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Flow Resistance and Structures in Viscoelastic Channel Flows at Low Re
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The flow of viscoelastic fluids in channels and pipes remains poorly understood, particularly at low 
Reynolds numbers. Here, we investigate the flow of polymeric solutions in straight channels using pressure
measurements and particle tracking. The flow friction factor fη versus flow rate exhibits two regimes: a 
transitional regime marked by rapid increase in drag, and a turbulentlike regime characterized by a sudden 
decrease in drag and a weak dependence on flow rate. Lagrangian trajectories show finite transverse 
modulations not seen in Newtonian fluids. These curvature perturbations far downstream can generate 
sufficient hoop stresses to sustain the flow instabilities in the parallel shear flow.
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17 Fluids containing polymers are found in everyday life
18 (e.g., foods and cosmetics) and in technology spanning the
19 oil, pharmaceutical, and chemical industries. A marked
20 characteristic of polymeric fluids is that they often exhibit
21 non-Newtonian flow behavior such as viscoelasticity [1,2].
22 Mechanical (elastic) stresses in such fluids are history
23 dependent and develop with timescale λ, which is propor-
24 tional to the time needed for a single polymer molecule to
25 relax to its equilibrium state in dilute solutions. These
26 stresses grow nonlinearly with shear rate and can dramati-
27 cally change the flow behavior [1,2]. For example, the
28 presence of the polymer in turbulent pipe flows can suppress
29 eddies and leads to large reduction in flow friction [3,4]. At
30 low Reynolds numbers (Re), where inertia is negligible,
31 elastic stresses can lead to flow instabilities not found in
32 ordinary fluids like water [5–12]. They can also exhibit a
33 new type of disordered flow—elastic turbulence—a turbu-
34 lentlike regime existing far below the dissipation scale
35 [13–16].
36 Recently, there has been mounting evidence that the flow
37 of viscoelastic polymeric solutions in pipe and channel
38 flows is nonlinearly unstable and undergoes a subcritical
39 instability at sufficiently high flow rates even at low Re
40 [12,17–22]. We note that this nonlinear elastic instability is
41 different from the linear instability found in highly shear-
42 thinning fluids [23–26]; the base flow of the former is stable
43 while the latter is unstable. Each is important in its own right.
44 Theoretical investigations using Oldroyd-B-type model and
45 nonlinear perturbation analysis show that a subcritical
46 bifurcation can arise from linearly stable base states
47 [17,19,20,27], while nonmodal stability analysis predicts
48 transient growth of perturbation [28–30]. Subsequent
49 experiments in small pipes found unusually large velocity
50 fluctuations that are activated at many timescales [21], as

51well as hysteretic behavior [18]. More recently, experiments
52in a long microchannel using a linear array of cylinders as a
53way to perturb the (viscoelastic) flow showed an abrupt
54transition to irregular flow and that the velocity fluctuations
55are long lived [12,22]. The unstable flow exhibits features of
56Newtonian turbulence such as power-law behavior in
57velocity spectra, intermittency flow statistics, and irregular
58structures in the streamwise velocity fluctuation [22]. Taken
59together, these results show that polymeric solutions flowing
60in straight channels can undergo a subcritical transition—a
61sudden onset of sustained velocity fluctuations above a
62perturbation threshold and a critical flow rate. This scenario
63is akin to the transition from laminar to turbulent flow of
64Newtonian fluids in pipe flows [31,32]. Themain distinction
65is that the instability is caused by the nonlinear elastic
66stresses and not inertia. Unlike the Newtonian pipe turbu-
67lence, however, little is known about the basic structures
68organizing the instability and the law of resistance (i.e.,
69pressure loss due to friction) as the flow transitions from a
70stable to an unstable state.
71In this Letter, we investigate the flow of polymeric
72solutions in a straightmicrochannel at lowRe using pressure
73measurements and particle tracking methods. Pressure
74measurements show that the flow resistance increases
75relative to the stable viscoelastic base flow, following
76the transition from a laminar to “turbulentlike” state,
77cf. Fig. 1(c). This behavior is analogous to Newtonian
78turbulence where the friction factor increases as the flow
79transitions from laminar to turbulent except that here the
80governing parameter is the Weissenberg number (Wi),
81defined as the product of the fluid relaxation time λ and
82the flow shear rate _γ. The rise in flow resistance is related to
83enhanced elastic stresses and suggests flow patterns not seen
84in the (viscoelastic) laminar regime. We find that, far
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85 downstream from the initial perturbation, tracer particles
86 follow wavy trajectories with spanwise modulation not
87 found in the stable unperturbed flow (cf. Fig. 5). We believe
88 that the increase in flow resistance is connected to the
89 appearances of thesewavy particlemotions.A friction factor
90 scaling (i.e., flow resistance vs pressure drop) for visco-
91 elastic channel flows is proposed to capture this increase
92 in drag.
93 Experiments are conducted using a straight microchan-
94 nel with equal width and depth (W ¼ D ¼ 100 μm),
95 fabricated using standard soft-lithography methods. The
96 device schematic is shown in Fig. 1(a). The channel length
97 is much larger than its width L=W ¼ 330 and is divided
98 into two regions. The first region consists of a linear array
99 of fifteen cylinders (n ¼ 15) that extends for 30 W, with the

