
1 
 

Microscopic origin of the chiroptical response of optical 

media 
Matthew S. Davis1, 2, 3*, Wenqi Zhu1, 2, Jay K. Lee3, Henri J. Lezec1 and Amit Agrawal1, 2* 
1Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, 
MD 20899 USA 
2Maryland NanoCenter, University of Maryland, College Park, MD 20742 USA 
3Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY 13244 USA 

*Corresponding authors: Email: matthew.davis@nist.gov; amit.agrawal@nist.gov 

 

 

One Sentence Summary: A generalized model framework for the design and study of chiroptical systems. 

 

The potential for enhancing the optical activity of natural chiral media using engineered 

nanophotonic components has been central in the quest towards developing next-generation 

circular-dichroism spectroscopic techniques. Through confinement and manipulation of optical 

fields at the nanoscale, ultrathin flat optical elements composed of an array of metallic or dielectric 

nanostructures have enabled a path towards achieving orders of magnitude enhancements in the 

chiroptical response. Here, we develop a model framework to describe the underlying physics 

governing the origin of chiroptical response in optical media. The model identifies optical activity 

to fundamentally originate from electromagnetic coupling to the hybridized eigen-states of a 

coupled electron-oscillator system, whereas differential near-field absorption of opposite 

handedness light, though resulting in a far-field chiroptical response, is shown to have incorrectly 

been identified as optical activity. We validate the model predictions using experimental 

measurements, and show it to also be consistent with observations in the literature. The work 

provides a generalized framework for the design and study of chiroptical systems. 
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Introduction 

Chirality is the geometric property of an object being non-superimposable on its mirror image along any 

symmetry axis, and is ubiquitous in the natural world. For example, sugars, proteins, and deoxyribonucleic 

acids are chiral molecules essential to the functioning and continuation of biological processes. The two 

variants of a chiral molecule, known as enantiomers, are chemically identical but structured in either a left 

or a right-handed arrangement. Biological systems on Earth have evolved to prefer left-handed enantiomers 

– a property referred to as homochirality (1). A comprehensive understanding of the evolutionary 

mechanisms responsible for homochirality remains elusive, but investigations are yielding insights into the 

origins of life on Earth (2) and even in the search for extraterrestrial life (3). Many biochemical processes, 

to function correctly, also require a particular handedness enantiomer. This is observed in the metabolism 

of pharmaceuticals such as thalidomide (4) and penicillamine (5) wherein one enantiomer produces 

medicinal effects and the other toxicity. Thus, enantiomer discrimination techniques such as circular 

dichroism (CD) spectroscopy are essential for minimizing the toxic effects of medications (6, 7), developing 

effective treatments for diseases (8, 9), and probing the nature of chiral systems (10). In addition to 

enantiomer discrimination, CD spectroscopy also provides information on protein secondary structures 

crucial to understanding protein folding (11, 12). This understanding benefits the development of treatments 

for several deadly diseases such as Alzheimer’s, Parkinson’s, and some cancers (13). However, the 

inherently weak CD response from natural molecular systems coupled with the limited sensitivity of 

conventional CD spectroscopic techniques have placed an upper-limit on the overall detection sensitivity. 

In recent years, engineered ultrathin nanoscale optical devices, composed of an array of metallic or 

dielectric nanostructures, have been used to enhance the CD response of natural chiral media by several 

orders in magnitude, suggesting the possibility of next-generation CD spectroscopic techniques with 

significantly improved measurement sensitivities (14, 15). However, the underlying phenomena governing 

the microscopic origin of the chiroptical response from nano-optical devices is still not well understood. 

Here, we present, and experimentally validate, a generalized model that identifies the fundamental origin 
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of optical activity in a chiral medium, and unifies the distinct chiroptical phenomenon observed in literature 

under a single theoretical framework. 

Circular dichroism is a measure of the optical activity in a chiroptical medium, and is characterized 

by the differential absorption between right and left circularly polarized light (RCP and LCP, respectively). 

Since chiral media exhibits circular birefringence, optical activity can also be characterized by the degree 

of rotation of a linearly polarized light as it propagates through it – a phenomenon commonly referred to as 

optical rotary dispersion (ORD). CD and ORD are both synonymous with optical activity since they 

originate from the same quantum mechanical phenomenon, and are related to each other through the 

Kramers-Kronig transformation (16). We define a generalized far-field chiroptical (CO) response of an 

optical medium as the differential transmission (or reflection) response to RCP and LCP source fields, 

quantitatively expressed for transmission measurements as CO(𝜔𝜔) = 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔)− 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿 (𝜔𝜔), where 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 

(𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿) is the spectral intensity transmission for illumination with a RCP (LCP) light. As we demonstrate in 

this paper, a far-field CO response does not always correspond to CD, and can originate from other 

microscopic phenomenon not related to optical activity. Hence, careful consideration must be given to the 

interpretation of CO measurements (17-19).  

We identify three primary CO response types that are experimentally characterized and theoretically 

studied within the framework of an all-purpose, generalized coupled-oscillator model described in the next 

section. We demonstrate optical activity to fundamentally originate from the accessibility of RCP and LCP 

light to the hybridized energy-shifted eigen states of a coupled electron-oscillator system – a result that is 

consistent with the predictions of the Born-Kuhn model (20). Subtracting the two energy-shifted spectral 

responses from one another, upon illumination with RCP and LCP light respectively, results in a far-field 

CO response associated with optical activity, which we hereafter refer to as COOA. Differential absorption 

to opposite handedness light, not related to optical activity, but originating from near-field absorption 

modes in planar chiral media has also been shown to produce a far-field CO response, which we refer to as 

COabs (21, 22). In contrast to COOA, COabs results from a difference in amplitudes between the transmission 
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(or reflection) spectra without any associated spectral shift when subjected to illumination with opposite 

handedness light (23). Finally, by employing birefringence in an all-dielectric metamaterial acting as a 

uniaxial or a biaxial medium, a strong far-field CO response has been observed through spatial filtering of 

either the RCP or the LCP light (19, 24, 25). This response type, referred to here as COaxial, is also not 

associated with optical activity in the underlying optical medium. Since the three response types can be 

present in a single CO measurement, we express the total chiroptical response of optical media as CO = 

COOA + COabs + COaxial where COOA ≠ COabs ≠ COaxial. Note that these phenomena have been separately 

observed experimentally (20-27), and the former two are analytically described in previous works (20, 22, 

28) – however, independent models have been used to describe them without any clear relation between 

them. No analytical model has yet successfully described the various types of CO responses observed in 

literature under a single comprehensive theoretical framework. The model developed here provides an 

analytical foundation for a generalized CO response from an optical medium, and suggests easy-to-

implement methods for identifying the presence of, and distinguishing between, the distinct phenomena 

present in a CO measurement that may or may not originate from optical activity. The model predictions 

are experimentally validated using far-field CO measurements on engineered nanoscale plasmonic devices 

at optical frequencies, and are shown to also be consistent with observations in the literature.  

 

Results 

The Generalized Coupled Oscillator Model 

We model the microscopic chiroptical response of optical media at the molecular unit-cell level using two 

lossy coupled electron oscillators. The two oscillators are assumed to be arbitrarily located and oriented 

relative to each other, and interacting with an arbitrarily polarized light at oblique incidence with electric 

field 𝐸𝐸�⃑ 0𝑒𝑒𝑖𝑖�𝑘𝑘
�⃑ ∙𝑟𝑟−𝜔𝜔𝜔𝜔� (Figure 1A), where 𝑘𝑘�⃑  and 𝜔𝜔 are the wavevector and frequency of the incident light, 

respectively. These coupled oscillators constitute a single molecular unit-cell described by a pair of fully 

vectoral second-order coupled differential equations: 



5 
 

𝜕𝜕𝑡𝑡2𝑢𝑢�⃑ 1 + 𝛾𝛾1𝜕𝜕𝑡𝑡𝑢𝑢�⃑ 1 + 𝜔𝜔12𝑢𝑢�⃑ 1 + 𝜁𝜁2,1𝑢𝑢2𝑢𝑢�1 = −
𝑒𝑒
𝑚𝑚∗ �𝐸𝐸�⃑ 0 ∙ 𝑢𝑢�1�𝑢𝑢�1𝑒𝑒

𝑖𝑖�𝑘𝑘�⃑ ∙𝑟𝑟1−𝜔𝜔𝜔𝜔�                              (1.1) 

𝜕𝜕𝑡𝑡2𝑢𝑢�⃑ 2 + 𝛾𝛾2𝜕𝜕𝑡𝑡𝑢𝑢�⃑ 2 + 𝜔𝜔2
2𝑢𝑢�⃑ 2 + 𝜁𝜁1,2𝑢𝑢1𝑢𝑢�2 = −

𝑒𝑒
𝑚𝑚∗ �𝐸𝐸�⃑ 0 ∙ 𝑢𝑢�2�𝑢𝑢�2𝑒𝑒

𝑖𝑖�𝑘𝑘�⃑ ∙𝑟𝑟2−𝜔𝜔𝜔𝜔�                             (1.2) 

Each oscillator 𝑢𝑢�⃑ 𝑖𝑖 is characterized by an oscillation amplitude 𝑢𝑢𝑖𝑖(𝜔𝜔, 𝑡𝑡), resonant frequency 𝜔𝜔𝑖𝑖, damping 

factor 𝛾𝛾𝑖𝑖, and cross-coupling strength 𝜁𝜁𝑖𝑖,𝑗𝑗(𝜔𝜔), representing the electromagnetic interaction between the 

oscillators, for 𝑖𝑖, 𝑗𝑗 = 1, 2. The oscillator locations are given by 𝑟𝑟𝑖𝑖 = 𝑟𝑟0 + 𝛿𝛿𝑟𝑟𝑖𝑖, with 𝛿𝛿𝑟𝑟𝑖𝑖 being the oscillator 

displacement from the molecular center of mass 𝑟𝑟0 (Figures 1B-D). Furthermore, the electron-oscillators 

are described by a charge 𝑒𝑒 and an effective mass 𝑚𝑚∗.  

Inserting the time harmonic expressions 𝑢𝑢�⃑ 1(𝜔𝜔, 𝑡𝑡) = 𝑢𝑢�1𝑢𝑢1𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑢𝑢�⃑ 2(𝜔𝜔, 𝑡𝑡) = 𝑢𝑢�2𝑢𝑢2𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 into 

equations (1.1-1.2) and using the substitution Ω𝑘𝑘 = �𝜔𝜔𝑘𝑘
2 − 𝜔𝜔2 − 𝑖𝑖𝛾𝛾𝑘𝑘𝜔𝜔  for 𝑘𝑘 = 1, 2 gives closed form 

solutions for the two oscillation amplitudes expressed as (Supplementary Section S1): 

𝑢𝑢1(𝜔𝜔) =
−𝑒𝑒
𝑚𝑚∗ �

Ω22�𝐸𝐸�⃑ 0 ∙ 𝑢𝑢�1�𝑒𝑒𝑖𝑖𝑘𝑘
�⃑ ∙𝛿𝛿𝑟𝑟1 − 𝜁𝜁2,1�𝐸𝐸�⃑ 0 ∙ 𝑢𝑢�2�𝑒𝑒𝑖𝑖𝑘𝑘

�⃑ ∙𝛿𝛿𝑟𝑟2

Ω12Ω22 − 𝜁𝜁1,2𝜁𝜁2,1
� 𝑒𝑒𝑖𝑖𝑘𝑘�⃑ ∙𝑟𝑟0                                   (2.1) 

𝑢𝑢2(𝜔𝜔) =
−𝑒𝑒
𝑚𝑚∗ �

Ω12�𝐸𝐸�⃑ 0 ∙ 𝑢𝑢�2�𝑒𝑒𝑖𝑖𝑘𝑘
�⃑ ∙𝛿𝛿𝑟𝑟2 − 𝜁𝜁1,2�𝐸𝐸�⃑ 0 ∙ 𝑢𝑢�1�𝑒𝑒𝑖𝑖𝑘𝑘

�⃑ ∙𝛿𝛿𝑟𝑟1

Ω12Ω22 − 𝜁𝜁1,2𝜁𝜁2,1
� 𝑒𝑒𝑖𝑖𝑘𝑘�⃑ ∙𝑟𝑟0                                  (2.2) 

Using equations (2.1) and (2.2), the medium’s current density response 𝐽𝐽(𝜔𝜔, 𝑡𝑡) to the driving source field 

can be calculated as (Supplementary Section S2):  

𝐽𝐽(𝜔𝜔, 𝑡𝑡) =
−𝑖𝑖𝜖𝜖0𝜔𝜔𝜔𝜔𝑝𝑝2

Ω12Ω22 − 𝜁𝜁1,2𝜁𝜁2,1
� �Ω22�𝐸𝐸�⃑ 0 ∙ 𝑢𝑢�1� − 𝜁𝜁2,1�𝐸𝐸�⃑ 0 ∙ 𝑢𝑢�2�𝑒𝑒−𝑖𝑖𝑘𝑘

�⃑ ∙(𝛿𝛿𝑟𝑟1−𝛿𝛿𝑟𝑟2)� 𝑢𝑢�1 +                                    (3)

�Ω12�𝐸𝐸�⃑ 0 ∙ 𝑢𝑢�2� −  𝜁𝜁1,2�𝐸𝐸�⃑ 0 ∙ 𝑢𝑢�1�𝑒𝑒𝑖𝑖𝑘𝑘
�⃑ ∙(𝛿𝛿𝑟𝑟1−𝛿𝛿𝑟𝑟2)� 𝑢𝑢�2� 𝑒𝑒𝑖𝑖�𝑘𝑘

�⃑ ∙𝑟𝑟−𝜔𝜔𝜔𝜔�
 

where 𝜔𝜔𝑝𝑝 = �𝑛𝑛𝑒𝑒2 𝑚𝑚∗𝜀𝜀0⁄  is the plasma frequency, 𝜀𝜀0 is the permittivity of free-space, and 𝑛𝑛 is the 

molecular unit-cell density. By rearranging equation (3), the current density response can be simplified as 

𝐽𝐽(𝜔𝜔, 𝑡𝑡) = −𝑖𝑖𝑖𝑖𝜀𝜀0𝝌𝝌𝐸𝐸�⃑ 0𝑒𝑒𝑖𝑖�𝑘𝑘
�⃑ ∙𝑟𝑟−𝜔𝜔𝜔𝜔� showing 𝐽𝐽 to be proportional to the product of the incident source field with 

a susceptibility tensor 𝝌𝝌 containing elements 𝜒𝜒𝑖𝑖,𝑗𝑗 with 𝑖𝑖, 𝑗𝑗 = x, y, z. The susceptibility tensor can be 

expressed in terms of a modified-dielectric tensor 𝝐𝝐(𝑘𝑘,𝜔𝜔) and a non-locality tensor 𝚪𝚪(𝑘𝑘,𝜔𝜔) as 𝝌𝝌(𝑘𝑘,𝜔𝜔) =
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𝝐𝝐(𝑘𝑘,𝜔𝜔) + 𝑖𝑖𝑖𝑖𝚪𝚪(𝑘𝑘,𝜔𝜔), where the modified-dielectric tensor is related to the dielectric tensor as 𝝐𝝐(𝑘𝑘,𝜔𝜔) = 

𝜺𝜺(𝑘𝑘,𝜔𝜔) − 𝜤𝜤 (29). The non-locality tensor has previously been identified as related to the optical activity by 

the relations ORD = 𝜔𝜔𝜔𝜔𝜔𝜔{Γ} 2𝑐𝑐⁄  and CD =  2𝜔𝜔𝜔𝜔𝜔𝜔{Γ} 𝑐𝑐⁄ , where 𝑐𝑐 is the speed of light in free-space (20). 

