
1

Deep Learning Based Intrusion Detection With
Adversaries

Zheng Wang

Abstract—Deep neural networks have demonstrated their
effectiveness for most machine learning tasks, with Intrusion
Detection included. Unfortunately, recent research found that
deep neural networks are vulnerable to adversarial examples in
the image classification domain, i.e., they leave some opportunities
for an attacker to fool the networks into misclassification by
introducing imperceptible changes to the original pixels in an
image. The vulnerability raise some concerns in applying deep
neural networks in security-critical areas such as Intrusion
Detection. In this paper, we investigate the performances of the
state-of-the-art attack algorithms against deep learning based
Intrusion Detection on the NSL-KDD dataset. Based on the
implementation of deep neural networks using TensorFlow, we
examine the vulnerabilities of neural networks under attacks on
the IDS. To gain insights into the nature of Intrusion Detection
and its attacks, we also explore the roles of individual features
in generating adversarial examples.

Index Terms—intrusion detection, deep neural networks, ad-
versarial examples, NSL-KDD dataset.

I. INTRODUCTION

Today’s Internet is growingly endangered by various cyber
threats. Hackers are inventing new techniques on a daily
basis to bypass security layers and avoid detection. Intrusion
Detection Systems (IDS) are a set of devices or pieces of soft-
ware that play a huge role in modern organizations to defend
against intrusions and malicious activities. The detection can
be done using two intrusion detection techniques: signature-
based detection technique where the traffic is compared against
a database of signatures of known threats; anomaly-based
intrusion technique which inspects the traffic based on the
behavior of activities.

Machine Learning (ML) techniques are changing our view
of the world and they are impacting all aspects of our daily life.
Thus machine learning is envisioned to change the landscape
of information security, with intrusion detection included. In
the past decade, a number of machine learning techniques have
been applied to the problem of intrusion detection with the
hope of improving detection rates and adaptability. However,
most systems built based on such techniques suffer from the
dependency on domain knowledge, insufficient learning capa-
bility with big data, and lack of modularity and transferability.
To address those challenges in intrusion detection, deep neural
networks (deep learning) recently found their applications.

Deep learning requires less hand engineered features and
expert knowledge. Driven by the emergence of big data and
hardware acceleration, the intricacy of data can be extracted
with higher and more abstract level representation from raw
input features. Some recent work showed that deep learning

based IDS has striking learning capability or outperforms
traditional ML based counterparts.

However, deep learning in an adversarial environment re-
quires us to anticipate that an adversarial opponent will try to
cause deep learning to fail in many ways. In many cases, the
adversary is able to poison the learner’s classifications, often in
a highly targeted manner. For instance, an adversary can craft
input data with imperceptible deviations in order to cause the
learner to learn an incorrect decision-making function such as
avoiding detection of attacks or causing benign input to be
classified as attack input.

Recent studies confirmed that deep learning is vulnera-
ble against well-manipulated adversarial samples in image
based datasets. While there was some pioneer work on the
application of deep learning to intrusion detection, we still
hardly know the vulnerability of deep learning in the intrusion
detection domain against adversarial examples. In this paper,
we will present a comprehensive study of the deep learning
based intrusion detection with adversaries. We will evaluate
the state-of-the-art attack algorithms against deep learning
based intrusion detection on the NSL-KDD dataset. Based on
the implementation of deep neural networks using TensorFlow,
we will validate the vulnerabilities of neural networks under
attacks on IDS. To gain insights into the nature of intrusion
detection and its attacks, we will also explore the roles of
individual features in generating adversarial examples.

II. RELATED WORK

It is demonstrated that the deep learning based approaches
are helpful to overcome the challenges of developing an
effective IDS such as the difficulty of feature selection and
representation, and the limited availability of labeled traffic
dataset. For example, N. Shone et al. [1] proposed a new deep
learning classification model, C. Yin et al. [2] proposed to
use recurrent neural networks for intrusion detection tasks, A.
Javaid et al. [3] developed a deep learning based technique
for self-taught learning in the IDS classification, and T. A
Tang et al. [4] applied a deep learning approach for flow-based
anomaly detection. However, little attention in previous work
was given to the risks posed by the emerging adversarial deep
learning against IDS. The vulnerability discovered in recent
years greatly limit the application of deep neural networks
in security-critical areas such as self-driving, safety-critical
voice-controllable systems, and IDS.

Szegedy et al. [6] first revealed in 2014 the intriguing
discovery that deep neural networks are vulnerable to adver-
sarial examples. They also successfully generated adversarial
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examples through the use of the box-constrained Limited
memory approximation of Broyden-Fletcher-Goldfarb-Shanno
(LBFGS) optimization algorithm. Since then, the profound im-
plications of the findings triggered a wide interest of academia
and industry in developing adversarial attacks and studying
their defenses. To ease the high computational cost of the
LBFGS approach, Goodfellow et al. [7] proposed the Fast
Gradient Sign Method (FGSM). FGSM generates adversarial
perturbations based on the gradient of the loss function relative
to the input image and thus enables computational efficiency
through backpropagation. Kurakin et al. [8] extended the fast
gradient sign method by running a finer optimization (smaller
change) for multiple iterations. Papernot et al. [9] created
adversarial saliency maps by computing forward derivatives
which are used to identify the input feature to be perturbed
towards the target class. Moosavi et al. [10] proposed an
approach to find the closest distance from original input
to the decision boundary of adversarial examples. Carlini
and Wagner [11] introduced three new gradient-based attack
algorithms (L2, L∞, and L0) that are more effective than
all previously known methods in terms of the adversarial
success rates achieved with minimal perturbation amounts.
Their L2 attack uses a logits-based objective function which
is different from all existing L2 attacks, and avoids the box
constraint by changing variables. Their L∞ and L0 are based
on the L2 attack and tailored to different distance metrics.
The existing literature mainly deals with the art of fooling the
deep neural networks for the typical computer vision tasks,
e.g. recognition, and their effectiveness is demonstrated using
standard image datasets, e.g. MNIST [5].

III. BACKGROUND

A. Neural Networks and Notation

Deep neural network is a machine learning algorithm pow-
ered by many layers (“deep”) of connected networks. It is
often called end-to-end machine learning where sophisticated
patterns are extracted from the representation of multiple
simple features with limited prior knowledge. Therefore deep
learning models are increasingly used to solve complicated
big data problems which are often not well addressed by
conventional machine learning algorithms.

A deep neural network is formed as a function f(·), f ∈
F : Rn → R

m. The parameters of deep learning model f is
θ which is often subject to training for the objective results.
The most common training process of deep learning model f
aims at minimizing a loss function (e.g., cross-entropy) J .

As supervised machine learning, deep learning has two most
common tasks: classification or regression. In classification
problems, a discrete number of values is predicted. In regres-
sion problems, continuous valued output is predicted. In the
paper, deep neural networks are used as a m-class classifier
with its outputs as label of class in the classification problem,
l = 1, 2, ...,m. The output of the network is computed using
the softmax function, which ensures that the output vector y
satisfies 0 ≤ yi ≤ 1 and y1+ ...+ym = 1. The output vector y
is thus treated as a probability distribution, i.e., y i = f(x)i is
treated as the probability that input x has class i. The classifier

assigns the label C(x) = argmaxi f(x)i to the input x. Let
C∗(x) be the correct label of x. The inputs to the softmax
function f(x) are called logits.

