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Abstract. This note was originally written under the name On the Se-
curity of HMFEv and was submitted to PQCrypto 2018. The author was 
informed by the referees of his oversight of an eprint work of the same 
name by Hashimoto, see eprint article /2017/689/, that completely breaks 
HMFEv, rendering the result on HMFEv obsolete. Still, the author feels 
that the technique used here is interesting and that, at least in principal, 
this method could contribute to future cryptanalysis. Thus, with a change 
of title indicating the direction in which this work is leading, we present 
the original work with all of its oversights intact and with minimal cor-
rection (only references fixed). 
At PQCRYPTO 2017, a new multivariate digital signature based on 
Multi-HFE and utilizing the vinegar modifier was proposed. The vine-
gar modifier increases the Q-rank of the central map, preventing a direct 
application of the MinRank attack that defeated Multi-HFE. The au-
thors were, therefore, confident enough to choose aggressive parameters 
for the Multi-HFE component of the central map (with vinegar variables 
fixed). Their analysis indicated that the security of the scheme depends 
on the sum of the number of variables k over the extension field and the 
number v of vinegar variables with the individual values being unimpor-
tant as long as they are not “too small.” We analyze the consequences 
of this choice of parameters and derive some new attacks showing that 
the parameter v must be chosen with care. 
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1 Introduction 

Note: The attack presented on HMFEv is obsolete, due to the attack by Hashimoto 
in [1]. The sections relevant to linearization equation extraction are Sections 5 
(an original attack on multi-HFE) and 6 (filtering out noise). What follows is 
the original introduction. 

Contributions to this work by NIST, an agency of the US government, are not subject 
to US copyright. 

mailto:daniel.smith@nist.gov
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We are currently engaged in a massive international project to secure infor-
mation and communication from adversaries with access to large scale quan-
tum computers. Since Shor’s algorithm broke public key cryptography in this 
paradigm, see [2], we have come a long way developing the mathematics of post-
quantum cryptography. The science is now sufficiently advanced for us to make 
educated decisions in how to move forward. 

The National Institute of Standards and Technology (NIST) has begun evalu-
ating submissions for post-quantum standards with the primary task of securing 
the internet in the coming quantum age. NIST’s call for proposals, see [3], out-
lines the requirements of these technologies and illustrates the criteria by which 
they are evaluated. The principal prerequisite of any submission is to achieve 
certain security levels against quantum adversaries. 

Multivariate public key cryptography (MPKC) provides a platform for po-
tentially achieving these security levels. Multivariate cryptosystems rely on two 
known NP-complete problems for their hardness. The first is the MQ-problem: 
the problem of solving systems of nonlinear multivariate equations over a field. 
The second is the morphism of polynomials (MP) problem: the problem of de-
termining whether there is a morphism between two polynomial systems. While 
typically multivariate cryptosystems lack a complexity theoretic reduction to 
one of these problems, there is a small collection of cryptanalytic techniques 
that often can be addressed specifically to derive security results. 

In particular, MPKC has produced a few digital signature schemes that have 
withstood the test of time. Variations on the ideas of HFEv- and UOV, see[4, 5] 
have been around since the late 1990s without suffering any devestating attacks. 
PFLASH, see [6], which appeared to many to be weak, has now survived a decade 
and has fairly strong security arguments, see [7, 8]. 

Of course, we should not forget the other face of MPKC signatures. Oil-and-
Vinegar (OV), SFLASH and Square, see [9–11], to name a few, were soundly 
defeated in [12–14]. Yet sometimes out of the ashes rises a new and more powerful 
scheme. The idea for UOV came from the attack on OV, and PFLASH is the 
progeny of SFLASH. 

In this manuscript, we analyze a possible such phoenix. Multi-HFE, first 
proposed in [15], was completely broken in [16] by a clever MinRank attack 
exploiting the extremely low Q-rank of the central map of multi-HFE. The idea 
was breathed new life recently at PQCRYPTO 2017 in [17] where the idea of 
using the vinegar modifier on multi-HFE as a patch for the low Q-rank was 
proposed. 

This new scheme, named HMFEv, is purported to have its security dependent 
upon the sum of two values: k, the number of variables and equations over 
the extension field defining the multi-HFE central map; and, v, the number of 
vinegar variables added to the central map. The authors in [17] claim that the 
exact values of k and v are not important as long as the sum is large and neither 
are “too small.” In particular, they claim that k, v ≥ 2, along with a large sum, 
suffices for securing the scheme from algebraic attacks. 
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We offer a more precise justification for these claims by developing an ex-
plicit attack to filter out the vinegar variables when too few are included in the 
construction. The attack is statistical, bootstrapping an original attack on multi-
HFE to form a distinguisher that successfully discerns whether a map is random 
or of multi-HFE shape. The attack depends on a disparity in the distribution of 
cubic forms generated from HMFEv instances with differing numbers of vinegar 
variables added. As the number of vinegar variables is increased, the distance 
between the distributions is decreased so that the addition of sufficiently many 
vinegar variables renders the attack impotent, thus demonstrating the need for 
a large number of vinegar variables. 

The paper is organized as follows. In the next section, we describe the multi-
HFE and HMFEv constructions. The following section describes Q-rank, an 
essential notion for understanding modern multivariate cryptography. In section 
4, we review the previous cryptanalyses of multi-HFE and HMFEv. The subse-
quent section contains an original cryptanalysis of multi-HFE. Then, in Section 
6, we extend this method into an attack filtering out the vinegar variables from 
HMFEv. Finally, we conclude, noting the affect these results have on parameter 
selection for HMFEv. 

