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Abstract

We have developed a universal method to form the reference signal for the stabilization of arbitrary
atomic clocks based on Ramsey spectroscopy. Our approach uses an interrogation scheme of the
atomic system with two different Ramsey periods and a specially constructed combined error signal
(CES) computed by subtracting two error signals with the appropriate calibration factor. CES
spectroscopy allows for perfect elimination of probe-induced light shifts and does not suffer from the
effects of relaxation, time-dependent pulse fluctuations and phase-jump modulation errors and other
imperfections of the interrogation procedure. The method is simpler than recently developed auto-
balanced Ramsey spectroscopy techniques (Sanner et al 2018 Phys. Rev. Lett. 120 053602; Yudin et al
2018 Phys. Rev. Appl. 9 054034), because it uses a single error signal that feeds back on the clock
frequency. The use of CES is a general technique that can be applied to many applications of precision
spectroscopy.

1. Introduction

Atomic clocks based on high-precision spectroscopy of isolated quantum systems are currently the most precise
scientific instruments, with fractional frequency instabilities and accuracies at the 10~ '® level [1-5]. Frequency
measurements at this level enable improved tests of fundamental physics, as well as new applications like
chronometric geodesy [6, 7].

For many promising clock systems, probe-field-induced frequency shifts can limit the clock frequency
instabilities and accuracies. In the case of magnetically-induced spectroscopy [8, 9], ac-Stark shifts can limit the
achievable clock stability, and for ultranarrow electric octupole [10] and two-photon transitions [11, 12], the
large off-resonant ac-Stark shift can completely prevent high-accuracy clock performance. Similarly, the large
number of off-resonant laser modes present in clocks based on direct frequency comb spectroscopy [13, 14]
induce large ac-Stark shifts. Probe-field-induced shifts also cause instability for microwave atomic clocks based
on coherent population trapping (CPT) [15-20]. Compact microwave cold-atom clocks [21, 22] and hot-cell
devices like the pulsed optical pumping (POP) clock [23, 24] that are based on direct microwave interrogation
can also be affected by probe-induced frequency shifts.

Probe-induced shifts can be suppressed through the use of Ramsey spectroscopy [25] in combination with
cleverly devised modifications. In contrast to continuous-wave spectroscopy, Ramsey spectroscopy has a large
number of extra degrees of freedom associated with many parameters that can be precisely controlled: the
durations of Ramsey pulses 7, and 7, the dark time T, the phase composition of composite Ramsey pulses [26],
variations in Ramsey sequences including the use of three or more Ramsey pulses, different error signal variants,
and so on. Some modified Ramsey schemes for the suppression of the probe-field-induced shifts in atomic
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clocks were theoretically described in [27], which proposed the use of pulses of differing durations (7, = 7,)and
the use of composite pulses instead of the standard Ramsey sequence with two equal 7/2 pulses. This ‘hyper-
Ramsey’ scheme has been successfully realised in an ion clock based on an octupole transition in Yb™[5,28],
where a suppression of the light shift by four orders of magnitude and an immunity against its fluctuations were
demonstrated. Further developments in Ramsey spectroscopy resulted in additional suppression of probe-field-
induced frequency shifts. For example, the hyper-Ramsey approach uses new phase variants to construct error
signals [29—-32] to significantly suppress the probe-field-induced shifts in atomic clocks. However, as was shown
in [33], all previous hyper-Ramsey methods [5, 27-29, 31, 34] are sensitive to decoherence and spontaneous
relaxation, which can prevent the achievement of state-of-the-art performance in some systems. To overcome
the effect of decoherence, a more complicated construction of the error signal was recently proposed in [35],
which requires four measurements for each frequency point (instead of two) combined with the use of the
generalized hyper-Ramsey sequences presented in [31]. Nevertheless the method in [35] is not free from other
disadvantages related to technical issues such as time-dependent pulse area fluctuations and/or phase-jump
modulation errors during the measurements.

The above approaches [5, 27-29, 31, 34, 35] are all one-loop methods, since they use one feedback loop and
one error signal. However, frequency stabilization can also be realized with two feedback loops combined with
Ramsey sequences with different dark periods T; and T [33, 36, 37]. For example, the synthetic frequency
protocol [33] in combination with the original hyper-Ramsey sequence [27] allows for substantial reduction in
the sensitivity to decoherence and imperfections of the interrogation procedure. Auto-balanced Ramsey
spectroscopy (ABRS) is another effective approach that was first experimentally demonstrated ina '”'Yb ™" ion
clock [37]. This intuitive approach was rigorously substantiated and generalized theoretically in [38], and also
recently realized in a CPT atomic clock [39]. For ABRS, in addition to the stabilization of the clock frequency w, a
second loop controls a variable second (concomitant) parameter &, which is an adjustable property of the first
and/or second Ramsey pulses. While both of these two-loop methods [33, 37, 38] are robust and can perfectly
suppress probe-induced shifts of the measurement of the clock frequency, their implementation can be complex
due to the two-loop architecture.