Full expressions for 𝝌𝝌(𝑘𝑘,𝜔𝜔) along with derivations of expressions for 𝝐𝝐(𝑘𝑘,𝜔𝜔) and 𝚪𝚪(𝑘𝑘,𝜔𝜔) are given in 

Supplementary Section S3.  

Since the relationship between the far-field and near-field CO response is typically approximated as 

𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿 ∝ �𝐽𝐽𝑅𝑅𝑅𝑅𝑅𝑅�
2
− �𝐽𝐽𝐿𝐿𝐿𝐿𝐿𝐿�

2
, we express the CO response calculated using the model as CO =

�𝐽𝐽𝑅𝑅𝑅𝑅𝑅𝑅�
2
− �𝐽𝐽𝐿𝐿𝐿𝐿𝐿𝐿�

2
, where 𝐽𝐽𝑅𝑅𝑅𝑅𝑅𝑅 and 𝐽𝐽𝐿𝐿𝐿𝐿𝐿𝐿 indicate the current density response of the optical medium to RCP 

and LCP light, respectively. Expanding this term results in a concise expression for CO given as 

(Supplementary Section S4): 

CO 𝜀𝜀02𝜔𝜔2⁄ = (𝜒𝜒𝑛𝑛 × 𝜒𝜒𝑛𝑛∗) ∙ �𝐸𝐸�⃑ 0 × 𝐸𝐸�⃑ 0∗�                                                          (4) 

Equation (4) is expressed using the Einstein summation notation summed over 𝑛𝑛 = x, y, z where each 

susceptibility vector 𝜒𝜒𝑛𝑛 contains elements 𝜒𝜒𝑛𝑛,𝑘𝑘 for 𝑘𝑘 = x, y, z and is related to the dielectric and non-locality 

vectors by 𝜒𝜒𝑛𝑛 = 𝜖𝜖𝑛𝑛 + 𝑖𝑖𝑖𝑖Γ⃑𝑛𝑛 (29). Note that the expression for CO is non-zero only if both (i) the incident 

source field is elliptically or circularly polarized, and (ii) the susceptibility terms are complex which occurs 

in the presence of either damping in the optical medium, 𝛾𝛾1 or 𝛾𝛾2 ≠ 0, or spatial separation between the 

oscillators along the direction of source propagation, 𝑘𝑘�⃑ ∙ (𝛿𝛿𝑟𝑟1 − 𝛿𝛿𝑟𝑟2) ≠ 0 (Supplementary Section S3). 

Setting the two oscillators’ orientation parallel to the x-y plane (𝜃𝜃1 = 𝜃𝜃2 = 𝜋𝜋 2⁄ ) and inserting this into 

equation (4) gives CO = 𝜀𝜀02𝜔𝜔2�(𝜖𝜖𝑛𝑛 × 𝜖𝜖𝑛𝑛∗) + 𝑖𝑖𝑖𝑖�Γ⃑𝑛𝑛 × 𝜖𝜖𝑛𝑛∗ − 𝜖𝜖𝑛𝑛 × Γ⃑𝑛𝑛∗�� ∙ �𝐸𝐸�⃑ 0 × 𝐸𝐸�⃑ 0∗�. This expression can be 

rewritten as the sum of two components, CO = ∆𝐴𝐴 = ∆𝐴𝐴𝜖𝜖,𝜖𝜖 + ∆𝐴𝐴Γ,ϵ, where: 

∆𝐴𝐴𝜖𝜖,𝜖𝜖 𝜖𝜖02𝜔𝜔2⁄ = (𝜖𝜖𝑛𝑛 × 𝜖𝜖𝑛𝑛∗) ∙ �𝐸𝐸�⃑ 0 × 𝐸𝐸�⃑ 0∗�                                                          (5.1) 

∆𝐴𝐴Γ,𝜖𝜖 𝜖𝜖02𝜔𝜔2⁄ = 2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�Γ⃑𝑛𝑛 × 𝜖𝜖𝑛𝑛∗� ∙ �𝐸𝐸�⃑ 0 × 𝐸𝐸�⃑ 0∗�                                                   (5.2)  

Here, ∆𝐴𝐴𝜖𝜖,𝜖𝜖 is determined by the source interaction with the dielectric tensor, and ∆𝐴𝐴Γ,𝜖𝜖, by the source 

interaction with both the non-locality and dielectric tensors. In the limit where the spatial separation 
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between the oscillators is much smaller than the wavelength, 𝑘𝑘�⃑ ∙ (𝛿𝛿𝑟𝑟1 − 𝛿𝛿𝑟𝑟2) ≪ 1, equations (S12.1-S12.9) 

and (S13.1-S13.9) show that the dielectric tensor 𝝐𝝐(𝑘𝑘,𝜔𝜔) only depends on 𝜔𝜔 whereas the non-locality tensor 

𝚪𝚪(𝑘𝑘,𝜔𝜔) becomes directly proportional to 𝑘𝑘�. This suggests an interesting dichotomy: the response ∆𝐴𝐴𝜖𝜖,𝜖𝜖 is 

largely influenced by the source frequency corresponding to a temporal dispersion in the system, whereas 

∆𝐴𝐴Γ,𝜖𝜖 is influenced by the direction of the incident field corresponding to a spatial dispersion in the system. 

Consistent with this, we show the dependence of ∆𝐴𝐴𝜖𝜖,𝜖𝜖 on the angular separation between the oscillators in 

the direction of source electric-field rotation, and of ∆𝐴𝐴Γ,𝜖𝜖 on the separation between oscillators in the 

direction of the source propagation.  

By further simplification, equations (5.1-5.2) can be rewritten as (Supplementary Section S4): 

∆𝐴𝐴𝜖𝜖,𝜖𝜖 = 2𝜖𝜖02𝜔𝜔2|𝐸𝐸0|2 cos𝜃𝜃0 𝐼𝐼𝐼𝐼�𝜖𝜖𝑥𝑥𝑥𝑥∗ 𝜖𝜖𝑥𝑥𝑥𝑥 + 𝜖𝜖𝑦𝑦𝑦𝑦∗ 𝜖𝜖𝑦𝑦𝑦𝑦�                                 (6.1) 

∆𝐴𝐴Γ,𝜖𝜖 = 2𝜖𝜖02𝜔𝜔2|𝐸𝐸0|2 cos𝜃𝜃0 𝑅𝑅𝑅𝑅�𝑘𝑘��𝜖𝜖𝑥𝑥𝑥𝑥Γ𝑥𝑥𝑥𝑥∗ − 𝜖𝜖𝑥𝑥𝑥𝑥Γ𝑥𝑥𝑥𝑥∗ � + �𝜖𝜖𝑦𝑦𝑦𝑦Γ𝑦𝑦𝑦𝑦∗ − 𝜖𝜖𝑦𝑦𝑦𝑦Γ𝑦𝑦𝑦𝑦∗ ���                  (6.2) 

Note that, in the absence of damping, 𝜖𝜖𝑖𝑖,𝑗𝑗 = 𝜖𝜖𝑖𝑖,𝑗𝑗∗  for 𝑖𝑖, 𝑗𝑗 = x, y, equation (6.1) reduces to ∆𝐴𝐴𝜖𝜖,𝜖𝜖 = 0. 

Furthermore, for an isotropic medium the diagonal elements of the dielectric tensor are equal and the 

oscillator coupling is symmetric �𝜁𝜁1,2(𝜔𝜔) = 𝜁𝜁2,1(𝜔𝜔)� resulting in 𝜖𝜖𝑥𝑥𝑥𝑥 = 𝜖𝜖𝑦𝑦𝑦𝑦 and 𝜖𝜖𝑥𝑥𝑥𝑥 = 𝜖𝜖𝑦𝑦𝑦𝑦, respectively. 

Substituting these in equation (6.1), results in 𝐼𝐼𝐼𝐼�𝜖𝜖𝑥𝑥𝑥𝑥∗ 𝜖𝜖𝑥𝑥𝑥𝑥 + 𝜖𝜖𝑦𝑦𝑦𝑦∗ 𝜖𝜖𝑦𝑦𝑦𝑦� = 0, or equivalently ∆𝐴𝐴𝜖𝜖,𝜖𝜖 = 0. 

Therefore, both damping and anisotropy in an optical medium are necessary to achieve a ∆𝐴𝐴𝜖𝜖,𝜖𝜖 type 

chiroptical response. This conclusion is consistent with previous observation that absorption plays a critical 

role in generating a CO response (22, 23). Moreover, a CO response of the ∆𝐴𝐴𝜖𝜖,𝜖𝜖 type has also been 

observed in lossy two-dimensional anisotropic plasmonic media (21, 30). We associate ∆𝐴𝐴𝜖𝜖,𝜖𝜖 to the 

absorption based chiroptical response described earlier, COabs, noting again that this type of response is not 

related to optical activity. For the second response type, ∆𝐴𝐴Γ,𝜖𝜖, of equation (6.2) to be non-zero – a finite 

coupling between the oscillators is required, 𝜁𝜁1,2(𝜔𝜔) ≠ 0 and 𝜁𝜁2,1(𝜔𝜔) ≠ 0. Note that even for an isotropic 

medium with non-zero symmetric coupling �𝜁𝜁1,2(𝜔𝜔) = 𝜁𝜁2,1(𝜔𝜔)�, non-locality constants become Γ𝑥𝑥𝑥𝑥 =

Γ𝑦𝑦𝑦𝑦 = 0 and Γ𝑥𝑥𝑥𝑥 = −Γ𝑦𝑦𝑦𝑦 (Supplementary Section S3) resulting in a non-zero ∆𝐴𝐴Γ,𝜖𝜖 response. Hence 
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coupling between oscillators is a necessary condition to achieve ∆𝐴𝐴Γ,𝜖𝜖 type chiroptical response – a 

conclusion that is consistent with both the predictions of the Born-Kuhn model (20, 29), and with the 

treatment of bi-isotropic chiral media presented in ref. 31. We associate ∆𝐴𝐴Γ,𝜖𝜖 to the COOA type response 

described earlier which is fundamentally related to optical activity.  

Further insights into the ∆𝐴𝐴𝜖𝜖,𝜖𝜖 and ∆𝐴𝐴Γ,𝜖𝜖 response types can be achieved by expressing them in terms 

of the fundamental oscillator parameters of equations (1.1-1.2). By inserting expressions for the dielectric 

(equations S12.1-S12.9) and non-locality (equations S13.1-S13.9) constants into equations (6.1-6.2), and 

assuming 𝜙𝜙1 = 90° for simplicity, ∆𝐴𝐴𝜖𝜖,𝜖𝜖 and ∆𝐴𝐴Γ,𝜖𝜖 can be expressed as: 

∆𝐴𝐴𝜖𝜖,𝜖𝜖 = κ𝜔𝜔{[𝛾𝛾2(𝜔𝜔2 − 𝜔𝜔12)− 𝛾𝛾1(𝜔𝜔2 − 𝜔𝜔2
2)] sin𝜙𝜙2 +                                                                                 (7.1)

�𝛾𝛾2𝜁𝜁1,2 − 𝛾𝛾1𝜁𝜁2,1� cos�𝑘𝑘�⃑ ∙ (𝛿𝛿𝑟𝑟1 − 𝛿𝛿𝑟𝑟2)�� cos𝜙𝜙2
 

∆𝐴𝐴Γ,𝜖𝜖 = κ��𝜁𝜁2,1(𝜔𝜔2 − 𝜔𝜔12) + 𝜁𝜁1,2(𝜔𝜔2 − 𝜔𝜔2
2)� sin�𝑘𝑘�⃑ ∙ (𝛿𝛿𝑟𝑟1 − 𝛿𝛿𝑟𝑟2)�+                                                        (7.2)

𝜁𝜁1,2𝜁𝜁2,1 sin�2𝑘𝑘�⃑ ∙ (𝛿𝛿𝑟𝑟1 − 𝛿𝛿𝑟𝑟2)� sin𝜙𝜙2� cos𝜙𝜙2
 

where the multiplication factor κ is defined as: 

κ(ω) = 2𝜖𝜖02𝜔𝜔2𝜔𝜔𝑝𝑝4|𝐸𝐸0|2 cos𝜃𝜃0 �[(𝜔𝜔12 − 𝜔𝜔2) − 𝑖𝑖𝛾𝛾1𝜔𝜔][(𝜔𝜔2
2 − 𝜔𝜔2)− 𝑖𝑖𝛾𝛾2𝜔𝜔]− 𝜁𝜁1,2𝜁𝜁2,1�

2� . 

By allowing the two oscillators to have the same damping coefficient, 𝛾𝛾1 = 𝛾𝛾2 = 𝛾𝛾, and assuming the 

spatial separation between them to be much smaller than the wavelength, 𝑘𝑘�⃑ ∙ (𝛿𝛿𝑟𝑟1 − 𝛿𝛿𝑟𝑟2) ≪ 1, equations 

(7.1-7.2) reduce to:  

∆𝐴𝐴𝜖𝜖,𝜖𝜖 = κ𝜔𝜔𝜔𝜔(𝜔𝜔2
2 − 𝜔𝜔12) sin𝜙𝜙2 cos𝜙𝜙2 + 𝜔𝜔𝜔𝜔�𝜁𝜁1,2 − 𝜁𝜁2,1� cos𝜙𝜙2                                    (8.1) 

∆𝐴𝐴Γ,𝜖𝜖 = κ 𝑘𝑘�⃑ ∙ (𝛿𝛿𝑟𝑟1 − 𝛿𝛿𝑟𝑟2)�𝜁𝜁2,1(𝜔𝜔2 − 𝜔𝜔12) + 𝜁𝜁1,2(𝜔𝜔2 − 𝜔𝜔2
2) + 2𝜁𝜁1,2𝜁𝜁2,1 sin𝜙𝜙2� cos𝜙𝜙2               (8.2) 

We illustrate the behavior of these two CO response types in equations (8.1-8.2) by applying them to two 

Au nanocuboids, acting as oscillators, aligned parallel to the x-y plane (with 𝜙𝜙1 = 90° and 𝜙𝜙2 = 45°) 

excited with a source field normally incident on the structure at angles, 𝜃𝜃0 = 0° and 𝜃𝜃0 = 180° (Figure 2A). 

We assume the two Au nanocuboids, separated along the direction of source propagation (z) by a distance 

𝑑𝑑𝑧𝑧 = 𝑑𝑑1,𝑧𝑧−𝑑𝑑2,𝑧𝑧 = 200 nm and located at 𝑑𝑑1,𝑦𝑦 = 𝑑𝑑2,𝑥𝑥 = 100 nm, to exhibit resonance at wavelengths 𝜆𝜆1 =

750 nm and 𝜆𝜆2 = 735 nm with 𝜁𝜁1,2(𝜔𝜔1) = 𝜁𝜁2,1(𝜔𝜔2) = 1.6 × 1029 s−2. The following values for the 
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plasma frequency, 𝜔𝜔𝑝𝑝 = 1.37 × 1016 s−1, and damping coefficient,  𝛾𝛾 = 𝛾𝛾1 = 𝛾𝛾2 = 1.22 × 1014 s−1, for 

Au in the near-infrared region are used (32). ∆𝐴𝐴𝜖𝜖,𝜖𝜖 and ∆𝐴𝐴Γ,𝜖𝜖 plotted vs. incident wavelength 𝜆𝜆0 (Figures 

2B and 2C) for the two source angles 𝜃𝜃0 clearly illustrates the presence of an inversion in the sign of ∆𝐴𝐴𝜖𝜖,𝜖𝜖 

as 𝜃𝜃0 is rotated by 180°, which is consistent with equation (8.1) where ∆𝐴𝐴𝜖𝜖,𝜖𝜖(𝜃𝜃0 + 𝜋𝜋) = −∆𝐴𝐴𝜖𝜖,𝜖𝜖(𝜃𝜃0). 