2 HFE Variants 

Multivariate public key schemes can be broadly categorized as either “small field” 
or “big field” schemes. Small field schemes rely on the structure of a single field 
for their construction whereas the big field schemes rely on the multplicative 
structure of a hidden extension field. Given an extension E of F = GF (q) of 
degree l, one can see that any monomial in E[X] of the form Xq a+q b 

is the product 
of two Frobenius automorphisms, that is the product of two F-linear functions. 
Therefore, this monomial can be written as a vector of quadratic functions over 
F; hence, we call such a monomial F-quadratic. Big field multivariate schemes 
are based on easily invertible F-quadratic maps from E to E with the structure 
hidden by an isomorphism of polynomials. 

Definition 1 Two vector-valued multivariate polynomials F and G are said to 
be isomorphic if there exist two affine maps T,U such that G = T ◦ F ◦ U . 

The following diagram summarizes the above discussion in the case of multi-
HFE. One thing to note is that a multivariate polynomial ring over the extension 
is used instead of an univariate polynomial ring. 

Ek 
OO 

f // Ek 

Fn U // Fn 

(φ)k 

F 

(φ−1)k 

�� 
// Fn T // Fn 
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2.1 Multi-HFE 

The HMFEv digital signature scheme of [17] is based on the multi-HFE prim-
itive originally specified in [15]. Recalling the construction of multi-HFE, we 
choose a finite field F, a degree ` extension E, and an integer k. Setting n = k` 
as the number of variables, one constructs n polynomials in F[x1, . . . , xn] as 
follows. Select an F-vector space isomorphism φ : F` → E and two affine iso-
morphisms T,U : Fk` → Fk`. Select the quadratic map f = (f1, . . . , fk) where 
fi(X1, . . . , Xk) ∈ E[X] is defined by X X 

fi(X) = αi,r,sXrXs + βi,rXr + γi, 
1≤r,s≤k 1≤r≤k 

for 1 ≤ i ≤ k. One then composes these maps producing the public key 

P (x1, . . . , xn) = T ◦ (φ−1)k ◦ f ◦ (φ)k ◦ U, 

where (φ)k = φ × φ × · · · × φ with k coordinates. 
A signature is the preimage of a certificate and so verification is accomplished 

by evaluating the public key at the signature value. The signature is generated 
by inverting each of the maps. The inversion of f is accomplished by generating 
a univariate polynomial, for example with a Gröbner basis algorithm with an 
elimination ordering, solving for a single variable and then repeating. 

2.2 HMFEv 

The modification of multi-HFE producing HMFEv is to add v additional vari-
ables and augment the definitions of βi,r and γi. Specifically, we let U : Fk`+v → 
Fk`+v and T : Fk` → Fk` be affine isomorphisms and define the quadratic map 
f = (f1, . . . , fk) by X X 
fi(X) = αi,r,sXrXs + βi,r(xn+1, . . . , xn+v)Xr +γi(xn+1, . . . , xn+v ), 

1≤r,s≤k 1≤r≤k 

for 1 ≤ i ≤ k where βi,r : Fv → E and γi : Fv → E are linear forms in the vinegar 
variables xn+1, . . . , xn+v. The public key is given by 

P (x1, . . . , xn+v) = T ◦ (φ−1)k ◦ f ◦ [(φ)k × idv ] ◦ U. 

A signature is the preimage of a certificate and so verification is accom-
plished by evaluating the public key at the signature value. Signature generation 
is accomplished by randomly selecting values for the vinegar variables, which 
collapses f into the central map of a multi-HFE scheme. Then one inverts P 
restricted to this choice as in multi-HFE. 
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3 Q-Rank 

As with all of the schemes in the HFE lineage, Q-rank plays an important role 
in the cryptanalysis of multi-HFE. Adapting the definition to multivariate ex-
tension field maps we may write the following definition. 

Fk` Definition 2 The Q-rank of any quadratic map f(x) on q with respect to 
the degree ` extension E is the rank of the quadratic form (φ−1)k ◦ f ◦ (φ)k in 
K[X0, . . . , Xk`−1] via the identification X`(n−1)+i = φ(πn(x))q i 

, where 1 ≤ n ≤ 
k, 0 ≤ i < ` and πn is the projection on to nth group of ` coordinates of x. 

Note that in the case of multi-HFE, the total degree of the central map over 
E is two. Therefore, the Q-rank is bounded by k in all instances. 

It is also important to note that although Q-rank is not preserved by isomor-
phisms of polynomials, the min-Q-rank in the linear span of f is preserved by 
such isomorphisms. This quantity is what is relevant for cryptography, and this 
is the property that has led to the attacks on multi-HFE. 

4 Previous Cryptanalysis of multi-HFE and HMFEv 

Being derived from multi-HFE, which is well known to have been broken, we 
review the security analysis of HMFEv and the cryptanalyses of muli-HFE. We 
offer an original, but trivial, extension to the security analysis of [17] which fits 
well in this section. 

4.1 Cryptanalyses of Multi-HFE 

Multi-HFE has been cryptanalyzed in a couple of related ways. In [16], the 
low Q-rank property described in Section 3 is exploited. Specifically, one may 
construct the rank k` representation Φ : Ek → A defined by 

Φ(α, β, . . . , γ) = (α, αq, . . . , α `−1, β, βq, . . . , β `−1, . . . , γ, γq, . . . , γ `−1). 

Since each component of the central map f : Ek → Ek is of total degree two, 
represented as a quadratic form over A it can involve only k coordinates, that is, 
the coordinates of α, β, . . . , γ above. Therefore, each coordinate of the central 
map has Q-rank at most k. 

Since multi-HFE is typically presented with k = 2 or k = 3, which means 
that the Q-rank of the central map is at most 3, the scheme is quite vulnerable 
to a MinRank attack via minors modeling, which is exactly what was efficiently 
done in [16]. To perform the attack, the sum of the product of variables ti and 
the matrix representations of the public quadratic forms is constructed. By the 
Q-rank property, this matrix has rank at most 3. So by collecting all of the 4 × 4 
minors, one generates an ideal whose Gröbner basis can be computed over F and 
whose variety is then computed over E. 

