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Pathloss-model calibration, or tuning, is the practice of refin-
ing the nominal parameters of a model according to mea-
surement samples collected in a specific area. It is widely 
used by mobile providers because it can reduce error up to 

tens of decibels depending on the model category. It comes, how-
ever, at the expense of both time and monetary resources. Given 
the prohibitive amount of resources required to calibrate all 
deployment areas, a model calibrated in one area can be applied 

to another area that has no measurement data. We refer to this 
practice as model cross-application. How well the model predicts 
will depend on the similarity between the two areas. 

In this article, we propose a methodology for cross-
application in which we identify the most effective fea-
tures to determine area similarity. To do so, we analyzed 
over 3 million measurement samples from five metropoli-
tan regions throughout the United States—consisting of 
urban, suburban, and rural environments—while con-
sidering a broad range of model categories, from purely 
empirical to highly deterministic. We also validated the 
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performance of the models per environment in terms of 
both absolute prediction error and error reduction effect-
ed by calibration.

INTRODUCTION
The objective of pathloss-model calibration is to have the model 
predictions fit the samples as well as possible, such that the 
model delivers more accurate results throughout the area as 
a whole. Depending on the model category, calibration can 
impact results significantly, reducing prediction error anywhere 
from 3 dB to tens of decibels [1]–[10]. To achieve such perfor-
mance in cross-application, mobile providers will require no 
fewer than 300 representative models across the United States 
[11]. The cost of obtaining the set is on the order of several mil-
lions of dollars [11].

Prediction accuracy will depend mainly on three factors:
■ Environment: There is greater propagation uncertainty in 

complex urban environments with tall man-made structures 
and other such clutter, in contrast to rural environments 
with mostly open areas. Thus, accuracy will generally be 
better in the latter than in the former.

■ Geodata: Geographic data, abbreviated as geodata, are 
prior information describing the features of an environ-
ment, such as terrain and clutter. Complex environ-
ments will require a more detailed description to yield 

the same level of accuracy as rural environments [12]. 
For example, knowing the building morphologies in an 
urban environment is critical to predicting shadowed 
zones or regions subject to waveguiding, whereas in 
rural environments, the clutter profile is essentially flat.

■ Model category: Purely empirical models are derived from 
prior measurements in a specific area and, since they 
do not exploit geodata, have no perception of the actual 
prediction area. They typically do well in rural and some 
suburban environments where the landscape is similar 
between different areas.  By contrast, highly deterministic 
models exploit all available geodata and so are more suit-
able for urban environments. However, the high-resolution 
geodata required to deliver accurate results can cost up to 
a half-million dollars [11], and prediction will take much 
longer than with purely empirical models.

Just as prediction accuracy depends on many factors, so 
does the benefit of calibration. Because empirical models 
are less deterministic—they exploit fewer geodata—they 
will rely more on measurement data and so will benefit the 
most from tuning. Conversely, while deterministic models 
do well when geodata are available, they will also see some 
benefit from tuning, as geodata cannot entirely capture 
all of the features of the environment, such as material 
properties. Some of the questions we aim to answer in this 
article are:

■ What is the performance of different calibrated prop-
agation models—ranging from purely empirical to 
highly deterministic—in urban, suburban, and rural envi-
ronments?  In particular, can tuned empirical models per-
form well in complex urban environments? And, at the 
other extreme, are deterministic models overkill in rural 
environments?

■ When models tuned in specific areas are to be applied to 
other areas that have no calibration data, what are the simi-
larity features that matter the most in comparing areas to 
determine the best model for cross-application?

■ What is the benefit of tuning and does the benefit vary 
per model category? In particular, do highly deterministic 
models reap any benefit from calibration and, if so, in which 
environments?

To answer these questions, we used more than 3 million 
samples of measurement data from five U.S. regions of varying 
size, population density, and terrain to provide a comprehensive 
evaluation of the most popular categories of pathloss models. To 
our knowledge, the breadth and depth of the data gathered are 
unprecedented in published material on this topic. 

MEASUREMENT CAMPAIGN
In this section, we describe the measurement campaign con-
ducted to gather the data samples used for analysis in this 
study. The data were furnished by the Infovista Corporation 
[11]. (Certain commercial equipment, instruments, or materials 
are identified in this article to specify the experimental proce-
dure adequately. Such identification is not intended to imply 
recommendation or endorsement by the National Institute of 
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Standards and Technology, nor is it intended to imply that the 
materials or equipment identified are necessarily the best avail-
able for the purpose.) 

MEASUREMENT DATA
Measurements to calibrate pathloss models for macrocell deploy-
ment most typically come in the form of signal-strength readings 
collected at a mobile device from neighboring base stations. More 
specifically, the signal strength from the station sectors is sampled 
during normal cellular operation and pinned to the GPS loca-
tion of the mobile. Base stations usually have three sectors, each 
equipped with a directional antenna covering 120° in azimuth for 
a combined omnidirectional field of view. 