Previous observations of inversion in the sign of far-field chiroptical response due to 𝜃𝜃0 rotation suggest an 

absence of optical activity in the underlying medium (21, 30), verifying our observations; whereas the lack 

of sign change in the ∆𝐴𝐴Γ,𝜖𝜖 due to 𝜃𝜃0 rotation, where ∆𝐴𝐴Γ,𝜖𝜖(𝜃𝜃0 + 𝜋𝜋) = ∆𝐴𝐴Γ,𝜖𝜖(𝜃𝜃0), is indicative of optical 

activity (30). The total response, ∆𝐴𝐴, plotted for 𝜃𝜃0 = 0° and 𝜃𝜃0 = 180°exhibits an asymmetric spectral 

lineshape due to the competing contributions from the ∆𝐴𝐴𝜖𝜖,𝜖𝜖 response, which exhibits a single-fold 

symmetric lineshape, and the ∆𝐴𝐴Γ,𝜖𝜖 response, which exhibits a two-fold symmetric lineshape (Figure 2D), 

indicating the presence of both COOA and COabs in the total chiroptical response.  

Analogous to the dependence of ∆𝐴𝐴𝜖𝜖,𝜖𝜖 and ∆𝐴𝐴Γ,𝜖𝜖 responses on 𝜃𝜃0, further insight can be achieved by 

analyzing the dependence of the chiroptical response on the azimuth angle 𝜙𝜙0 (for any 𝜃𝜃0, except at 𝜃𝜃0 =

0° and 180° where 𝜙𝜙0 is undefined). For an identical configuration of Figure 2A, ∆𝐴𝐴𝜖𝜖,𝜖𝜖 and ∆𝐴𝐴Γ,𝜖𝜖 plotted 

vs. incident wavelength 𝜆𝜆0 (Figure 2E-G) for two source azimuth angles 𝜙𝜙0 = 0° and 180° (at 𝜃𝜃0 =  45°) 

illustrates the presence of an inversion in the sign of ∆𝐴𝐴Γ,𝜖𝜖 instead, as 𝜙𝜙0 is rotated by 180°. This follows 

from equations (8.1-8.2) where ∆𝐴𝐴𝜖𝜖,𝜖𝜖(𝜙𝜙0 + 𝜋𝜋) = ∆𝐴𝐴𝜖𝜖,𝜖𝜖(𝜙𝜙0) and ∆𝐴𝐴Γ,𝜖𝜖(𝜙𝜙0 + 𝜋𝜋) = −∆𝐴𝐴Γ,𝜖𝜖(𝜙𝜙0), 

respectively. This inversion in the ∆𝐴𝐴Γ,𝜖𝜖 response can be further described by assuming 𝑑𝑑1,𝑧𝑧 = 𝑑𝑑2,𝑧𝑧 = 0 nm 

to make a two-dimensional structure wherein the spatial dispersion dependence 𝑘𝑘�⃑ ∙ (𝛿𝛿𝑟𝑟1 − 𝛿𝛿𝑟𝑟2) of equation 

(8.2) simplifies to 𝑘𝑘𝑘𝑘 sin𝜃𝜃0 (sin𝜙𝜙0 − cos𝜙𝜙0), for the two oscillators located equidistant from the origin 

(𝑑𝑑 = 𝑑𝑑1,𝑦𝑦 = 𝑑𝑑2,𝑥𝑥), demonstrating the dependence of ∆𝐴𝐴Γ,𝜖𝜖 on 𝜙𝜙0.  

In addition to the dependence of CO response on excitation direction, 𝜃𝜃0 and 𝜙𝜙0, we analyze its 

dependence on various oscillator parameters including the angular orientation between the two oscillators 

along the x-y plane, by varying angle 𝜙𝜙2 at 𝜙𝜙1 = 90°, and the difference between coupling terms 𝜁𝜁2,1(𝜔𝜔) −
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𝜁𝜁1,2(𝜔𝜔), oscillator frequencies ∆𝜔𝜔 = 𝜔𝜔1 − 𝜔𝜔2 and damping coefficients ∆𝛾𝛾 = 𝛾𝛾1 − 𝛾𝛾2. For this analysis, 

we assume the light to be normally incident (𝜃𝜃0 = 0°) on the two Au nanocuboids, of lengths 𝑙𝑙1and 𝑙𝑙2, that 

are aligned parallel to the x-y plane with 𝑑𝑑1,𝑦𝑦 = 𝑙𝑙1, 𝑑𝑑2,𝑥𝑥 =  𝑙𝑙2 and placed in a planar arrangement with 

𝑑𝑑1,𝑧𝑧 = 𝑑𝑑2,𝑧𝑧 = 0 nm. In such a planar configuration at normal incidence, 𝑘𝑘�⃑ ∙ (𝛿𝛿𝑟𝑟1 − 𝛿𝛿𝑟𝑟2) = 0, resulting in 

∆𝐴𝐴Γ,𝜖𝜖 = 0 (equation 8.2). Finally, by setting the two resonant wavelengths to be 𝜆𝜆1 = 750 nm and 𝜆𝜆2 =

735 nm (corresponding to ∆𝜔𝜔 𝛾𝛾⁄ = 0.42), and assuming 𝜁𝜁1,2(𝜔𝜔) = 𝜁𝜁2,1(𝜔𝜔), the dependence of ∆𝐴𝐴𝜖𝜖,𝜖𝜖 on 

𝜙𝜙2 exhibits a peak response at 𝜙𝜙2 = 45° (Figure 3A). Note that this observation that a planar two-

dimensional plasmonic structure can exhibit a COabs type chiroptical response, not related to optical 

activity, is consistent with ref. 30, and is also in agreement with the findings of Eftekhari and Davis (21). 

In their work, they also note, without explanation, an experimental finding of a peak CO response occurring 

at 𝜙𝜙2 = 52° rather than the expected 𝜙𝜙2 = 45°. A simple inclusion of a non-zero coupling difference, 𝜁𝜁2,1 −

𝜁𝜁1,2, between the two oscillators in the model accounts for this behavior wherein by plotting 𝜙𝜙2 that 

maximizes ∆𝐴𝐴𝜖𝜖,𝜖𝜖 response as a function of  𝜁𝜁2,1 − 𝜁𝜁1,2 at 𝜔𝜔 = 2.43 × 1015 s−1 (Figure 3B), we show that 

the presence of asymmetric oscillator coupling causes the maximum peak to occur at values other than 

𝜙𝜙2 = 45°. ∆𝐴𝐴𝜖𝜖,𝜖𝜖 response can also be maximized by optimizing the oscillator frequencies wherein for 𝜁𝜁1,2 −

𝜁𝜁2,1 =  −5.2 × 1028 s−2 corresponding to 𝜙𝜙2 = 52°, the model also predicts a peak ∆𝐴𝐴𝜖𝜖,𝜖𝜖 for ∆𝜔𝜔 𝛾𝛾⁄ = 0.74 

(Figure 3C). This includes the underlying dependence of the multiplication factor κ(ω) on the difference 

between the normalized oscillator frequencies ∆𝜔𝜔 𝛾𝛾⁄  (Supplementary Figure S2). Finally, the model 

predicts a CO response for light normally incident on a geometrically achiral system if asymmetric 

absorption is present (𝛾𝛾1 ≠ 𝛾𝛾2) – a scenario easily achieved by simply depositing two different metal types 

for each of the cuboids (Figure 3D). Using dissimilar metals to achieve inhomogeneous damping on a 

geometrically achiral structure has been shown to exhibit a CO response (33). 

Finally, we verify the validity of our generalized model by applying it to the structure and excitation 

conditions studied using the Born Kuhn model in ref. 20. We assume the two Au nanocuboids in Figure 2A 

to be of equal lengths (𝑙𝑙), aligned orthogonal to each other (𝜙𝜙1 = 90° and 𝜙𝜙2 = 0°) with 𝑑𝑑1,𝑦𝑦 = 𝑑𝑑2,𝑥𝑥 = 𝑙𝑙 2⁄  
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and separated by a distance 𝑑𝑑𝑧𝑧 along the z-direction, resulting in 𝜔𝜔1 = 𝜔𝜔2 = 𝜔𝜔, and Ω1 = Ω2 = Ω 

(Supplementary Figure S3A). Note that, for consistency, the cuboid lengths 𝑙𝑙 were scaled to shift the 

resonance wavelengths to 𝜆𝜆1 = 𝜆𝜆2 = 1300 nm. Illumination of the structure at normal incidence, 𝜃𝜃0 = 0°, 

under these conditions results in ∆𝐴𝐴𝜖𝜖,𝜖𝜖 = 0 (from equation 8.1). Also, as expected, due to this lack of COabs 

contribution, ∆𝐴𝐴 = ∆𝐴𝐴Γ,𝜖𝜖 plotted vs. incident wavelength 𝜆𝜆0 (Supplementary Figure S3B) exhibits a two-

fold symmetric lineshape, and is consistent with the results of ref. 20. Moreover, by applying the 

geometrical and oscillator parameters to the configuration of supplementary Figure S2A, one could 

calculate the reduced dielectric and non-locality tensor elements (Supplementary Section S6). Applying 

these to equation (6.2) and plotting the resulting ∆𝐴𝐴Γ,𝜖𝜖 vs. 𝜆𝜆0 results in the same response (Supplementary 

Figure S3B) confirming the predictions of our generalized model as well as its consistency with the Born 

Kuhn model (20).    

     

Experimental Results 

The model described above provides a comprehensive theoretical framework to study the origin and 

characteristics of various chiroptical response types in both two and three-dimensional optical media under 

arbitrary excitation conditions. A common performance metric associated with far-field chiroptical 

measurements is circular diattenuation (CDA), a normalized form of CO response expressed as CDA = 

(𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿) (𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿)⁄ . CDA also corresponds to the normalized m14 element of the Mueller matrix, 

so it can be directly extracted from spectroscopic ellipsometry measurements (34). Note that Mueller matrix 

spectroscopy also presents an accurate method for distinguishing between the COOA and COabs 

contributions in a far-field chiroptical measurement, however this requires measurement of both 𝑚𝑚14 and 

𝑚𝑚41 elements (17). As shown below, we verify through model calculations that both CDA and ∆𝐴𝐴 represent 

the same optical phenomenon – hence for the simplicity of analysis, we present the following experimental 

measurements and comparisons with model predictions in the CDA format. Note that an alternate metric 

based on measuring optical chirality flux has recently been proposed as a quantitative far-field observable 
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of the magnitude and handedness of the near-field chiral density in a nanostructured optical medium (35). 

Measured using a technique referred to as chirality flux spectroscopy, it corresponds to the third Stokes 

parameter which is directly related to the degree of circular polarization of the scattered light in the far-

field (36), and carries information of the chiral near-fields. For the purposes of discussions in this 

manuscript, and its consistency with existing literature, we limit our analysis to measurements using the 

more prevalent metric of CO (or equivalently CDA) obtained from traditional CD spectroscopic 

measurements.     

We experimentally characterize three planar cuboid configurations (Figure 4A, left column), by 

measuring their far-field CDA response, under various excitation conditions, and compare them to 

predictions of the model. Respective expressions for ∆𝐴𝐴𝜖𝜖,𝜖𝜖 and ∆𝐴𝐴Γ,𝜖𝜖 in the three configurations, assuming 

𝑑𝑑1,𝑧𝑧 = 𝑑𝑑2,𝑧𝑧 = 0 nm and 𝛾𝛾1 = 𝛾𝛾2 = 𝛾𝛾 (equations 8.1 and 8.2), are listed in Figure 4A, right column. Note 

that 𝑘𝑘�⃑ ∙ (𝛿𝛿𝑟𝑟1 − 𝛿𝛿𝑟𝑟2) term in these planar configurations simplifies to 𝑘𝑘𝑘𝑘 sin𝜃𝜃0 (sin𝜙𝜙0 − cos𝜙𝜙0). The 

devices, consisting of an array of two Au nanocuboids (thickness 𝑡𝑡 = 40 nm) of varying lengths (𝑙𝑙1 and 𝑙𝑙2) 

and alignments (varying 𝜙𝜙2 at 𝜙𝜙1 = 90°), were fabricated on a fused-silica substrate using electro-beam-

lithography and lift-off (see Material and Methods, and Supplementary Section S7). The pitch of the array 

(𝑝𝑝 = 375 nm) was chosen to minimize coupling between adjacent bi-oscillator unit-cells. The devices were 

characterized using a spectroscopic ellipsometer between free-space wavelengths of 𝜆𝜆0 = 500 nm and 1000 

nm, under illumination at 𝜃𝜃0 = 45° for various azimuth angles 𝜙𝜙0 (see Material and Methods). The first 

device consisted of the two Au nanocuboids arranged orthogonal to each other (𝜙𝜙1 = 90° and 𝜙𝜙2 = 0°), 

and were designed to be of different lengths (𝑙𝑙1 = 120 nm and 𝑙𝑙2 = 100 nm placed at 𝑑𝑑1,𝑦𝑦 = 𝑑𝑑2,𝑥𝑥 = 100 

nm respectively). Since 𝑙𝑙1 and 𝑙𝑙2 determines both the resonant frequencies (𝜔𝜔1 and 𝜔𝜔2) as well as the cross-

coupling strengths (𝜁𝜁1,2 and 𝜁𝜁2,1), setting 𝑙𝑙1 ≠ 𝑙𝑙2 constitutes a general configuration where both ∆𝐴𝐴𝜖𝜖,𝜖𝜖 and 

∆𝐴𝐴Γ,𝜖𝜖 type contributions can be present in a single CDA measurement. The corresponding CDA spectra 

(Figure 4B) measured at 𝜙𝜙0 = 0°, 90°, and 135° (blue plots), and at 180° offset from these angles (red 

plots) clearly show an inversion in the sign, indicating the response to primarily result from ∆𝐴𝐴Γ,𝜖𝜖. However, 
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note that the CDA measurements at these angles slightly lack the two-fold symmetry in the spectral 

lineshape, a result of a minor ∆𝐴𝐴𝜖𝜖,𝜖𝜖 contribution. For 𝜙𝜙0 = 45° and 225°, the spectra lack the sign inversion 

indicating the response be primarily result from ∆𝐴𝐴𝜖𝜖,𝜖𝜖, which also follows from Figure 4A where ∆𝐴𝐴Γ,𝜖𝜖 =

0 at these two 𝜙𝜙0 angles. This result is further validated by fabricating a device consisting of Au 

nanocuboids of equal lengths (𝑙𝑙1 = 𝑙𝑙2 = 120 nm) wherein the CDA spectra at 𝜙𝜙0 = 45° and 225° shows 

no chiroptical response, since both  ∆𝐴𝐴Γ,𝜖𝜖 = ∆𝐴𝐴𝜖𝜖,𝜖𝜖 = 0, confirming the predictions of the model (Figure 

4A). Moreover, by setting 𝑙𝑙1 = 𝑙𝑙2, the two-fold symmetry in the CDA lineshape at 𝜙𝜙0 =

0° (180°), 90°(270°), and 135°(315°) is recovered, indicating the response to now only consist of ∆𝐴𝐴Γ,𝜖𝜖 

contribution, a signature of optical activity (Figure 4C). Hence, it is possible for a geometrically achiral 

structure to exhibit optical activity under certain illumination conditions. It follows then due to reciprocity 

that optical activity may be detectable at large scattering angles when a source field is normally incident on 

a planar achiral structure. This phenomenon was recently confirmed by Kuntman et al. using a scattering 

matrix decomposition method (37). Note that the similarity between the calculated CDA and ∆𝐴𝐴 response 

(plotted under the conditions of Figure 4B, supplementary Figure S5) verifies our assumption that they are 

equivalent measurements, and can be used interchangeably.   