In [18], another attack for odd characteristic instances of multi-HFE is pre-
sented. The authors describe the attack as a diagonalization approach. The tech-
nique can be described as a differential invariant attack that takes advantage of 
the fact that the multi-HFE central map has total degree two over the extension. 
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4.2 Previous Security Analysis of HMFEv 

In [17], a preliminary analysis of HMFEv is presented. The authors consider the 
two principal attacks that seem relevant to the new scheme: the minrank attack 
and the direct algebraic attack. 

For the MinRank attack, they note that the as long as v ≤ ` the vinegar 
variables can be modelled by another variable over the extension field, where 
it is easy to show that the Q-rank of the central map is bounded by k + v. 
Experiments support the claim that this bound is tight, so they conclude that 
the complexity of the MinRank attack on HMFEv is O(`(k+v+1)ω). 

We can verify this claim analytically for all v in the following manner. For 
simplicity we consider the odd characteristic case. The argument is similar for 
characteristic two. 

Proposition 1 The min-Q-rank of an HMFEv public key with parameters `, k 
and v is k + v. 

Proof. Let φ : F` → E be a vector space isomorphism. Choose a representation 
`−1 ` 

ψ : Ek → A defined by ψ(X1, X2, . . . , Xk) = (X1, X
q , . . . , Xq , X2, . . . , X

q ).1 1 k 
We then construct the vector space isomorphism Φ : Fk`+v → A × Fv defined by 
Φ = (ψ × idv) ◦ (φk × idv). 

We may now express the coordinates of the central map over E as quadratic 
forms over A×Fv. We observe that, due to the degree bound of two in the multi-
HFE component, each coordinate fi of the central map f satisfies fi = Qi ◦ Φ, 
where Qi is a quadratic form on A × Fv with the following shape ⎤⎡ 

Qi = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 0 · · · 0 αi12 0 · · · 0 αi1k 0 · · · 0 βi11 · · · βi1v 

0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 
αi12 0 · · · 0 0 0 · · · 0 αi2k · ·0 · 0 βi21 · · · βi2v 

0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 
αi1k 0 · · · 0 αi2k 0 · · · 0 0 0 · · · 0 βik1 · · · βikv 

0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 
βi11 0 · · · 0 βi21 0 · · · 0 βik1 0 · · · 0 γi11 · · · γi1v 

βi12 0 · · · 0 βi22 0 · · · 0 βik2 0 · · · 0 γi12 · · · γi2v 
. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 

βi1v 0 · · · 0 βi2v 0 · · · 0 βikv 0 · · · 0 γi12 · · · γivv 

. . . . . . . . . . . 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

, 

where the αirs coefficients represent HFE monomials αirsXrXs, the βirs coeffi-
cients represent mixing terms βirsXrxn+s, and the γirs coefficients represent the 
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quadratics γirsxn+rxn+s. Thus the Q-rank of f , which is bounded by the Q-rank 
of fi for 1 ≤ i ≤ k is bounded by k + v. It is easy to see that in probability it is 
exactly k + v. 

Addressing the complexity of the algebraic attack on HMFEv, the authors 
assume the tightness of the bounds given in both [17, Theorem 3] and in [19, 
Theorem 3.1] to conclude that the degree of regularity of the HMFEv system is ( j k 

k+v(q − 1) + 2 if q is even, and 2dreg ≤ 
q−1 (k + v) + 2 otherwise. 2 

Again, this claim is supported by experiments showing that the above bound 
is fairly tight. They noted specifically that the choice of k and v were irrele-
vant as long as they were not too small, indicating in [20] that k, v ≥ 2 suf-
fices. Using these estimates they conclude the complexity of the direct attack is �� �2� �� 

n+dreg nO .
dreg 2 

5 A New Attack on Multi-HFE 

Multi-HFE has a couple of successful cryptanalyses as mentioned in the previous 
section. In both [16] and [18], a full key recovery attack is developed. We now 
introduce a less sophisticated attack focusing on the choice of central map of 
HMFEv which produces a kth-root speed-up in preimage search. As we will 
soon see, this technique allows information to be filtered through the vinegar 
modifier when an insufficient number of vinegar variables is used. 

We consider the characteristic two case with k = 3. Since any multi-HFE 
instance over the field Fq where q is even can be equivalently defined over GF (2), 
we consider the case in which q = 2. Let E be the degree ` extension over which 
the central multi-HFE map of HMFEv is given by 

Y1 = X1X2 + α1,1X1 + α1,2X2 + α1.3X3 + α1,4 

Y2 = X2X3 + α2,1X1 + α2,2X2 + α2.3X3 + α2,4 (1) 

Y3 = X1X3 + α3,1X1 + α3,2X2 + α3.3X3. + α3,4 

Consider the graded ring (Ad) = E[X1, X2, X3]/I, graded by total degree, where 
I is the ideal generated by the homogeneous quadratic components of the above 
three polynomials. It is clear that dimE(Ad) = 3 if d > 0 and is one if d = 0. 
Therefore the Hilbert Series of I is 

1 + 2t 
HSI (t) = ,

1 − t 

and the Hilbert regularity of I is one. Thus, the ideal I already has nontrivial 
syzygies on its generating set and there exists an E-bilinear relation between the 
homogeneous polynomials Ybi and the variables Xi. 