Every technology will have its own metric for signal strength. 
For example, LTE uses reference signal receiver power (RSRP) 
while code-division multiple access (CDMA) uses received sig-
nal strength indicator (RSSI). The receiver device used for the 
measurement campaign was the PCTEL SeeGull MX Scanning 
Receiver. Its relevant manufacturer specifications are:

 ■ Power accuracy: <1 dB above 50 °F
 ■ Receiver sensitivity: −135 dBm at a 5-kHz bandwidth
 ■ Location accuracy: <2.5 m
 ■ Heading accuracy: <0.5°
 ■ Velocity accuracy: <0.1 m/s.
The measurements were gathered by mounting the receiver 

antenna to the roof of a vehicle; for this reason, the campaign 
is referred to as a drive test. To convert the signal strength 
to pathloss, prior information associated with the sectors 
is necessary, namely, their physical cell identity (for sector 

identification), transmit power, antenna pattern, and GPS loca-
tion. Analogous prior information at the mobile station is also 
necessary, namely, the gain of the omnidirectional antenna, 
the amplifier gain, and the noise figure as well as any other 
components of the link budget, such as cable loss. The signal 
strength metric was converted to pathloss by deembedding 
the antenna patterns and the other losses so that the pathloss 
would reflect the channel alone and not the measurement 
equipment involved.

REGION DEFINITION
The five metropolitan regions considered in our study were 
Houston, New York, San Francisco, Boston, and Austin. As 
the vehicle moved about the regions during the drive tests, it 
fell into different sector-reception areas; we refer to them sim-
ply as areas. As an example, Figure 1 displays the color-coded 
signal strength for the 6,421 samples collected from a sector 
in Manhattan.

From the drive-test data collected, we down-selected 20 
areas from each of the five regions for inclusion in this analysis. 
Down-selection of these 100 areas was imperative to reduce 
the data to a size at once manageable for processing yet large 
enough to sustain broad representation. The criterion for selec-
tion was an equal distribution between the three environments 
considered: urban, suburban, and rural. Our analysis over 
the 100 areas comprised more than 3 million data samples. 
Key properties of the base station antenna used in drive tests 
appear in Table 1 per region: the minimum, maximum, and 
mean values of their height, equivalent isotropically radiated 
power (EIRP), and azimuth and elevation beamwidths. Table 1 
also catalogs the properties of the data samples per region: the 
minimum, maximum, and mean values of their RSRP (or RSSI 
for CDMA), base-mobile distances, and number of samples per 
area. In most regions, the operating technology was LTE in the 
800-MHz band, with an exception in New York, for which it was 
CDMA at 1.5 GHz.

GEODATA
Geodata are provided in layers on a spherical grid indexed 
by latitude and longitude. Here, we employed the four 
most popular layers of geodata available, described in the 
sequel:

 ■ Terrain: a numerical layer that specifies the elevation of the 
terrain above sea level at each grid point

 ■ Clutter: a numerical layer that specifies the height of the 
clutter—skyscrapers, houses, trees, and so forth—above the 
terrain at each grid point

 ■ Usage: a classification layer that indexes land usage at 
each grid point to a set of predefined classes. The usage 
layer available to us has 16 classes, listed in Table 2. We took 
advantage of it to partition the classes into urban, 
suburban, and rural environments, based on our own 
definition. Table  2 summarizes the partitioning. An 
area was then binned into one of the three environ-
ments according to which one occupied the majority 
of the area.

RSSI (dBm)
–65 
–70 
–75 
–80 
–85
–90
–95
–100

FIGURE 1. The signal-strength samples collected from a 
sector in the borough of Manhattan, New York City, during 
a drive test. The signal strengths are color coded against 
the legend.

Authorized licensed use limited to: Boulder Labs Library. Downloaded on March 30,2020 at 15:16:47 UTC from IEEE Xplore.  Restrictions apply. 



43IEEE ANTENNAS & PROPAGATION MAGAZINE F E B R U A R Y  2 0 2 0

 ■ Morphology: a set of polygons that delineates the complete 
3D shape of the clutter beyond simply the clutter height.

Terrain and usage layers at a 30-m resolution are acces-
sible free of charge from the United States Geological Sur-
vey (USGS). Clutter and morphology layers are accessible 
from providers per payment. The price of the geodata will 
depend on the resolution. In urban environments, geodata 
are available up to a 1-m resolution but, because of the cost, 
are usually purchased at a 5-m resolution, which is deemed 
sufficient for commercial accuracy. Clutter is available in 
suburban environments from a 10-m to a 15-m resolution; 
morphology is rare to find, except in urban environments, 
because there is little demand. Here, we used a 5-m resolu-
tion in the urban environment, 15 m in the suburban, and 
30 m in the rural.

PATHLOSS MODELS
In this section, we describe the six pathloss models that were 
investigated in our study. They span a broad range of categories 
and are introduced in order from the purely empirical to the 
increasingly deterministic. While there are many models avail-
able per category ([13] and [14] provide excellent surveys), we 
have selected the most widely employed throughout the propa-
gation community in the macrocell bands (700–2,100 MHz).