For a device with Au nanocuboids of equal lengths 𝑙𝑙1 = 𝑙𝑙2 = 120 nm, aligned parallel to each other 

(𝜙𝜙1 = 90° and 𝜙𝜙2 = 90°), equations (8.1 and 8.2) predict both ∆𝐴𝐴𝜖𝜖,𝜖𝜖 and ∆𝐴𝐴Γ,𝜖𝜖 to be zero, under 

illumination at 𝜃𝜃0 = 45° for any 𝜙𝜙0. Consistent with these predictions, while the CDA spectra measured at  

𝜙𝜙0 = 0°�180°� and 90° (270°) shows no response, however, the spectra at 𝜙𝜙0 = 45°(225°) and 

135° (315°) shows a pronounced signal of the ∆𝐴𝐴𝜖𝜖,𝜖𝜖 type (no sign inversion for 𝜙𝜙0 rotation by 180°, Figure 

4D). We attribute this phenomenon to originate from coupling to the optical resonances (𝑢𝑢�⃑ 1′  and 𝑢𝑢�⃑ 2′ ) along 

the cuboid widths (𝑤𝑤1 = 𝑤𝑤2 = 60 nm), acting as additional orthogonally oriented oscillators in the system, 

resulting in a two-dimensional anisotropic optical system supporting two orthogonal elliptical eigenmodes 

(30). A circularly polarized light at non-normal incidence (𝜃𝜃0 ≠ 0° and 180°)  projects an elliptically 

polarized field along the plane of the device (red ellipse, Figure 5A-D), which at certain azimuth angles 𝜙𝜙0 
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can access these elliptical eigenmodes (dashed yellow ellipses, Figure 5A-D). At 𝜙𝜙0 = 0° (180°) or 𝜙𝜙0 =

90° (270°), both orthogonal eigenmodes are accessed equally resulting in the total chiroptical response to 

be zero; whereas, at 𝜙𝜙0 = 45°(225°) and 135° (315°) only one of the two eigenmodes can be excited 

resulting in a strong CDA response. This dependence of peak �∆𝐴𝐴𝜖𝜖,𝜖𝜖� on the azimuth angle 𝜙𝜙0 is shown 

schematically in Figure 5E. These results are also consistent with Figure 5F, which follows from equations 

(8.1) and (8.2), wherein incorporation of contributions from these additional oscillators results in a zero 

∆𝐴𝐴Γ,𝜖𝜖 response, whereas ∆𝐴𝐴𝜖𝜖,𝜖𝜖 response is shown to stay proportional to �𝜁𝜁1′,2 − 𝜁𝜁2,1′�. Note that for the 

CDA calculations in Figure 4B and 4C, only coupling between the oscillators along their long-axis (𝑢𝑢�⃑ 1 and 

𝑢𝑢�⃑ 2) was assumed. Absence of contributions from coupling between the oscillators along their short-axis, 

𝑢𝑢�⃑ 1′  and 𝑢𝑢�⃑ 2′ , in the calculations could explain the minor discrepancy between the calculated and 

experimentally measured CDA spectra.   

In addition, it is instructive to study the CO response of a device where the two Au nanocuboids of 

equal lengths are aligned such that 𝜙𝜙1 = 90° and  𝜙𝜙2 = 45° in a planar arrangement. Upon illumination of 

this structure at 𝜃𝜃0 = 45° for various 𝜙𝜙0, the measured CDA response neither shows any clear inversion in 

sign with 180°rotation of 𝜙𝜙0, nor any apparent symmetry in the spectral lineshape (Supplementary Figure 

S6). This is because the various sub-oscillators (𝑢𝑢�⃑ 1, 𝑢𝑢�⃑ 2, 𝑢𝑢�⃑ 1′  and 𝑢𝑢�⃑ 2′ ) in this system are aligned with respect 

to each other such that they can all be inter-coupled, resulting in both ∆𝐴𝐴Γ,𝜖𝜖 and ∆𝐴𝐴𝜖𝜖,𝜖𝜖 contributions to be 

significant. This serves as a simple example for a system where the measured far-field CO response is 

ambiguous, and its underlying origin can be difficult to interpret.  

Finally, until now we have applied the model predictions to, and validated them against, existing 

literature and experimental CDA measurements on planar metallic nanocuboid oscillators. However, as 

mentioned earlier, a strong far-field CO response of the COaxial type has been observed in an all-dielectric 

metamaterial acting as a uniaxial or a biaxial medium wherein symmetry breaking of the unit cell along the 

direction of source propagation enables asymmetric transmission of the two CP components of incident 

linearly polarized light (19, 24, 25). An additional deployment of geometric phase further enables 
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independent phase-front manipulation of these two components (24, 38). We demonstrate the generality of 

the model by applying it to an all-dielectric optical medium with a mirror-symmetry breaking chiral unit 

cell that enables asymmetric transmission of the two CP components, but without a geometric phase 

(Supplementary Section S10), and illustrate the conditions under which the Poynting vectors associated 

with the LCP and RCP components of a linearly polarized (LP) light normally incident on an all-dielectric 

biaxial medium can propagate in different directions within the medium. A simple spatial filtering of either 

the LCP or the RCP on the exit side can result in a strong CO response, as shown in ref. 25. Note that such 

a far-field CO response is not related to optical activity. 

 

Discussion 

In conclusion, we have developed a comprehensive analytical model to study the micropscopic origin of 

chiroptical response in optical media. Closed-form expressions for the various microscopic phenomena 

governing the far-field CO response is shown to provide intuitive insights when systematically studied for 

various sample geometries and optical excitation conditions. Optical activity, COOA, characterized in the 

far-field by spectrally shifted transmission (or reflection) curves due to the accessibility of RCP and LCP 

light to hybridized eigen-modes, is shown to originate at the microscopic scale when coupled oscillators 

are spatially separated along the direction of source propagation. Differential absorption, COabs, another 

CO response type unrelated to optical activity is characterized in the far-field by amplitude shifted 

transmission (or reflection) curves due to the presence of distinct near-field absorption modes for RCP and 

LCP light. COabs is shown to occur when the oscillators, in the presence of loss, are angularly separated 

along the direction of source electric-field rotation. The third CO response type, COaxial, is characterized in 

the far-field by the spatial separation of RCP and LCP light. COaxial is shown to occur when the Poynting 

vectors associated with the characteristic RCP and LCP waves of a biaxial medium are angularly offset. 

Both analytical and experimental methods provided here suggest a simple method for identifying the 

presence of, and distinguishing between, these various CO response types. As engineered chiral optical 

media becomes an essential component of advanced technologies such as enhanced CD spectroscopy, 
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identification of the microscopic behavioral differences in the far-field optical response have become 

increasingly crucial. The generalized theoretical framework presented here is expected to aid in the 

application-specific design and study of engineered chiroptical systems.  
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Materials and Methods 

Device Fabrication. The Au nanocuboid structures are fabricated on 500 µm thick fused-silica substrates. 

100 nm thick poly-methyl methacrylate (PMMA) resist was spun-coated on the substrates, followed by 

deposition of 20 nm Al film using thermal evaporation as an anti-charging layer. Electron-beam lithography 

at 100 keV was then used to expose the nanocuboid patterns. After exposure, the Al layer was removed 

using a 60 s bath in a tetramethylammonium hydroxide (TMAH) based developer followed by a 30 s rinse 

in deionized water. PMMA was developed for 90 s in methyl isobutyl ketone (MIBK) followed by a 30 s 

rinse in isopropyl alcohol (IPA). Electron beam (E-beam) evaporation was used to deposit a 2 nm thick Ti 

adhesion layer, followed by a 40 nm thick Au-film. A twelve-hour soak in acetone was used for lift-off, 

revealing the completed cuboid structures on the substrate surface. The fabrication steps are schematically 

outlined in Supplementary Figure S4.  

 

Optical Characterization. For experimental characterization, the samples were illuminated from free-

space at wavelengths between 𝜆𝜆0 = 500 nm to 1000 nm at a fixed angle 𝜃𝜃0 = 45° for various source azimuth 

angles 𝜙𝜙0. The incident light was focused on the sample to a spot-size (along the long-axis) of ≈ 400 µm, 

and the incident polarization was controlled using an achromatic waveplate. The CDA spectra was directly 

measured, using a spectroscopic ellipsometer in reflection mode, by extracting the 𝑚𝑚14 element of the 

Mueller matrix.  
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Supplementary Materials 

Supplementary Sections S1–S10 

Fig. S1. Arrangement of bi-oscillator molecular unit-cells in a representative volume of optical media. 

Fig. S2. Dependence of the multiplication factor κ on the difference between oscillator frequencies. 

Fig. S3. Chiroptical response of orthogonally oriented identical nanocuboids in a three-dimensional 

arrangement. 

Fig. S4. Nanofabrication process steps. 

Fig. S5. Comparison between calculated CDA and ∆𝐴𝐴 spectral response.  

Fig. S6. Experimental measurements of the chiroptical response of 45° oriented cuboids of equal lengths.  

Fig. S7. Isofrequency surfaces and Poynting vectors for the eigenmodes of a biaxial medium. 
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Figure Captions 

Fig. 1. Generalized coupled oscillator model space. (A) Representation of an arbitrarily oriented incident 
plane-wave of wavevector 𝑘𝑘�⃑ = −𝑘𝑘�𝑎𝑎�𝑥𝑥sin𝜃𝜃0 cos𝜙𝜙0 + 𝑎𝑎�𝑦𝑦𝑘𝑘 sin𝜃𝜃0 sin𝜙𝜙0 + 𝑎𝑎�𝑧𝑧𝑘𝑘 cos𝜃𝜃0� originating from a 
source placed at infinity. (B) A molecular unit-cell consisting of two oscillators 𝑢𝑢�⃑ 1 and 𝑢𝑢�⃑ 2 located at 
distances 𝛿𝛿𝛿𝛿1and 𝛿𝛿𝛿𝛿2, respectively from the molecular center of mass, 𝑂𝑂′, which is located at a distance 𝑟𝑟0 
from the origin 𝑂𝑂. Each oscillator is arbitrarily oriented with respect to the other. (C) Coordinate system 
with the origin (𝑂𝑂′) corresponding to the molecular center of mass. The oscillator displacement from 𝑂𝑂′ is 
given by 𝛿𝛿𝑟𝑟𝑖𝑖 = 𝛿𝛿𝛿𝛿𝑖𝑖�𝑎𝑎�𝑥𝑥 sin 𝜉𝜉𝑖𝑖 cos𝜓𝜓𝑖𝑖 + 𝑎𝑎�𝑦𝑦 sin 𝜉𝜉𝑖𝑖 sin𝜓𝜓𝑖𝑖 + 𝑎𝑎�𝑧𝑧 cos 𝜉𝜉𝑖𝑖� for 𝑖𝑖 = 1, 2. (D) The origin here 
corresponds to oscillator center of mass (𝑂𝑂′′) which is positioned at a distance 𝛿𝛿𝑟𝑟𝑖𝑖 from the molecular center 
of mass (𝑂𝑂′). The orientation of each oscillator is described by the unit vector 𝑢𝑢�𝑖𝑖 = 𝑎𝑎�𝑥𝑥 sin𝜃𝜃𝑖𝑖 cos𝜙𝜙𝑖𝑖 +
𝑎𝑎�𝑦𝑦 sin𝜃𝜃𝑖𝑖 sin𝜙𝜙𝑖𝑖 + 𝑎𝑎�𝑧𝑧 cos𝜃𝜃𝑖𝑖 for 𝑖𝑖 = 1, 2.  

 
 
Fig. 2. Dependence of the chiroptical response of nanocuboid bi-oscillator system on source angles 𝜽𝜽𝟎𝟎 
and 𝝓𝝓𝟎𝟎. (A) Relative orientation of the incident light of wavevector 𝑘𝑘�⃑  with respect to the two nanocuboid 
oscillators. The two oscillators, represented by 𝑢𝑢�⃑ 1 and 𝑢𝑢�⃑ 2, are oriented parallel to the x-y plane (𝜃𝜃1 = 𝜃𝜃2 =
𝜋𝜋 2⁄ ) with azimuth angles 𝜙𝜙1 = 90° and 𝜙𝜙2 = 45°, respectively. The nanocuboids are located at 𝑑𝑑1,𝑧𝑧 =
𝑑𝑑2,𝑧𝑧 = 100 nm with 𝑑𝑑1,𝑦𝑦 = 𝑑𝑑2,𝑥𝑥 = 100 nm, and for simplicity, 𝑑𝑑1,𝑥𝑥 = 𝑑𝑑2,𝑦𝑦 = 0 nm was assumed. The 
nanocuboid parameters were chosen such that they exhibit resonance at wavelengths of 𝜆𝜆1 = 750 nm and  
𝜆𝜆2 = 735 nm respectively, with coupling strengths 𝜁𝜁1,2(𝜔𝜔1) = 𝜁𝜁2,1(𝜔𝜔2) = 1.6 × 1029 s−1. (B) The 
calculated ∆𝐴𝐴𝜖𝜖,𝜖𝜖 response at source angles 𝜃𝜃0 = 0° and 180° (note that 𝜙𝜙0 is undefined at these values of 
𝜃𝜃0) exhibits a one-fold symmetric lineshape, and experiences an inversion in sign when the incident angle 
is changed from 0° to 180°. (C) The corresponding ∆𝐴𝐴Γ,𝜖𝜖 response calculated under the same conditions 
exhibits a two-fold symmetric lineshape, and does not experience an inversion in sign for a 𝜃𝜃0 change from 
0° to 180°. (D) The total CO response ∆𝐴𝐴 = ∆𝐴𝐴𝜖𝜖,𝜖𝜖 + ∆𝐴𝐴Γ,ϵ for the two source angles does not show any 
symmetry in the spectral lineshape due to the presence of competing contributions from both ∆𝐴𝐴𝜖𝜖,𝜖𝜖 and 
∆𝐴𝐴Γ,𝜖𝜖 response types. (E-G) The chiroptical response for the oscillator configuration and orientations in A 
calculated at 𝜃𝜃0 = 45° for two azimuth angles 𝜙𝜙0 = 0° and 180°. (E) The calculated ∆𝐴𝐴𝜖𝜖,𝜖𝜖 response does 
not change sign when the incident angle 𝜙𝜙0 is changed from 0° to 180°. (F) The corresponding ∆𝐴𝐴Γ,𝜖𝜖 
response, however, exhibits an inversion in sign for a 180° change in the source azimuth. At these source 
angles, ∆𝐴𝐴𝜖𝜖,𝜖𝜖 exhibits a one-fold symmetric lineshape whereas ∆𝐴𝐴Γ,𝜖𝜖 is asymmetric. (G) The total CO 
response ∆𝐴𝐴 = ∆𝐴𝐴𝜖𝜖,𝜖𝜖 + ∆𝐴𝐴Γ,ϵ also exhibits an asymmetric lineshape due to the presence of both ∆𝐴𝐴𝜖𝜖,𝜖𝜖 and 
∆𝐴𝐴Γ,𝜖𝜖 contributions. 