A principal question remains: does a one-loop method exist that has comparable (or better) efficiency to
ABRS? In this paper, we present a positive answer to this question. We have found a universal protocol to
construct a combined error signal (CES), which allows for perfect suppression of probe-induced shifts with the
use of only one feedback loop. The CES technique has exceptional robustness, in that it is independent of
arbitrary relaxation processes and different non-idealities of the measurement procedure. This method can be
considered as a preferred alternative to ABRS spectroscopy. Indeed, CES is technically simpler (because of one
feedback loop) and can be more efficient when a hyper-Ramsey pulse sequence [27] is used. The CES protocol is
applicable to optical atomic clocks as well as to microwave atomic clocks based on CPT Ramsey spectroscopy
and POP clocks.

2. Theoretical model

In this section, we follow the analysis developed in [38], which we repeat here for completeness. We consider a
two-level atom with unperturbed frequency wy of the clock transition |g) < |e) (see figure 1), which interacts
with a Ramsey sequence of two completely arbitrary pulses (with durations 7, and 7,) of the resonant probe field
with frequency w:

E(f) = Re {E(t)e i#®eiwr}, (1)

The pulses are separated by a free evolution interval (dark time) T, during which the atom-field interaction is
absent (see figure 1). We emphasise that the Ramsey pulses with arbitrary durations 7, and 7, do not depend on
the dark time Tand can have an arbitrary shape and amplitude (i.e. during 7, and 7, an amplitude £(¢) can be an
arbitrary real function), and an arbitrary phase function ¢(¢) (e.g. the Ramsey pulses can be composite pulses,
chirped pulses, and so on). In a given sequence of Ramsey measurements, the pulse shape and amplitude must be
consistent from one measurement to another. We assume only one restriction: aside from phase jumps applied
to generate the error signal (discussed below), the phase function should be constant during the dark time T,
p(t) = const, asis typical for Ramsey spectroscopy.

Our main goal is to develop a universal one-loop method, which allows us to stabilize the probe field
frequency wat the unperturbed frequency of the clock transition, w = wy, in the presence of decoherence,
arbitrary relaxation and light shifts. For this purpose, we will use the formalism of the density matrix p, which
has the following form
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Figure 1. Left part: schematic illustration of a sequence of two arbitrary Ramsey pulses (with durations 7, and 7,) separated by the
dark time T, during which the phase jumps o, are applied to create an error signal (10). Aside from phase jumps v, the phase ¢ ()
(seein equation (1)) should not be changed during the dark time T'(i.e. ¢ (t) = const), while during the Ramsey pulses 7, and 7, the
function ¢ (f) can have an arbitrary behavior. Right part: scheme of the clock transition |g) < |e) (with unperturbed frequency wy)
interacting with the probe field at the frequency w, where A, (¢) is an actual probe-field-induced shift during Ramsey pulses 7, and
7).

f)(t): Z |j>pjk(t)<k|x 2

jik=g.e

in the basis of states |¢) and |e). In the resonance approximation, the density matrix components Pk (t) satisfy
the following differential equations:

[0, + T = 16D p,, = IO Py = Pl /25 P = Fiys
(00 + Vel Ppy = VgePgq = 1D P — Peg V(1] /2,
[0: + V1Pg = VegPoe = —ilAND Py — P WD /2. ©)

Here the time dependencies ((#) and 4(¢) are determined by the following: Q(t) = (d ) £(t)e ¥® and

5(t) = & — Ag(t) during the action of the Ramsey pulses 7, and 7,, but Q(f) = 0and §(t) = 6 during the dark
time T. (d )is a matrix element of the atomic dipole moment, § = w — wy is the detuning of the probe field
from the unperturbed atomic frequency wy, and Ay, (¢) is an actual probe-field-induced shift (see figure 1) of the
clock transition during the Ramsey pulses [e.g. it can be the ac-Stark shift, which is proportional to the |E(t) |?
and does not depend on the phase ¢ (£)]. Also equation (3) contains five relaxation constants, {y,, Vemg Vg

I'}: 7, is a decay rate (e.g. spontaneous) of the exited state |e); 7y,  is a transition rate (e.g. spontaneous)