HATA MODEL
The original Hata model [15], often referred to as the Oku-
mura–Hata model, was derived empirically from measurements 
collected in urban Tokyo in the 1960s. It is limited to below 
1.5 GHz by the range of frequencies over which the data were 
gathered. Its intrinsic parameters are the coefficients associated 

TABLE 1. THE PROPERTIES OF THE MEASUREMENT CAMPAIGN.

Region Houston New York San Francisco Boston Austin

Ba
se

 St
at

io
n A

nt
en

na

Height (m) Minimum 21 22.8 6.1 12.2 19.8

Maximum 58.5 42.7 33.5 48.9 78

Mean 40.4 30.2 18.5 27.3 36.6

EIRP (dBm) Minimum 56.5 46.5 55.6 56 60.3

Maximum 58.1 57 57.7 57.9 60.3

Mean 57.5 55 57.4 57.5 60.3

Azimuth  
beamwidth (°)

Minimum 61 45.7 66.5 67.8 67.2

Maximum 79.2 360 73.5 79.7 67.2

Mean 71 101.1 68.5 69.3 67.2

Elevation  
beamwidth (°)

Minimum 10.5 10.7 11.1 10.5 10.6

Maximum 12.2 14 12.1 18.6 10.6

Mean 11.4 11.3 11.8 13 10.6

Da
ta

 Sa
m

pl
e

RSSI (dBm) Minimum −135 −119 −135 −135 −133.5

Maximum −50.3 −29 −41.2 −48.6 −41.4

Mean −95.4 −93.9 −104.5 −98.1 −96.9

Base-mobile  
distance (km)

Minimum 0.1 0.1 0.1 0.1 0.1

Maximum 35 3.3 19 16 22.8

Mean 3.8 0.9 3.2 2 3.7

Number of  
samples per  
area (thousands)

Minimum 10.5 1 6.2 0.8 6.5

Maximum 213.2 7.4 58.1 68 113

Mean 70.3 4.2 20.1 14.4 47.5

TABLE 2. THE CLASSES IN THE  
USAGE LAYER.

Urban Environment Suburban Environment Rural Environment

Urban Open Rural

Core urban Airport Seawater

High-density 
urban

Transportation Inland water

Open in urban Commercial 
industrial

Marsh wetland

Residential with 
trees

Grassland 
agriculture

Residential with  
few trees

Forested dense 
vegetation
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with the model variables, namely, the center frequency, base-
mobile distance, and the base and mobile antenna heights. 
Because the coefficients quantify the degree of variation, or 
slope, with respect to each variable, this model category is often 
referred to as slope based [16], [17]. 
Because of simplicity and, in turn, 
computational efficiency, it is very 
popular [18]–[20]. The only layer 
utilized by the model is the usage 
layer, through which the pathloss 
constant is tuned per usage class to 
improve the fit to the measurement 
data [1]. The constants found can 
range up to 30 dB or higher; hence, 
they are key to fitting the model 
predictions to the measurements. 

The Hata model has since 
expanded from the original to ver-
sions for suburban and rural environments as well, each with 
a distinct set of coefficients [21]. Note that, in our study, the 
coefficients of the Hata model were not tuned, in contrast to 
[8]–[10], because the model would no longer be consistent with 
the one that (despite its poor performance, as we will see) is still 
widely employed today.

There are also more complex slope-model variations spe-
cific to urban environments. The Bertoni–Walfisch model 
[2], for example, reduces propagation around buildings to 
multiple screen diffractions while the Walfisch–Ikegami 
model [3] introduces supplementary variables for the height 
and separation of buildings and for the width and orienta-
tion of roads.

CLOSE-IN MODEL 
There are also generic slope-based models whose coefficients 
are derived exclusively through calibration [4]–[6]. One such 
model widely used today is the close-in model [7], which has 
only two parameters: 1) a tunable coefficient for the base-
mobile distance and 2) a pathloss constant set to the free-space 
propagation loss at 1 m, a physical constraint. The benefit of 
the model is its simplicity: it uses no geodata, and the single 
tunable parameter facilitates the comparison of propagation 
in different environments. For the untuned version, the coef-
ficient is simply set to two, equating it to the free-space propa-
gation model.

FLOATING-INTERCEPT MODEL 
The floating-intercept model [7] is almost identical to the close-
in model, with the exception that the physical constraint is 
relaxed so that the pathloss constant can be tuned to deliver a 

better fit, at the price of slightly 
higher complexity. The same free-
space propagation model as for 
the close-in model is used for the 
untuned version.