We define F to be the full neural network including the
softmax function, Z(x) = z to be the output of all layers
except the softmax (so z are the logits), and

F (x) = softmax(Z(x)) = y (1)

A neural network layer consists of a set of perceptrons. Each
perceptron transforms a set of inputs with linear weights (and
biases) and then a non-linear activation function. The multiple
layers of a deep neural network are chained:

F = softmax ◦ Fn ◦ Fn−1 ◦ ... ◦ F1 (2)

where

Fi(x) = σ(θ̃i · x) + θ̂i (3)

for some non-linear activation function σ, some matrix θ̃i
of model weights, and some vector θ̂i of model biases. As
the model parameters, θ = {θ̃i, θ̂i} are tunable and trainable
in the machine learning process. Common choices of σ are
ReLU, tanh, and sigmoid. In this paper we focus primarily on
networks that use a ReLU activation function, as it currently
is the most widely used activation function.

B. Adversarial Examples

We present a taxonomy to categorize the methods for gen-
erating adversarial examples along seven axes in this section.
• Adversarial Specificity.

• Targeted attacks. Given a valid input x and a target
l = C∗(x), it is often possible to find a similar input
x′ such that C(x′) = l yet x, x′ are close according to
some distance metric. An example x′ with this property
is known as a targeted adversarial example.

• Non-targeted attacks. Instead of classifying x as a given
target class, we only search for an input x ′ so that
C(x′) �= C∗(x) and x, x′ are close. Non-targeted attacks
are strictly less powerful than targeted attacks.

• Adversary’s Knowledge.

• White-box attacks. It assumes the adversary knows every-
thing related to the trained neural network model: training
data, network architectures, hyper-parameters, numbers
of layers, functions of activations, network weights, etc.
Many adversarial examples are generated by calculating
network gradients. Since deep neural networks tend to
require only raw input data without handcrafted features
and to deploy end-to-end structure, feature selection is not
necessary compared to adversarial examples in machine
learning.

• Black-box attacks. It assumes the adversary has no access
to the trained neural network model. The adversary,
acting as a standard user, only knows the output of the
model (label or confidence score). This assumption is
common for attacking online Machine Learning services
(e.g., Machine Learning on AWS2, Google Cloud AI3,
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BigML4, Microsoft Azure6, IBM Bluemix7, Face++8) .
Most adversarial example attacks are white-box attacks.
However, they can be transferred to attack black-box
services due to the transferability of adversarial examples.

C. Distance Metrics

In our definition of adversarial examples, we require use
of a distance metric to quantify similarity. There are three
widely-used distance metrics in the literature for generating
adversarial examples, all of which are Lp norms.

The Lp distance is written as ‖x− x′‖p, where the p-norm
‖ · ‖p is defined as

‖v‖p = (

n∑

i=1

|vi|p) 1
p (4)

Specifically,

• L0 distance measures the number of features i such that
xi �= x′

i. Thus, the L0 distance corresponds to the number
of features that have been altered in a sample.

• L2 distance measures the standard Euclidean (rootmean-
square) distance between x and x′. The L2 distance can
remain small when there are many small changes to many
samples.

• L∞ distance measures the maximum change to any of
the features:

‖x− x′‖∞ = max(|x1 − x′
1|, ..., |xn − x′

n|) (5)

IV. ATTACK ALGORITHMS

A. Fast Gradient Sign Method (FGSM)

While there was early proposal to use linear search method
to find adversarial examples [6], the linear search method was
often too computation intensive to be affordable in practice.
To ease the search for adversarial examples, Goodfellow et al.
proposed a fast method for generating adversarial examples
called Fast Gradient Sign Method [7]. They only performed
one step gradient update along the direction of the sign of
gradient at each pixel. Their perturbation can be expressed as:

η = εsign(∇xJθ(x, l)) (6)

where ε is the magnitude of the perturbation which is small
enough to be imperceptible, and l is the target label. Thus the
generated adversarial example x′ is calculated as: x′ = x+ η.
This perturbation can be computed simply using backpropaga-
tion. The fast gradient sign method uses the gradient of the loss
function to determine in which direction the input data should
be changed (whether it should be increased or decreased) to
minimize the loss function.

The fast gradient sign method optimizes the networks for
the L∞ distance metric. While it is fast, it is not designed
primarily to find the optimal adversarial examples.

Kurakin et al. extended the fast gradient sign method by
running a finer optimization (smaller change) for multiple
iterations [8]. In each iteration, they clipped pixel values to
avoid large change on each pixel:

clipx,ξ{x′} = min{255, x+ ξ,max{0, x− ε, x′}} (7)

where clipx,ξ{x′} is the clipping value in each iteration limited
by ξ. The adversarial examples were generated in multiple
iterations:

x0 = x (8a)

xn+1 = clipx,ξ{xn + εsign(∇xJθ(xn, y))} (8b)

Iterative gradient sign was found to produce superior results
to fast gradient sign.

To further attack a specific class, they chose the least-likely
class of the prediction and try to maximize the cross-entropy
loss. This method is referred to Iterative Least-Likely Class
method:

x0 = x (9a)

yLL = argmin
y

{p(y|x)} (9b)

xn+1 = clipx,ξ{xn + εsign(∇xJθ(xn, yLL))} (9c)

The Target Class Gradient Sign Method (TGSM) can be
extended to a more general case where the yLL in Equation
9(b) could be any desired target class.

B. Jacobian-based Saliency Map Attack (JSMA)

Papernot et al. designed an efficient saliency adversarial map
under L0 distance, called Jacobian-based Saliency Map Attack
[9]. They first computed Jacobian matrix of given sample x,
which is given by:

Jf (x) =
∂f(x)

∂x
= [

∂fj(x)

∂xi
]i×j (10)

In this way, they found the input features of x that made
most significant changes to the output. A small perturbation
was designed to successfully induce large output variations so
that change in a small portion of features could fool the neural
network.

C. DeepFool

Moosavi-Dezfooli et al. proposed DeepFool to find the
closest distance from original input to the decision boundary
of adversarial examples [10]. Deepfool is an untargeted attack
technique optimized for the L2 distance metric. To overcome
the non-linearity in high dimension, they performed an iter-
ative attack by linear approximation. Starting from an affine
classifier, they found that the minimal perturbation of an affine
classifier is the distance to the separating affine hyperplane
F = {x : wTx+b = 0}. The perturbation of an affine classifier
f can be η∗(x) = − f(x)

‖w‖2w.
If f is a binary differentiable classifier, they used an iterative

method to approximate the perturbation by considering f is
linearized around xi at each iteration. The minimal perturba-
tion is computed as:

argmin
ηi

‖ ηi ‖2 (11a)
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s.t. f(xi) +	f(xi)
T ηi = 0 (11b)

This result can also be extended to the multi-class classifier
by finding the closest hyperplane. It can also be extended to
more general �p norm, p ∈ [0,∞). DeepFool provides less
perturbation compared to FGSM and JSMA. Compared to
JSMA, DeepFool also reduced the intensity of perturbation
instead of the number of selected features.

D. CW Attack

Carlini and Wagner launched a targeted attack to defeat
Defensive distillation [11]. CW Attack is effective for most
of existing adversarial detecting defenses. The authors made
several modifications based on the basic problem (Equation
1).