Vg—e
to the ground state |g); Y, is a decay rate of the ground state |¢) (e.g. due to black-body radiation and/or

e—

collisions); 7 ¢ s atransition rate from the ground state |¢) to the exited state |e). Note that Vemg = Ve and

=1, in the case of closed two-level system, while Vemrg < Ve and/or ~y <7, in the case of open

’ygﬂ e
system. The constant I' = (v, + ’yg) / 2 + T describes the total rate of decoherence: spontaneous as well as all

g§—e

other processes, which are included in the parameter T' (e.g. an influence of the nonzero spectral width of the

probe field).
Equations (3) can be rewritten in the vector form
951 = LOB®), )
where g (t) is a vector formed by the matrix components Pik (1)
Pee(t)
3o == ©
t) = ,
P Pee(®)
Peg ()

and operator (Liouvillian) L (t)is4 x 4 matrix determined by the coefficients of equation (3):

—y,  —iQf®/2 Q02 .
P = fis*l(t)/z T 4+ 16(t) 0 B iQ(t)/z ‘ ©)
Q%) /2 0 I —id(t) —i*() /2
’YE*)g IQ*(t) /2 _IQ(t) /2 _’Yg
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In this case, a spectroscopic Ramsey signal can be presented in the following general form, which describes
Ramsey fringes (as a function of 6)

AT (6) = (ﬁobs’ Wrz GAT Wq—l ﬁin)’ (7)

where the scalar product is determined in the ordinary way: (X, ) = 3, x, ¥,,- Operators er and WTZ describe

the evolution of an atom during the first () and second (7,) Ramsey pulses, respectively, and the operator G-
describes free evolution during the dark time T. Vectors g, and g, are initial and observed states, respectively.
For example, if an atom before the Ramsey sequence was in the ground state |g), and after the Ramsey sequence
we detect the atom in the exited state |e), then vectors f, and 7, are determined, in accordance with definition
(5), as

-

’ pobs =

®)

— O O O
S O~

0

For stabilization of the frequency w we need to form an error signal, which is obtained by using data from two
Ramsey sequences, one with phase jump o, between the two pulses and one with phase jump a_ (see figure 1),
as was proposed in [40]. Note that the phase jumps of the laser field can be easily realized in experiments by the
use of an acousto-optical modulator (AOM). We mathematically describe these phase jumps «., and c_ (their

precise timing does not matter) by the operators <i>% and (iDKL, respectively. In this case, let us introduce the

expression of the Ramsey signal in the presence of the phase jump «, described by the operator &)(}

Ar(6, @) = (P Wy, @,Gr W, B,). 9)

m

Asaresult, the error signal can be presented as a difference
SE = Ar(8, ) — Ar (8, o) = (B0 W, DeGr W, By, (10)

with Dy = i)% - i)m. To maximise this error signal, «. = +7/2 is typically used. However, in real
experiments, we can have o, | = |a_| due to various technical reasons (e.g. electronics) which will lead to a shift
of the stabilised frequency w in the case of standard Ramsey spectroscopy. Therefore, here we will consider the
general case of arbitrary o, and «_ to demonstrate the robustness of CES technique, where the condition

|o | = |o_| does notlead to an additional frequency shift.

Next we consider the structure of the following operators: Gy, @)%, (i)a,’ and Dy, The operator for the free

evolution, Gy, has the following general matrix form

G1(T) 0 0 Ga(T)

A 0 ef(Ffi(ﬁ‘)T 0 0

Gr = 0 0 o~ (T+iO)T o [ (11
Gy (T) 0 0 Guu(T)

which corresponds to equation (4), if Q(f) = 0and () = & in the Liouvillian (6). The matrix elements G, (),

G14(T), G41(T), and G44(T) depend on four relaxation rates: { v,, Vemrg Voo Vgmre }. In particular, for purely

spontaneous relaxation of the exited state |e), when Vo= Voo = 0, we obtain
e T 0 0 0
0 ef(Ffib\)T 0 0
Gr = 0 0 e THIT o). (12)
Ve
781 — e Ty 0 0 1
Ve

Operators for the phase jumps (T)% and i'ui have the forms
1 0 0 0

s _ |0 e 0 0
PTlo 0 e of (9
0 0 0 1
which lead to the following expression for Dy,
0 0 0 0
A s - 0 (el — elo- 0 0
Dy =&, &, = . i — ey of (14)
0 0 0 0
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Asaresult, taking into account equation (11), we obtain a formula for the matrix product (Dg Gr)

DAQ)GT - eiFT’YéT, (15)
where the matrix Ty is defined as
0 0 0 0
R 0 ei(‘iT(eiaJr _ eia,) 0 0
T(iT - s s . . (16)
0 0 e 1§T(e ia, _ iy
0 0 0 0
Note that
YﬁT:O = D@. (17)