LONGLEY–RICE MODEL 
The Longley–Rice model [22], 
often referred to as the irregu-
lar terrain model, was the first 
in its category of terrain models 
[23], dating back to 1982, and is 
still the most widely employed. 
It   i s  appropr iately named, 

for its prediction is based on the terrain layer. Specifically, 
it treats the two or three points on the terrain profile that 
most obstruct the first Fresnel zone [24] between the base 
and mobile stations as knife edges. A marching algorithm is 
implemented to propagate the field strength between suc-
cessive obstruction points through the two-path model:  
1) the diffracted path from the knife edge computed from the 
Fresnel–Kirchoff formula plus 2) the path from the ground 
reflection. The stochasticity of the model is embodied in the 
attenuation of the paths to adjust for situation, time, and location 
variability. The curvature of Earth and tropospheric scattering 
are also accounted for. As with the Hata model, the Longley–
Rice model calibrates the pathloss constant against the mea-
surement data per usage class.

COMMUNICATIONS RESEARCH CENTRE PREDICT MODEL
The Communications Research Centre (CRC) predict model 
[25] is, in principle, similar to the Longley–Rice but bears sig-
nificant differences, making it more accurate, albeit more com-
putationally intensive. The CRC predict model takes advantage 
of both the terrain and clutter layers—hence falling into the 
category of clutter models [26]—to account for the effective dif-
fraction height by computing a composite profile from the two. 
All obstruction points over the composite profile within the first 
Fresnel zone are considered, not just the most dominant. This 
is critical for urban environments in which there are numerous 
knife edges. At each obstruction, the field strength at multiple, 
variably spaced points above the knife edge are considered to 
render a more exact description of the wave field. A marching 
algorithm propagates the field strength at the points between 
consecutive obstructions using the same two-path model. Given 
the clutter layer, for enhanced precision, the calibration process 
allows for tuning of the clutter height and clutter separation per 
usage class in addition to the constant.

ORANGE LABS 3D RAY-TRACING MODEL 
The most deterministic of the categories examined in our 
study are 3D ray-tracing models [27], [28]. The one designed 

T B

R

C E

Sea Level

FIGURE 2. An illustration of the five proposed height 
features: T: terrain; C: clutter; E: effective; B: base; R: relative 
height. 

Although the prediction 
error was generally 
highest in the urban 
environment, it was 
there that calibration 
was most beneficial.
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by Orange Labs is included in such popular cell planning 
tools as Mentum Planet [29] and Atoll [30] and, as such, 
was chosen to represent this category here. In addition to 
diffraction and reflection in the vertical plane, the two are 
accounted for in the horizontal plane as well, made pos-
sible solely through the morphology layer. Describing the 
clutter through closed polygons also enables distinguishing 
between indoor and outdoor environments, to which differ-
ent pathloss constants can be assigned when such measure-
ment data are available. Thus, the model exploits all four 
geodata layers, for both prediction and tuning. Finally, the 
model incorporates reflections from natural landscape fea-
tures, such as hills and mountains. This model category was 
prohibitive in the past because of the computational inten-
sity required but has become popular in recent years, thanks 
to faster processors.

For convenience, we denote the set of models as 
/ / / / / ,H CI FI LR P D3M = " ,  where H  indicates the Hata model, 

CI the close-in model, FI  the floating-intercept model, LR the 
Longley–Rice model, P  the CRC predict model, and D3  the 
Orange Labs 3D ray-tracing model. 

MODEL CROSS-APPLICATION
In this section, we propose a methodology to select, among 
a candidate set of calibrated models, the one most suitable 
for application to an area with no measurement data. The 
selection process is based on feature similarity between 
the calibrated areas and the application area, what we refer 
to pairwise as cross-application areas. As far as we could 
find, there is just one reference in the open literature that 
treats this issue [31]. The reference, however, is limited 
to the Hata model and includes only 10 areas in a single 
urban region in the analysis. Moreover, while the refer-
ence proposes features to determine similarity, it does not 
reveal which are the most effective. In a related work [32], a 
neural network is trained on data sets in one area using area 
features as inputs and then applied to a different area to 
evaluate how well it can generalize. The study includes just 
three areas in a rural environment.

AREA FEATURES AND SIMILARITY METRICS
The similarity between two areas is based on area features, 
also referred to as signatures or fingerprints because they serve 
as proxies for the areas. In this work, we propose six features, 
five of which are based on area height: terrain (T), clutter (C), 
effective (E), base (B), and relative (R), as depicted in Fig-
ure 2. The elevation of the terrain and the height of the clutter 
above the terrain are obvious features to characterize similarity 
and so are taken directly from the respective geodata layers. A 
composite layer we define as the effective height E T C= +  is 
entertained because the vertical diffraction height for models 
that take clutter into account is based on the combined height 
of the two. The height of the base station is important because 
results will vary particularly on whether the antenna is above or 
below the clutter, potentially generating very different results. 
In fact, to target this feature explicitly, another composite layer, 

the relative height R  between the base and effective heights 
,R B E= -  is also entertained. The latter is the sole height fea-

ture that can be negative.
The five height features are all computed through some 

addition (or subtraction) of the terrain and clutter layers (which 
are numerical grids) and the height of the base station. Since 
the features are all based on numerical values, the similarity 
between two areas is, in turn, numerical. Specifically, let each 
grid point x i

n  be indexed through ,n N1 if=  where Ni  is the 
number of samples in area .i  Furthermore, let the grid point 
have associated feature value yi

n  ( ,T  ,C  ,E  ,B  or )R  from 
which that cumulative distribution function ( )F yi  character-
izing the area is derived. The similarity metric between areas 
i and j is then defined as:

 ( ) ( ) .maxs F y F y1/ / / / / / / / / / / /
ij
T C E B R

y i
T C E B R

j
T C E B R; ;= - -  (1)

The metric is derived from the Kolmogorov–Smirnov good-
ness-of-fit test [33]: the metric will be one if the areas have 
exactly the same distribution and zero if they have no fea-
tures in common. (The Kullback–Leibler divergence [33] was 
also considered as an alternative to the Kolmogorov–Smirnov 
goodness-of-fit test. The feature weights between the former 
and the latter varied by 4.7% at most.) 

The sixth feature is based on the usage layer. Recall that, 
in contrast to the terrain and clutter layers, it is not numerical; 
rather, each grid point indexes one of the 16 usage classes. It 
follows that the distribution of usage in area i is expressed as 
the fraction (a number between zero and one) of the total area 
assigned to each class and is recorded as a 16-element row vec-
tor .vi  As the distribution is expressed as a discrete vector, it 
necessitates an equivalent discrete similarity metric. According-
ly, the similarity metric between areas i and j is calculated as

 
( ) ( )

,s
v v v v

v v
ij
U

i i
t

j j
t

i j
t

$ $ $

$
=  (2)

where t  denotes the transpose operation and U  indicates usage. 
The value is one if v vi j=  and zero if the areas have no usages 
in common.

For convenience, we introduce the similarity vector 
,s s s s s ss      ij ij

T
ij
C

ij
E

ij
B

ij
R

ij
U= 6 @  which contains the similarity metrics 

for all six features. Note that ,s 1ii =  i6  and that the similarity 
metric is commutative, i.e., .s sji ij=  Also, for convenience, we 
denote the feature set as / / / / / .T C E B R UF = " ,

CROSS-APPLICATION ERROR AND CROSS-APPLICATION GAIN
We define the cross-application error when applying a model 
tuned on area j to area i as:

 ,( ) ( )N PL PLx x1
ij

i n

N

i
n

j i
n

1

2  M M
i

e = -
=
/ 6 @  (3)

where ( )PL xi
n  is the measured pathloss at grid point x i

n  (from 
the GPS location of the mobile) and ( )PL xj i

nM  is the pathloss 
predicted by model M tuned on area .j  The predictions were 
generated by Mentum Planet.

Authorized licensed use limited to: Boulder Labs Library. Downloaded on March 30,2020 at 15:16:47 UTC from IEEE Xplore.  Restrictions apply. 



46 IEEE ANTENNAS & PROPAGATION MAGAZINEF E B R U A R Y  2 0 2 0

To gauge the benefit, or gain, of applying a calibrated model 
to area i compared to the model with nominal parameters, we 
define the cross-application gain as

 ,,ij i ijUNCAL
M M M 3e e e= -  (4)

where ,i UNCAL
M e  denotes the error from the uncalibrated model. 

The value is positive if tuning improves the performance of 
the model and negative otherwise. Note that the cross-applica-
tion error and cross-application gain are not commutative, i.e., 

,ij ji
M M!e e  .ij ji

M MT T!e e

FEATURE WEIGHTS
Part of the methodology to select the most suitable calibrated 
model is determining which of the proposed features is the most 
effective in estimating the cross-application error from the simi-
larity metric. A basic criterion is that high similarity between 
two areas should correlate with low error. Accordingly, we gauge 
the effectiveness of feature F  casewise—a case being defined 
by model M in a given environment—through the Pearson cor-
relation coefficient [33] between sij

F  and ,ij
Me  expressed as

 
( )  

( ) ( )

,
( )s

s

, PP PP

PP

s

ij s
ji

ij
ji

ij s ij
ji

2

11

2

11

11 

 

F

F

M

M

ij ij

ij ij

ij ij

F

F

M

M

F M

$

t

n e n

n e n

=

- -

- -

e

e

e

== ==

==

// //

//
 (5)

where P  denotes the number of areas in the environment and 
n  the mean of the said quantities across the P2  possible cross-
application areas. The feature with the most negative coefficient 
(since the two quantities should be inversely correlated) is iden-
tified as the most effective feature.

In our experience, we have found that joint features are typi-
cally more effective than any single feature alone. To that end, 
we introduce the weight vector w w w w w ww      T C E B R U

      = 6 @ to 
represent the features collectively. The vector space is then 
searched to minimize the correlation coefficient between 
the weighted similarity metric ,ss ww

ij ij
t$=  and the cross-

application error. The problem can be stated precisely as a 
nonlinear program:

 .
min

w
w

1
0

  
s.t.

 
 

,sw

1

 
ij ij
w M

2
< <

t

=
e

 (6)

The solution to the program was found exhaustively with a 
search granularity of 0.05 for each weight, yielding the optimal 
weight vector .wt  The resultant optimal weighted similarity 
metric sij

wt  serves to identify the candidate area j that is most 
similar to application area i for the case. In turn, the candidate 
model tuned on area j is then selected for application.