They first defined a new objective function g, so that:

min
η

‖ η ‖p + c · g(x+ η) (12a)

s.t. x+ η ∈ [0, 1]n (12b)

where g(x′) ≥ 0 if and only if f(x′) = l′, and l′ is the label of
the adversarial class in targeted adversarial examples. In this
way, the distance and penalty term can be better optimized.
The authors listed seven example objective functions g. An
effective function evaluated by their experiments can be:

g(x′) = max(max
i�=l′

Z(x′)i − Z(x′)t − κ) (13)

where κ is a constant to control the confidence.
The authors introduced a new variant w to avoid the box

constraint, where w satisfies η = 1
2 (tanh(w) + 1) − x.

General optimizers in deep learning like Adam and SGD
were used to generate adversarial examples and performed 20
iterations of such generation to find an optimal c by binary
searching. However, they found that if the gradients of ‖η‖ p

and g(x + η) are not in the same scale, it is hard to find
a suitable constant c in all of the iterations of the gradient
search and then get the optimal result. Due to this reason, two
of their proposed functions did not find optimal solutions for
adversarial examples.

The authors proposed �2 attack as described by:

min
w

‖ 1

2
(tanh(w) + 1) ‖2 +c · g(1

2
(tanh(w) + 1)) (14)

�∞ attack was also an iterative attack, which replaced the
�2 term with a new penalty in each iteration:

min c · g(x+ η) +
∑

i

[(ηi − τ)+] (15)

For each iteration, they reduced τ by a factor of 0.9, if all η i <
τ . �∞ attack considered τ as an approximate measurement of
�∞.

V. EVALUATION METHODOLOGY

A. NSL-KDD Dataset

One of the most used dataset to test intrusion detection
algorithms is the KDD’99 dataset [13] which was used from
the DARPA’98 IDS evaluation program. Researchers identified
two major drawbacks with the KDD’99 dataset [12]: an
enormous amount of redundant records are found both in the
training and test data; some classes of attacks are too readily to
detect due to dataset imbalance. The NSL-KDD dataset [14],
which was an improved version of the KDD’99 dataset, was
proposed to overcome the limitation of the KDD’99 dataset
in two ways: all the redundant records from the training and
test data are removed; the records in the KDD’99 dataset are
rebalanced according to their difficulty levels of classification,
making it more reasonable and realistic for benchmarking
learning algorithms.

Each record in the NSL-KDD dataset has 41 features. The
detailed list of features is presented in Table I. The features
belong to three major families [12]:

• Basic features are the ones related to connection infor-
mation such as hosts, ports, services used and protocols.

• Traffic features are the ones that are calculated as an
aggregate during a window interval. These are further
categorized as aggregates based on the same host and
aggregates over the same service. A notable difference
between KDD’99 and NSL-KDD dataset is that in the
latter, the time window was substituted with a connection
window of the last 100 connections.

• Content features are extracted from the packet data or
payload and they are related to the content of specific
applications or the protocols used.

Each record in the NSL-KDD dataset is labeled with either
normal or a particular class of attack. The training data
contains 23 traffic classes that include 22 classes of attack
and one normal class. The test data contains 38 traffic classes
that include 21 attacks classes from the training data, 16 novel
attacks, and one normal class.

B. Pre-processing

1) One-Hot Encoding: The features in the NSL-KDD
dataset have three data types: nominal, binary, and numeric.
Binary data can be viewed as variables that contain numeric
values since a numeric value is enough to indicate the presence
(1) or absence (0) of a specific status. Nominal data are
variables that contain categorical values rather than numeric
values. Many machine learning algorithms including neural
networks cannot operate on nominal data directly. So we
use one-hot encoding to convert nominal features to numeric
feature. In the NSL-KDD dataset, there are three nominal
features: “protocol type”, “service”, and “flag”. We take the
feature “protocol type” as an example. It has three categorical
values: “tcp”, “udp”, and “icmp”. By one-hot encoding, three
new numeric features are created to replace the original feature
“protocol type”: “protocol type tcp”, “protocol type udp”,
and “protocol type icmp”. The binary value for each new
feature is an indicator of that corresponding protocol type’s
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TABLE I: Feature List of the NSL-KDD Dataset.

No. Feature Type Description
Basic features of individual TCP connections

1 Duration Numeric Duration of the connec-
tion

2 Protocol type Nominal Type of the protocol
3 Service Nominal Network service on the

destination
4 Flag Nominal Normal or error status of

the connection
5 Src bytes Numeric # of bytes transferred from

source to destination
6 Dst bytes Numeric # of bytes transferred from

destination to source
7 Land Binary 1 if connection is from/to

the same host/port; 0 oth-
erwise

8 Wrong fragment Numeric # of “wrong” fragments
9 Urgent Numeric # of urgent packets (with

the urgent bit set)
Content features within a connection

suggested by domain knowledge
10 Hot Numeric # of “hot” indicators
11 Num failed lo-

gins
Numeric # of failed login attempts

12 Logged in Binary 1 if successfully logged
in; 0 otherwise

13 Num compro-
mised

Numeric # of “compromised” con-
ditions

14 Root shell Binary 1 if root shell is obtained;
0 otherwise

15 Su attempted Binary 1 if “su root” command
attempted; 0 otherwise

16 Num root Numeric # of “root” accesses
17 Num file cre-

ations
Numeric # of file creation opera-

tions
18 Num shells Numeric # of shell prompts
19 Num access -

files
Numeric # of operations on access

control files
20 Num outbound -

cmds
Numeric # of outbound commands

in an ftp session
21 Is hot login Binary 1 if the login belongs to

the “hot” list; 0 otherwise
22 Is guest login Binary 1 if the login is a “guest”

login; 0 otherwise

No. Feature Type Description
Traffic features computed using a two-second time window

23 Count Numeric # of connections to the same host
as the current connection (Note:
The following features refer to
these same-host connections.)

24 Serror rate Numeric # of connections that have “SYN”
errors

25 Rerror rate Numeric % of connections that have “REJ”
errors

26 Same srv rate Numeric % of connections to the same ser-
vice

27 Diff srv rate Numeric % of connections to different ser-
vices

28 Srv count Numeric % of connections to the same ser-
vice as the current connection in
the past two seconds (Note: The
following features refer to these
same-service connections.)

29 Srv serror rate Numeric % of connections that have “SYN”
errors

30 Srv rerror rate Numeric % of connections that have “REJ”
errors

31 Srv diff host rate Numeric % of connections to different hosts
Host based traffic features computed using a two-second time window

32 Dst host count Numeric # of connections having the same
destination host

33 Dst host srv count Numeric # of connections using the same
service

34 Dst host same srv -
rate

Numeric % of connections using the same
service

35 Dst host srv diff -
host rate

Numeric % of different services on the cur-
rent host

36 Dst host same src -
port rate

Numeric % of connections to the current
host having the same src port

37 Dst host srv diff -
host rate

Numeric % of connections to the same ser-
vice coming from different hosts

38 Dst host serror rate Numeric % of connections to the current
host that have an S0 error

39 Dst host srv serror -
rate

Numeric % of connections to the current
host that and specified service that
have an S0 error

40 Dst host rerror rate Numeric % of connections to the current
host that have an RST error

41 Dst host srv rerror -
rate

Numeric % of connections to the current
host and specified service that have
an RST error

presence. Of the three new columns produced from “protocol -
type”, only one could take on the value 1 for each sample. For
example, the list of feature “protocol type” for four samples
[tcp, udp, icmp, udp] becomes [[1,0,0,0],[0,1,0,1],[0,0,1,0]] in
the one-hot encoded form. Using one-hot encoding, the feature
“service” is transformed to 70 new features, and the feature
“flag” to 11 new features. In this way, the 41-feature dataset
is mapped to a 122-feature dataset.