According to equation (15), the error signal (10) can be rewritten in the following form:
SEB) = e T (B W, Tor W, 5. (18)

Note that this result is the same if we apply phase jumps o at any arbitrary point during the dark interval T. Itis
interesting to note that the expression of the error signal in the presence of relaxation is formally different from
the error signal in the absence of relaxation only due to the scalar multiplier e """, which primarily affects the
amplitude, but not the overall shape of the error signal. This is one of the main specific properties of the phase
jump technique for Ramsey spectroscopy that makes it robust against relaxation. Indeed, for other well-known
methods of frequency stabilization, which use a frequency jump technique between alternating total periods of
Ramsey interrogation (7, + T + 7,), relationship (10) does not exist. Thus, the phase jump technique has a
fundamental advantage over the frequency jump technique in that it is less sensitive to relaxation. In addition, in

theideal case of &, = —a_ = «, theerrorsignal (10) can be expressed as
SE(8) = 2sin(a)e (B, W, Osr W, ), (19)
where the matrix O,
0 0 0
A 0 i 0 0
O = : , (20)
Tlo 0 —ie T o
0 0 0 0
depends only on 6T.
3. CES protocol

In this section we demonstrate the universality and robustness of the CES technique. We use the Ramsey
interrogation of the clock transition for two different, fixed intervals of free evolution T} and T5, where we have
two error signals S}le“) (6) and S}frr) (6) described by equation (18). However, for frequency stabilization we
introduce the CES as the following superposition,

SED(8) = SE™(B) — BaaSE™(6), @1

where a calibration coefficient 3, is to account for decay of the Ramsey fringe amplitude and will be defined
below. Thus, the shift of the stabilized frequency & is determined as a solution of the equation SéeErg) b =0
in relation to the unknown 6.

In accordance with equation (18), the expression (21) can be written in the form

G (©) = e (B W, T W, 5,

— Beae" TR W, Tor,Wr 51 (22)
If we assume that
ﬁcal = eir(TliTﬁ’ (23)
then we obtain
SER6) = e Ml Fyp W, Tsr W, B) — G We, Tor, Wi, 5,1 (24)

Ifweapply 6 = 0 for operators 'AY(;T] and YéTZ , then due to equation (17) we have 'f(gTIZO =7 §Th—0 = Dg. In this
case, we obtain from equation (24):

S&(0) = 0, (25)
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Figure 2. Two different Ramsey sequences: (a) standard Ramsey sequence [25] with two equal pulses; (b) original hyper-Ramsey
sequence [27] using the composite pulse with a 7 phase jump.

since the two terms inside of the square brackets cancel in equation (24). Thus, we have analytically shown that
the CES method always leads to zero field-induced shift of the stabilized frequency win an atomic
clock, 6goac = 0.

From a practical viewpoint, it is most important that the calibration coefficient 3., (equation (23)) does not
depend on the values of the phase jumps o, used for error signals, or other parameters (such as: amplitude,
shape, duration, phase structure ¢ (¢), shift Ay, (¢), etc) of the two Ramsey pulses 7, and 7,. Thus, 8, can be
considered as a phenomenological parameter, which is fixed for given setup (via the relaxation constant I') and
for given T} , (via the difference T; — T5). In the ideal case with no relaxation (I' = 0), we obtain 3., = 1for
arbitrary T, ,. However, in the general case, the value of 5, should be empirically determined before long-term
frequency stabilization.

As we see from equation (24), to maximize the slope of S&rg) (6) itis necessary to use the condition T, < T).
Formally we can even use T, = 0 (with the phase jumps . in the virtual point between pulses 7, and 7).
However, due to technical transient regimes (i.e. in acousto-optic modulators) under switching-off/on of
Ramsey pulses in real experiments, we believe that it is necessary to keep some nonzero dark time, T = 0, which
significantly exceeds any various transient times. For example, in the case of magnetically-induced spectroscopy
[8, 9], the transient processes, associated with switching-off/on of magnetic field, can be relatively slow.

In figure 1, we use some abstract shapes of the Ramsey pulses to stress that our exact analytical result (25) is
valid for arbitrary Ramsey pulses, and, therefore, the CES method is very robust to different technical non-
idealities, which can exist in real experiments. Indeed, in real clock experiments, the Ramsey pulses have
rectangular shapes (e.g. see figure 2), which, however, can be deformed due to various technical reasons (e.g. the
transient regime in an AOM during switching off/on of the Ramsey pulses, some phase chirping, and so on). In
the case of usual Ramsey spectroscopy and hyper-Ramsey methods [5, 27-29, 31, 34, 35], these technical causes
can lead to an additional (technical) shift of the stabilized clock frequency w, while the CES method is insensitive
to these non-idealities.