 

Fig. 3. Dependence of the chiroptical response of nanocuboid bi-oscillator system on oscillator 
parameters. Chiroptical response of the two oscillators, under normal incidence excitation (𝜃𝜃0 = 0°), 
oriented parallel to the x-y plane (𝜃𝜃1 = 𝜃𝜃2 = 𝜋𝜋 2⁄ ) and arranged in a planar arrangement with 𝑑𝑑1,𝑧𝑧 = 𝑑𝑑2,𝑧𝑧 =
0 nm and 𝑑𝑑1,𝑦𝑦 = 𝑑𝑑2,𝑥𝑥 = 100 nm. In this planar configuration at normal incidence, ∆𝐴𝐴Γ,𝜖𝜖 = 0. (A) The 
dependence of ∆𝐴𝐴 = ∆𝐴𝐴𝜖𝜖,𝜖𝜖 on the angular orientation between the two oscillators in the x-y plane calculated 
by varying 𝜙𝜙2 at 𝜙𝜙1 = 90°. The oscillators are designed to exhibit resonance at wavelengths of 𝜆𝜆1 =
750 nm and 𝜆𝜆2 = 735 nm, and assuming 𝜁𝜁1,2(𝜔𝜔) = 𝜁𝜁2,1(𝜔𝜔), the peak ∆𝐴𝐴𝜖𝜖,𝜖𝜖 response is shown to occur at 
𝜙𝜙2 = 45°. (B) The orientation angle of the second oscillator 𝜙𝜙2 (at 𝜙𝜙1 = 90°) at which ∆𝐴𝐴𝜖𝜖,𝜖𝜖 is maximized 
for a non-zero difference in coupling coefficients, 𝜁𝜁1,2 − 𝜁𝜁2,1, plotted here at 𝜔𝜔 = 2.43 × 1015 s−1. (C) 
∆𝐴𝐴𝜖𝜖,𝜖𝜖 dependence on the normalized difference in resonant frequencies (∆𝜔𝜔)/𝛾𝛾 at 𝜁𝜁1,2 − 𝜁𝜁2,1 =
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 −5.2 × 1028 s−2 corresponding to 𝜙𝜙2 = 52°. A peak ∆𝐴𝐴𝜖𝜖,𝜖𝜖  response is achieved at (∆𝜔𝜔)/𝛾𝛾 = 0.74. (D) 
∆𝐴𝐴𝜖𝜖,𝜖𝜖 dependence at normal incidence on a geometrically achiral system (𝑙𝑙1 = 𝑙𝑙2) for oscillators of the 
same metal corresponding to 𝛾𝛾1 = 𝛾𝛾2 (red line), and of dissimilar metals corresponding to 𝛾𝛾1 ≠ 𝛾𝛾2 (blue 
line). 
 

 
 

Fig. 4. Experimental characterization of the chiroptical response of two-dimensional planar Au 
nanocuboids. (A) Simplified ∆𝐴𝐴𝜖𝜖,𝜖𝜖 and ∆𝐴𝐴Γ,𝜖𝜖 relations, calculated from equations (8.1) and (8.2), for three 
planar nanocuboids configurations. Top row, The two oscillators are aligned orthogonal to each other 
(𝜙𝜙1 = 90° and 𝜙𝜙2 = 0°) and are assumed to be of different lengths (𝑙𝑙1 ≠ 𝑙𝑙2), corresponding to 𝜔𝜔1 ≠ 𝜔𝜔2 
and 𝜁𝜁1,2(𝜔𝜔) ≠ 𝜁𝜁2,1(𝜔𝜔). In such a system, it is expected that both ∆𝐴𝐴𝜖𝜖,𝜖𝜖 and ∆𝐴𝐴Γ,𝜖𝜖 contributions are present. 
Middle row, Same as above except with 𝑙𝑙1 = 𝑙𝑙2 resulting in 𝜔𝜔1 = 𝜔𝜔2 = 𝜔𝜔0,  𝜁𝜁1,2 = 𝜁𝜁2,1. In this 
configuration, ∆𝐴𝐴𝜖𝜖,𝜖𝜖 contribution is expected to be absent for excitation at any arbitrary angle of incidence. 
Bottom row, Same as above (𝑙𝑙1 = 𝑙𝑙2) except that the two oscillators are oriented parallel to each other 
(𝜙𝜙1 = 90° and 𝜙𝜙2 = 90°). Ignoring any optical resonance along the width of the nanocuboid, the model 
predicts both ∆𝐴𝐴𝜖𝜖,𝜖𝜖 and ∆𝐴𝐴Γ,𝜖𝜖 to be absent, for excitation at any arbitrary angle of incidence. (B-D) 
Corresponding experimental CDA measurements for an array of planar Au nanocuboid bi-oscillators, 
illuminated with free-space light between wavelengths of 𝜆𝜆0 = 500 nm and 1000 nm, as a function of 
incidence angle (varying 𝜙𝜙0 at a fixed 𝜃𝜃0 = 45°) for the three configurations shown in A. Top-down 
scanning-electron microscopy (SEM) images of unit-cells consisting of the two Au nanocuboid oscillators, 
overlaid with the coordinate system and orientation of the in-plane wavevector of the incident light (𝑘𝑘�⃑ ∥𝑥𝑥𝑥𝑥) 
along the x-y plane, are shown at the top of each column. Scale bar represents 120 nm in the SEM images. 
(B) Experimentally measured (solid lines) and the model calculated (dashed lines) CDA spectra for a 
sample consisting of Au nanocuboids of unequal lengths (𝑙𝑙1=120 nm and 𝑙𝑙2 =100 nm) oriented orthogonal 
to each other (𝜙𝜙1 = 90° and 𝜙𝜙2 = 0°) at various 𝜙𝜙0. The spectra at 𝜙𝜙0 = 0°, 90°, and 135° (blue plots), 
and at 180° offset from these angles (solid red plots) show an inversion in the sign, which is absent for 
excitation at 𝜙𝜙0 = 45°(225°). The CDA model plots were calculated assuming 𝜁𝜁2,1(𝜔𝜔1) = 6.4 × 1029 s−2 
and 𝜁𝜁1,2(𝜔𝜔2) = 8.1 × 1029 s−2 at 𝜆𝜆1 = 750 nm and 𝜆𝜆2 = 720 nm, respectively.  (C) Equivalent CDA 
measurements and model calculations for a device with Au nanocuboids of equal lengths (𝑙𝑙1 = 𝑙𝑙2 =120 
nm). As expected, the CDA response is absent from this device for excitation at 𝜙𝜙0 = 45°(225°). 
Moreover, the response at other 𝜙𝜙0 angles exhibits a two-fold symmetric spectral lineshape (absent from 
measurements in B) indicating the CDA to only result from ∆𝐴𝐴Γ,𝜖𝜖 contribution. Model parameters used in 
the calculations are 𝜁𝜁2,1(𝜔𝜔0) = 𝜁𝜁1,2(𝜔𝜔0) = 8.1 × 1029 s−2 at 𝜆𝜆1 = 𝜆𝜆2 = 745 nm. (D) Same as C except 
that the two Au nanocuboids are oriented parallel to each other (𝜙𝜙1 = 90° and 𝜙𝜙2 = 90°). The CDA spectra 
at  𝜙𝜙0 = 0°�180°� and 90° (270°) shows no response whereas the spectra at 𝜙𝜙0 = 45°(225°) and 
135° (315°) shows a pronounced signal of the ∆𝐴𝐴𝜖𝜖,𝜖𝜖 type (no sign inversion for 𝜙𝜙0 rotation by 180°). The 
CDA response at latter angles, though not expected from the model predictions in A, can be attributed to 
the coupling to optical resonances along the cuboid widths (𝑤𝑤1 = 𝑤𝑤2 = 60 nm), acting as additional 
orthogonally oriented oscillators (𝑢𝑢�⃑ 1′ and 𝑢𝑢�⃑ 2′) in the system. 

 
 

Fig. 5. Origin of the chiroptical response from parallel nanocuboid oscillators through coupling along 
orthogonal oscillator dimensions. (A-D) Top-down SEM images of the device consisting of an array of 
Au nanocuboid oscillators oriented parallel to each other. Overlaid are the constitutive elliptical eigenmodes 
(dashed yellow curves) and the projected in-plane source electric field (𝐸𝐸�⃑ ∥𝑥𝑥𝑥𝑥), indicated by a red vector 
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arrow that traces the red elliptical path for a circularly polarized light at non-normal incidence. Scale bar 
represents 125 nm in the SEM images. (A, B) Orientation of the two eigenmodes relative to the source 
electric field at 𝜙𝜙0 = 0°�180°� and 90° (270°) illustrating that they can be accessed equally. (C, D) Same 
as above, except at source azimuths 𝜙𝜙0 = 45°(225°) and 135° (315°) illustrating that only one of the two 
eigenmodes can be accessed. (E) Dependence of �∆𝐴𝐴𝜖𝜖,𝜖𝜖� on 𝜙𝜙0 for the parallel nanocuboid oscillator 
configuration studied here. The orientation of the long and short axis oscillators (𝑢𝑢�⃑ 𝑖𝑖 and 𝑢𝑢�⃑ 𝑖𝑖′ respectively) 
corresponding to the length (𝑙𝑙𝑖𝑖) and width (𝑤𝑤𝑖𝑖) of the two nanocuboids relative to 𝜙𝜙0 is shown for clarity. 
(F) Top, Schematic illustrations of the two coupled-oscillator contributions that result in a far-field CO 
response from parallel nanocuboid oscillators of equal lengths (𝑙𝑙1 = 𝑙𝑙2) and widths (𝑤𝑤1 = 𝑤𝑤2) upon 
illumination at 𝜃𝜃0 = 45° and 𝜙𝜙0 = 45°(225°) or 135° (315°). Note that since 𝑢𝑢�⃑ 1 = 𝑢𝑢�⃑ 2 and 𝑢𝑢�⃑ 1′ = 𝑢𝑢�⃑ 2′  in this 
configuration, leads to 𝜁𝜁1,2 = 𝜁𝜁2,1 as well as 𝜁𝜁1,2′ = 𝜁𝜁2,1′ and 𝜁𝜁2′,1 = 𝜁𝜁1′,2 resulting in ∆𝐴𝐴𝜖𝜖,𝜖𝜖 response to be 
doubled (from equation (8.1), bottom). However, because of the inversion of the spatial dispersion term 
𝑘𝑘�⃑ ∙ (𝛿𝛿𝑟𝑟1 − 𝛿𝛿𝑟𝑟2) of equation (8.2), the ∆𝐴𝐴Γ,𝜖𝜖 contributions between these two configurations become equal 
and opposite, cancelling each other out. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Fig. 1. Generalized coupled oscillator model space. 
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Fig. 2. Dependence of the chiroptical response of nanocuboid bi-oscillator system on source angles 
0 and 0.
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Section S1. Generalized coupled oscillator model parameter definitions 

The displacement and orientation terms corresponding to the two oscillators 𝑢⃑ 𝑖 in cartesian coordinates are 

shown in Figure 1 of the manuscript. The incident electric field, 𝐸⃑ 0, can be conveniently defined as the sum 

of transverse-magnetic (TM) and transverse-electric (TE) components as 𝐸⃑ 0 = 𝐸⃑ 𝑇𝑀 + 𝐸⃑ 𝑇𝐸 , and expressed 

individually in cartesian coordinates as:  

𝐸⃑ 𝑇𝑀 = 𝐸𝑇𝑀(−𝑎̂𝑥 cos𝜃0 cos𝜙0 − 𝑎̂𝑦 cos 𝜃0 sin𝜙0 + 𝑎̂𝑧 sin 𝜃0)                                      (S1) 

𝐸⃑ 𝑇𝐸 = 𝐸𝑇𝐸(𝑎̂𝑥 sin𝜙0 − 𝑎̂𝑦 cos𝜙0)                                                            (S2) 

Here, 𝐸𝑇𝑀 and 𝐸𝑇𝐸  are the magnitudes of the TM and the TE components, respectively. Inserting equations 

(S1-S2) into 𝐸⃑ 0 gives 𝐸⃑ 0 = 𝑎̂𝑥(−𝐸𝑇𝑀 cos𝜃0 cos𝜙0 + 𝐸𝑇𝐸 sin𝜙0) + 𝑎̂𝑦(−𝐸𝑇𝑀 cos𝜃0 sin𝜙0 −

𝐸𝑇𝐸 cos𝜙0) + 𝑎̂𝑧 𝐸𝑇𝑀sin 𝜃0.  

The coupled differential equations (1.1-1.2) of the manuscript are solved by inserting the time harmonic 

expressions 𝑢⃑ 1(𝑡) = 𝑢̂1𝑢1𝑒
−𝑖𝜔𝑡 and 𝑢⃑ 2(𝑡) = 𝑢̂2𝑢2𝑒

−𝑖𝜔𝑡 resulting in: 

−𝜔2𝑢1 − 𝑖𝜔𝛾1𝑢1 + 𝜔1
2𝑢1 + 𝜁2,1𝑢2 = −

𝑒

𝑚∗ (𝐸⃑ 0 ∙ 𝑢̂1)𝑒
𝑖𝑘⃑ ∙𝑟 1                                       (S2.1) 

−𝜔2𝑢2 − 𝑖𝜔𝛾2𝑢2 + 𝜔2
2𝑢2 + 𝜁1,2𝑢1 = −

𝑒

𝑚∗ (𝐸⃑ 0 ∙ 𝑢̂2)𝑒
𝑖𝑘⃑ ∙𝑟 2                                      (S2.2) 

Substituting Ω𝑘 = √𝜔𝑘
2 − 𝜔2 − 𝑖𝛾𝑘𝜔  for 𝑘 = 1, 2 in equations (S2.1-S2.2) gives: 

Ω1
2𝑢1 + 𝜁2,1𝑢2 = −

𝑒

𝑚∗ (𝐸⃑ 0 ∙ 𝑢̂1)𝑒
𝑖𝑘⃑ ∙𝛿𝑟 1𝑒𝑖𝑘⃑ ∙𝑟 0                                             (S3.1) 

Ω2
2𝑢2 + 𝜁1,2𝑢1 = −

𝑒

𝑚∗ (𝐸⃑ 0 ∙ 𝑢̂2)𝑒
𝑖𝑘⃑ ∙𝛿𝑟 2𝑒𝑖𝑘⃑ ∙𝑟 0                                            (S3.2) 

Solving equations (S3.1-S3.2) simultaneously results in the final expressions for 𝑢1(𝜔) and 𝑢1(𝜔) given 

by equations (2.1-2.2) in the manuscript. 
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Section S2. Current density response calculation 

The current density response is calculated for a volume ∆𝑉 of the medium containing 𝑁0 unit-cells 

(Supplementary Figure S1), each consisting of the two electron oscillators, by performing the following 

averaging operation detailed in (29): 

𝐽 =
−𝑒

∆𝑉
∑ [

𝜕𝑢⃑ 1(𝑟 0, 𝑡)

𝜕𝑡 𝑟 0=𝑟 −𝛿𝑟 1

+
𝜕𝑢⃑ 2(𝑟 0, 𝑡)

𝜕𝑡 𝑟 0=𝑟 −𝛿𝑟 2

]

𝑟 0∈∆𝑉

                                    (S4) 

Evaluating this expression results in: 

𝐽 = −𝑒𝑛 [
𝜕𝑢⃑ 1(𝑟 0, 𝑡)

𝜕𝑡 𝑟 0=𝑟 −𝛿𝑟 1

+
𝜕𝑢⃑ 2(𝑟 0, 𝑡)

𝜕𝑡 𝑟 0=𝑟 −𝛿𝑟 2

]                                    (S5) 

 

 

 
Fig. S1. Arrangement of bi-oscillator molecular unit-cells in a representative volume of optical media. 

