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Abstract—This paper reports on quantification and mitigation of 
the inefficiency of selfish investment in network recovery from 
Susceptible Infected Susceptible (SIS) infection in a practically 
important case of high losses due to infection.  In this case, both 
socially optimal and selfish investments in the infection loss 
mitigation keep the system close to the boundary of the infection-
free region.  However, our analysis reveals that while socially 
optimal investments result in asymptotically zero infection losses, 
this is not the case for selfish investments.  The inefficiency of 
selfish investments, which is measured by the corresponding Price 
of Anarchy (PoA), is due to positive externalities.  In heterogeneous 
networks, positive externalities result in finite infection losses 
despite aggregate overinvestment due to imbalances of selfish 
investments.  While the infection losses can be eliminated with 
“small” increase in the selfish investments, dealing with 
imbalances of selfish investments is more challenging.  This 
assessment challenges conventional view that inefficiency of selfish 
investment in network security is due to aggregate 
underinvestment, at least in a practically important case of large 
infection losses.  We discuss possible approaches to reduction of 
the second inefficiency component through regulations, incentives, 
or their combination, and outline directions of future research. 

Keywords-Susceptible-Infected-Susceptible (SIS) infection; 
selfish investment in recovery capability;  inefficiency evaluation and 
mitigation. 

I.  INTRODUCTION 
Economic and convenience benefits of interconnectivity 

drive current explosive emergence and growth of networked 
systems.  However, these benefits of interconnectivity are 
inherently associated with various risks, including risk of 
undesirable contagion [1].  Due to its reliance on networked 
infrastructures, understanding and managing the fundamental 
risk/benefit tradeoffs of interconnectivity is one of the most 
important challenges faced by modern society.  In this paper, 
we consider a specific case of infection described by a 
Susceptible Infected Susceptible (SIS) model, where strategic 
nodes have the ability to mitigate their losses due to infection 
by investing in the node recovery capabilities. 

Assuming a certain cost/benefit structure, game theoretic 
analysis of this model [2] numerically evaluated the 
corresponding Nash equilibria and their inefficiency measured 
by the corresponding Price of Anarchy.  The inefficiency is due 
to the positive externalities since an investment in infection risk 

mitigation by a network component reduces likelihood of the 
infection and thus benefits other system components [3].  It is 
known [3]-[4] that while in homogeneous networks, this 
inefficiency is due to aggregate underinvestment by selfish 
components, in heterogeneous networks investments by some 
selfish components may exceed the corresponding socially 
optimal levels [4].  However, the relative contribution of these 
two sources of inefficiency of selfish investments in the 
recovery capability in a general network remains an open issue.  
An even more pressing issue is elimination or at least mitigation 
of this inefficiency with a viable combination of regulations and 
incentives.  Unfortunately, the computational intractability of 
the corresponding realistic game-theoretic models makes 
achieving this goal a serious challenge. 

This paper demonstrates that inefficiency of selfish 
investments can be effectively evaluated for realistic networks 
under the practically important scenario of large infection 
losses, when the system operates at the edge of the systemic 
infection.  Major outcomes of our analysis in a case of large 
infection losses in a general heterogeneous network are as 
follows.  First, contrary to the conventional view, in a 
heterogeneous network, selfish investments result in aggregate 
overinvestment.  Second, inefficiency of selfish investments is 
due to (a) this overinvestment, and (b) positive infection losses 
due to an imbalance of selfish investments.    Third, while 
inefficiency due to infection losses can be “easily” eliminated 
by a small increase in the investments compared to the selfish 
equilibrium levels, mitigation of the investment imbalances is a 
more challenging problem.  We suggest approaches to 
developing practical inefficiency mitigation solutions.   