Note that the CES approach has some formal similarity to the two-loop methods in [33, 37, 38], because of
the use of two different dark times T; and T,. However, the CES technique requires only one feedback loop for
frequency stabilization.

4. CES for different Ramsey sequences

We assume that the main reason for the shift of the stabilized frequency w arises from the probe-induced shift
Ay, during Ramsey pulses. All calculations are done for the ideal case of the phase jumps: ay = —a_ = 7/2,t0
maximize the error signal. Also for simplicity, we take into account (for presented calculations) only one
relaxation constant I (rate of decoherence), while all other relaxation constants are negligible:

Vo= Vemg = Vg = Voo = Osasis typical for high-precision modern atomic clocks based on strongly
forbidden optical transition 'S, — P, in neutral atoms (such as Mg, Ca, Sr, Yb, Hg) and ions (e.g. Al'*, In™), or
for the octupole transition in theion Yb™.

In this section, we compare CES spectroscopy for two different pulse sequences: the usual Ramsey sequence
with two equal rectangular 7/2-pulses (see figure 2(a)), and the hyper-Ramsey sequence proposed in [27] (see
figure 2(b)). If we use the exact calibration coefficient (23), then both sequences have the identical ideal result,
ddock = 0. However, in real experiments, we can know the value of 3, with only limited accuracy. In this case,
any deviation from the ideal value (23) will lead to some residual shift of the stabilized frequency, Bcdock = 0,

6
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Figure 3. Comparison of a non-ideal CES method for two different pulse sequences: the dashed lines are for a standard Ramsey
sequence with two equal pulses (see figure 2(a)), the solid lines are for a hyper-Ramsey sequence using the composite pulse (see
figure 2(b)). These graphs show the shift of the clock frequency dqoek (Agh) Versus the probe-induced shift Ay, during the Ramsey
pulses. In the calculations, we assumed in equation (27) a five-percent deviation of 3, from the ideal value (23): x = 0.95 (red
coloredlines) and y = 1.05 (green colored lines), for two different values of 7: T, /7 = 50 (left figure) and T, /7 = 10 (right figure).
All calculations are done with the following values: Qo = /2, I' = 0.5/T;,and T, /T, = 20.
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Figure 4. Comparison between the usual hyper-Ramsey method without CES [27] (black dashed lines, T' = T;) and non-ideal CES
using a hyper-Ramsey sequence (see figure 2(b)) for two different values of : T, /7 = 50 (left figure) and T, /7 = 10 (right figure).
These graphs show the shift of the clock frequency &oc (Agh) versus the probe-induced shift A, during the Ramsey pulses. In the
calculations, we assumed in equation (27) a five-percent deviation of (3, from the ideal value (23): x = 0.95 (red solid lines) and
X = 1.05 (green solid lines). All calculations are done with the following values: Qo7 = 7/2,T" = 0.5/T},and T, /T, = 20.

which depends on the type of Ramsey sequence. Thus, there is a problem for the optimal Ramsey sequence with
minimal sensitivity to the deviations of 3, in equation (21) from the ideal value (23).
Therefore, in our calculations we will use the following expression for the calibration coefficient

ﬁcal - XC_F(TI_TZ), (26)

where the parameter y determines the deviation of 3, from the ideal value (23). In this case, instead of
equation (24) we obtain another formula for the CES

SER(©®) = e T (Bye W, Tor Wi, B, — X Bpe We, T W2, 81, 27)
where the solution of the equation S((;egg) (6) = 0 (inrelation to the unknown 8) determines the residual shift
Saock for the stabilized frequency w.

In figure 3 we present a comparison of the CES method for two different pulse sequences: a standard Ramsey
sequence with two equal pulses (see figure 2(a)) and the original hyper-Ramsey sequence [27] using a composite
pulse (see figure 2(b)). These graphs show the shift of the clock frequency éuoc (Agp) versus the probe-induced
shift Ay, during the Ramsey pulses. In the calculations, we have assumed a five-percent deviation of 3, from
theideal value (23),1i.e. 0.95 < x < 1.05inequation (27). As we see, the hyper-Ramsey sequence is more robust
and persistent, because the use of this scheme leads to a significant reduction of the residual shift Bclock in
comparison with the usual Ramsey scheme.