8 D. Smith-Tone 

It is easy to see that the polynomials Yi in Equation (1) inherit this relation. 
To be explicit, we compute 

X3Y1 + X1Y2 = α1,1X1X3 + α1,2X2X3 + α1,3X
2 
3 

+ α2,1X1
2 + α2,2X1X2 + α2,3X1X3 

+ α1,4X3 + α2,4X1 

= α1,1Y3 + α1,2Y2 + α1,3L(X3) 

+ α2,1L(X1) + α2,2Y1 + α2,3Y3 (2) 

+ α1,2 (α2,1X1 + α2,2X2 + α2.3X3) 

+ α2,1 (α1,1X1 + α1,2X2 + α1.3X3) 

+ α2,3 (α3,1X1 + α3,2X2 + α3.3X3) 

+ α1,4X3 + α2,4X1, 

which is GF (2)-affine in both X and Y . Another linearly independent such 
relation can be derived from X3Y1 + X2Y3; however, the remaining relation 
X1Y2 + X2Y3 is the sum of the first two relations. 

It is easy to extend this analysis to any k ≤ 5, see Appendix A. For k > 5 it 
is still possible to recover relations between X and Y linear in X; however, they 
must in general be nonlinear in Y . 

Passing these relations to GF (2) and generalizing to k, we obtain (k − 1)` 
linearly independent relations linear in both x and y. Composing with the affine 
transformations U and T −1, we obtain (k −1)` linearization equations (or higher 
order linearization equations if k > 5) on the multi-HFE instance. Thus we 
obtain a decryption oracle with runtime O(2 ` ), performing a preimage search on 
a space of one kth the dimension of the signature space. 

6 Distilling Vinegar 

The existence of the linearization equations of the previous section function as 
a criterion for the image of a linear projection being orthogonal to the vinegar 
subspace. From this idea, we build a distinguisher acting on projected HMFEv 
keys of the form P ◦π, able to determine whether a subspace of the vinegar space 
is orthogonal to Im(π). We then bootstrap this technique to a key recovery. 
For the simplicity of avoiding the higher dimensional tensors necessary in the 
analysis of the higher order linearization equations case, we restrict to the case 
that k ≤ 5 guaranteeing (k − 1)` linearization equations, noting that the general 
theory works analogously. 

6.1 Filtering Vinegar Variables 

Regarding the linearization equations of Section 5 as cubic forms in X, we induce 
projections on these cubic forms by projecting to a subspace of the input space. 
If a projection π is orthogonal to the vinegar subspace, the rank of these cubic 
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forms can be as much as (k−1)` smaller than for random projections if rank(π) is 
sufficiently large. To make this clear, we review the theory of linear embeddings 
of homogeneous forms on a vector space. 

Theorem 1 Let V be an n-dimensional F-vector space. Let F[X]d be the space 
of homogeneous polynomials of degree d on V and let π : V → V be a rank r 
projection. The rank of the linear map Tπ : F[X]d → F[X]d defined by Tπ(f) = � � 

r+d−1f ◦ π is if |F| ≥ d.d � � 
r+d−1Proof. We show that Tπ (f) is in the span of d-tensors. In particular, we d 

may without loss of generality assume that π projects onto the first r standard 
basis vectors of V , so that Tπ (f) involves only r variables. Since there are exactly � � � � 
r+d−1 r+d−1distinct degree d monomials in r variables, the rank of Tπ(f) is .d d 

We note that when |F| < d that some of the monomials in Theorem 1 are 
equivalent to smaller degree monomials, and thus such homogeneous forms of 
degree d are degenerate and the rank in this sense is smaller. A particular case 
to note is that of cubic forms over GF (2). The number of such monomials in this � � � � � � 

r r r 2case with distinct values is + + due to the fact that x = xi. Thus, 3 2 1 i� � � � � � 
r r r +5rfor GF (2), we obtain a rank bound of + + = r 3 .3 2 1 6 

Corollary 1 Let V be an n dimensional F-vector space. Let g : V → V be a 
quadratic map. For any rank r projection π : V → V , the rank of the linear map 
Tg,π : F[X]2 → F[X]3 defined by Tg,π(f)(x) = hπ(x)A, g(π(x))i, where f(x) = 

+5rhxA, xi is the inner product representation of f , is at most min{ r 3 , rn} if6� � 
r+2|F| = 2 and at most min{ , rn} otherwise.3 

Proof. First note that since π is composed with the matrix representing f , there 
are only actually rn degrees of freedom in choosing f . We therefore focus on 
establishing the bound when r is sufficiently low. 

Clearly we may write Tg,π = Tπ ◦ Tg where Tg : F[X]2 → F[X]3 is defined 
by Tg(f)(x) = hxA, g(x)i. Since the rank of Tπ has the appropriate bound by 
Theorem 1, the only thing to show is that Tg is linear. That Tg(ap) = aTg(p) is 
obvious. Let p, q ∈ F[X]2 and let Ap and Aq be the matrix representations of p 
and q, respectively. First, 

(p + q)(x) = p(x) + q(x) = hxAp, xi + hxAq, xi = hx(Ap + Aq), xi . 

Then we obtain 

Tg(p + q) = hx(Ap + Aq ), g(x)i = hxAp, g(x)i + hxAq, g(x)i = Tg(p) + Tg(q). 

The conclusion of Corollary 1 is weaker than that of Theorem 1 precisely 
because of the possible degeneracy of g. The failure of Tg to be full rank implies 
a linear relation among the coordinates of X and the polynomial g(X), thus Tg 

is of full rank generically in characteristic zero (since the hypersurface satisfying 
these linear relations has measure zero) and with high probability in finite fields. 
On the other hand, if g has linearization equations, the rank of Tg is diminished. 
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Theorem 2 Let P be a public key of HMFE with parameters q = 2, k, ` and 
v. Let π be the rank r ≤ n = k` projection orthogonal to the vinegar subspace. 
Then � � 

r3 + 5r 
Rank(TP,π) ≤ min , rn − (k − 1)` . 