100 last cylinder located at x ¼ 0. The diameter of the cylinder
101 is d ¼ 0.5 W and the center to center separation is
102 l ¼ 2 W. An unperturbed control case with no cylinders
103 (n ¼ 0) is used as the linearly stable viscoelastic case. The
104 second region follows the array of cylinders and consists of
105 a long parallel shear flow 300 W in length. To measure
106 pressure signals, sensors are placed at three locations in
107 the parallel shear region, x1 ¼ 1 W, x2 ¼ 50 W, x3 ¼
108 290 W [see Fig. 1(a)]. The pressure drop per length p1ðtÞ¼
109 ðP1−P2Þ=ðx2−x1Þ and p2ðtÞ ¼ ðP2 − P3Þ=ðx3 − x2Þ is
110 recorded at 5 ms resolution for over 2 hours.
111 The main polymeric solution is prepared by adding
112 300 ppm of polyacrylamide (PAA, 18 × 106 MW) to a
113 viscous Newtonian solvent (90% by mass glycerol aqueous
114 solution); the PAA polymer overlap concentration c�
115 is 350 ppm [33] and c=c� ¼ 0.86. This weakly shear-
116 thinning polymeric solution has a nearly constant viscosity
117 of around η ¼ 300 mPa s. The Newtonian solvent has

118constant viscosity of 220 mPa s and is also used for
119comparison. Throughout our experiment, the Reynolds
120number is kept below 0.01, where Re ¼ ρUH=η, U is the
121mean centerline velocity,H is the channel half-width, and ρ
122is the fluid density.We characterize the strength of the elastic
123stresses compared to viscous stresses by the Weissenberg
124number [7], defined here as Wið_γÞ ¼ N1ð_γÞ=2_γηð_γÞ, where
125_γ ¼ U=H is the shear rate and N1 is the first normal stress
126difference (see Supplemental Material [34] for fluid rheol-
127ogy and residence time).
128We begin by investigating the flow patterns formed when
129a stream of experimental fluid with added fluorescent dye is
130injected at x ¼ 1 W after the last post. The dye spreading
131and patterns are then visualized far downstream in the
132parallel shear region, 200W downstream from the last post.
133Figure 1 shows the spatiotemporal profile of the dye
134intensity along the device’s cross section (y) for a channel
135containing 15 posts (n ¼ 15) for Newtonian [Fig. 1(b)] and
136viscoelastic [Fig. 1(c)] fluids. For the Newtonian case, the
137profile shows typical laminar dye layer with minimal dye
138penetration into the undyed stream, except for diffusion.
139(Similar behavior is observed with viscoelastic fluids for the
140n ¼ 0 case.) A different dye pattern is observed when the
141Newtonian fluid is replaced by the polymeric solution under
142the same conditions. The viscoelastic case, shown in
143Fig. 1(c) at Wi ≈ 20, shows irregular flow patterns with
144spikes of dye penetration into the undyed fluid stream. The
145flow structure of streamwise velocity showed similar devel-
146opment downstream (Supplemental Material [34]). These
147fluctuations in time suggest flow modulations normal to the
148mean flow. In fact, we show later that particle trajectories
149exhibit wavy coherent motions in the parallel shear region.
150As mentioned before, little is known about elastic
151turbulence in channel flows. Importantly, there is no known
152law of resistance for such flows. Here, we observe a new
153friction factor scaling for long chain polymeric solutions
154with weak shear thinning in straight channel flows. Figure 2
155shows the mean pressure drop per length signals p1, p2 for
156viscoelastic fluids for n ¼ 0 and 15 cases as a function of
157flow rate Q and Wi. We note that the statistical mean of the
158reported signals measures the aggregate flow resistance
159encountered to sustain a constant mass flow rate. As
160expected, the pressure drop or flow resistance increases
161with flow rate and Wi. The pressure drop for the n ¼ 0 case
162slightly deviates from the Newtonian case (i.e., △P ∼Q)
163due to mild shear thinning in fluid viscosity. These effects
164can be accounted for by estimating the pressure drop using
165wall shear rate and corresponding viscosity ηð_γÞ measured
166using a cone-and-plate rheometer, as shown by the solid
167line in Fig. 2. No significant difference is found between p1