In addition, figure 4 shows that the combination of the CES technique with a hyper-Ramsey sequence
significantly exceeds the possibilities of standard hyper-Ramsey spectroscopy [27], even for imperfect
determination of the calibration coefficient 3. For example, typical experimental conditions used in current
lattice optical clocksare T} ~ 1 s,7 ~ 20 msand 7/2 excitation pulse (o7 = 7/2). Figure 4(a) shows that if
imperfect CES is used and (3, is offset from its optimal value by 5%, a light shift of Ay, ~ 27 x 2.5 Hz during
the interrogation period (A4, /€2 = 0.2) results in a total clock frequency shift of only dgoqc ~ 27 X 200 pHz
that corresponds to a fractional clock uncertainty for optical range at the level of | duocx /wo| ~ 10~ % Thisis
about 20 times smaller than what would be obtained using simple hyper-Ramsey spectroscopy (at the same

7
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interrogation light shift level) that corresponds to the level of |8ctock /wol ~ 107", Of course, for the perfect CES
spectroscopy (23), this clock shift will be reduced to zero, égock = 0.

5. Generalized CES and the procedure for frequency stabilization

The calibration coefficient 3, can be estimated as a ratio of the amplitudes of the central Ramsey fringes related
to the interrogation procedures with T; and T, dark times. However, in this section we describe a more precise
method to determine (3. For this purpose, we will consider a generalized combined error signal (GCES)

SE(8) = SE©®) — BO)SE™ (), 28)

where the generalized calibration coefficient 3(6) is a function of , which satisfies the following condition
B0) = Beg = e HIE (29)

In this case, the stabilized frequency (with the use of GCES (28)) will also always be unshifted, 8o = 0.
There are many different variants of the function 3(6). For example, 3(6) can be constructed as following
functions

B6) = A (6, ay) — A (6, o = 0);
A (6, ay) — A (6, a = 0)
B(s) = AL (6, a-) — A (6, a = 0)’
Ar(6, a2) — Ap (6, a = 0)

(30)

where we use an additional measurement in the absence of a phase jump (o« = 0) before the second Ramsey
pulse, Ar(6, a = 0) = (B,,, W, Gyt W, p,). However, another definition
AR (6, o) + AR (6, o) — 2A5(6, a = 0)

B(6) = ,
Ag(8, o)) + A (5, a_) — 2A5(6, o = 0)

€20)

is preferable because of ‘symmetry’ in relation to the phase jumps ..

In figure 5, we compare signals of CES (21) and GCES (28) for two different pulse sequences (see figure 2) in
the presence of the field-induced shift Ay, (during Ramsey pulses). As we see from figure 5(a), as Ay, increases
the lineshape SéeErg) (6) becomes significantly non-antisymmetrical, while the lineshape Sée&)s(é ) (see figure 5(b))
maintains its antisymmetry (especially for the hyper-Ramsey scheme, see the right panel in figure 5(b)).

Figure 5(c) shows the dependencies of 3(§) calculated by the use of equation (31).

The procedure of frequency stabilization can be organized in conformity with several scenarios. First, we can
continually apply GCES (28) together with equation (31) using six measurements for each frequency point
(three different phase jumps, o = £7/2, 0, and two different dark times, T; ,). However, the use of six
measurements can reduce the efficiency of the frequency stabilization, because it increases the length of the
interrogation procedure. From our viewpoint, more optimal scenario is the following. In the initial period of
frequency stabilization, we use GCES with equation (31). It allows us to determine the calibration coefficient (5,
(see equation (29)) with satisfactory accuracy, because during measurements we will have the information about
the value 3(6) under 6 ~ 0. Then the procedure of long-term frequency stabilization can be done with the CES
technique (21), using only four measurements for each frequency point (two phase jumps, « = £7/2, and two
dark times, T, ,). Moreover, we can regularly (but rarely) use GCES again. Indeed, on the one hand, it allows us to
do aregular adjustment of the coefficient 3 (to eliminate, for example, an influence of possible slow variations
of the parameter I in equation (23)). On the other hand, such intermittent application of GCES will not lead to
the significant slowing-down of the process of long-term frequency stabilization.

In addition, as we see from figures 3—5, the CES or GCES technique works better if the ratio | A, /€|
becomes smaller. Distortions in the error signals arising from this problem can be largely reduced by the use of
an additional and well-controllable frequency step A, only during the Ramsey pulses 7, and 7, [27,41].In
this case, all dependencies presented in figures 4 and 5 will be the same if we will replace Ay, — A

= (Asqh — Asgiep)- Thus, we can always apply a frequency step Ay, &~ Agp (e.g. with an acousto-optic
modulator) during excitation to achieve the condition |A. /€| < 1for an effective shift A.g, as it was used in
experiments [5, 28, 29, 37], where the required value of Astep was determined empirically.