6 

Proof. We may calculate the rank of TP,π directly by specifying a quadratic form 
f ∈ F[X]2 by its matrix representation A = (aij ) and directly computing the 
nullity of TP,π. Recall that due to π we may consider A to have an r × n block of 
possibly nonzero values. Notice that by the previous section, there are (k − 1)` 

+5rlinearization equations; therefore, whenever rn − r 3 < (k − 1)`, we know that � �6 
+5rthe kernel of TP,π is at least (k − 1)` + r 3 − rn -dimensional. Thus the rank 6 

3r +5rof TP,π is at most when this quantity is less than rn − (k − 1)`, and is at 6 
most rn − (k − 1)` otherwise. 

Restricting the codomain of TP,π to the image of Tπ, we can see that if the n o 
3r +5rrank of TP,π is less than min , rn − (k − 1)` , then there is a nontrivial 6 

cokernel, which is to say that there are additional linearization equations. For 
random functions one should expect this event to occur with low probability. Un-
surprisingly, there is a distinction in the behavior of a multi-HFE primitive and 
a random function under the vinegar modification in this respect. Furthermore, 
there is a noticable relationship between the rank of TP,π and the dimension of 
the intersection of the dual of the cokernel of π and the vinegar subspace, Vvin, 
as illustrated in Table 1. 

r 1 2 3 4 5 6 7 8 9 10 11 12 

α 1 3 7 14 25 41 63 92 108 120 132 144 

d 

0 13.99 24.95 40.95 62.80 91.64 108 120 132 144 
1 7 13.96 24.97 40.89 62.82 91.5 108 120 132 144 
2 2.99 7 13.97 24.91 40.78 62.52 91.02 108 120 132 144 
3 1 2.99 6.98 13.96 24.86 40.51 62.3 89.81 107.44 119.83 131.87 143.88 
4 1 2.99 6.9 13.85 24.63 40.32 61.2 84.91 99.76 111.99 124 136 

β 1 3 7 14 25 41 63 88 100 112 124 136 
Table 1. Average rank of TP,π over 100 trial runs where the rank of π is r and 
dim(coKer(π) ∗ ∩ Vvin) = d for n = 12 and v = 4. For comparison, we also include the 

3+5r 3 +5rvalues α = min{ r , rn} and β = min{ r , rn − (k − 1)`}.
6 6 

Notice, in particular, that the data in columns r = 7 and 8 of Table 1 exhibit 
a larger range of values among rows d = 0 through d = 3 than the remaining 
columns. The reason is that for these values of r, the image of Tπ is approaching 
rn-dimensional, and since P has, in this case, 8 = (k−1)` linearization equations, 
having fewer possible values for the vinegar variables reduces the degrees of 
freedom on TP,π. 
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This transition appears to grow sharper as dim(coKer(π)∗ ∩Vvin) approaches 
dim(Vvin). Apparently, the symmetries in the multi-HFE structure skew the 
distribution of Rank(TP,π) away from that of Rank(Tf,π) for a random function 
f and the degrees of freedom of the values of the vinegar variables in the image 
of π is a metric for passing between these two extremes. The disparity is more 
apparent with fewer vinegar variables, see Table 2. 

√ 
Remark 1 The variance of the data increases near r = 6n − 5; however, the 
variance is still small, is even smaller with larger q and is extremely small with 
d = 0 in all cases. 

r 1 2 3 4 5 6 7 8 9 10 11 12 

α 1 3 7 14 25 41 63 92 108 120 132 144 

d 
0 2.99 6.95 13.92 24.92 40.86 62.49 91.07 108 120 132 144 
1 1 3 6.97 3.9 24.72 40.63 62.25 89.7 107.21 119.55 131.57 143.67 
2 0.98 2.97 6.95 13.84 24.73 40.04 6.36 84.95 99.72 112 124 136 

β 1 3 7 14 25 41 63 88 100 112 124 136 
Table 2. Average rank of TP,π over 100 trial runs where the rank of π is r and 
dim(coKer(π) ∗ ∩ Vvin) = d for n = 12 and v = 2. For comparison, we also include the 

3+5r 3 +5rvalues α = min{ r , rn} and β = min{ r , rn − (k − 1)`}.
6 6 

6.2 Key Recovery 

The method for turning this statistical anomaly into a key recovery is as follows. √ 
First one randomly generates a large number of rank r ≈ 6n − 5 projections π 
and selects a cutoff rank R for TP,π. For any π, if the rank of TP,π is bounded 
by R, π is placed in a database. Next one chooses a number s of coKer(π)∗ to 
intersect in the hopes of filtering out a vector v in Vvin. Success is measurable √ 
immediately by estimating the distribution of Rank(TP 0,π) near r = 6n − 5, 
where P 0 is P composed with the projection onto the orthogonal complement of 
v. Finally, one repeats this process, which becomes easier as v diminishes. 

For this method to be effective, one must fine tune R and s to minimize the 
number of low rank TP,π required to be computed. To estimate the optimal s 
we note that the probability of a vector lying in the intersection of s subspaces 

sr−(s−1)(n+v)of dimension r in a vector space of dimension n + v is roughly q . 
Similarly, under the assumption that each of the k subspaces has a d-dimensional 
intersection with a fixed v-dimensional subspace, the probability that a vector 
in this subspace lies in the intersection is roughly qsd−(s−1)v. When these prob-

nabilities are equal, i.e. when s ≈ , essentially all of the vectors in the n+d−r 
intersection should lie in the fixed v-dimensional subspace. Specifically, when n√ 
is sufficiently large (n ≥ 19 for d = 1 and r ≈ 6n − 5, for example), s = 2 
suffices. 
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Under the assumption that an R can be found such that the fraction of π 
satisfying dim(coKer(π)∗ ∩ Vvin) = d among all π for which the rank of TP,π 

is bounded by R is significant, the recovery of a vector v ∈ Vvin requires ap-
proximately qd(r−s)+v(s−1) calculations of the rank of TP,π plus some additional 
linear algebra steps. Thus the complexity of recovering the vinegar subspace is � � √ 

d(r−s)+v(s−1)O (rn)ω q . Since r ≈ 6n − 5, this attack is subexponential in 
n for any fixed v. For the special case of v = 2, addressing the claim in [17], 
we have d = 1 and s = 2 for sufficiently large n and this formula simplifies to � �� � √ 

r+1 3ω/2 6n−5+1 O (rn)ω q = O n q . 