Since an infection-free region in the system parameter space 
for a SIS infection model is determined by the condition that the 
corresponding Perron-Frobenius eigenvalue does not exceed 
unity [2], regulations and incentives/pricing preventing 
systemic infection can be based on the Gershgorin circle 
theorem [5] and the matrix perturbation theorem [6].  For a 
random uncorrelated network, where node centrality is 
characterized by node degree, we propose adaptive regulation 
and incentive/pricing strategies. 

The paper is organized as follows.  Section II briefly 
describes mean-field models of SIS infection for a general 
topology and random uncorrelated networks, and solves these 

U.S. Government work not protected by U.S. copyright 

1928

2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th
IEEE International Conference On Big Data Science And Engineering

U.S. Government work not protected by U.S. copyright
DOI 10.1109/TrustCom/BigDataSE.2018.00293

Authorized licensed use limited to: Boulder Labs Library. Downloaded on May 14,2020 at 20:35:36 UTC from IEEE Xplore.  Restrictions apply. 



models at the edge of systemic infection.  Section III introduces 
an economic model, where nodes can control their expected 
recovery time through investment.  Section IV evaluates 
inefficiency of selfish vs. socially optimal investments in the 
practically important case of large infection losses.  Section IV 
also proposes and discusses various techniques intended to 
mitigate inefficiency of the selfish investments.  Finally, Section 
V outlines directions of future research.  

II. SIS INFECTION 
Subsection A briefly introduces the Markov model and mean-

field approximation of SIS infection in a general network, where 
nodes can control their expected recovery time through 
investment.  Subsection B discusses this model and mean-field 
approximation in a particular case of uncorrelated random 
network.  Subsection C shows that the mean-field approximation 
can be effectively solved at the edge of systemic infection, when 
the portion of infected nodes is small. 

A.  General Network 
Consider a SIS model on an undirected connected graph with 

N  nodes and irreducible symmetric incidence matrix 
N

jiijAA 1,)( == , where 1== jiij AA  if nodes i  and  are 

connected by a link and 0== jiij AA  otherwise.  Each node 

i  is either “healthy” or “infected”.  Introduce indicator 0iδ =  

if node i  is healthy at moment t , and 1iδ =  otherwise.  Once 

node i  becomes infected, it spreads infection to each of its 

uninfected neighboring nodes j , 1== jiij AA , 0jδ = ,  at 

fixed rate 0>λ .  Node i  recovery time is distributed 

exponentially with average iΤ . 

 Under these assumptions, vector 

),..,1),(()( Nitt i == δδ  is a controlled Markov process 

with N2  states N}1,0{∈δ  and continuous time 0≥t .  While 

only the steady-state of process )(tδ  is infection-free: 0=δ
, for large number of nodes N , process )(tδ  may have 

metastable states describing persistent systemic infection on a 
practically important time scale [2].  Due to very high 

dimension N2  of the corresponding Kolmogorov system, we 
consider mean-field approximation for probabilities of nodes 

being infected at moment t , }1)({ == tPP ii δ  [2]: 

    
≠

−+Τ−=′
ij jijiiii tPAtPtPtP )()](1[)()1()( λ ,     (1) 

and identify metastable probabilities iP  with non-trivial 

equilibria of (1): 

                  

≠

≠

Τ+

Τ
=

ij jiji

ij jiji
i PA

PA
P

λ
λ

1
.                                        (2) 

It is known [2] that for γλ 1<  where γ  is the Perron-

Frobenius eigenvalue of matrix 
N

jiijBB 1,)( ==  with 

components ijiij AB Τ= , system (2) has only trivial solution 

0=iP , Ni ,..,1= .  It follows from concave Perron-

Frobenius theory [7] due to concavity, irreducibility, and some 
other more technical properties of mapping (2) that for 

γλ 1> , in addition to the trivial solution, system (2) also has 

unique non-trivial solution 0>iP , Ni ,..,1=  with non-zero 

portion of infected nodes: 

                        =Ω
i iPN )1( .                                                (3) 

Figure 1 shows portion (3) as a function of the infection 
propagation rate λ . 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  Portion of infected nodes vs. infection propagation rate. 
 