2) Normalization: After numericalization using one-hot en-
coding, the dataset consists of numeric features whose values
can be drawn from different distributions, have different scales
and, sometimes, contaminated by outliers. If there are big
differences in the ranges of different features and no outliers,
features with very large values may cause imbalanced results
by some classifiers. So we simply apply the min-max scaling
to each feature column, where the new normalized value
xnorm can be calculated as follows:

xnorm =
x− xmin

xmax − xmin
(16)

Here, x is a particular sample, xmin is the smallest value
in a feature column, and xmax the largest value, respectively.
The rescaling maps the features to a range of [0, 1].

3) Classification of Attack Types: The attack types in the
NSL-KDD dataset are classified into four major families:
Denial of Service (DOS), Probe, Remote to Local (R2L), and
User to Root (U2R) attacks.

• DOS attacks are attacks that target availability or prevent
legitimate users from accessing information or services.

• Probe attacks are attacks that aim at gathering informa-
tion by scanning or probing the network.

• R2L attacks are attacks that attempt to gain unauthorized
remote access to a local machine.

• U2R attacks are attacks that attempt to access normal
user account and exploit vulnerabilities in the system for
privilege escalation.

The detailed list of classified attack types is presented
in Table II. After the classification, the 39 attack types are
transformed to the 4 attack labels.
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TABLE II: Classification of Attack Types.

Attack Label Attack Type

Denial of Service (DOS) Back, Land, Neptune, Pod, Smurf, Teardrop, Apache2, Udpstorm, Processtable, Worm, Mailbomb

Probe Buffer overflow, Loadmodule, Rootkit, Perl, Sqlattack, Xterm

Remote to Local (R2L) Guess Password, Ftp write, Imap, Phf, Multihop, Warezmaster, Warezclient, Spy, Xlock, Xsnoop, Snmpguess,
Snmpgetattack, ProbHttptunnel, Sendmail, Named

User To Root (U2R) Buffer overflow, Loadmodule, Rootkit, Perl, Sqlattack, Xterm, Ps

4) Pre-processed Dataset Summary: After one-hot encod-
ing, normalization, and classification of attack types, the
problem was transformed to a 5-class classification problem
where the 5 labels are “Normal”, “DOS”, “Probe”, “R2L”,
and “U2R”, and the 122 numeric features fall into the range
between 0 and 1. The dataset have the training set and the test
sets. The number of samples in the training set is 125,973 and
in the test set 22,544.

C. Methodology

Given that the number of samples in the dataset can be con-
sidered sufficient, we use the simple holdout cross-validation
method to assess the model performance. Specifically, we split
the original training data into the training set which account
for 90% of the original training set and the validation set which
for 10%. That is, the number of the sample in the training set
is 113,375 and in the validation set 12,598.

Similar to most existing deep learning research, our models
and attack algorithms were implemented using TensorFlow
[15]. The experimental results were parsed and analyzed in
Python. All of our evaluations were performed on a personal
desktop without GPU acceleration.

We use multilayer perceptrons (MLPs) as the neural network
architecture for intrusion detection. The MLPs are constructed
with two hidden layers and each layer contains 256 neural
units. The activation function of each hidden unit is Rectified
Linear Unit (ReLU). For regularization, a dropout layer with
the dropout rate of 0.4 is adopted after each hidden layer. The
dropout layers are applied to control over-fitting by removing
an individual unit with an arbitrary probability while training
the network. A softmax layer is employed after the logits layer
as the output of the classifier. The optimizer, the batch size,
and the learning rate used in training the networks is ADAM,
128, and 0.001 respectively. The cross-entropy cost function
is used as the loss function to be minimized by training.

First, we feed the training dataset to the deep neural
networks and allow enough epochs to obtain the well-trained
deep neural networks. The deep neural networks are used as
the target of attacks as well as the baseline of our evaluations.
Then we implement the four attack algorithms and use them
respectively to generate the adversarial examples from the test
dataset based on the deep neural networks. Finally, we evaluate
the performance of the classifier using both the test dataset and
the adversarial examples.

D. Metrics

The performance evaluation is conducted based on the
following metrics:

• True Positive (TP) - Attack data that is correctly classified
as an attack.

• False Positive (FP) - Normal data that is incorrectly
classified as an attack.

• True Negative (TN) - Normal data that is correctly
classified as normal.

• False Negative (FN) - Attack data that is incorrectly
classified as normal.

The confusion matrix of a binary classifier is defined in
Table III, which can be generalized to the confusion matrix of
a multi-class classifier.

TABLE III: Confusion Matrix of a Binary Classifier.

Actual Label

Predicted Label
Anomaly Normal

Anomaly TP FN

Normal FP TN

The following measures are used to evaluate the perfor-
mance of the classifier:

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

The accuracy measures the proportion of the total number of
correct classifications.

Precision =
TP

TP + FP
(18)

The precision measures the number of correct classifications
penalized by the number of incorrect classifications.

Recall =
TP

TP + FN
(19)

The recall measures the number of correct classifications
penalized by the number of missed entries.

False Alarm =
FP

FP + TN
(20)

The false alarm measures the proportion of benign events
incorrectly classified as malicious.

F − score = 2 · Precision ·Recall

Precision+Recall
(21)

The F-score measures the harmonic mean of precision and
recall, which serves as a derived effectiveness measurement.
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VI. RESULTS AND DISCUSSION

TABLE IV: Number of Samples in the Training and Test Set.

Label No. of Training Samples No. of Test Samples

Normal 67343 9711

DOS 45927 7460

Probe 11656 2421

R2L 995 2885

U2R 52 67

TABLE V: Metrics for the MLP Classifier on the Clean
Dataset.

Label Accuracy Precision Recall False
Alarm

F-score

Normal 78.19 67.12 96.81 35.94 79.25

DOS 92.50 96.19 80.56 1.59 87.69

Probe 95.25 83.62 69.50 1.64 75.88

R2L 88.25 98.38 8.39 0.02 15.46

U2R 99.75 89.50 25.38 0.01 39.53

Fig. 1: ROC Curves for the MLP Classifier on the Clean
Dataset.

A. Clean Data

We start with the performance of deep neural networks
whose input is the clean data. The count of samples belonging
to each label is summarized in Table IV. The metrics for the
MLP classifier on the clean dataset are presented in Table V.

ROC curves are typically used in binary classification to
study the output of a classifier. In order to extend ROC curve
and ROC area to multi-class or multi-label classification, it

is necessary to binarize the output. One ROC curve can be
drawn per label, but one can also draw a ROC curve by
considering each element of the label indicator matrix as a
binary prediction (micro-averaging). Another evaluation mea-
sure for multi-class classification is macro-averaging, which
gives equal weight to the classification of each label. The ROC
curves for the MLP classifier on the clean dataset are shown
in Fig. 1.