A representative volume of media is defined as ∆𝑉 = ∆x ∆y ∆z containing 𝑁0 unit-cells, each consisting of 

the two oscillators. This is used in the calculation of the total current density response 𝐽 . Each unit-cell itself 

is assumed to occupy a volume 𝛿𝑉 = 𝛿x 𝛿y 𝛿z assuming 𝛿x, 𝛿y, 𝛿z ≪ 𝜆0 where 𝜆0 is the free-space 

wavelength. 

 

 

 
 

 

 

 

 

 

𝛿y

𝛿z
𝛿x

∆y

∆x

∆z

y

z

x



4 
 

Inserting equations (2.1-2.2) of the manuscript in equation (S5) along with the plasma frequency expressed 

as 𝜔𝑝 = √𝑛𝑒2 𝑚∗𝜀0⁄   where 𝑛 = 𝑁0 ∆𝑉⁄  results in:  

𝐽 =
−𝑖𝜖0𝜔𝜔𝑝

2

Ω1
2Ω2

2 − 𝜁1,2𝜁2,1
{ [Ω2

2(𝐸⃑ 0 ∙ 𝑢̂1) − 𝜁2,1(𝐸⃑ 0 ∙ 𝑢̂2)𝑒
−𝑖𝑘⃑ ∙(𝛿𝑟 1−𝛿𝑟 2)] 𝑢̂1 +                                    (S6)

[Ω1
2(𝐸⃑ 0 ∙ 𝑢̂2) − 𝜁1,2(𝐸⃑ 0 ∙ 𝑢̂1)𝑒

𝑖𝑘⃑ ∙(𝛿𝑟 1−𝛿𝑟 2)] 𝑢̂2} 𝑒𝑖(𝑘⃑ ∙𝑟 −𝜔𝑡)

 

 

Section S3. Homogeneous material parameters 

The susceptibility terms are calculated by expressing equation (S6) in the form 𝐽 = −𝑖𝜔𝜀0𝝌𝐸⃑ 0𝑒
𝑖(𝑘⃑ ∙𝑟 −𝜔𝑡), 

and extracting the tensor elements:  

𝜒𝑥𝑥 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[(Ω1

2 sin2 𝜃2 cos2 𝜙2 + Ω2
2 sin2 𝜃1 cos2 𝜙1) −                                                  (S7.1)

(𝜁1,2𝑒
−𝑖𝑘⃑ ∙(𝛿𝑟 1−𝛿𝑟 2) + 𝜁2,1𝑒

𝑖𝑘⃑ ∙(𝛿𝑟 1−𝛿𝑟 2)) sin𝜃1 cos𝜙1 sin𝜃2 cos𝜙2]

 

𝜒𝑥𝑦 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[(Ω1

2 sin2 𝜃2 sin𝜙2 cos𝜙2 + Ω2
2 sin2 𝜃1 sin𝜙1 cos𝜙1) −                             (S7.2)

(𝜁1,2 cos𝜙1 sin𝜙2 𝑒−𝑖𝑘⃑ ∙(𝛿𝑟 1−𝛿𝑟 2) + 𝜁2,1 sin𝜙1 cos𝜙2 𝑒𝑖𝑘⃑ ∙(𝛿𝑟 1−𝛿𝑟 2)) sin𝜃1 sin𝜃2]

 

𝜒𝑥𝑧 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[(Ω1

2 sin 𝜃2 cos𝜃2 cos𝜙2 + Ω2
2 sin𝜃1 cos 𝜃1 cos𝜙1)  −                                 (S7.3)

(𝜁1,2 sin 𝜃1 cos𝜙1 cos𝜃2 𝑒−𝑖𝑘⃑ ∙(𝛿𝑟 1−𝛿𝑟 2) + 𝜁2,1 cos 𝜃1 sin 𝜃2 cos𝜙2 𝑒𝑖𝑘⃑ ∙(𝛿𝑟 1−𝛿𝑟 2))]

 

𝜒𝑦𝑥 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[(Ω1

2 sin2 𝜃2 sin𝜙2 cos𝜙2 + Ω2
2 sin2 𝜃1 sin𝜙1 cos𝜙1) −                             (S7.4)

(𝜁1,2 sin𝜙1 cos𝜙2 𝑒−𝑖𝑘⃑ ∙(𝛿𝑟 1−𝛿𝑟 2) + 𝜁2,1 cos𝜙1 sin𝜙2 𝑒𝑖𝑘⃑ ∙(𝛿𝑟 1−𝛿𝑟 2)) sin𝜃1 sin𝜃2]

 

𝜒𝑦𝑦 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[(Ω1

2 sin2 𝜃2 sin2 𝜙2 + Ω2
2 sin2 𝜃1 sin2 𝜙1) −                                                   (S7.5)

(𝜁1,2𝑒
−𝑖𝑘⃑ ∙(𝛿𝑟 1−𝛿𝑟 2) + 𝜁2,1𝑒

𝑖𝑘⃑ ∙(𝛿𝑟 1−𝛿𝑟 2)) sin𝜃1 sin𝜙1 sin 𝜃2 sin𝜙2]

 

𝜒𝑦𝑧 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[(Ω1

2 sin𝜃2 cos 𝜃2 sin𝜙2 + Ω2
2 sin 𝜃1 cos𝜃1 sin𝜙1)  −                                  (S7.6)

(𝜁1,2 sin𝜃1 sin𝜙1 cos 𝜃2 𝑒−𝑖𝑘⃑ ∙(𝛿𝑟 1−𝛿𝑟 2) + 𝜁2,1 cos 𝜃1 sin 𝜃2 sin𝜙2 𝑒𝑖𝑘⃑ ∙(𝛿𝑟 1−𝛿𝑟 2))]
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𝜒𝑧𝑥 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[(Ω1

2 sin 𝜃2 cos𝜃2 cos𝜙2 + Ω2
2 sin𝜃1 cos 𝜃1 cos𝜙1)  −                                 (S7.7)

(𝜁1,2 cos 𝜃1 sin𝜃2 cos𝜙2 𝑒−𝑖𝑘⃑ ∙(𝛿𝑟 1−𝛿𝑟 2) + 𝜁2,1 sin𝜃1 cos𝜙1 cos 𝜃2 𝑒𝑖𝑘⃑ ∙(𝛿𝑟 1−𝛿𝑟 2))]

 

𝜒𝑧𝑦 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[(Ω1

2 sin𝜃2 cos 𝜃2 sin𝜙2 + Ω2
2 sin 𝜃1 cos 𝜃1 sin𝜙1)  −                                   (S7.8)

(𝜁1,2 cos𝜃1 sin 𝜃2 sin𝜙2 𝑒−𝑖𝑘⃑ ∙(𝛿𝑟 1−𝛿𝑟 2) + 𝜁2,1 sin𝜃1 sin𝜙1 cos 𝜃2 𝑒𝑖𝑘⃑ ∙(𝛿𝑟 1−𝛿𝑟 2))]

 

𝜒𝑧𝑧 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[(Ω1

2 cos2 𝜃2 + Ω2
2 cos2 𝜃1)  −                                                                               (S7.9)

(𝜁1,2𝑒
−𝑖𝑘⃑ ∙(𝛿𝑟 1−𝛿𝑟 2) + 𝜁2,1𝑒

𝑖𝑘⃑ ∙(𝛿𝑟 1−𝛿𝑟 2)) cos 𝜃1 cos𝜃2]

 

 

To calculate the modified dielectric tensor 𝝐(𝑘, 𝜔) and the non-locality tensor 𝚪(𝑘, 𝜔), the polarization 

density 𝑃⃑ = 𝐽 (−𝑖𝜔)⁄  is evaluated: 

𝑃⃑ (𝜔, 𝑟 ) = 𝜀0𝝌𝐸⃑ 0𝑒
𝑖(𝑘⃑ ∙𝑟 −𝜔𝑡)                                                                (S8) 

The susceptibility tensor is expressed as the sum of modified dielectric and non-locality tensors as: 

𝝌(𝑘,𝜔) = 𝝐(𝑘, 𝜔) + 𝑖𝑘𝚪(𝑘, 𝜔)                                                        (S9) 

with the modified dielectric and non-locality tensors written in matrix form as: 

𝝐 = (

𝜖𝑥𝑥 𝜖𝑥𝑦 𝜖𝑥𝑧

𝜖𝑦𝑥 𝜖𝑦𝑦 𝜖𝑦𝑧

𝜖𝑧𝑥 𝜖𝑧𝑥 𝜖𝑧𝑧

)                                                                     (S10) 

𝚪 = (

Γ𝑥𝑥 Γ𝑥𝑦 Γ𝑥𝑧

Γ𝑦𝑥 Γ𝑦𝑦 Γ𝑦𝑧

Γ𝑧𝑥 Γ𝑧𝑦 Γ𝑧𝑧

)                                                                    (S11) 

Note that the dielectric tensor 𝜺 is calculated from the modified dielectric tensor as 𝜺(𝑘, 𝜔) = 𝝐(𝑘, 𝜔) + 𝑰 

where 𝑰 is the identity matrix. For plane waves, the equivalency 𝑖𝑘𝚪 ≡ 𝚪(𝑘̂ ∙ ∇⃑⃑ ) holds, allowing one to write 

the polarization density as 𝑃⃑ (𝑟 ,𝜔) = 𝜀0[𝝐  + 𝚪(𝑘̂ ∙ ∇⃑⃑ )]𝐸⃑ 0𝑒
𝑖(𝑘⃑ ∙𝑟 −𝜔𝑡). Note that this expression is equivalent 

to the result presented in ref. 29, 𝑃⃑ (𝑟 , 𝜔) = 𝜀0(𝝐  + 𝚪𝑛∇𝑛)𝐸⃑ 0𝑒
𝑖(𝑘⃑ ∙𝑟 −𝜔𝑡) where 𝚪𝑛 = 𝚪𝑘̂ ∙ 𝑎̂𝑛. Expanding 

equations (S7.1-S7.9) using equation (S9) results in the following expressions for the modified dielectric 

and non-locality tensor elements given respectively as:   
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𝜖𝑥𝑥 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[(Ω1

2 sin2 𝜃2 cos2 𝜙2 + Ω2
2 sin2 𝜃1 cos2 𝜙1) −                                                  (S12.1)

cos[𝑘⃑ ∙ (𝛿𝑟 1 − 𝛿𝑟 2)] (𝜁1,2 + 𝜁2,1) sin 𝜃1 cos𝜙1 sin 𝜃2 cos𝜙2]

 

𝜖𝑥𝑦 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[(Ω1

2 sin2 𝜃2 sin𝜙2 cos𝜙2 + Ω2
2 sin2 𝜃1 sin𝜙1 cos𝜙1) −                             (S12.2)

cos[𝑘⃑ ∙ (𝛿𝑟 1 − 𝛿𝑟 2)] (𝜁1,2 cos𝜙1 sin𝜙2 + 𝜁2,1 sin𝜙1 cos𝜙2) sin 𝜃1 sin𝜃2]

 

𝜖𝑥𝑧 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[(Ω1

2 sin𝜃2 cos 𝜃2 cos𝜙2 + Ω2
2 sin𝜃1 cos 𝜃1 cos𝜙1)  −                                 (S12.3)

cos[𝑘⃑ ∙ (𝛿𝑟 1 − 𝛿𝑟 2)] (𝜁1,2 sin𝜃1 cos𝜙1 cos 𝜃2 + 𝜁2,1 cos 𝜃1 sin 𝜃2 cos𝜙2)]

 

𝜖𝑦𝑥 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[(Ω1

2 sin2 𝜃2 sin𝜙2 cos𝜙2 + Ω2
2 sin2 𝜃1 sin𝜙1 cos𝜙1) −                             (S12.4)

cos[𝑘⃑ ∙ (𝛿𝑟 1 − 𝛿𝑟 2)] (𝜁1,2 sin𝜙1 cos𝜙2 + 𝜁2,1 cos𝜙1 sin𝜙2) sin𝜃1 sin𝜃2]

 

𝜖𝑦𝑦 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[(Ω1

2 sin2 𝜃2 sin2 𝜙2 + Ω2
2 sin2 𝜃1 sin2 𝜙1) −                                                   (S12.5)

cos[𝑘⃑ ∙ (𝛿𝑟 1 − 𝛿𝑟 2)] (𝜁1,2 + 𝜁2,1) sin 𝜃1 sin𝜙1 sin𝜃2 sin𝜙2]

 

𝜖𝑦𝑧 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[(Ω1

2 sin𝜃2 cos 𝜃2 sin𝜙2 + Ω2
2 sin 𝜃1 cos 𝜃1 sin𝜙1)  −                                  (S12.6)

cos[𝑘⃑ ∙ (𝛿𝑟 1 − 𝛿𝑟 2)] (𝜁1,2 sin 𝜃1 sin𝜙1 cos 𝜃2 + 𝜁2,1 cos 𝜃1 sin 𝜃2 sin𝜙2)]

 

𝜖𝑧𝑥 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[(Ω1

2 sin 𝜃2 cos𝜃2 cos𝜙2 + Ω2
2 sin𝜃1 cos 𝜃1 cos𝜙1)  −                                 (S12.7)

cos[𝑘⃑ ∙ (𝛿𝑟 1 − 𝛿𝑟 2)] (𝜁1,2 cos 𝜃1 sin 𝜃2 cos𝜙2 + 𝜁2,1 sin𝜃1 cos𝜙1 cos 𝜃2)]

 

𝜖𝑧𝑦 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[(Ω1

2 sin𝜃2 cos 𝜃2 sin𝜙2 + Ω2
2 sin 𝜃1 cos𝜃1 sin𝜙1)  −                                   (S12.8)

cos[𝑘⃑ ∙ (𝛿𝑟 1 − 𝛿𝑟 2)] (𝜁1,2 cos𝜃1 sin𝜃2 sin𝜙2 + 𝜁2,1 sin𝜃1 sin𝜙1 cos 𝜃2)]

 

𝜖𝑧𝑧 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[(Ω1

2 cos2 𝜃2 + Ω2
2 cos2 𝜃1)  −                                                                               (S12.9)

cos[𝑘⃑ ∙ (𝛿𝑟 1 − 𝛿𝑟 2)] (𝜁1,2 + 𝜁2,1) cos𝜃1 cos 𝜃2]

 

 

and, 
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Γ𝑥𝑥 =
𝜔𝑝

2

Ω1
2Ω2

2 − 𝜁1,2𝜁2,1
[
sin[𝑘⃑ ∙ (𝛿𝑟 1 − 𝛿𝑟 2)]

𝑘
(𝜁1,2 − 𝜁2,1) sin 𝜃1 cos𝜙1 sin 𝜃2 cos𝜙2]                      (S13.1) 