Experiments show that this method is effective in practice on small scale 
schemes. In the case of q = 2, l = 4, k = 3 and v = 2, only four rank 9 
projections π satisfying rank(TP,π ) ≤ R = 107 were needed to find a vector in 
Vvin. On average one in 384 projections π satisfied this property, supporting the 
above complexity estimate. 

It is interesting to note that the cutoff phenomenon in the rank of TP,π,√ 
though present, is not extremely sharp, at least when r ≈ 6n − 5; therefore, 
for small values of v a value of R can be found to make the attack effective. Still, 
for v > 4, we estimate that the cutoff is sharp enough that one would require 
d > 1 to find a suitable value of R; however, this would render the attack worse 
than brute force for essentially any parameters, due to the large q of HMFEv. 

7 Other Techniques 

In [21], new statistical methods for attacking HFEv- are advanced. In principle, 
the attacks are applicable to HMFEv as well; however the complexity analysis 
is not the same. Similar to the attack presented in Section 6, these techniques 
incorporate projections and the calculation of invariants to bootstrap a distin-
guisher to a key recovery attack, though the approaches are different. 

The first approach combines projection with the MinRank method. There are 
two possible variants of this technique: Project-then-MinRank and MinRank-
then-Project. The Project-then-MinRank strategy works by noting that there 
is a distinction in the Q-rank of the central map under a projection reducing 
the dimension of the vinegar subspace versus a projection that is full rank when 
restricted to the vinegar subspace. Both attacks, however, still require the Min-
Rank step to be executed. In the context of HMFEv, as long as k + v is large, 
even a random reduction in the rank of two or three, which occurs with very 
low probability, will not reduce the complexity sufficiently to risk the integrity 
of the scheme. Due to the relatively large size of q in the proposed parameters of 
HMFEv, the MinRank-then-Project method seems to be the more efficient. In 
this case the complexity of the MinRank-then-Project approach is dominated by � � 

`(k+v+1)ωthe cost of the MinRank step, which has complexity O , as predicted 
in Section 4.2. 

The second approach attempts to leverage the low Q-rank of HFE by way of 
the degree of regularity. Specifically, the attack proceeds by projecting an HFEv-
scheme to a subspace of a dimension at which random quadratic systems have 
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degree of regularity d but random systems of smaller dimension have degree of 
regularity d − 1. Because of the low Q-rank property of HFE, there is a higher 
probability that projected systems from an HFE instance will have a lower degree 
of regularity. The idea is that if the projection eliminates a vinegar variable it 
may be detectable in the degree of regularity of the projected scheme. 

The complexity of this attack in application to HMFEv is also dependent 
on the sum k + v. The projection must have a large enough corank to have a 
sufficiently high probability of achieving a reduction in the degree of regularity 
and when a vector in the vinegar subspace is found, there is no additional infor-
mation about the basis of the vinegar subspace revealed. Thus the attack must 
be repeated with the slight advantage of one additional equation specifying a 
one-dimensional subspace of the subsequent kernel. � � �2� �� 

n−t n+v+d n+vThe complexity of the entire attack is approximately O q ,d 2 

where t is the co-dimension of projection optimal for distinguishing and d is the 
degree of regularity at which distinguishing occurs. The quantity t is a decreas-
ing function of k + v. This fact along with the size of q make this new technique 
infeasible for the parameters suggested in [17]. 

8 Experiments 

We ran a series of experiments with Magma1, see [22], on a 3.2 GHz Intel® 

XeonŠ CPU, testing the first step of the attack, recovering a vector in the vine-
gar subspace, for a variety of values of ` with v = 2 or v = 3 and k = 3 or k = 4. 
Tables 3 and 4 summarize some of our results in the v = 2 and v = 3 cases, re-� � 

d(r−s)+v(s−1)spectively. The data support our complexity estimate of O (rn)ωq . 

v = 2 
` 3 4 5 6 3 4 
k√ 3 3 3 3 4 4 

b 6n − 5c + 1 8 9 10 11 9 10 
r 8 9 10 11 9 9 
T 10 10 5 5 5 3 

avg. time 145.2s 1155.4s 6131.3s 28910.4s 13070.7s 31570.6s 
min. time 73.1s 827.7s 4583.4s 14859.6s 2997.7s 22180.0s 

Table 3. Average time (in s) for T instances of the vinegar recovery attack of Section 6 
on HMFEv(q = 2, k, ̀ , v = 2) for various values of ` and k. 

There is an interesting artifact in the data that should be pointed out explic-
itly. For almost all of the parameters tested, the value of n is too small for our 
estimate of s to achieve an upper bound of 2. That is, the number of coKer(π)∗ 

Any mention of commercial products does not indicate endorsement by NIST 1 
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one must intersect in order to essentially guarantee that a nontrivial intersec-
tion will reveal a vector in Vvin is, for most of these low values of n, greater 
than 2. Therefore, for these small tests, it is likely that we will see nonempty 
intersections constructed from two projections revealing a vector not contained 
in Vvin. Still, we found it more efficient for these small scale experiments to 
choose a value of s = 2. In nearly every experiment, we found nonempty inter-
sections which did not intersect the Vvin. In fact, aside from a couple of lucky 
instances far from the mean, there was exactly one set of parameters for which 
the nonempty intersections always were in Vvin. That test was for k = ` = 4, for 
which our estimate for s is 

n 16 
s = = = 2. 

n + d − r 16 + 1 − 9 

Thus, the tests behave exactly as predicted in the analysis of Section 6. 

v = 3 
` 3 4 5 
k√ 3 3 3 

b 6n − 5c + 1 8 9 10 
r 7 8 9 
T 10 10 3 

avg. time 623.6s 1443.2s 47921.1s 
min. time 440.7s 930.0 28803.2s 

Table 4. Average time (in s) for T instances of the vinegar recovery attack of Section 6 
on HMFEv(q = 2, k = 3, ̀ , v = 3) for various values of `. 