RESULTS
In this section, we present the results for the six models listed 
in the “Pathloss Models” section versus four environments—
urban, suburban, rural, and mixed (a combination of the 
three)—for a total of 16 cases.

CALIBRATION ERROR AND CALIBRATION GAIN
The primary objective of the calibration process is to minimize 
the calibration error, i.e., the root-mean-square error between 
predictions from model M and the measurement samples in 
area .i  Note that this simply corresponds to the cross-applica-
tion error from area i to area ,i  .ii

Me  The mean calibration error 
over all areas in the case environment is reported in Figure 3(a) 
for the 16 cases. We also analyze the calibration gain, i.e., the 
reduction in calibration error due to model tuning. Analogously, 
this corresponds to the cross-application gain .ii

MTe  Figure 3(b) 
reports the mean calibration gain.

The urban environment is the most challenging because of 
the varying landscape due to the tall buildings in the city center 
that cause more uncertainty in propagation; in fact, we observe 
the highest calibration error there. The value for the close-in 
model is 11 dBii

CIn =e  and drops to  .9 1 dBii
FIn =e  for the float-

ing-intercept model. This is impressive, considering that neither 
model exploits any geodata. Nevertheless, the three determinis-
tic models deliver mostly better results. The value for Longley–
Rice is . .9 8 dBii

LRn =e  Recall that this model just accounts for 
terrain and usage, so it has no perception of the clutter on the 
horizon. It can then only adjust the pathloss constant per usage 
class based on the greater loss experienced in the city center. 
By exploiting supplemental data about the vertical height of the 
structures accessible through the clutter layer, the CRC predict 
model is able to decrease the uncertainty, improving the error to 
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FIGURE 3. (a) The mean calibration error and (b) mean 
calibration gain for the 16 cases investigated.
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. .88 dBii
Pn =e  The 3D model decreased the error yet further to 

.8 3 dBii
D3n =e  by taking advantage of the morphology layer to 

also capture the horizontal propagation.
Due to the simpler landscape in the suburban environ-

ment, thanks primarily to residential housing, the error of 
the close-in model decreased to . ,7 4 dBii

CIn =e  a significant 
amount with respect to the urban environment. The other 
models followed suit, maintaining their relative performance: 

,.6 9 dBii
IFn =e  ,.6 3 dBii

LRn =e  . ,45 dBii
Pn =e  and .5 dBii

D3n =e  
For the rural environment, the calibration errors were generally 
lower compared to the suburban environment (essentially due to 
minimal clutter impeding the radio path), and the same trend 
across the models was sustained: . ,7 8 dBii

CIn =e  . ,7 4 dBii
IFn =e  

,.6 3 dBii
LRn =e  . ,5 1 dBii

Pn =e  and . .4 5 dBii
D3n =e  And when 

considering the overall performance in the mixed environment, 
the trend was also consistent: ,.8 5 dBii

CIn =e  ,.7 7 dBii
FIn =e  

,.7 2 dBii
LRn =e  ,.6 5 dBii

Pn =e  and ..5 7 dBii
D3n =e

The trends for the five models commented upon thus far 
were not sustained for the Hata model. The calibration error 
for the urban environment was actually lowest ( . )13 6 dBii

Hn =e  
and then increased for the suburban ( ).18 4 dBii

Hn =e  and rural 
( )25 dBii

Hn =e  environments. Recall that the Hata model is 
purely empirical, meaning that its coefficients were derived 
from measurements taken in areas different—in most cases, 
extremely different—from the ones investigated here. As such, 
the trend suggests that, when comparing the areas investigated 
versus the ones where the empirical measurements for the Hata 
model were taken, the areas in the urban environment were 
more similar than the ones in the suburban and rural environ-
ments in terms of model coefficients, the parameters that were 
not tuned.

Although the calibration error was generally highest in the 
urban environment across the models, it was there that the 
highest calibration gain was witnessed. The gain diminished 
in the suburban environment and fell yet further in the rural 
environment, meaning that tuning was most beneficial in com-
plex environments. Between the six models, tuning clearly 
benefited the slope-based models the most, with a gain of 

,.40 3 dBii
Hn =Te  . ,47 2 dBii

CIn =Te  and .47 9 dBii
CIn =Te  in the 

mixed environment. That value dropped to .20 5 dBii
LRn =Te  

for Longley–Rice, to 10 dBii
Pn =Te  for the CRC predict model, 

and down to .3 2 dBii
D3n =Te  for the 3D model. This indicates 

that the benefit of calibration diminished as the model became 
more deterministic.

As in our study, calibration errors reported in previous works 
vary widely depending on the model, the environment, and the 
specific areas measured: 5.4–37.1 dB for the urban environment 
[2], [4], [8], [16], [17], [20], [21], [24], 3.5–37.7 dB for the subur-
ban [5], [16], [21], and 5–43.9 dB for the rural [16], [20], [21].