Γ𝑥𝑦 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[
sin[𝑘⃑ ∙ (𝛿𝑟 1 − 𝛿𝑟 2)]

𝑘
(𝜁1,2 sin𝜙1 cos𝜙2 −                                                     (S13.2)

𝜁2,1 sin𝜙2 cos𝜙1) sin𝜃1 sin𝜃2]

 

Γ𝑥𝑧 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[
sin[𝑘⃑ ∙ (𝛿𝑟 1 − 𝛿𝑟 2)]

𝑘
(𝜁1,2 cos𝜙2 cos𝜃1 sin 𝜃2 −                                          (S13.3)

𝜁2,1 cos𝜙1 cos𝜃2 sin 𝜃1)]

 

Γ𝑦𝑥 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[
sin[𝑘⃑ ∙ (𝛿𝑟 1 − 𝛿𝑟 2)]

𝑘
(𝜁1,2 sin𝜙2 cos𝜙1 −                                                     (S13.4)

𝜁2,1 sin𝜙1 cos𝜙2) sin𝜃1 sin𝜃2]

 

Γ𝑦𝑦 =
𝜔𝑝

2

Ω1
2Ω2

2 − 𝜁1,2𝜁2,1
[
sin[𝑘⃑ ∙ (𝛿𝑟 1 − 𝛿𝑟 2)]

𝑘
(𝜁1,2 − 𝜁2,1) sin𝜃1 sin𝜙1 sin𝜃2 sin𝜙2]                       (S13.5) 

Γ𝑦𝑧 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[
sin[𝑘⃑ ∙ (𝛿𝑟 1 − 𝛿𝑟 2)]

𝑘
(𝜁1,2 cos 𝜃1 sin 𝜃2 sin𝜙2 −                                           (S13.6)

𝜁2,1 cos𝜃2 sin 𝜃1 sin𝜙1)]

 

Γ𝑧𝑥 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[
sin[𝑘⃑ ∙ (𝛿𝑟 1 − 𝛿𝑟 2)]

𝑘
(𝜁1,2 sin𝜃1 cos 𝜃2 cos𝜙1 −                                          (S13.7)

𝜁2,1 sin 𝜃2 cos 𝜃1 cos𝜙2)]

 

Γ𝑧𝑦 =
𝜔𝑝

2

(Ω1
2Ω2

2 − 𝜁1,2𝜁2,1)
[
sin[𝑘⃑ ∙ (𝛿𝑟 1 − 𝛿𝑟 2)]

𝑘
(𝜁1,2 sin𝜃1 cos 𝜃2 sin𝜙1 −                                          (S13.8)

𝜁2,1 sin 𝜃2 cos 𝜃1 sin𝜙2)]

 

Γ𝑧𝑧 =
𝜔𝑝

2

Ω1
2Ω2

2 − 𝜁1,2𝜁2,1
[
sin[𝑘⃑ ∙ (𝛿𝑟 1 − 𝛿𝑟 2)]

𝑘
(𝜁1,2 − 𝜁2,1) cos𝜃1 cos 𝜃2]                                               (S13.9) 
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Section S4. Chiroptical response calculation 

The current density response 𝐽 = −𝑖𝜔𝜀0𝝌𝐸⃑ 0𝑒
𝑖(𝑘⃑ ∙𝑟 −𝜔𝑡) can be expanded as: 

𝐽𝑥 ∝ 𝜒𝑥𝑥𝐸0,𝑥 + 𝜒𝑥𝑦𝐸0,𝑦 + 𝜒𝑥𝑧𝐸0,𝑧                                                     (S14.1) 

𝐽𝑦 ∝ 𝜒𝑦𝑥𝐸0,𝑥 + 𝜒𝑦𝑦𝐸0,𝑦 + 𝜒𝑦𝑧𝐸0,𝑧                                                     (S14.2) 

𝐽𝑧 ∝ 𝜒𝑧𝑥𝐸0,𝑥 + 𝜒𝑧𝑦𝐸0,𝑦 + 𝜒𝑧𝑧𝐸0,𝑧                                                      (S14.3) 

Where, 𝐸0,𝑖 for i = x, y, z corresponds to the magnitude of the three components of the electric field in 

cartesian coordinates. Taking the absolute value squared of equation (S14) gives  

 |𝐽 |
2

= 𝜖0
2𝜔2|𝝌𝐸⃑ 0|

2
= |𝐽𝑥|

2 + |𝐽𝑦|
2
+ |𝐽𝑧|

2                                             (S15) 

Expanding this expression in cartesian coordinates results in: 

|𝐽𝑥|
2 ∝ |𝜒𝑥𝑥𝐸0,𝑥|

2
+ |𝜒𝑥𝑦𝐸0,𝑦|

2
+ |𝜒𝑥𝑧𝐸0,𝑧|

2
+ 𝜒𝑥𝑥𝜒𝑥𝑦

∗ 𝐸0,𝑥𝐸0,𝑦
∗ + 𝜒𝑥𝑥

∗ 𝜒𝑥𝑦𝐸0,𝑥
∗ 𝐸0,𝑦 +

𝜒𝑥𝑦𝜒𝑥𝑧
∗ 𝐸0,𝑦𝐸0,𝑧

∗ + 𝜒𝑥𝑦
∗ 𝜒𝑥𝑧𝐸0,𝑦

∗ 𝐸0,𝑧 + 𝜒𝑥𝑥𝜒𝑥𝑧
∗ 𝐸0,𝑥𝐸0,𝑧

∗ + 𝜒𝑥𝑥
∗ 𝜒𝑥𝑧𝐸0,𝑥

∗ 𝐸0,𝑧

         (S16.1) 

|𝐽𝑦|
2
∝ |𝜒𝑦𝑥𝐸0,𝑥|

2
+ |𝜒𝑦𝑦𝐸0,𝑦|

2
+ |𝜒𝑦𝑧𝐸0,𝑧|

2
+ 𝜒𝑦𝑥𝜒𝑦𝑦

∗ 𝐸0,𝑥𝐸0,𝑦
∗ + 𝜒𝑦𝑥

∗ 𝜒𝑦𝑦𝐸0,𝑥
∗ 𝐸0,𝑦 +

𝜒𝑦𝑦𝜒𝑦𝑧
∗ 𝐸0,𝑦𝐸0,𝑧

∗ + 𝜒𝑦𝑦
∗ 𝜒𝑦𝑧𝐸0,𝑦

∗ 𝐸0,𝑧 + 𝜒𝑦𝑥𝜒𝑦𝑧
∗ 𝐸0,𝑥𝐸0,𝑧

∗ + 𝜒𝑦𝑥
∗ 𝜒𝑦𝑧𝐸0,𝑥

∗ 𝐸0,𝑧

        (S16.2) 

|𝐽𝑧|
2 ∝ |𝜒𝑧𝑥𝐸0,𝑥|

2
+ |𝜒𝑧𝑦𝐸0,𝑦|

2
+ |𝜒𝑧𝑧𝐸0,𝑧|

2
+ 𝜒𝑧𝑥𝜒𝑧𝑦

∗ 𝐸0,𝑥𝐸0,𝑦
∗ + 𝜒𝑧𝑥

∗ 𝜒𝑧𝑦𝐸0,𝑥
∗ 𝐸0,𝑦 +

𝜒𝑧𝑦𝜒𝑧𝑧
∗ 𝐸0,𝑦𝐸0,𝑧

∗ + 𝜒𝑧𝑦
∗ 𝜒𝑧𝑧𝐸0,𝑦

∗ 𝐸0,𝑧 + 𝜒𝑧𝑥𝜒𝑧𝑧
∗ 𝐸0,𝑥𝐸0,𝑧

∗ + 𝜒𝑧𝑥
∗ 𝜒𝑧𝑧𝐸0,𝑥

∗ 𝐸0,𝑧

          (S16.3) 

The chiroptical response of the system is defined as ∆𝐴 = |𝐽 𝑅𝐶𝑃|
2
− |𝐽 𝐿𝐶𝑃|

2
. Inserting equation (S15) into 

this expression gives ∆𝐴 = 𝜖0
2𝜔2 (|𝝌𝐸⃑ 0|

2
− |𝝌𝐸⃑ 0

∗|
2
). Finally, inserting equations (S16.1 – S16.3) in this 

∆𝐴 expression results in: 

∆𝐴 = ∆|𝐽𝑥|
2 + ∆|𝐽𝑦|

2
+ ∆|𝐽𝑧|

2 ∝                                                                                                                        (S17) 

[(𝜒𝑥𝑦𝜒𝑥𝑧
∗ − 𝜒𝑥𝑦

∗ 𝜒𝑥𝑧) + (𝜒𝑦𝑦𝜒𝑦𝑧
∗ − 𝜒𝑦𝑦

∗ 𝜒𝑦𝑧) + (𝜒𝑧𝑦𝜒𝑧𝑧
∗ − 𝜒𝑧𝑦

∗ 𝜒𝑧𝑧)](𝐸0,𝑦𝐸0,𝑧
∗ − 𝐸0,𝑦

∗ 𝐸0,𝑧) + 

[(𝜒𝑥𝑥𝜒𝑥𝑧
∗ − 𝜒𝑥𝑥

∗ 𝜒𝑥𝑧) + (𝜒𝑦𝑥𝜒𝑦𝑧
∗ − 𝜒𝑦𝑥

∗ 𝜒𝑦𝑧) + (𝜒𝑧𝑥𝜒𝑧𝑧
∗ − 𝜒𝑧𝑥

∗ 𝜒𝑧𝑧)](𝐸0,𝑥𝐸0,𝑧
∗ − 𝐸0,𝑥

∗ 𝐸0,𝑧) +

[(𝜒𝑥𝑥𝜒𝑥𝑦
∗ − 𝜒𝑥𝑥

∗ 𝜒𝑥𝑦) + (𝜒𝑦𝑥𝜒𝑦𝑦
∗ − 𝜒𝑦𝑥

∗ 𝜒𝑦𝑦) + (𝜒𝑧𝑥𝜒𝑧𝑦
∗ − 𝜒𝑧𝑥

∗ 𝜒𝑧𝑦)](𝐸0,𝑥𝐸0,𝑦
∗ − 𝐸0,𝑥

∗ 𝐸0,𝑦)      

 

The nanocuboids in Figure 2A of the manuscript are aligned parallel to the x-y plane (𝜃1 = 𝜃2 = 𝜋 2⁄ ). 

Using this in equations (S12.1-S12.9) and (S13.1-S13.9) shows that 𝜖𝑧,𝑖 = 𝜖𝑖,𝑧 = Γ𝑧,𝑖 = Γ𝑖,𝑧 = 0 for 𝑖 = x, 

y, reducing equation (S17) to: 
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Δ𝐴 ∝ 2𝑖|𝐸0|
2 cos 𝜃0 {[(𝜖𝑥𝑥𝜖𝑥𝑦

∗ − 𝜖𝑥𝑥
∗ 𝜖𝑥𝑦) + (𝜖𝑦𝑥𝜖𝑦𝑦

∗ − 𝜖𝑦𝑥
∗ 𝜖𝑦𝑦)] +                     (S18)

𝑘2[(Γ𝑥𝑥Γ𝑥𝑦
∗ − Γ𝑥𝑥

∗ Γ𝑥𝑦) + (Γ𝑦𝑥Γ𝑦𝑦
∗ − Γ𝑦𝑥

∗ Γ𝑦𝑦)] +

𝑖𝑘[(𝜖𝑥𝑦Γ𝑥𝑥
∗ + 𝜖𝑥𝑦

∗ Γ𝑥𝑥) + (𝜖𝑦𝑦Γ𝑦𝑥
∗ + 𝜖𝑦𝑦

∗ Γ𝑦𝑥)] −

𝑖𝑘[(𝜖𝑥𝑥Γ𝑥𝑦
∗ + 𝜖𝑥𝑥

∗ Γ𝑥𝑦) + (𝜖𝑦𝑥Γ𝑦𝑦
∗ + 𝜖𝑦𝑥

∗ Γ𝑦𝑦)]}

 

Note that since Γ𝑥𝑥 = 0 and (Γ𝑥𝑥Γ𝑥𝑦
∗ − Γ𝑥𝑥

∗ Γ𝑥𝑦) = (Γ𝑦𝑥Γ𝑦𝑦
∗ − Γ𝑦𝑥

∗ Γ𝑦𝑦) = 0, equation (S18) further 

simplifies to: 

Δ𝐴 = 2𝑖𝜖0
2𝜔2|𝐸0|

2 cos 𝜃0 {[(𝜖𝑥𝑥𝜖𝑥𝑦
∗ − 𝜖𝑥𝑥

∗ 𝜖𝑥𝑦) + (𝜖𝑦𝑥𝜖𝑦𝑦
∗ − 𝜖𝑦𝑥

∗ 𝜖𝑦𝑦)] +

𝑖𝑘[(𝜖𝑥𝑥Γ𝑥𝑦
∗ + 𝜖𝑥𝑥

∗ Γ𝑥𝑦) + (𝜖𝑦𝑥Γ𝑦𝑦
∗ + 𝜖𝑦𝑥

∗ Γ𝑦𝑦) − (𝜖𝑦𝑦Γ𝑦𝑥
∗ + 𝜖𝑦𝑦

∗ Γ𝑦𝑥)]}
                    (S19) 

This equation can be written as the sum of two chiroptical contributions, ∆𝐴 = ∆𝐴𝜖,𝜖 + ∆𝐴Γ,𝜖, expressed 

individually as:  

∆𝐴𝜖,𝜖 = 2𝜖0
2𝜔2|𝐸0|

2 cos 𝜃0 𝐼𝑚{𝜖𝑥𝑥
∗ 𝜖𝑥𝑦 + 𝜖𝑦𝑥

∗ 𝜖𝑦𝑦}                                 (S20.1) 

∆𝐴Γ,𝜖 = 2𝜖0
2𝜔2|𝐸0|

2 cos 𝜃0 𝑅𝑒{𝑘[(𝜖𝑥𝑦Γ𝑥𝑥
∗ − 𝜖𝑥𝑥Γ𝑥𝑦

∗ ) + (𝜖𝑦𝑦Γ𝑦𝑥
∗ − 𝜖𝑦𝑥Γ𝑦𝑦

∗ )]}                   (S20.2) 
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Section S5. Dependence of the 𝛋 on the difference between oscillator frequencies 

 

Fig. S2. Dependence of the multiplication factor 𝛋 on the difference between oscillator frequencies. 

The spectral plots for the dependence of |κ|2 on (∆𝜔)/𝛾 calculated under the conditions of Figure 3C in 

the manuscript. The magnitude of the multiplication factor decreases as the difference in oscillator 

frequencies ∆𝜔 becomes larger. 