168and p2 for the n ¼ 0 case as expected, since entrance
169effects are minimized by using a tapered inlet that generates
170minor disturbance relative to that of the cylinder array. For
171n ¼ 15, we find a clear increase in pressure drop relative to
172the n ¼ 0 case; the two pressure segments p1 and p2 show

(a)

(b)

(c)

F1:1 FIG. 1. (a) Schematic of the microchannel, showing location of
F1:2 pressure sensors and the dye injection scheme. [(b) and (c)]
F1:3 Spacetime dye patterns for n ¼ 15 and x ¼ 200 W in the parallel
F1:4 shear region, (c) viscoelastic fluid at Wi ¼ 20, and (b) the
F1:5 Newtonian case at identical flow rate.
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173 little to no difference. This increase in flow resistance
174 cannot be explained by solely shear-thinning effects and is
175 related to the development of additional elastic stresses in
176 the flow as the Wi is increased. It also indicates that more
177 energy is necessary to keep the same flow rate compared to
178 a stable viscoelastic channel flow.
179 The increase in flow resistance is closely associated with
180 the onset of pressure fluctuations (Fig. 3). Figure 3(a)

181shows sample time records of pressure fluctuations p0
1ðtÞ

182for viscoelastic fluids at Wi ¼ 18 in devices with n ¼ 0

183(black) and 15 (blue). We observe a clear increase in the
184pressure fluctuations far downstream the cylinders once
185they are introduced in the flow. Figures 3(a) and 3(b) show
186rms values of the pressure fluctuations of the p0

1 and p0
2

187segments, respectively, as a function of Wi for the n ¼ 15

188and n ¼ 0 cases. For the n ¼ 0 case, pressure fluctuations
189remain relatively small and nearly independent of Wi; the
190small increase in pressure fluctuation at the higher values of
191Wi may be due to entrance effects. We find that for both
192segments, p0

1 and p0
2, the rms values show significant

193departure from the stable n ¼ 0 case and a marked
194increased with increasing Wi. The values of the rms(p0

1)
195and rms(p0

2) start to depart from the n ¼ 0 trend at Wi ≈ 5

196and grow weakly until Wi ≈ 9. This is followed by a much
197steeper growth for Wi≳ 9. This trend in pressure fluc-
198tuation measurements agrees relatively well with measure-
199ments of velocity fluctuations, for the n ¼ 15 case, which
200established that the linear instability associated with the
201flow around the upstream cylinders occurs at Wi ≈ 4 and
202the onset of subcritical instability occurs at Wi ≈ 9 [12,22].
203Since pressure data are now available, one can
204investigate the law of flow resistance for viscoelastic
205channel flows as a function of Wi. This is analogous to
206measuring the Darcy friction factor for Newtonian pipe
207flows as a function of Re [37], traditionally defined as
208ðΔP=ΔLÞ=ðρU2=2WÞ. For small geometry variations (e.g.,
209smooth pipes), the friction factor f is solely a function of
210Re. In what follows, we propose that there is an analogous
211law of resistance for viscoelastic channel flows controlled
212by Wi. Since fluid inertia in our experiments is negligible
213(Re≲ 10−3), we propose to scale the pressure drop by the
214viscous stresses across the channel and define a viscous
215friction factor fη as ðΔP=ΔLÞ=ðcηw _γw=WÞ, where _γw is the
216wall shear rate, ηw is the corresponding viscosity, and
217geometry factor c ≈ 4 for square duct (Supplemental
218Material [34]).
219Figure 4 shows the friction factor fη versus Wi for the
220main polymeric fluid, as well as two other fluids with
221different polymer concentrations and solvent viscosity (see
222[34]) in channels with n ¼ 0 and 15. For n ¼ 0, the friction
223factor is independent of Wi, indicating that the flow
224resistance is purely governed by viscous drag well
225accounted for by the normalization. For n ¼ 15, however,
226we observe an increase in flow resistance with fη ∼Wi1=3