Note that the above results [including exact analytical result, Oqock = 0, for ideal calibration coefficient (23)]
are obtained for the phase jumps technique to form an error signal. If we will use the conventional technique of
the frequency jumps &7 /2T (in sec™ units), then we can say, in the general case, only about the approximate
equality, Oelock == 0. Nevertheless, this suppression of the probe-induced shifts is also significant and can be
quite enough for atomic clocks, from a metrological point of view.
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Figure 5. Comparison of CES and GCES spectroscopies for two different pulse sequences: left panels are for standard Ramsey
sequence with two equal pulses (see figure 2(a)), right panels are for hyper-Ramsey sequence (see figure 2(b)). Graphics are presented
in the presence of a shift Ay, during the Ramsey pulses 7, and 7,: Ay, = 0 (blue solid lines), Ay, /2y = 0.3 (red dashed lines),
Agn/Qo = 0.5 (green dashed lines). All calculations are done with the following values: T, /7 = 50, Qo7 = 7/2, ' = 0.25/T;,and
T,/ T, = 20. (a) Signals S((fEr;) (6) calculated by the use of equation (21) for ideal value of 5, (see equation (23)); (b) signals S((fé'E)S(é)
calculated by the use of equations (28) and (31) for B(6); (©) dependencies B(6) calculated by the use of equation (31).
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Figure 6. (a) Atomic three-level A system. (b) Schematic time dependencies of the Rabi frequencies €2, ,(f) and probe-induced shift
Ag(1), where ¢, is the beginning of the second (detecting) Ramsey pulse and « denotes the value of the phase jump (see equation (35))
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6. CES technique for CPT Ramsey spectroscopy

In this section, we describe the CES technique for Ramsey spectroscopy of the resonances based on CPT. As a
model, we consider rf CPT resonances that are formed in a three-level A system under interaction with a

resonant bichromatic field

E(t) = Eje ! 4 Eye?' + c.c.

(32)

The CPT resonance is formed when the difference between optical frequencies (w; — w,) is varied near the low-
frequency rf transition between lower energy levels |1) and |2): w, — w; &~ Ayg (see figure 6(a)). For example,
these energy levels can correspond to the hyper-fine structure of alkali atoms (Rb, Cs, etc) In this case, the
stabilized rf frequency difference (w, — w) is the operating frequency for CPT based clocks, where the hyper-
fine splitting Ay plays role of the unperturbed frequency w from previous sections.

The dynamics of the A system in the rotating wave approximation are described by the differential equation
system for the density matrix components
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Figure 7. These graphs show the shift of the clock frequency dqock (Ag,) versus the probe-induced shift Ay, during the CPT Ramsey
pulses. The case of ideal CES (horizontal black solid line) when the calibration coefficient 3P corresponds to equation (36). Also we
show non-ideal CES with a five-percent deviation of ﬁg‘lﬂ) from the ideal value (36): x = 0.95 (red colored dashed lines) and

X = 1.05 (green colored dashed lines). For comparison, we show dqock (Ag,) for usual Ramsey spectroscopy (T = Tj, see blue dashed
line). All calculations are done with the following values: v, = v, = ¢ Q0 =00 = o 1Y o T1 = 00, T, = 200y !

opt’
T, = 10%y ), T, /T, = 20,and I';, = 0.5/7T,.

opt’

opt’

[0r + Yopt — 101pn] 05 = 1 (py; — p33) + 80,

[0 + Yope = 101pnlpsy = (py, = p33) + hpyy,

[0r + 'y — i6glp), = i(Qikpgz = P13¢h)s

[0 + Tialpyy = ipss + PlzTr{ﬁ}/Z + i(QikPﬁ = P50,

[0: + T2lpyy = 72055 + T Tr{ﬁ}/z + i(Q;"pn — ),

[0; + D1y + Yoy = iupy; — 3 8 + iRy — p3, D),

pi =Py o k=1,2,3); Tr{p}=p,+py+py=1 (33)

Here 6, is the one-photon detuning of frequency components w; and w, from the optical transitions (see
figure 6); g = wy, — w; — Ay — Ay, (1) is the two-photon (Raman) detuning; 2, (#) = ds1E,(#)/h and

Q,(t) = ds,E,(t)/h are the Rabi frequencies for the transitions |1) < |3)and |2) < |3) (ds; and d3, are reduced
matrix elements of dipole moment for these transitions); -y is the spontaneous decay rate of upper level |3); Vopt
is rate of decoherence (spontaneous, collisional, etc) of the optical transitions |1) < |3)and |2) <> |3) (inthe
case of pure spontaneous relaxation 7, = 7 /2); 7, and , are corresponding spontaneous decay rates for
different channels (v, + v, = - in the case of closed A system); I';, is the relatively slow (I';, < 7, 'yopt) rate of
relaxation to the equilibrium isotropic ground state: p, = (1) (1| + |2) (2]) /2. Note that Ay,(#) is an additional
actual shift (AC Stark shift) between levels |1) and |2) during the pulses, which results from off-resonant
interactions of components of the laser field with different hyperfine states (e.g. see [42]).