 

 

Section S6. Chiroptical response for two identical, orthogonally oriented nanocuboids at finite 𝒅𝒛 

Schematic representation of two orthogonally oriented oscillators of identical lengths (𝑙1 = 𝑙2 = 𝑙) 

corresponding to 𝜔1 = 𝜔2 = 𝜔, and symmetric cross-coupling strengths, 𝜁1,2(𝜔) = 𝜁2,1(𝜔) = 𝜁, aligned 

orthogonal to each other (𝜙1 = 90° and 𝜙2 = 0°) and placed at 𝑑1,𝑦 = 𝑑2,𝑥 = 𝑙 2⁄  separated by a distance 

𝑑𝑧 along the z-direction. Under these conditions, the modified dielectric tensor elements of equations 

(S12.1-S12.9) reduce to: 

ϵ𝑥𝑥 = ϵ𝑦𝑦 = Ω2
𝜔𝑝

2

Ω4 − 𝜁2
                                                                (S21) 

ϵ𝑧𝑧 = 0 and ϵ𝑖,𝑗 = 0 for 𝑖 ≠ 𝑗.  The non-locality tensor elements given by equations (S13.1-S13.9) give 

Γ𝑖,𝑗 = 0 except for 𝑖, 𝑗 = 𝑥, 𝑦. Assuming 𝑘𝑑𝑧 ≪ 1, the remaining tensor elements are expressed as: 

1.0

0.5

0.0
1000900800700

 Wavelength (nm) 

 
2

(a
.u

.)
Δ𝜔/𝛾

3.00

2.00
1.00
0.74

0.58
0.30
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Γ𝑥𝑦 = −Γ𝑦𝑥 = 𝜁𝑑
𝜔𝑝

2

Ω4 − 𝜁2
 (S22) 

The chiroptical response, calculated by inserting these tensor elements into equations (6.1) and (6.2) of the 

manuscript results in ∆𝐴𝜖,𝜖 = 0, and

∆𝐴Γ,𝜖 = 4𝜖0
2𝜔2𝜁𝑑𝜔𝑝

4
Ω2

𝜁2 − Ω4
 (S23) 

where the source field is assumed to have a unity magnitude, |𝐸0|
2 = 1. ∆𝐴Γ,𝜖 vs. 𝜆0 response results in a

typical two-fold symmetric spectral lineshape characteristic of optical activity. Under identical conditions, 

the ∆𝐴Γ,𝜖 response is also calculated using equation (8.2) of the manuscript, demonstrating the equivalence

of the two equations (6.2) and (8.2). The spectral lineshape is also consistent with the results of the Born-

Kuhn model (20).   

Fig. S3. Chiroptical response of orthogonally oriented identical nanocuboids in a three-dimensional 

arrangement. (A) Schematic representation of two orthogonally oriented Au nanocuboids, aligned parallel 

to the x-y plane (𝜙1 = 90° and 𝜙2 = 0°), excited by normally incident light (𝜃0 = 0°). The two nanocuboids

are located at 𝑑1,𝑧 = 𝑑2,𝑧 = 50 nm, and 𝑑1,𝑦 = 𝑑2,𝑥 = 50 nm, corresponding to 𝑑𝑧 = 100 nm. The

oscillators are designed to exhibit resonance at wavelengths of 𝜆1 = 𝜆2 = 1300 nm, and coupling strengths

𝜁1,2 = 𝜁2,1 = 1 × 1028 s−1 as well as following values for the plasma frequency, 𝜔𝑝 = 1.37 × 1016 s−1,

and damping coefficient,  𝛾 = 𝛾1 = 𝛾2 = 1.22 × 1014 s−1, for Au in the near-infrared region are used in

the calculations (32). (B) The calculated ∆𝐴 = ∆𝐴Γ,𝜖 response obtained by simplifying equation (6.2) to

B

-1.0

-0.5

0.0

0.5

1.0

145013001150
 Wavelength (nm) 

∆
𝐴

Γ
,𝜖
( 

. 
.)

   equation 8.2

  equation 6.2

∆𝐴Γ,𝜖

y

z

x

𝑢1

𝑢2

𝑑1,𝑧
𝑘

A

𝑑2,𝑧

𝑑1,𝑦

𝑑2,𝑥
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obtain equation (S23). For comparison, the ∆𝐴Γ,𝜖 response directly calculated using equation (8.2) is also 

shown, validating that they are equivalent.  

 

 

Section S7. Device fabrication 

 
Fig. S4. Nanofabrication process steps. E-beam resist (PMMA) was spin-coated on a pre-cleaned fused 

silica substrate, followed by deposition of 20 nm Al film using thermal evaporation. E-beam lithography 

(at 100 keV) was used to expose the cuboid pattern on the resist, and the exposed resist was developed for 

90 s in MIBK followed by 30 s rinse in IPA. Using E-beam evaporation, a 2 nm thick Ti adhesion layer, 

followed by 40 nm thick Au was deposited. Following deposition, lift-off was carried out by soaking the 

sample in acetone for twelve-hours. The lift-off procedure leaves Au islands at the location of the exposed 

regions. The scale bar in the representative top-down SEM image is 500 nm. 

 

 

Glass

1. Clean glass substrate 

2. Spin e-beam resist

Glass

PMMA, A3 950K

6. Lift-off in acetone bath

Glass
3. Thermal evaporation, Al 

20 nm
Al

Glass

PMMA, A3 950K

4. E-beam lithography    

followed by Al etch and 

resist development

Glass

5. E-beam evaporation, Ti 2 

nm, Au 40 nm

Glass

7. Representative SEM 

image
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Section S8. Comparison between calculated CDA and ∆  spectral response 

 

 

Fig. S5. Comparison between calculated CDA and ∆  spectral response. The calculated chiroptical 
responses CDA and ∆  calculated using the model for the exact structure and excitation conditions of 
Figure 5A of the manuscript. The similarity between the two response types, plotted at azimuthal angles: 
(A) 0 = 0° (180°) (B) 0 = 45° (225°) (C) 0 = 90° (270°) and (D) 0 = 135° (315°) verifies our 
assumption that they are equivalent measurements, and can be used interchangeably. 
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Section S9. Chiroptical response of 𝟒𝟓°oriented cuboids of equal lengths 

 

 
Fig. S6. Experimental measurements of the chiroptical response of 𝟒𝟓°oriented cuboids of equal 

lengths. Experimental CDA measurements for an array of planar Au nanocuboid bi-oscillators, illuminated 

with free-space light between wavelengths of 𝜆0 = 500 nm and 1000 nm, as a function of incidence angle 

(varying 𝜙0 at a fixed 𝜃0 = 45°) for nanocuboids of equal lengths (𝑙1 = 𝑙2 =120 nm) oriented at 45° with 

respect to each other (𝜙1 = 90° and 𝜙2 = 45°). Top-down scanning-electron microscopy (SEM) images 

of unit-cells consisting of the two Au nanocuboid oscillators, overlaid with the coordinate system and 

orientation of the in-plane wavevector of the incident light (𝑘⃑ ∥𝑥𝑦) along the x-y plane, is shown as an inset 

in A. Scale bar represents 120 nm in the SEM image. (A-D) Experimentally measured CDA spectra at 

𝜙0 = 0°, 45°, 90° and 135°  (blue plots), and at 180°  offset from these angles (red plots) neither shows any 

clear symmetry in the spectral lineshape, nor a clear inversion in the sign for 𝜙0 rotation by 180° . 
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Section S10. Asymmetric transmission chiroptical response of all-dielectric media 

For dielectric media, the electron-oscillators are bound and described here by amplitude oscillations 𝑢⃑ 𝑘 of 

resonant frequencies 𝜔𝑘 = √𝛼 𝑚∗⁄  for 𝑘 = 1, 2 where 𝛼 is a spring-constant, and 𝑚∗ is the effective mass 

of a bound electron. The plasma frequency is replaced with 𝜔𝑏̃ = √𝑛̃𝑒2 𝑚∗𝜀0⁄ , where 𝑛̃ is the density of 

bound electrons (39). The damping factor of the oscillators are assumed to be 𝛾1 = 𝛾2 = 𝛾 and the cross-

coupling amplitudes are assumed to be 𝜁1,2 = 𝜁2,1 = 0. Under these assumptions, all the non-locality tensor 

elements Γ𝑖,𝑗 for i, j = x, y, z become zero (equations (S13.1-S13.9)), and the modified dielectric tensor 

elements 𝜖𝑖,𝑗 (equations (S12.1-S12.9)) are expressed as:   

𝜖𝑥𝑥 =
𝜔𝑏̃

2

Ω1
2Ω2

2
(Ω1

2 sin2 𝜃2 cos2 𝜙2 + Ω2
2 sin2 𝜃1 cos2 𝜙1)                                                 (S24.1) 

𝜖𝑥𝑦 =
𝜔𝑏̃

2

Ω1
2Ω2

2
(Ω1

2 sin2 𝜃2 sin𝜙2 cos𝜙2 + Ω2
2 sin2 𝜃1 sin𝜙1 cos𝜙1)                            (S24.2) 

𝜖𝑥𝑧 =
𝜔𝑏̃

2

Ω1
2Ω2

2
(Ω1

2 sin𝜃2 cos 𝜃2 cos𝜙2 + Ω2
2 sin𝜃1 cos 𝜃1 cos𝜙1)                                 (S24.3) 

𝜖𝑦𝑥 =
𝜔𝑏̃

2

Ω1
2Ω2

2
(Ω1

2 sin2 𝜃2 sin𝜙2 cos𝜙2 + Ω2
2 sin2 𝜃1 sin𝜙1 cos𝜙1)                            (S24.4) 

𝜖𝑦𝑦 =
𝜔𝑏̃

2

Ω1
2Ω2

2
(Ω1

2 sin2 𝜃2 sin2 𝜙2 + Ω2
2 sin2 𝜃1 sin2 𝜙1)                                                  (S24.5) 

𝜖𝑦𝑧 =
𝜔𝑏̃

2

Ω1
2Ω2

2
(Ω1

2 sin𝜃2 cos 𝜃2 sin𝜙2 + Ω2
2 sin 𝜃1 cos 𝜃1 sin𝜙1)                                 (S24.6) 

𝜖𝑦𝑥 =
𝜔𝑏̃

2

Ω1
2Ω2

2
(Ω1

2 sin𝜃2 cos 𝜃2 cos𝜙2 + Ω2
2 sin𝜃1 cos 𝜃1 cos𝜙1)                                 (S24.7) 

𝜖𝑦𝑦 =
𝜔𝑏̃

2

Ω1
2Ω2

2
(Ω1

2 sin 𝜃2 cos 𝜃2 sin𝜙2 + Ω2
2 sin𝜃1 cos 𝜃1 sin𝜙1)                                  (S24.8) 

𝜖𝑦𝑧 =
𝜔𝑏̃

2

Ω1
2Ω2

2
(Ω1

2 cos2 𝜃2 + Ω2
2 cos2 𝜃1)                                                                             (S24.9) 
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We define an impermittivity tensor, 𝝔(𝑘, 𝜔), in terms of the modified dielectric tensor, 𝝐(𝑘, 𝜔), expressed 

as (36): 

𝝔(𝑘, 𝜔) = 𝜺−1(𝑘, 𝜔)                                                                 (S25) 

with tensor elements 𝜚𝑖,𝑗 for 𝑖, 𝑗 = 1, 2 and 3.  

The electric-flux density within the medium can be written as 𝐷⃑⃑ = 𝑎̂1𝐷1 + 𝑎̂2𝐷2 + 𝑎̂3𝐷3 where 𝑎̂1 =

−𝑎̂𝜙, 𝑎̂2 = 𝑎̂𝜃, 𝑎̂3 = 𝑎̂𝑟. The dispersion relation of the system is calculated using the relationship between 

electric flux density 𝐷⃑⃑  and electric field 𝐸⃑  , given by 𝐸⃑ = 𝝔𝐷⃑⃑ , and the relationship between magnetic field 

𝐻⃑⃑  and magnetic flux density 𝐵⃑ , given by 𝐻⃑⃑ = 𝜇0
−1𝐵⃑ , where 𝜇0 is the permeability of free-space. From 

equation (S25) and the field expressions, results in the dispersion relation for an arbitrarily oriented source 

field expressed as (40):  

(
𝑢2 − 𝜇0

−1𝜚11 −𝜇0
−1𝜚12

−𝜇0
−1𝜚21 𝑢2 − 𝜇0

−1𝜚22

)(
𝐷1

𝐷2
) = 0                                              (S26) 

The phase velocities 𝑢± for the eigenmodes of the system are found by setting the determinant of the matrix 

expression of equation (S26) equal to zero, resulting in: 

𝑢± = 𝑅𝑒{√
1

2𝜇0
[(𝜚11 + 𝜚22) ± √(𝜚11 − 𝜚22)

2 + 4𝜚12𝜚21]}                                 (S27) 

The corresponding k-vectors for the eigenmodes, corresponding to the characteristic waves in the medium, 

are calculated using 𝑘± = 𝜔 𝑢±⁄  with the field components satisfying the relation: 

 

𝐷2

𝐷1
=

2𝜚21

(𝜚11 − 𝜚22) ± √(𝜚11 − 𝜚22)
2 + 4𝜚12𝜚21

                                         (S28) 

 

By choosing certain oscillator parameters, the characteristic waves satisfying equation (S28) can be made 

circularly polarized (𝐷2 𝐷1⁄ ≈ ±𝑖). One such set of parameters that satisfy this condition is achieved by 

setting the oscillator resonance wavelengths to 𝜆1 = 𝜆2 = 450 nm, and assuming the damping factor to be 
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𝛾 = 9.29 × 1014 s−1, and 𝜔𝑏̃ = 4.54 × 1015 s−1. Additionally, the first oscillator is assumed to be 

oriented at 𝜃1 = 165°  and 𝜙1 = 308° , and the second oscillator at 𝜃2 = 22° and 𝜙2 = 156° . Inserting these 

assumptions in equation (S28), results in 𝐷2 𝐷1⁄ ≈ ±𝑖 for a source field at normal incidence, 𝜃0 = 0° 

(Supplementary Figure S7). The direction of power propagation for each eigenmode is determined from 

the direction normal to the k-surface, calculated from equations (S27) (40). As shown in Supplementary 

Figure S7D, the Poynting vectors 𝑆 + and 𝑆 −, corresponding to the RCP and LCP components in this 

configuration, respectively, propagate in different directions. An additional deployment of geometric phase 

further enables independent phase-front manipulation of these two components (Fig. S7E). This illustrates 

that a strong far-field CO response may be measured in all-dielectric optical media through spatial filtering 

of either the RCP or the LCP light.  
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Fig. S7. Isofrequency surfaces and Poynting vectors for the eigenmodes of a biaxial medium. (A-C) 

The isofrequency surface plots in normalized k-space along the three characteristic planes corresponding to 

the right and left-handed eigenmodes, 𝑘+ = 𝜔 𝑢+⁄  (red) and 𝑘− = 𝜔 𝑢−⁄  (blue) respectively, of an all-

dielectric biaxial medium. The eigenmodes are calculated at 𝜔 = 4.19 × 1015 s−1. The corresponding 

Poynting vectors (𝑆 + and 𝑆 −, for the RCP and LCP components, respectively) for a linearly polarized (LP) 

light normally incident on the medium, 𝜃0 = 0°, and propagating parallel to the z-direction is also shown. 

(D) A schematic of power propagation, in the medium, along different directions for the two characteristic 

opposite handedness waves. Although 𝑘⃑ + and 𝑘⃑ − both propagate along the z-axis, the Poynting vectors for 

the two eigenmodes are not parallel. 𝑆 + continues to propagate along the z-axis, but 𝑆 − propagates at an 

angle   relative to the x-axis and angle 𝛼 relative to the z-axis. (E) The introduction of a geometric phase 

enables circular birefringence, where 𝑘⃑ + and 𝑘⃑ − each refract at different angles 𝛼+ ( +) and 𝛼− 

( −) relative to the z-axis (x-axis), respectively. This ability to manipulate wavefronts through geometric 

phase enable applications such as CP sensitive holographic imaging (24) and selective focusing of CP light 

(38).  
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