B.  Random Uncorrelated Network 
Consider random uncorrelated network with node degree 

distribution dq , ,..2,1=d , 1
1

=
≥d dq , where node i  

investment iC  only depends on the node i  degree id : 

idi cC = .  We also assume that node i  average recovery time 

iΤ  only depends on the node i  degree id  and investment 

idi cC = : )()(
ii ddi cc τ=Τ .   

Under these assumptions, system (1) has solution 
)()( tptP

idi = , where id  is the node i  degree.  This 

corresponding equilibrium satisfies the following system [8]: 

                          
Θ+

Θ=
i

i
i i

ip
τλ

τλ
1

,                                              (4) 

where the probability that any given link points to an infected 
node is 

                    
≥

=Θ
1

)1(
i iiave piqd                                       (5) 

and average node degree is 
≥

=
1i iave iqd . 

Substituting (4) into the right-hand side of (5) we obtain the 
following equation for Θ : 
                                       ( )ϕΘ = Θ ,                                                 (6) 
where function 

                       
2

1
( )

1
i i

iave i

i q
d i

τλϕ
λ τ≥

Θ = Θ
+ Θ

.                            (7) 
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Equation (6) always has trivial solution 0=Θ  describing 
infection-free equilibrium 0=ip , ,..2,1=i  .  Function 

)(Θϕ  is continuous, increasing and concave with respect to 

0>Θ , and thus equation (6) may have at most one non-trivial 
solution 0* >Θ , which satisfies the equation 

                          1
11

2

=
Θ+≥i i

ii

ave i
qi

d τλ
τλ

 .                                     (8) 

It is easy to verify that this unique non-trivial solution  
0* >Θ  exists for *λλ > , where 

                                iave id τλ 2
* = .                                            (9) 

We use notation .  for the averaging over node degree 

distribution iq .  After solving equation (8) with respect to Θ , 

expressions (4) explicitly identify metastable probabilities ip  
and the average portion of persistently infected nodes 

                            
1

i i

i i

i q
i

τλ
λ τ

Ω = Θ
+ Θ

.                                  (10) 

Equation (8) can be solved explicitly only in some particular 

cases.  If ii 1ττ = , threshold (9) is 1* 1 τλ = , and node 

infection probabilities (4) are independent on the node degree: 

11 1 ( )ip λτ= Ω = − , where 11 τλ > .  For a regular 

network, where all nodes have the same degree d , threshold 

(9) is )(1* ddτλ = , and node infection probabilities (4) are: 

1 1 ( )i dp dλ τ= Ω = − , where )(1 ddτλ > . 

C.  Edge of Systemic Infection 
Consider the solution to mean-field system (2) at the edge 

of systemic infection, when γλ 1↓ .  Let ),..,( 1 Nααα =  

and ),..,( 1 Nβββ =  be the left and right eigenvectors of 

matrix N
jiiji AcB 1,)()( =Τ= , associated with Perron-Frobenius 

eigenvalue γ , and normalized as follows: 1=Tαβ .  The 
following asymptotic expression for the node infection 
probabilities at the edge of systemic infection is a direct result 
of matrix perturbation theory [6]: 

  −+−=
γ

λ
γ

λ
βα

α 11
2 oP

j jj

i
i  as γλ 1↓ .      (11) 

The average portion of infected nodes (3) is 

  −+−=Ω
γ

λ
γ

λ
βα

α 11
2 o

j jj

i i
 as γλ 1↓ .      (12) 

Note that expressions (11)-(12) generalize asymptotic 
expressions in [9]. 

