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Abstract—Economic and convenience benefits of 

interconnectivity drive current explosive emergence and growth of 

networked systems.  However, as recent catastrophic contagious 

failures in numerous large scale networked infrastructures 

demonstrated, these benefits of interconnectivity are inherently 

associated with various risks, including risk of undesirable 

contagion.  Current research on network formation by contagion 

risk averse agents, which analyzes Nash or some other game-

theoretic equilibrium notion of the corresponding game, suffers 

from interrelated problems of intractability and 

oversimplification.   We argue that these problems can be 

alleviated with dynamic view, which assumes logit responses by 

strategic agents with utilities quantifying multiple competing 

incentives.  While this approach naturally incorporates practically 

critical assumption of bounded rationality, it also allows for 

leveraging a vast body of results on network formation, e.g., 

preferential attachment in growing networks.      
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I.  INTRODUCTION 

Modeling network formation by strategic agents/nodes 

having dual incentives for interconnectivity and contagion risk 

avoidance is a highly relevant and challenging problem.  The 

relevancy is due to numerous recent systemic failures in various 

networked infrastructures.  The challenges are due to non-

trivial interactions between interconnectivity and contagion: 

depending on network density and contagion mechanism, 

interconnectivity may either alleviates or suppress contagion 

[1].  We follow a conventional modeling of rational agents with 

multiple and probably competing incentives by the 

corresponding utility function.  However, instead of identifying 

the result of agents’ behavior with the corresponding game-

theoretic equilibrium, e.g., Nash equilibrium, we propose 

learning/evolutionary dynamic modeling. 

Our contention is that this approach overcomes interrelated 

limitations of oversimplification and intractability of the 

conventional approach.  We illustrate this thesis by 

demonstrating tractability of incorporating practically 

important aspect of bounded rationality into agent behavior.  

Considering growing network, we follow conventional 

modelling of boundedly rational agents by logit response 

dynamics [2].  Tractability of this approach is due to the logit 

response dynamics takes form of generalized preferential 

attachment [3], which allows one to leverage an extensive body 

results on preferential attachment models of growing models.  

Note that the same is true for rewriting models for networks of 

fixed size.  Section II proposes a model for network formation 

by contagion averse agents, and section III briefly discusses the 

interplay between the contagion and network evolution. 

II.  MODEL 

Consider a growing network, where nodes arriving at 

discreate moments 1,2,..t   make decision on connecting to 

an existing node n  of degree d  in attempt to maximize utility 

                  ( ) (1 ) lnd n n du h    ,                                     (1) 

where 1n   if node n  is infected and 0n   otherwise, 

1d   is an increasing function of 1,2,..d  , and parameter 

1h   characterizes tradeoff between incentive for 

connectivity and contagion avoidance.  Due to our assumption 

1h  , decision of an arriving node to connect to an existing 

infected node of degree d  results not only in loss of the utility 

of connectivity but also in additional loss ( 1) ln dh  .  Thus, 

connectivity to a high degree node is a high risk high potential 

reward for an arriving node.   

For brevity we assume time scale separation: contagion 

develops much faster than new nodes arrive, and thus network 

formation is driven by the averaged utility (1): ( )d nu  , where 

[ ]n nE   is node n  probability of being infected, given the 

network.  We also assume that prior to linking to some node n , 

an arriving node is aware of the infection expectation 
n , but 

not of the actual infection status n .  Following conventional 

approach, we model bounded rationality by assuming that an 

arriving node immediately develops a fixed number 1m   of 

connections to already existing nodes 1,.., Mn n .  All these 

nodes 1,.., mn n n  are selected independently from each 

other with logit probabilities [2]: 
1~ exp[ ( )]

nn d nT u 
, 

where nd  is node n  degree, and “temperature” 0T   

characterizes agents’ rationality: 0T   corresponds to 
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complete rationality and T   corresponds to complete 

randomness.   

In the spirit of logit response, we assume that if all m  initial 

links resulted in connection to uninfected nodes 0n  , 

1,.., mn n n , with probability   one more connection is 

established to an existing node 1mn   selected with probabilities 

(2).  Otherwise, i.e., if 
1 ,..,

(1 ) 1
m

nn n n



  , the process of 

developing new connections for the arriving node stops.  If 

1
0

mn



 , then with probability   one more connection is 

established to an existing node 2mn   selected with probabilities 

(2).  Otherwise, i.e., 
1

1
mn



 , the process of developing new 

connections for this arriving node terminates. This process 

continues until the number of connections reaches its maximum 

for a given arriving node M m .  Since we are interested in 

asymptotic behavior as number of nodes N , we assume 

N M . 

III. SOME IMPLICATIONS 

Assuming 
d d   , 0   in (1), we obtain the following 

logit attachment probabilities to a node of degree i : 

 
1

(1 ) (1 )T T

i i i j jj
N h i N h j   


   ,              (2) 

where dN  is the number of existing nodes of degree d .  In a 

case of contagion indifferent agents 0h  , attachment 

probabilities (2) produce conventional preferential attachment 

model, which favors connectivity to high degree nodes and 

promotes “rich get richer” phenomenon [3].  As parameter 

0h   increases, attachment probabilities (2) also promote low 

risk of infection.  Network evolution, driven by attachment 

probabilities (2), depends on the specific contagion mechanism. 

To illustrate the proposed model, consider growing network 

vulnerable to Susceptible-Infected-Susceptible (SIS) infection.  

Once node n  becomes infected, it spreads infection to each of 

its neighboring nodes j  at fixed rate 0 .  Node recovery 

time is distributed exponentially with average i , where i  is 

node degree.  It is known [4] that SIS model is infection free if 

1   , and has finite portion of nodes persistently infected 

otherwise, where   is the Perron-Frobenius (P-F) eigenvalue 

of matrix , 1( )Nn nk n k    , and 1nk   if nodes n  and k  

are connected by a link, and 0nk   otherwise. 

Figure 1 shows phase diagram of joint network evolution and 

infection spreading in variables ( , )aved  , where aved  is the 

average node degree, and   is the average portion of infected 

nodes.  In “fast time scale,” SIS infection reaches “metastable 

equilibrium” 0ABCDEF.  Then in “slow time scale” network 

evolves along curve 0ABCDEF, finally reaching equilibrium 
* *( , )aved   at point C. 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  Phase diagram: network density vs. contagion risk 

 

Figure 2 shows result of the network evolution in “slow time 

scale” vs. infection propagation rate  .   

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  Network density vs. contagion risk tradeoff 

 

Curves 
*( )   and 

* ( )aved   demonstrate tradeoff between 

systemic risk of infection on the one hand and network density 

on the other hand.  Increase in the infection propagation rate  , 

causes decrease in the equilibrium average node degree 
* ( )aved   and increase in the equilibrium average portion of 

infected nodes 
*( )  .  Note that 

*( )   grows slower than  

average portion of infected nodes in a fixed network 

( , )aved   due to decrease in the equilibrium density 

* ( )aved   with increase in  .  Finally note that models with 

strategic node aware of actual infection status of existing nodes, 

may produce more complex evolutionary dynamics. 
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