B. JSMA Attacks

1) Attacks From Scratch: We first investigate the perfor-
mance of JSMA attacks from scratch. During each iteration,
the JSMA method finds the feature that has the most influence
on the result (most salient feature) and add noise to the feature.
We set the maximum epochs to 100 and the noise added to
input per epoch to 0.5. The minimum and maximum values
in output tensor are set to 0.0 and 1.0 respectively. We let the
original sample be a single sample whose features are all set
to zero. The adversarial samples produced by JSMA for each
target label have their probability and altered features listed
in Table VI. We can see that only 9 out of the 122 features
are needed to ensure 100% probability of misguiding the deep
neural networks to the four target classes: “Normal”, “DOS”,
“Probe”, and “R2L”. However, it is not so easy to fool the
deep neural networks into the “U2R” class as the success rate
is 0.44 with the minimum L0 constraint. We find that three
basic features (namely “Duration”, “Wrong fragment”, and
“Service IRC”), four content features (namely Num compro-
mised, Su attempted, Num root, and Num access files), and
two traffic features (“Srv count” and “Diff srv rate”) count
for JSMA attacks. Note that no host based traffic features
are exploited and that seems to indicate that host based
traffic features weight less in the deep neural network based
classifiers.

TABLE VII: Metrics for the MLP Classifier on the JSMA-
Generated Dataset.

Label Accuracy Precision Recall False
Alarm

F-score

Normal 52.41 42.72 30.64 31.11 35.69

DOS 60.31 33.88 20.95 20.23 25.89

Probe 74.06 10.84 19.58 19.38 13.95

R2L 67.00 12.74 27.00 27.12 17.31

U2R 97.62 0.42 2.98 2.10 0.74

2) Attacks From Original Samples: We set the test set as
the original samples and use the JSMA algorithm to generate
the adversarial samples. To evaluate the overall performance
of the JSMA attacks, we choose a random target label for each
adversarial sample. During each iteration, the JSMA method
finds the feature that has the most influence on the result
(most salient feature) and add noise to the feature. We set
the maximum epochs to 30 and the noise added to input per
epoch to 1.0. The minimum and maximum values in output
tensor are set to 0.0 and 1.0 respectively.
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TABLE VI: Adversarial Samples Produced By JSMA From Scratch.

Target Label Probability Altered Features (L0)

Normal 1.0 Duration, Wrong fragment, Num compromised, Su attempted, Num root, Num access files, Srv count, Diff -
srv rate, Service IRC (L0 = 9)

DOS 1.0 Duration, Wrong fragment, Num compromised, Su attempted, Num root, Num access files, Srv count, Diff -
srv rate, Service IRC (L0 = 9)

Probe 1.0 Duration, Wrong fragment, Num compromised, Su attempted, Num root, Num access files, Srv count, Diff -
srv rate, Service IRC (L0 = 9)

R2L 1.0 Duration, Wrong fragment, Num compromised, Su attempted, Num root, Num access files, Srv count, Diff -
srv rate, Service IRC (L0 = 9)

U2R 0.44 Duration, Wrong fragment, Num compromised, Su attempted, Num root, Num access files, Srv count, Diff -
srv rate, Service IRC (L0 = 9)

Fig. 4: Top 60 Features Altered for the JSMA-Generated Dataset.

The metrics for the MLP classifier on the JSMA-generated
dataset are presented in Table VII. We can see that JSMA
attacks successfully degrade the performance of MLP classi-
fier. The ROC curves for the MLP classifier on the JSMA-
generated dataset are shown in Fig. 2. The values of AUC
(Area Under Curve) for all classes are suppressed to around
0.5 under JSMA attacks. The distribution of the L0 norm
is shown in Fig. 3. The mean L0 norm is 27.36 while the
number of unique features changed over all samples is 119.
The top 60 features that are frequently chosen by adversarial
examples are depicted in Fig. 4. The hit rate in Fig. 4 is highly

skewed towards a small set of features. Note that 18 out of the
top 60 features are virtually derived from one original feature
“service” (before being one-hot encoded).

C. FGSM Attacks

1) Untargeted Attacks: We first consider the untargeted
version of the FGSM attacks. The scale factor for noise is
set to 0.02. The maximum epoch is set to 12. We use gradient
sign to generate the adversarial examples. The minimum and
maximum values in output tensor are set to 0.0 and 1.0
respectively.
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Fig. 6: Top 60 Features Altered for the Untargeted FGSM-Generated Dataset.

Fig. 2: ROC Curves for the MLP Classifier on the JSMA-
Generated Dataset.

The metrics for the MLP classifier on the untargeted FGSM-
generated dataset are presented in Table VIII. A great per-
formance degrading can be found in Table VIII compared
with the clean dataset shown in Table V. Fig. 5 illustrates the
ROC curves for the MLP classifier on the untargeted FGSM-
generated dataset. We can find in Fig. 5 that the values of AUC

Fig. 3: L0 Norm for the JSMA-Generated Dataset.

for class normal and class dos are even further decreased to
0.21 and 0.15 respectively while average AUC and the AUCs
for the remaining classes stay at around 0.5. The L∞ for which
the MLP classifier are optimized by the FGSM attacks has
its mean as 0.2401 and its variance as 0.00015. That result
means that all samples are evenly perturbed by the untargeted
FGSM attacks in terms of L∞. The number of unique features
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TABLE VIII: Metrics for the MLP Classifier on the Untargeted
FGSM-Generated Dataset.

Label Accuracy Precision Recall False
Alarm

F-score

Normal 40.78 6.83 2.96 30.61 4.14

DOS 24.48 6.95 10.35 68.56 8.31

Probe 66.94 6.15 14.58 26.78 8.65

R2L 87.25 50.38 25.78 3.73 34.12

U2R 99.69 NA 0.00 0.00 NA

Fig. 5: ROC Curves for the MLP Classifier on the Untargeted
FGSM-Generated Dataset.

changed is 122 and the number of average features changed
per datapoint is 74.80. The top 60 features that are frequently
chosen by adversarial examples are presented in Fig. 6. We
find that 45 out of the top 60 features are those generated
by one-hot encoding from the original feature “service”. That
indicates a greater weight of feature “service” in generating
adversarial examples by the untargeted FGSM attacks than by
the JSMA attacks shown in Fig. 4. Besides, the choice rate of
top features are more evenly distributed in Fig. 6 than in Fig.
4.

TABLE IX: Metrics for the MLP Classifier on the Least-Likely
Targeted FGSM-Generated Dataset.

Label Accuracy Precision Recall False
Alarm

F-score

Normal 50.66 40.38 30.55 34.16 34.78

DOS 25.34 4.73 6.57 65.38 5.50

Probe 84.69 15.77 9.88 6.35 12.14

R2L 72.94 0.03 0.03 16.38 0.03

U2R 99.19 0.00 0.00 0.49 NA

Fig. 7: ROC Curves for the MLP Classifier on the Least-Likely
Targeted FGSM-Generated Dataset.

2) Least-Likely Attacks: For the targeted FGSM attacks,
we first examine the attacks which set the desired target label
to the least-likely class. The scale factor for noise is set to
0.02. The maximum epoch is set to 12. We use gradient
sign to generate the adversarial examples. The minimum and
maximum values in output tensor are set to 0.0 and 1.0
respectively.