227up to Wi ≈ 9. Surprisingly, we find a second plateaulike
228regime for Wi≳ 9 in which a sudden decrease in fη is
229observed followed by a weak dependence on Wi, valid
230before polymer finite extensibility occurs at Wi≳ 16. This
231relative decrease in drag seems to suggest the emergence of
232a new flow state. The data in Fig. 4 suggest that the initial
233fη ∼Wi1=3 regime is likely a transitional state leading to a
234fully turbulentlike state. Similar to Newtonian pipe flows, a
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F2:1 FIG. 2. Pressure drop per unit length as a function of flow rate
F2:2 Q and Wi for n ¼ 15 and n ¼ 0 cases. The solid line represents
F2:3 estimation using wall shear rates and viscosity from rheology
F2:4 measurements. Error bars are less than marker size and not
F2:5 shown here.
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F3:1 FIG. 3. (a) Pressure gradient signal p0
1ðtÞ for the n ¼ 15 case,

F3:2 compared with the unperturbed n ¼ 0 case, Wi ¼ 18. [(b) and
F3:3 (c)] Root-mean-square (rms) fluctuations versus Wi for n ¼ 0

F3:4 and 15, (b) p0
1, and (c) p0

2. The dashed line is the average level
F3:5 for Newtonian fluid, experimentally found to be constant for
F3:6 increasing Q.
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235 sharp increase in drag occurs during the transition regime
236 before the flow becomes fully turbulent. We note the Wi1=3

237 scaling observed here is lower than the Wi1=2 scaling of
238 injected power in the elastic turbulence of a swirling
239 parallel plate system where the base flow is curved and
240 linearly unstable [38].
241 Next, we investigate the structure of the viscoelastic flow
242 for n ¼ 15 and Wi ¼ 18; this is the regime in which we
243 expect highly irregular flow but quantifying the presence of
244 flow structures has been difficult due to the weak spanwise
245 velocity component relative to the mean shear [22]. To
246 interrogate the flow with enough spatial and temporal
247 resolution, we use a novel three-dimensional holographic
248 particle tracking method [39,40]. The flow is seeded with
249 tracers (1 μm diam at 0.001%) imaged under microscope
250 and high speed camera (5000 fps). Using a coherent light
251 source, particle positions are reconstructed from the light
252 scattering field on the imaging plane (see [34]). The
253 uncertainty in particle centroid is 30 nm for in-plane x,
254 y components. The measurement window is located at
255 x ¼ 200 W in the parallel shear region and extends for
256 2.5 W streamwise and 0.9 W spanwise.
257 Figure 5(a) shows sample particle trajectories for the
258 Newtonian (grey) and viscoelastic (blue) fluids for the n ¼
259 15 and Wi ¼ 18. While the particle trajectory in the
260 Newtonian case follows the mean flow with little lateral
261 motion, particle trajectories in the viscoelastic fluid case
262 display a relatively pronounced waviness and lateral move-
263 ment. This is not isolated to a few particles and Fig. 5(b)
264 shows the full extent of the spanwise spread for 2000
265 such Lagrangian trajectories sampled uniformly in the
266 channel. Such wavy structures underlie the irregular dye
267 transport patterns seen in Fig. 1(c). We quantify these
268 deviations from the base flow by calculating the normalized
269 distribution (pdf*) of the ratio between transverse to

270streamwise cumulative displacements [Fig. 5(c)] defined
271as δy=δx ¼ P jdyij=

