. M. Azamathulla, F.-C. Wu, A. Ab Ghani, S. M. Narulkar, N. A. Zakaria, and C. K.
Chang, “Comparison between genetic algorithm and linear programming approach for
real time operation,” Journal of Hydro-environment Research, vol. 2, no. 3, pp. 172–
181, 2008.

[42] D. E. Golberg, “Genetic algorithms in search, optimization, and machine learning,”
Addion wesley, vol. 1989, 1989.

[43] K. Deb, “An effcient constraint handling method for genetic algorithms,” Computer
methods in applied mechanics and engineering, vol. 186, no. 2, pp. 311–338, 2000.

[44] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of the
third annual ACM symposium on Theory of computing. ACM, 1971, pp. 151–158.

[45] M. Arias and F. J. Dıez, “Carmen: An open source project for probabilistic graphical
models,” in Proceedings of the Fourth European Workshop on Probabilistic Graphical
Models (PGM08), 2008, pp. 25–32.

[46] L. Muñoz-González, D. Sgandurra, A. Paudice, and E. C. Lupu, “Effcient attack graph
analysis through approximate inference,” arXiv preprint arXiv:1606.07025, 2016.

36

	Structure Bookmarks
	Fig. 10. dProcessing time.
	Fig. 11. dProcessing times (s).
	Fig. 12. Accuracy vs m (parameter of the heuristic algorithm).
	Fig. 13. The effect of available services on a node.
	Fig. 14. Average optimized value for d1 and d2 based on number of optimization variables.
	Fig. 15. Average gain of d1 and d2 based on number of optimization variables.
	Fig. 16. The average dgain vs the number of nodes.
	Fig. 17. Average dgain based on the number of nodes.
	Fig. 18. Average dgain based on relative distance of shortest path.
	Fig. 19. Average dgain based on relative distance of shortest path.
	Fig. 20. Average dgain based on relative distance of shortest path.
	Fig. 21. Average dgain based on directly reachable vulnerabilities.
	Fig. 22. Average dgain based on directly reachable vulnerabilities.
	Fig. 23. Average dgain based on directly reachable vulnerabilities.