The metrics for the MLP classifier on the least-likely
targeted FGSM-generated dataset are presented in Table IX.
Fig. 7 illustrates the ROC curves for the MLP classifier on the
least-likely targeted FGSM-generated dataset. Comparing Fig.
7 against Fig. 5, we can see the least-likely targeted FGSM
attacks demonstrate greater overall adversarial power than the
untargeted FGSM attacks in terms of the average AUC. The
L∞ optimized by the least-likely targeted FGSM attacks has
its mean as 0.240 and its variance as 0.00013 both of which
are almost equivalent to those of the untargeted FGSM attacks.
That result means that all samples are evenly perturbed by the
untargeted FGSM attacks in terms of L∞. The number of
unique features changed is 122 and the number of average
features changed per datapoint is 76.85. They are also very
close to or even the same as those of the untargeted FGSM
attacks. The top 60 features that are frequently chosen by
adversarial examples are presented in Fig. 8. The features
listed in Fig. 8 and those in Fig. 6 have much overlap.

3) Random-Target Attacks: We then consider the attacks
which randomly select the desired target label. The scale factor
for noise is set to 0.02. The maximum epoch is set to 8. We
use gradient sign to generate the adversarial examples. The
minimum and maximum values in output tensor are set to 0.0
and 1.0 respectively.

The metrics for the MLP classifier on the random-targeted
FGSM-generated dataset are presented in Table X. Fig. 9
illustrates the ROC curves for the MLP classifier on the
random-targeted FGSM-generated dataset. Comparing Fig. 9
against Fig. 7, we can identify obvious better performance of
the MLP classifier in 9 than that in 7 since all AUC values
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Fig. 8: Top 60 Features Altered for the Least-Likely Targeted FGSM-Generated Dataset.

TABLE X: Metrics for the MLP Classifier on the Random-
Targeted FGSM-Generated Dataset.

Label Accuracy Precision Recall False
Alarm

F-score

Normal 50.66 42.84 43.53 43.91 43.19

DOS 61.41 37.44 24.88 20.55 29.89

Probe 75.75 13.05 22.27 17.83 16.45

R2L 77.19 16.56 19.38 14.33 17.86

U2R 98.81 3.60 11.94 0.95 5.54

in 9 are improved. That is because a random target label is
not always the least-likely label which is the best target label
used to fool the classifier. The L∞ optimized by the random-
targeted FGSM attacks has its mean as 0.16 and its variance
as 0.00016. The number of unique features changed is 122
and the number of average features changed per datapoint is
76.70. They are also very close to or even the same as those of
both the untargeted and the least-likely targeted FGSM attacks.
The top 60 features that are frequently chosen by adversarial
examples are presented in Fig. 10. The features listed in Fig.
8 and those in both Fig. 6 and Fig. 10 have much overlap.

Fig. 9: ROC Curves for the MLP Classifier on the Random-
Targeted FGSM-Generated Dataset.

D. DeepFool Attacks

In our evaluation of DeepFool attacks, we set the small
overshoot value to cross the boundary to 0.01. The maximum
epoch is set to 3. The minimum and maximum values in
output tensor are set to 0.0 and 1.0 respectively. The minimum
probability for adversarial samples is set to 0.
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Fig. 10: Top 60 Features Altered for the Random-Targeted FGSM-Generated Dataset.

TABLE XI: Metrics for the MLP Classifier on the DeepFool-
Generated Dataset.

Label Accuracy Precision Recall False
Alarm

F-score

Normal 41.03 7.12 3.06 30.22 4.28

DOS 17.33 8.93 16.28 82.19 11.53

Probe 71.62 5.90 10.98 21.09 7.68

R2L 87.25 53.00 4.30 0.56 7.95

U2R 99.69 47.06 11.94 0.04 19.05

The metrics for the MLP classifier on the DeepFool-
generated dataset are shown in Table XI. Fig. 11 illustrates the
ROC curves for the MLP classifier on the DeepFool-generated
dataset. In Fig. 11, the AUCs for both class normal and class
dos are very small compared with the average AUC and the
AUCs for the other classes. The L2 optimized by the DeepFool
attacks has its mean as 0.773 and its variance as 0.0376. Its
distribution is shown in Fig. 12 The number of unique features
changed is 122 and the number of average features changed
per datapoint is 62.31. The top 60 features that are frequently
chosen by adversarial examples are presented in Fig. 13.

Fig. 11: ROC Curves for the MLP Classifier on the DeepFool-
Generated Dataset.

E. CW Attacks

In our evaluations of CW Attacks, we set the scaling factor
for the second penalty term to 3.0. The p − norm is set to
2. The temperature for sigmoid function is set to 2. We use
the Adam optimizer with learning rate 0.1 to minimize the
CW loss. The minimum confidence of adversarial examples
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Fig. 13: Top 60 Features Altered for the DeepFool-Generated Dataset.

Fig. 12: L2 Norm for the DeepFool-Generated Dataset.

is set to 0. The maximum epoch is set to 100. To facilitate
the evaluation of overall performance of the CW attacks, we
randomly choose a target label for each adversarial example.

1) L0 Norm: For the L0-norm CW attacks, we set the
decreasing factor for the upper bound of noise to 0.9.

The metrics for the MLP classifier on the L0-norm CW-
generated dataset are shown in Table XII. Fig. 14 illustrates

TABLE XII: Metrics for the MLP Classifier on the L0-Norm
CW-Generated Dataset.

Label Accuracy Precision Recall False
Alarm

F-score

Normal 64.88 56.28 82.88 48.72 67.00

DOS 70.00 58.31 32.56 11.51 41.78

Probe 83.31 27.84 34.75 10.83 30.91

R2L 86.56 43.25 15.42 2.97 22.73

U2R 99.62 33.34 16.42 0.10 22.00

the ROC curves for the MLP classifier on the L0-norm CW-
generated dataset. Table XII and Fig. 14 show limited adverse
impacts of the L0-norm CW attacks on the the MLP classifier,
especially compared with other attacks discussed above. The
L0 optimized by the CW attacks has its mean as 115.10 and
its variance as 1.655. Its distribution is shown in Fig. 15 The
number of unique features changed is 122 and the number of
average features changed per datapoint is 115.10. The top 60
features are chosen by all adversarial examples.

2) L2 Norm: The metrics for the MLP classifier on the L2-
norm CW-generated dataset are shown in Table XIII. Fig. 16
illustrates the ROC curves for the MLP classifier on the L2-
norm CW-generated dataset. Table XII and Fig. 14 indicate
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Fig. 14: ROC Curves for the MLP Classifier on the L0-Norm
CW-Generated Dataset.

Fig. 15: L0 Norm for the L0-Norm CW-Generated Dataset.

TABLE XIII: Metrics for the MLP Classifier on the L2-Norm
CW-Generated Dataset.

Label Accuracy Precision Recall False
Alarm

F-score

Normal 63.47 54.94 84.38 52.34 66.56

DOS 69.81 60.47 25.33 8.19 35.72

Probe 82.38 26.36 35.91 12.06 30.41

R2L 86.62 44.12 17.16 3.19 24.70

U2R 99.38 9.09 11.94 0.36 10.32

similar performance of the L2-norm CW attacks with the L0-
norm CW attacks. The L2 optimized by the CW attacks has
its mean as 1.09 and its variance as 0.499. Its distribution is
shown in Fig. 17. The number of unique features changed is
122 and the number of average features changed per datapoint

Fig. 16: ROC Curves for the MLP Classifier on the L2-Norm
CW-Generated Dataset.