9 Conclusion 

We have demonstrated that the security of HMFEv is not symmetrically depen-
dent upon the values k, the number of multi-HFE variables over the extension 
field, and v, the number of vinegar variables. Due to the extremely low Q-rank 
structure of multi-HFE, symmetries in the multi-HFE map can percolate through 
the noise added by the vinegar variables and affect the rank of tensors derived 
from the public key when there are very few vinegar variables. Thus HMFEv 
really requires a large number of vinegar variables. 

HMFEv adds to the interesting story of the interplay among Q-rank, the 
minus modifier, projection and the vinegar modifier. The new attack on the 
multi-HFE primitive shows that multi-HFE is actually a degenerate case of HFE, 
similar to C∗; however, the vinegar modifier is still strong enough to secure the 
scheme. The lesson seems to be that vinegar is very good. 
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A Existence of Linearization Equations 

Theorem 3 Let 3 ≤ k ≤ 5 and for i ∈ {1, . . . , k} let 

Yi = XiXi+1 + αi,1X1 + · · · + αi,kXk + αi,k+1, 

be a multi-HFE central map over E, where the indices are computed as least 
positive residues modulo k. Then there exists an E-bilinear relation between Yi 
and Xi. 

Proof. Consider the variable Xi for 1 ≤ i ≤ k. There are two nontrivial syzygies 
given by LT(XiYi+1) − LT(Xi+2Yi) and LT(XiYi−2) − LT(Xi−2Yi−1) involving 
Xi. One can clearly see that summing over i we obtain exactly k syzygies since 
every one is counted exactly twice. The case of k = 3 is the exceptional case in 
which the span of these syzygies is less than k-dimensional; however, we have 
already seen that the result holds for k = 3. 

The non-leading terms of XiYi+1 are either linear in X, specifically, αiiXi 
2;P 

linear in X and Y , i.e. of the form XiXi±1 = 6 αj Xj ; or Y(i±1−1)/2 + j=i±1 

quadratic in X, such as XiXs where s 6∈ {i − 1, i, i +1}. There are exactly k
2−3k 
2 

quadratics XiXj with j 6∈ {i − 1, i, i + 1}. Each such term can be eliminated 

with linear combinations of XiYi+1 − Xi+2Yi provided k
2−3k ≤ k, which occurs 2 

if k ≤ 5. 

B Toy Example 

We illustrate the attack on a very small scale example, showing the extraction 
of the vinegar subspace of the plaintext space. Specifically, we consider the case 
HMFEv(q = 2, k = 3, ` = 2, v = 2), and recover a transformation of the plaintext 
space and a multi-HFE instance that can be used to produce forgeries with the 
vinegar variables of the central map set to zero. We simplify the exposition by 
considering a homogeneous key. 

https://2017.pqcrypto.org/conference/slides/mqI/HMFEv.pdf
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B.1 The Public Key 

We construct the degree ` extension E = F2(b) where b2 + b + 1 = 0. We specify 
the canonical isomorphism φ : F2 → E. We randomly fix the central map F ,2 
specifying its coordinates, 

2Y1 = X1X2 + φ(L11(XV ))X1 + φ(L12(XV ))X2 + φ(L13(XV ))X3 + φ(x7, x7x8) 
2 2Y2 = X2X3 + φ(L21(XV ))X1 + φ(L22(XV ))X2 + φ(L23(XV ))X3 + φ(x7x8, x 7 + x8) 

2Y3 = X1X3 + φ(L31(XV ))X1 + φ(L32(XV ))X2 + φ(L33(XV ))X3, +φ(x8, x7x8) 

where 

������ 
1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 

L11 = XV , L12 = XV , L13 = XV ,
1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 0 0 ������ 
0 0 0 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1 

L21 = XV , L22 = XV , L23 = XV ,
1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 ������ 

L31 = XV 
1 0 0 1 1 0 
1 0 1 1 0 1 

, L32 = XV 
1 1 1 0 0 1 
1 0 1 0 0 0 

, L33 = XV 
1 0 0 1 1 0 
0 1 0 0 1 0 

, 

and two invertible linear transformations T and U : 

⎤⎡ 
1 0 0 1 0 0 0 0 ⎤⎡ 

, and U = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

. 

0 0 0 0 1 0 1 1 1 0 0 1 0 0 
1 1 0 1 0 0 0 0 
0 0 0 1 0 0 0 0 
1 1 0 1 1 1 0 0 
0 0 1 1 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 

⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

1 0 0 1 1 1 
0 1 0 1 1 1 
1 1 0 0 0 1 
1 1 1 1 0 0 

T = 

0 0 0 1 1 0 

(U is chosen in this manner to make it easier for the reader to identify the 
vinegar subspace. Note that this choice (1) does not mix the multi-HFE and 
vinegar variables and (2) this fact is irrelevant for the attack because random 
projections are selected and typically all variables will be mixed.) 
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Composing P = T ◦φ−1 ◦F ◦(φ× idV )◦U , we obtain the public key expressed 
here in polar form over F2: ⎤⎡⎤⎡⎤⎡ 

1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

1 1 1 1 0 1 1 1 
1 1 0 0 0 1 0 0 
1 1 0 0 0 0 1 1 
0 0 0 0 0 0 1 0 
1 1 1 0 0 0 1 0 
1 1 0 1 1 1 0 1 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