For a random uncorrelated network expanding right-hand 

side of equation (7) about 0=Θ , we obtain solution to (8) at 
the edge of systemic infection: 

*
2 3 2

* *

1 1
2

ave

i

d
o

i
λ λ
λ λλ τ

Θ = − + −  as 1* ↓λλ , (13) 

where *λ  is given by (9).  Substituting (13) into (4) we obtain 
the following expression for the infection probabilities: 

                        ii ibp τλλλ )1)(( *
* −=                                  (14) 

up to the terms of the second order of 1* −λλ  as *λ λ↓ .  

Note that in a particular case 1=iτ , expressions (13)-(14) 
reproduce known result, e.g., systemic infection threshold [8]: 

2
* idave=λ . 

III. ECONOMIC MODEL 
Subsection A introduces performance models for socially-

optimal and selfish investments in the node recovery capabilities 
for a general network under mean-field approximation.  
Subsection B demonstrates that for an uncorrelated random 
network, these models can be solved efficiently, which allows 
for quantifying the inefficiency of selfish investments.  
Subsection C discusses various techniques for mitigation of 
these inefficiencies. 

A.  General Network 

We assume that node i  average recovery time iΤ  is a 

decreasing and strongly convex function of the node i  

investment 0≥iC : )( iii CΤ=Τ .  Also, “large” investment 

makes recovery “very fast” and “small” investment makes 

recovery time “very slow,” i.e., ( )i iCΤ ↑ ∞  as 0↓iC , and 

( ) 0i iCΤ ↓  as ∞↑iC , Ni ,..,1= .   

If an infected node i  suffers loss 0≥iH , the expected 

node i  loss 

               iiii CCPHCLoss += )()(                                   (15) 

depends on the entire vector of investments ),..,( 1 NCCC =  

through infection probability )(CPi .  Socially optimal 

investments ),..,( 1
opt
N

optopt CCC =  minimize the aggregate 

loss: 

         +=
≥ i iiiC

opt CCPHC
i

])([minarg
0

                       (16) 

subject to constraints (2). 
Following [2], we model selfish node investment in the 

recovery capability as a non-cooperative game G , where each 
node Ni ,..,1=  attempts to minimize its expected individual 

expected loss (14) over this node investment iC , given 

investments by other nodes ),(: ijCC ji ≠=− .  Since increase 
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in the investment iC  by any node Ni ,..,1=  benefits other 

nodes by reducing the ability of infection to propagate, game 

G  has positive externalities, i.e., 0)( <ji dCCdP , 

Nji ,..,1, = .  It can be shown that under our and some 

additional technical assumptions, game G  is strictly concave 
[11], and thus has unique pure Nash equilibrium 

),..,( **
1

*
NCCC = , which solves the following optimization 

problem: 

         ]),([minarg *

0

*
iiiiiCi CCCPHC

i

+= −≥
.                      (17) 

Conventional metric of inefficiency of selfish equilibrium (16) 
relative to socially optimal equilibrium (16) is “Price of 
Anarchy” (PoA) [2]-[4]: 

      
+
+

=
i

opt
i

opt
ii

i iiiopt

CCPH

CCPH
CCPoA

])([
])([

:)(
**

* ,         (18) 

where 1)( * ≥optCCPoA , and 1)( * =optCCPoA  means no 

inefficiency. 

B.  Random Uncorrelated Network 
Consider a random uncorrelated network, where node i  loss 

due to infection iH  and investment iC  only depends on the 

node i  degree id : 
idi hH =  and 

idi cC =  respectively.  In 

this network, the probability that a node of degree i  is infected 
is given by (4), and thus the expected loss for this node is  

        i
ii

ii
ii c

cci
cci

hcloss +
Θ+

Θ=
)()(1

)()()(
τλ

τλ ,                     

(19) 
where )(cΘ  is given by equation (6). 