FEATURE WEIGHTS
Figure 4(a) displays the cross-application error ije  versus the 
optimal similarity metric sij

wt  for the Longley–Rice model 
in the mixed environment as an illustrative case. The opti-
mal weight vector wt  resulted from the solution to (6). Each 
point in the plot indexes area i  crossed with area ,j  for a 

total of ,P 10 0002 =  unique combinations (P 100=  in the 
mixed environment, comprising 20 areas in each of the five 
regions). The moving average of the points over the similarity 
is shown in red. It is obvious from the plot that the average 
error decreases with increasing similarity, reflecting that the 
two are negatively correlated; indeed, the optimal correlation 
coefficient is . .0 60,s

 
ij ij

LRw  t =-e
t  Note that s 1ij

w =
t  indicates that 

the areas are identical ( )j i=  and so the average cross-appli-
cation error at this similarity value simply corresponds to the 
mean calibration error, highlighted in the figure. Also shown, 
in magenta, is the moving average plus and minus the moving 
standard deviation. It also decreases with similarity, meaning 
that uncertainty in the prediction error also decreases as the 
areas become more similar.
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FIGURE 4. (a) The cross-application error and (b) cross-application 
gain for an illustrative case of the Longley–Rice model in the 
mixed environment. 
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We now report the optimal feature weights w t  for all 16 
cases. Figure 5(a)–(c) shows the weights for the clutter, base, 
and usage features only. The weights for the terrain, effective, 
and relative features were omitted because they all averaged less 
than 0.02 across the cases. The terrain was mostly flat compared 
to the clutter (the only exception being in San Francisco); hence, 
it was found to be negligible. Since the effective and relative 
heights are composite layers of the clutter, base, and terrain lay-
ers, their marginal weights suggest that they are redundant and 
can otherwise be accounted for directly through those layers.

When examining the urban environment, the clutter 
weight in Figure 5(a) was the most dominant ( . ,w 0 6/C CI

 =t  
,.w 50/C FI

 =t  . ,w 0 65/C LR
 =t  . ,w 0 5/C P

 =t  . ),w 0 55/C D3
 =t  indicat-

ing that clutter is the best feature to identify similarity there. 
This makes intuitive sense since, in cities, prediction will 
depend mostly on the obstructive clutter. The base feature 

was also significant for the deterministic models ( . ,w 0 2/B LR
 =t  

. ,w 0 4/B P
 =t  . )w 0 35/B D3

 =t —important in distinguishing 
whether transmission occurred above or below the clutter. 
Base height is not accounted for in the close-in and floating-
intercept models. Accordingly, it makes sense that its feature 
weights are both close to zero. In fact, this is true for all envi-
ronments, though it is shown in [34] that the close-in model 
can effectively account for base height when it is introduced as 
an additional variable. 

For the rural environment, because clutter height is negli-
gible, its feature weights, in turn, were also negligible across the 
board. The base feature, however, as in the urban environment, 
was significant for the deterministic models since they account 
for it ( . ,w 0 8/B LR

 =t  ,w 1/B P
 =t  . ).w 0 75/B D3

 =t  Since the suburban 
environment lies somewhere between the urban and rural, it is 
not surprising that the optimal weights were inconclusive across 
the models there.

When analyzing all of the environments together, the usage 
feature was the most dominant. Its weight was very high for 
the Longley–Rice and CRC predict models ( .w 0 85/U LR

 =t  and 
. ).w 0 9/U P

 =t  Recall what was mentioned in the “Hata Model” 
section, i.e., that a key parameter for tuning is the pathloss con-
stant per usage class. The values reported then suggest that the 
Longley–Rice and CRC predict models rely heavily on tuning. 
The values are also high for the close-in and floating-intercept 
models but to a lesser degree since their constants are not 
usage specific. The usage weight for the mixed environment 
dropped to .w 0 15/U D3

 =t  for the 3D model, suggesting that it 
relies much less on tuning compared to the other models. This 
is also not surprising, given the highly deterministic nature of 
the 3D model. In fact, for the 3D model, it is the base feature 
that prevailed: .w 0 7/U D3

 $t  for three out of the four environ-
ments. But the base layer is not area dependent at all; it does 
not quantify how similar two areas were but rather how similar 
the base heights during calibration were, another indicator that 
the 3D model is less dependent on area tuning. 
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There is another reason that 
usage is the most dominant in the 
mixed environment. Recall from 
the “Geodata” section that the 
usage layer was exploited to par-
tition all of the areas investigated 
into urban, suburban, and rural 
environments by usage class. Thus, 
one would expect that the usage 
feature weight within an individual 
environment would be low, i.e., it 
might not be a strong discrimina-
tor between areas within the same 
environment because the areas are 
already somewhat similar. And the usage feature will certainly 
be a better discriminator when the three environments are 
mixed together.