P jdxij, where dyi and dxi are
272particle displacements between frames. The Newtonian
273data (black) show minimal transverse component and set
274the measurement noise level. Particles in the viscoelastic
275fluid, however, exhibit small but finite values of transverse
276velocity and a broader distribution of individual particle
277end-to-end displacement. These results indicate the pres-
278ence of spanwise structures in viscoelastic fluids in parallel
279shear flows. While these deviations from the base flow are
280small in absolute terms (2% of the streamwise component),
281even small deviations in the velocity fields in viscoelastic
282fluids can represent significant increase in elastic stresses
283due to the nonlinear relationship between stress and
284velocity [41,42].
285Can these curved particle trajectories drive or maintain
286flow instabilities far downstream (200 W)? Figure 5(d)
287shows the distribution of particle path line curvatures at
288200 W for Wi ¼ 18, n ¼ 15. The trajectories have a mean
289curvature of R−1 ≈ :023 μm−1, which is an order of
290magnitude larger than the Newtonian counterpart. Using
291N1 data (see [34]), we compute the Pakdel-McKinley
292condition ½ðλU=RÞWi�1=2 [43]. We find a value of approx-
293imately 7, which is sufficiently large to trigger flow
294instabilities. Similarly, we find that hoop stresses N1=R ¼
2958 Pa=μm are of the same order (or higher) than the viscous
296drag ΔP=ΔLjn¼0 ¼ 2 Pa=μm. Hence additional pressure
297head is lost to overcome elastic stresses induced by the
298chaotic flow. These results suggest that weak but nontrivial
299streamline curvatures generate sufficient elastic stress
300fluctuations in the secondary flow direction to sustain flow
301instabilities far downstream.
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F4:1 FIG. 4. Viscous friction factor fη as a function of Wi for n ¼ 0
F4:2 and 15 with four cases and types of polymeric fluids. Case I:
F4:3 300 ppm PAA 90% glycerol, 0–50 W, II: 50–290 W, III: 250 ppm
F4:4 PAA 90% glycerol, 0–290 W, IV: 100 ppm PAA 93% glycerol,
F4:5 0–290 W.

F5:1FIG. 5. (a) Particle trajectories in the streamwise (x) and
F5:2spanwise (y) direction; blue lines represent the n ¼ 15 visco-
F5:3elastic case at Wi ¼ 18 and the gray line is Newtonian at identical
F5:4conditions. (b) Collection of trajectories colored by speed.
F5:5Distributions of (c) cumulative transverse to streamwise displace-
F5:6ments and (d) trajectory curvatures, where the dashed line
F5:7represents population mean.
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302 In summary, we investigated the flow of viscoelastic
303 fluids in a long, straight microchannel at low Re. This flow
304 becomes unstable via a nonlinear subcritical instability at a
305 critical Wi for finite amplitude perturbations [12]. Pressure
306 measurements are used to establish the friction factor
307 scaling for this flow (Fig. 4). We find two regimes: (i) a
308 transitional regime 5≲Wi≲ 9 in which the (viscous)
309 friction factor fη ∼Wi1=3, and (ii) a turbulentlike regime
310 Wi≲ 9 in which a sudden reduction of fη is observed
311 followed by a weaker dependence on flow rate. The
312 increase in drag (30%, cf. laminar flow) is accompanied
313 by an increase in pressure fluctuation and development of
314 elastic hoop stresses due to finite spanwise curvature
315 perturbations, which we quantify using high-resolution
316 holographic particle tracking. Unlike the Reynolds stress
317 in classical turbulence, the extra flow resistance here stems
318 from elastic hoop stresses induced by curvature perturba-
319 tions. Furthermore, the various levels of increased resis-
320 tance for different polymeric fluid may be controlled by the
321 distribution of such curvatures. At intermediate Re, recent
322 studies on elastoinertial turbulence (EIT) proposed a direct
323 path to the classic drag reduction asymptote, bypassing
324 Newtonian turbulence [44,45]. Whether a common insta-
325 bility underlies these two states, elastic turbulence and EIT,
326 remains an open question. Finally, our results provide
327 strong evidence for the “instability upon an instability”
328 mechanism proposed for the finite amplitude transition of
329 viscoelastic fluids in parallel flows [19] and develop new
330 insights into the flow of polymeric solutions in channels
331 and pipes. Even small perturbations in the velocity field can
332 lead to large changes in elastic stress and flow drag.
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