Thus, for random uncorrelated network, social optimization 
(16) becomes: 

      +
Θ+

Θ=
≥ i

ii
ii

ii
ic

opt qc
ci

cihc
i )(1

)(minarg
0 τλ

τλ           (20)  

subject to (6).  Equation (17) for selfish investments takes the 
following form: 

          
*

0

( )arg min
1 ( )i

i i
i i ic

i i

i c
c h c

i c
τλ
λ τ≥

Θ= +
+ Θ

,                  (21) 

where *( )cΘ = Θ  is the unique solution to equation (6).  
Price of Anarchy (17) becomes:  

       
* *

* [ ( ) ]
( ) :

[ ( ) ]
i i i iopt i

opt opt
i i i ii

h p c c q
PoA c c

h p c c q
+

=
+

.                 (22) 

IV. HIGH INFECTION LOSSES 
This section considers a practically important case of large 

infection losses of the order of 1−ε , where 0→ε .  It is natural 

to develop expansions of the socially optimal and selfish node 
investments as well as the corresponding infection probabilities 
and expected losses in power series with respect to ε .  Due to 
space limitations, we report some of our results on the leading 
terms in these expansions.  Subsection A considers a general 
network, and section B considers a random uncorrelated 
network. 

A.  General Network 
We assume that an infected node i  suffers a “large” loss:        
           0),1(, 00 →== εε OHHH iii ,                        (23) 

which results in the node i  expected loss 

          0( , ) ( ) ( , )i i i iL C H P C Cε ε ε= + .                        (24) 

Our goal is expansion of node infection probabilities 

      ...)()()(),( 2
110 +++= εεε CPCPCPCP iiii             (25) 

for socially optimal and selfish investments. 
It can be shown that as 0→ε , the socially optimal 

investment by node i , )(εopt
iC  ensures node infection 

probability of the order of 2ε : 
                 )()( 32

2 εεε OPP opt
i

opt
i += ,                                     (26) 

which results in asymptotically zero infection losses: 

                  0 0lim [ , ( )]opt opt
i iL C Cε ε ε→ = ,                               (27) 

where  0 0lim ( )opt opt
i iC Cε ε→= . 

On the other hand, as 0→ε , selfish investment by node i , 
)(* εiC  ensures node infection probability of the order of ε : 

                        )()( 2*
1

* εεε OPP ii += ,                                      (28) 
which results in finite expected infection loss: 

                * * *
0 0 1 0lim [ , ( )]i i i iL C H P Cε ε ε→ = + ,                   (29) 

where 
* *
0 0lim ( )i iC Cε ε→= .  

It follows from (26)-(29) that as 0→ε , PoA (18) is 
separated in two components: 
         (1) (2)

0 0 0 0: limPoA PoA PoA PoAε ε→= = + ,              (30) 

where component (1) *
0 0 0 1(1 )opt

i ii
PoA C H PΣ=  quantifies 

inefficiency due to infection losses, and component 
(2) *
0 0 0

optPoA C CΣ Σ=  quantifies inefficiency due to aggregate 

overinvestment by selfish nodes.  Here 0 0:opt opt
ii

C CΣ =  and 
* *

0 0: ii
C CΣ =  are aggregate optimal and selfish investments 

respectively. 
It is easy to see that “small,” of the order of ε  increase in 

the selfish investments to ** *
0 0( ) (0) ( )i iC C Oε ε= + , 0→ε  

through incentives or regulations or some of their combinations 
can move the system to the infection-free region eliminating the 
infection losses and thus resulting in 

           *
0 0 0 ( )optPoA C C O εΣ Σ= + , 0→ε .                      (31) 
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Since Price of Anarchy cannot be less than one, this implies that 
selfish nodes on average overinvest as compared to the socially 

optimal level: 
*

0 0
optC CΣ Σ≥ . 

Due to (26)-(27), the optimal node investment minimizes the 
aggregate investment by all nodes 

                      
≥

=
i iC

opt CC
i 0

minarg                                     (32) 

subject to condition on the Perron-Frobenius eigenvector 
)(Cγγ =  ensuring infection free regime: 

                              λγ 1)( ≤C .                                                  (33) 

Optimization problem (31)-(32) is convex, and thus unique 
solution, which lies on the boundary of infection free region 
(33), can be found using Lagrange multipliers [10].  Results of 
this subsection are illustrated in Figure 2.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Social optimization: large infection losses. 
 