, P1 = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 0 1 0 1 1 1 1 
0 1 0 0 1 0 1 0 
0 0 0 0 1 0 0 0 
0 1 1 1 1 1 1 0 
0 1 0 0 1 0 0 1 
0 1 1 0 1 0 0 1 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

, P2 = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 1 1 0 1 0 1 1 
0 1 0 0 0 0 1 1 
0 0 0 0 0 0 0 1 
1 1 0 0 0 0 0 1 
0 0 0 0 0 0 1 1 
1 1 1 0 0 1 1 1 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

P0 = , 

1 1 0 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 ⎤⎡⎤⎡⎤⎡ 
1 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 0 1 ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 0 1 1 1 0 1 0 
1 1 0 0 0 1 0 0 
1 1 0 0 1 0 0 1 
0 1 0 1 0 1 0 1 
1 0 1 0 1 0 1 0 
1 1 0 0 0 1 1 0 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

, P4 = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 0 0 0 0 0 0 1 
0 0 1 1 0 1 1 0 
1 0 1 0 0 0 0 1 
0 0 0 0 1 1 1 0 
0 0 1 0 1 0 0 0 
1 0 1 0 1 0 0 1 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

, P5 = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 0 1 0 1 0 0 0 
1 1 0 0 1 1 1 0 
1 0 0 0 1 0 0 0 
0 1 1 1 1 0 1 1 
1 0 1 0 0 0 1 0 
0 0 1 0 1 1 1 1 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

P3 = . 

0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 1 0 0 0 1 0 1 0 

B.2 Recovering the Vinegar Subspace 

We choose random rank r = 5 projections π and compute the rank of ⎤⎡ 
t1,1 · · · t1,6 

TP,π(x) = π(x)⎢⎣ . .. . . . .. . 
t5,1 · · · t5,6 

⎥⎦ y > , 

where P (π(x)) = y. Setting a rank bound of 19, we generate maps π satisfying 
rank(TP,π ) ≤ 19. As we find solutions, πi we compute coKer(πi)

∗∩coKer(πj )
∗ . 

In this experiment, the first two projections π1 and π2 satisfying the rank 
bound are ⎤⎡⎤⎡ 

1 1 1 1 0 1 0 0 1 0 0 0 1 0 0 0 

Π1 = 

⎢⎢⎢⎢⎣ 

0 0 1 0 1 0 1 1 
0 1 0 1 1 1 1 1 
0 0 0 1 0 0 1 1 

⎥⎥⎥⎥⎦ 
and Π2 = 

⎢⎢⎢⎢⎣ 

0 1 1 0 0 1 0 0 
0 1 1 1 1 1 0 0 
1 1 1 0 1 0 0 0 

⎥⎥⎥⎥⎦ 
, 

0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 �� 
and the linear form 0 0 0 0 0 0 1 1 is in coKer(π1)

∗∩coKer(π2)
∗ . The reader 

recognizes that this linear form is identified with an element of Vvin. 
We may now project the entire scheme onto the orthogonal complement 

of this vector and will have eliminated one vinegar variable from HMFEv. 
Equivalently, one may choose projections π from those containing this vector 
in coKer(π)∗ . Because of the size of this example, we chose the latter option, 
though the former is more efficient, in general. 
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Continuing in this manner, after six additional projections were collected, we 
obtained ⎤⎡ ⎢⎢⎢⎢⎣ 

0 0 1 0 0 0 0 0 
0 0 0 1 1 0 0 0 
0 0 1 0 0 0 1 1 
0 1 0 0 1 1 0 0 
0 0 0 1 0 0 0 0 

⎥⎥⎥⎥⎦ 
Π8 = , 

���� 
and both 0 0 0 0 0 0 0 1 and 0 0 0 0 0 0 1 0 lie in coKer(π2)

∗∩coKer(π8)
∗ . 

Thus the entire vinegar subspace has been found. At this point we project onto 
the orthogonal complement of this subspace and obtain the multi-HFE key: ⎤⎡⎤⎡⎤⎡ 

1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 ⎢⎢⎢⎢⎢⎢⎣ 

1 1 1 1 0 1 
1 1 0 0 0 1 
1 1 0 0 0 0 
0 0 0 0 0 0 

⎥⎥⎥⎥⎥⎥⎦ 

, P1 = 

⎢⎢⎢⎢⎢⎢⎣ 

0 0 1 0 1 1 
0 1 0 0 1 0 
0 0 0 0 1 0 
0 1 1 1 1 1 

⎥⎥⎥⎥⎥⎥⎦ 

, P2 = 

⎢⎢⎢⎢⎢⎢⎣ 

0 1 1 0 1 0 
0 1 0 0 0 0 
0 0 0 0 0 0 
1 1 0 0 0 0 

⎥⎥⎥⎥⎥⎥⎦ 

P0 = , 

1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 ⎤⎡⎤⎡⎤⎡ 
1 0 1 1 0 1 1 0 0 1 0 0 1 0 1 1 0 1 ⎢⎢⎢⎢⎢⎢⎣ 

0 0 1 1 1 0 
1 1 0 0 0 1 
1 1 0 0 1 0 
0 1 0 1 0 1 

⎥⎥⎥⎥⎥⎥⎦ 

, P4 = 

⎢⎢⎢⎢⎢⎢⎣ 

0 0 0 0 0 0 
0 0 1 1 0 1 
1 0 1 0 0 0 
0 0 0 0 1 1 

⎥⎥⎥⎥⎥⎥⎦ 

, P5 = 

⎢⎢⎢⎢⎢⎢⎣ 

0 0 1 0 1 0 
1 1 0 0 1 1 
1 0 0 0 1 0 
0 1 1 1 1 0 

⎥⎥⎥⎥⎥⎥⎦ 

P3 = . 

1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 

At this point the scheme is readily broken via the methods of [16]. 