Fig. 17: L2 Norm for the L2-Norm CW-Generated Dataset.

is 115.10. The top 60 features are chosen by all adversarial
examples.

TABLE XIV: Metrics for the MLP Classifier on the L∞-Norm
CW-Generated Dataset.

Label Accuracy Precision Recall False
Alarm

F-score

Normal 65.06 56.41 82.81 48.41 67.12

DOS 69.56 58.53 27.31 9.57 37.25

Probe 81.31 25.72 39.16 13.60 31.05

R2L 86.75 44.84 16.30 2.94 23.91

U2R 99.38 5.13 5.97 0.33 5.52

3) L∞ Norm: The metrics for the MLP classifier on the
L∞-norm CW-generated dataset are shown in Table XIV. Fig.
18 illustrates the ROC curves for the MLP classifier on the
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Fig. 18: ROC Curves for the MLP Classifier on the L∞-Norm
CW-Generated Dataset.

Fig. 19: L∞ Norm for the L∞-Norm CW-Generated Dataset.

L∞-norm CW-generated dataset. The L∞ optimized by the
CW attacks has its mean as 0.70 and its variance as 0.161. Its
distribution is shown in Fig. 19. The number of unique features
changed is 122 and the number of average features changed
per datapoint is 115.10. The top 60 features are chosen by all
adversarial examples.

F. Discussion

Besides the detailed analysis above, we can reach the
following key findings when comparing the results among all
attacks examined:

• CW attacks seem to be less devastating than the other
three attacks. However, it was reported to be more robust
against some state-of-the-art defenses [11].

• The use of features in generating adversarial examples
are comparatively more imbalanced by JSMA attacks
than by the other three attacks. In particular, CW attacks
tend to indiscriminately use all features even if they

are optimized for L0. Consider the fact that it would
generally be easy for attackers to manipulate a small
subset of features than a large one. In this way, JSMA
attacks are more attractive for attackers.

• To illustrate the most used features across different at-
tacks, we compute the intersections of all combinations
of at least two attacks in Table XV. As the CW attacks
do not select features, we do not show the CW attacks
In Table XV. In Table XV, the upper right cells which
are colored in yellow are the intersection of the cor-
responding two attacks, the lower left cells which are
colored in blue are the intersection of the three attacks
excluding the corresponding two attacks, and the triangle
cells which are colored in green are the intersection of
the four attacks excluding the corresponding attacks. The
commonly used features for all the five attacks include
“dst bytes”, “dst host same src port rate”, “dst host -
srv count, count”, “src bytes”, “srv count”, “dst host -
rerror rate”, and “dst host same srv rate”. The inter-
sections in some way indicate the similarities among
different attacks. And the 7 common features imply the
intrinsic properties of any attacks targeting deep neural
networks. That is, the features can be considered as the
major contributors when attackers attempt to generate
adversarial samples.

VII. CONCLUSION

In this paper, we evaluated the state-of-the-art attack al-
gorithms in the deep learning based intrusion detection do-
main. We found the attack algorithms, which were originally
proposed to fool the deep learning based image classifier,
demonstrated different levels of effectiveness in the intrusion
detection domain. We identified the different feature usage
patterns for the attack algorithms. In practice, an adversary
has limited resources and capability to manipulate features.
So altering a large set of features is less practical for an
adversary in most cases. As JSMA attacks tend to heavily use
a limited set of features, they are relatively more attractive
for an adversary in terms of usability and applicability. We
also noted the varying degrees of significance across features
in terms of their rates of being selected to be perturbed by
an adversary. The most commonly used features indicate they
contribute more to the vulnerability of the deep learning based
intrusion detection and therefore they deserve more attention
and better protection in the detection and defense efforts.
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TABLE XV: Intersection Matrix of Top 60 Features Altered for Different Attacks.
The upper right cells which are colored in yellow are the intersection of the corresponding two attacks, the lower left cells which are colored in blue are the
intersection of the three attacks excluding the corresponding two attacks, and the triangle cells which are colored in green are the intersection of the four
attacks excluding the corresponding attacks.

JSMA Untargeted FGSM Least-Likely FGSM Random-Target FGSM DeepFool

JSMA service link, flag SF,
dst bytes, dst host -
same src port rate,
service pop 2,
dst host srv count,
count, service echo,
service login,
src bytes, srv count,
service name,
service ctf,
dst host rerror rate,
dst host same srv -
rate

service nntp,
flag RSTR,
srv diff host rate,
service domain u,
same srv rate,
dst host same src -
port rate, dst bytes,
dst host srv count,
dst host count,
count, service urh i,
service pm dump,
service gopher,
src bytes, srv count,
service remote job,
service pop 3,
service ntp u,
dst host rerror rate,
dst host same srv -
rate

service private,
dst host count,
serror rate, flag RSTOS0,
service remote job,
service ftp, urgent,
diff srv rate,
dst host same srv rate,
logged in, service imap4,
srv diff host rate,
same srv rate, dst -
host same src port rate,
dst host srv count,
count, flag SH,
dst host srv rerror rate,
duration, flag OTH, dst -
host srv diff host rate,
num failed logins,
rerror rate, hot,
service gopher,
src bytes, srv count,
wrong fragment,
dst host rerror rate,
service eco i, dst bytes,
dst host diff srv rate,
root shell, num compro-
mised, service pm dump

service private, dst host -
count, flag S3, flag RSTOS0,
service remote job, urgent,
diff srv rate, flag RSTO,
logged in, service nntp,
srv diff host rate,
service imap4, flag REJ,
dst host same srv rate,
same srv rate, dst -
host same src port rate,
dst host srv count, count,
flag SH, dst host srv -
rerror rate, duration,
flag RSTR, flag OTH,
dst host srv diff host rate,
num failed logins,
num shells, rerror rate,
src bytes, srv count, dst -
host rerror rate, dst bytes,
dst host diff srv rate,
num access files, service ftp

service private, service telnet,
dst host srv serror rate,
serror rate, flag RSTOS0,
service ftp, urgent,
diff srv rate, dst host -
same srv rate, logged in,
service nntp, service imap4,
dst host same src port rate,
dst host serror rate,
dst host srv count, count,
flag SH, dst host srv rerror -
rate, duration, flag RSTR,
dst host srv diff host rate,
num failed logins,
rerror rate, hot,
service gopher, src bytes,
srv count, wrong fragment,
dst host rerror rate,
service eco i, dst bytes,
dst host diff srv rate,
root shell, is guest login,
num compromised,
service pm dump