Yet another indicator of model dependency on tuning is the 
correlation coefficient .,s

 
ij ij
w Mt e
t  As seen earlier, .0 6,s

 
ij ij

LRwt =-e
t  

for the case of Longley–Rice in the mixed environment. The 
absolute value of the coefficient is relatively large, attesting 
that the similarity metric is well correlated with the prediction 
error; in other words, if the areas are similar, cross-applica-
tion can significantly reduce the cross-application error. The 
corresponding values for the close-in, floating-intercept, and 
CRC predict models were . ,0 33,s

 
ij ij

CIwt =-e
t  . ,0 34,s

 
ij ij

FIwt =-e
t  

and . .0 36,s
 

ij ij
Pwt =-e

t  On the other hand, the 3D model being 
the most deterministic of the given models, the prediction 
success of the model is least dependent on area similarity: 

. .0 19,s
 

ij ij
Dw 3t =-e

t

The model whose cross-application error is least correlated 
with the similarity metric is the Hata model: . .0 17,s

 
ij ij

Hwt =-e
t  

Given the model behavior observed in the “Calibration Error 
and Calibration Gain” section—that there is worse performance 
in the rural environment than the urban environment and the 
rationale behind it—this is not unexpected. While the correla-
tion coefficient gauges the relative benefit of cross-application 
when the areas are similar, it does not indicate the benefit with 
respect to the alternative to cross-application, i.e., applying the 
uncalibrated model; that is what we probe next.

CROSS-APPLICATION GAIN
To ascertain the actual benefit of cross-application, we examine 
the cross-application gain. Figure 4(b) displays ij

MTe  versus 
,sij

wt  again for the illustrative case of Longley–Rice in the mixed 
environment. Also displayed are the moving average and the 
plus and minus moving standard deviation. Recall that a posi-
tive gain ( )0ij

MT 2e  signifies that the model tuned on area j is 
more beneficial than the uncalibrated model. Since the average 
is positive over the full range of the similarities recorded, it is 
expected that any tuned model will be more beneficial for this 
case; the expectation improves with increasing similarity, from a 
0.5-dB gain at .s 0 07ij

w =
t  to a 20.5-dB gain at .s 1ij

w =
t  As before, 

s 1ij
w =
t  indicates that the areas are identical, and so the average 

cross-application gain at this similarity value simply corresponds 
to the mean calibration gain, highlighted in the figure.

To identify when cross-appli-
cation was beneficial over all 16 
cases, each was examined separate-
ly to determine beyond which simi-
larity the average cross-application 
gain sustained only positive values; 
we refer to this value as the tran-
sition similarity, a final indicator 
of model dependency on tuning. 
Figure 6 displays the results. The 
framed bars signify that the aver-
age gain was reported positive for 
the full range of similarities (as for 
the previous illustrative case), and 

so the transition similarity simply defaulted to the minimum 
similarity recorded for the case [see Figure 4(b)]. This was true 
for the Hata, close-in, floating-intercept, and Longley–Rice 
models in all environments and for the CRC predict model 
with an exception in the urban environment. Only for the 
3D model was there a genuine transition in all environments, 
meaning that it was beneficial to use a calibrated model only for 
very high similarity ( . ),s 0 85ij

w $
t  and that the model otherwise 

predicted reliably even without tuning.
Note that, when examining the framed bars, the mini-

mum similarity recorded was much smaller, in general, for the 
mixed environment than for the separate environments. This 
is because binning the areas into the three environments aug-
mented the similarity within each.

CONCLUSIONS
In this article, we conducted a comprehensive analysis of 
calibrated pathloss models using over 3 million measure-
ment samples from five metropolitan regions throughout the 
United States while considering six pathloss models, ranging 
from the purely empirical close-in model to the highly deter-
ministic 3D model.

In the urban environment—the most challenging of the 
three environments—the prediction error was 11 dB for the 
close-in model and dropped to 8.3 dB for the 3D. The error 
decreased across the models in the suburban environment 
(7.4 dB for close-in and 5 dB for 3D) and yet further in the 
rural environment for most models (7.8 dB for close-in and 
4.5 dB for 3D). Hence, the deterministic models outper-
formed the empirical models not just in the urban environ-
ment, as expected, but in the rural environment as well. 
Although the prediction error was generally highest in the 
urban environment, it was there that calibration was most 
beneficial, reducing the error up to 41.5 dB for the close-in 
model to as low as 4.5 dB for the most deterministic model. 
The performance of the Hata model was much worse than the 
other five investigated.

Regarding model cross-application, in identifying similarity 
between areas, we found that the clutter feature was the most 
effective in the urban environment, the base feature in the rural 
area, and the usage feature in the mixed environment while the 
results varied in the suburban environment.

The deterministic 
models outperformed 
the empirical models 
not just in the urban 
environment, as 
expected, but in the rural 
environment as well. 
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Finally, five of the six models benefited from cross-appli-
cation across all environments, regardless of similarity. The 
only exception was the 3D model, which benefited only when 
the similarity was very high (above 0.85 across all environ-
ments), meaning that it was able to predict reliably even with-
out calibration.
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