In the case of Ramsey excitation, the scheme of the time dependencies 2, (¢) and £2,(¢) is shown in figure 6(b),
where the first pulse (with duration 7,) prepares an atomic coherence between lower levels |1) and |2), T'is the
free evolution interval, and the second pulse (with duration 7,) is the detecting pulse, which forms a
spectroscopic Ramsey signal. The time dependence A (#) is also shown. If 7 is much longer than the time for
the atoms to enter the dark state, then at the end of first pulse (before the free evolution interval) we have a
steady-state condition. In this case, the transient frequency shift, described in [15], becomes equal to zero. As a
result, the residual shift of the central Ramsey fringe dgock = w) — w; — Apg results from the off-resonant shift
Ay, which is present only during Ramsey pulses (7, and 7,) (see figure 6(b)). Ay, is the well known AC Stark
shift, which is proportional to the total light field intensity.

In pulsed CPT spectroscopy, the error signal is usually determined from the absorption of the CPT light by
the atoms during the second CPT pulse, which is proportional to the integral value

ty+7,
A 0 = [T pehar, (34)
ta

where the time integration interval is over the second (detecting) pulse 7,, which starts at the time ¢, (see

figure 6(b)). The value « corresponds to the phase jump during the dark time T (see figure 6(b)). In the case of
CPT spectroscopy, this phase jump describes a phase difference of the product (E, EY),, during the first Ramsey
pulse 7, and the product (E, E"),, during the second pulse 7, (e.g. see in [43]):

(ELE)r, = e (BE3)s. (35)

Using the replacement Ay (6, o) = A}CPT) (6, o) in the formulas (10) and (21)—(31) from the previous sections,
we describe a realization of the CES/GCES techniques for CPT Ramsey spectroscopy. However, in this case, it is
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necessary to use '}, (instead of I" in equation (23)) to determine the calibration coefficient

ﬁ(CCPT) — efrlz(Tlsz). (36)

al

Alsoweassume that T; , > (v, + 7,)”", i.e. the dark time between Ramsey pulses should significantly exceed
the lifetime of the exited state |3).

Calculations presented in figure 7 clearly demonstrate that the CES/GCES technique can be very effective for
an rf clock based on CPT Ramsey spectroscopy. Indeed, for an ideal calibration coefficient (36) we see a total
absence of the clock shift, dgocc = 0 (see horizontal line in figure 7). But even for non-ideal calibration
coefficient B, the residual shift for the CES method (see green and red colored dashed lines in figure 7) is
much less than for usual Ramsey spectroscopy (see blue colored dashed line in figure 7).

7. Conclusion

We have developed a universal one-loop method to form the reference signal for stabilization of arbitrary atomic
clocks based on Ramsey spectroscopy. This method uses the interrogation of an atomic system for two different
Ramsey periods and a specially constructed CES (see equation (21)). The CES technique requires four
measurements for each frequency point as well as a preliminary measurement (or estimation) of the calibration
coefficient (. It was shown that the highest robustness is achieved with the combination of the CES protocol
and a hyper-Ramsey pulse sequence (see in [27]). Also a method of GCES was developed (see equation (28)),
which requires six measurements for each frequency point and has an exceptional robustness. The CES/GCES
spectroscopy allows for perfect elimination of probe-induced light shifts and does not suffer from the effects of
relaxation, time-dependent pulse fluctuations and phase-jump modulation errors and other non-idealities of
the interrogation procedure. A variant of the frequency stabilization using CES with intermittent GCES
protocols has been proposed. In addition, the applicability of CES/GCES techniques for CPT atomic clocks has
been described. The implementation of this approach can lead to significant improvement of the accuracy and
long-term stability for a variety of types of atomic clocks.

Also, it will be interesting to experimentally compare the one-loop CES/GCES method with the two-loop
ABRS [37-39]. We believe that both methods have comparable efficiency for frequency stabilization, but CES/
GCES is technically simpler because only one feedback loop is required. Moreover, in the case of optical
transitions, the CES/GCES protocol with the use of hyper-Ramsey pulse sequence (see in [27]) can be even more
efficient in comparison with ABRS.
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