Untargeted
FGSM

service private,
service echo,
flag RSTOS0,
service name,
urgent, diff srv rate,
dst host same -
srv rate, logged in,
service imap4,
service link,
service http,
dst host same -
src port rate,
dst host srv count,
count, flag SH, dst -
host srv rerror rate,
duration, dst host -
srv diff host rate,
num failed logins,
service pop 2,
rerror rate,
service login,
src bytes,
srv serror rate,
srv count,
service ctf,
dst host rerror rate,
flag SF, dst bytes,
dst host diff srv -
rate, service ftp

service private,
flag RSTOS0,
urgent, diff srv rate,
dst host same -
srv rate, logged in,
service imap4,
dst host same src -
port rate, count,
dst host srv count,
flag SH, dst host -
srv rerror rate,
duration, dst host -
srv diff host rate,
num failed logins,
rerror rate,
src bytes, srv count,
dst host rerror rate,
dst bytes, dst -
host diff srv rate,
service ftp

service supdup,
dst host count,
service echo, srv -
rerror rate, service name,
service remote job, ser-
vice vmnet, service aol,
dst host same srv rate,
srv diff host rate,
service link,
same srv rate, dst -
host same src port rate,
dst host srv count,
count, service netbios ns,
service Z39 50,
service pop 2,
service rje, service login,
src bytes, service gopher,
srv count, service -
discard, service ctf,
dst host rerror rate,
service iso tsap,
service klogin,
flag SF, dst bytes,
service hostnames,
service pm dump

service supdup, service time,
dst host count, service echo,
service name, service vmnet,
service remote job,
service aol, dst host -
same srv rate, service nntp,
srv diff host rate,
service link, same srv rate,
dst host same src port rate,
dst host srv count, count,
flag RSTR, service Z39 50,
service whois, service uucp,
service pop 2, service net-
bios ssn, service login,
src bytes, srv count,
service discard, service ctf,
dst host rerror rate, ser-
vice netstat, service iso tsap,
service klogin, flag SF,
dst bytes, is host login,
service hostnames

service echo, srv rerror -
rate, service name,
dst host same srv rate,
service nntp, service link,
dst host same src port rate,
dst host srv count,
count, service netbios ns,
flag RSTR, service whois,
service pop 2, service uucp,
service rje, service mtp,
src bytes, service gopher,
srv count, service daytime,
service login, service ctf,
service printer, dst -
host rerror rate, flag SF,
dst bytes, service http 2784,
service pm dump
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service nntp, flag RSTR,
service link, flag SF,
service whois, dst host -
same src port rate,
service pop 2,
service uucp, dst bytes,
dst host srv count,
count, service echo,
service login,
src bytes, srv count,
service name, service ctf,
dst host rerror rate,
dst host same srv rate

service private,
flag RSTOS0,
urgent, diff srv rate,
dst host same srv rate,
logged in, service nntp,
service imap4, dst -
host same src port rate,
count, dst host srv count,
flag SH, dst host srv -
rerror rate, duration,
flag RSTR, dst host -
srv diff host rate,
num failed logins,
rerror rate, src bytes,
srv count, dst host -
rerror rate, dst bytes,
dst host diff srv rate,
service ftp

service nntp,
flag RSTR,
dst bytes, dst -
host same -
src port rate,
count, dst -
host srv count,
src bytes,
srv count,
dst host -
rerror rate,
dst host -
same srv rate

service private, service -
supdup, dst host count,
service echo, service name,
service vmnet, flag RSTOS0,
service remote job, urgent,
protocol udp, service aol,
diff srv rate, logged in,
dst host same srv rate, srv -
diff host rate, service link,
service imap4, same srv rate,
dst host same src port rate,
service http, dst host -
srv count, count, flag SH,
dst host srv rerror rate,
duration, service kshell,
flag OTH, dst host srv diff -
host rate, service Z39 50,
num failed logins,
service pop 2, rerror rate,
service login, src bytes,
srv serror rate, srv count,
service discard, service ctf,
dst host rerror rate,
service iso tsap, service klo-
gin, flag SF, dst bytes,
dst host diff srv rate,
service hostnames,
service ftp

service private, service echo,
serror rate, srv rerror rate,
service name, flag RSTOS0,
service ftp, urgent, diff srv -
rate, dst host same srv rate,
logged in, service imap4,
service link, service http,
dst host same src port rate,
dst host srv count,
count, flag SH,
dst host srv rerror rate,
service netbios ns, duration,
dst host srv diff host rate,
num failed logins, service -
pop 2, service rje, rerror rate,
hot, service gopher,
src bytes, srv serror rate,
srv count, service login,
wrong fragment, service ctf,
dst host rerror rate, service -
eco i, flag SF, dst bytes,
dst host diff srv rate,
root shell, service harvest,
land, num compromised,
service pm dump

Random-
Target
FGSM

service link, flag SF,
dst bytes, dst host -
same src port rate,
service netbios ns,
service pop 2, service rje,
dst host srv count, count,
service pm dump, ser-
vice echo, service gopher,
src bytes, service login,
srv count, srv rerror rate,
service name, service ctf,
dst host rerror rate,
dst host same srv rate

service private,
serror rate, flag RSTOS0,
service ftp, urgent,
diff srv rate,
dst host same srv rate,
logged in, service imap4,
dst host same src -
port rate, count, dst -
host srv count, flag SH,
dst host srv rerror rate,
duration, dst host -
srv diff host rate,
num failed logins,
hot, rerror rate,
service gopher,
src bytes, srv count,
wrong fragment,
dst host rerror rate,
service eco i, dst bytes,
dst host diff srv rate,
root shell, num compro-
mised, service pm dump

service nntp,
dst bytes, dst -
host same -
src port rate,
dst host -
same srv rate,
count, dst -
host srv count,
service gopher,
src bytes,
srv count,
service -
pm dump,
dst host -
rerror rate,
flag RSTR

dst bytes, dst host -
same src port rate,
dst host srv count, count,
service gopher, src bytes,
srv count, service pm dump,
dst host rerror rate,
dst host same srv rate

service private, service echo,
flag RSTOS0, service name,
urgent, diff srv rate,
dst host same srv rate,
logged in, service nntp,
service imap4, service link,
service http, dst host same -
src port rate, dst host -
srv count, count, flag SH,
dst host srv rerror rate,
duration, flag RSTR,
dst host srv diff host rate,
num failed logins,
service whois, service pop 2,
service uucp, rerror rate,
service login, src bytes,
srv serror rate, srv count,
service ctf, dst host rerror -
rate, flag SF, dst bytes,
dst host diff srv rate,
service ftp

DeepFool service supdup,
dst host count, ser-
vice echo, service name,
service vmnet, service -
remote job, service aol,
dst host same srv rate,
srv diff host rate, ser-
vice link, same srv rate,
dst host same src port -
rate, dst host srv count,
count, service Z39 50,
service pop 2,
service login, src bytes,
srv count, service -
discard, service ctf,
dst host rerror rate,
service iso tsap,
service klogin,
flag SF, dst bytes,
service hostnames

service private, dst -
host count, flag RSTOS0,
service remote job,
urgent, diff srv rate,
dst host same srv rate,
logged in, service imap4,
srv diff host rate,
same srv rate, dst -
host same src port rate,
count, dst host srv count,
flag SH, dst host srv -
rerror rate, duration,
flag OTH, dst host -
srv diff host rate,
num failed logins,
rerror rate, src bytes,
srv count, dst host -
rerror rate, dst bytes,
dst host diff srv rate,
service ftp

service nntp,
srv diff -
host rate,
same srv rate,
dst host -
same src -
port rate,
dst bytes,
dst host -
same srv rate,
count,
dst host count,
dst host -
srv count,
src bytes,
srv count,
service re-
mote job,
dst host -
rerror rate,
flag RSTR

srv diff host rate, dst bytes,
dst host same src port rate,
same srv rate, count,
dst host count, dst host -
srv count, service gopher,
src bytes, srv count,
service remote job,
service pm dump,
dst host rerror rate,
dst host same srv rate

srv diff host rate,
same srv rate, dst host -
same src port rate, dst bytes,
count, dst host count,
dst host srv count,
src bytes, srv count,
service remote job,
dst host rerror rate,
dst host same srv rate
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