Evaluation of the equilibrium selfish investments 
*
0iC  and thus 

PoA as 0→ε  for a general network is involved and will be 
considered elsewhere.   

In the rest of this subsection we consider random 
uncorrelated network in the limit of large infection losses 

    ε0ii hh = , ,..2,1=i , where 0→ε , )1(0 Ohi = .          (34) 

In this case, optimization problem (32)-(33) for the socially 
optimal investments becomes: 

                     
0

arg min
i

opt
i iic

c q c
≥

=                                    (35) 

subject to the following condition 

                      2
1

( )i i i avei
i c q dτ λ

≥
≤ ,                                   (36) 

which follows from  *λ λ≤ , where *λ  is given by (9), and 

guarantees that the network is infection free. 
It can be shown that optimization problem (35)-(36) is 

convex, and thus can be solved using Lagrange multipliers.  The 
first order optimality condition yield the following equation for 

the socially optimal investments opt
i ic c= : 

                       
2( ) 1 ( )i ic iτ μλ′ = − ,                                        (37) 

where Lagrange multiplier μ  is determined by condition that 

solution lies on the boundary of the infection-free region (34): 

                  2
1

( )i i i avei
i c q dτ λ

≥
= .                                 (38) 

Equations (21) yield the following system for equilibrium 

selfish investments )( **
icc =  under (34): 

            * 1
00

arg min[ ( ) ]
i

i i i i ic
c h i c cλ ε τ−

≥
= Θ + .                       (39) 

Since (39) is a convex optimization problem, unique solution to 
(39) can be found from the following first order optimality 
condition: 

                     0( ) 1 ( )i i ic v h iτ λ′ = − ,                                        (40) 

where parameter 1ν ε −= Θ  is determined by (38). 
Comparing equations (37) and (40) we conclude that if 

node loss due to infection is proportional to the node degree: 

ihi ~ , ,..2,1=i , equilibrium selfish investments are socially 

optimal: 
opt
ii cc =*

.  Otherwise, inefficiency of selfish 

investments, measured by PoA (18), is separated in two 
components (30), where component 

(1) *
0 0 0 1(1 )opt

i i ii
PoA c h p qΣ=  quantifies inefficiency due to 

infection losses, and component (2) *
0 0 0

optPoA c cΣ Σ=  
quantifies inefficiency due to imbalances of the selfish 
investments.  Here 0 0:opt opt

i ii
c c qΣ =  and * *

0 0: i ii
c c qΣ =  

are average optimal and selfish investments respectively.  As in 
a general topology network, “small,” of the order of ε  increase 
in the selfish investments can move system to the infection-free 
region eliminating the infection losses. 

B.  Towards Mitigation Imbalances of Selfish Investments 
Inefficiency of selfish investments can be reduced through 

regulations, market mechanisms, or their combination.  
Probably, the simplest regulation, which eliminates systemic 
infection, imposes the following low bound on the node i  

investment iC : 

                ( ) 1:ˆ)( −

≠
=Τ≤Τ

ij ijiii AC λ ,                             (41) 

Ni ,..,1= .  Indeed, the Gershgorin circle theorem [5] ensures 

that the corresponding Perron-Frobenius eigenvalue 1≤γ .  

However, regulations (43) generally do not keep the network 
close to the optimal operating points even in a case of large 
infection losses, when the optimal operating point lies at the 
edge of systemic infection.  Market mechanisms with properly 
designed incentives/penalties have more flexibility and thus 
may be more economically efficient than regulations in 
reducing inefficiencies of selfish behavior.  One of the major 
contributions of the Coase theorem [12] is identifying obstacles 
to ability of market mechanisms to reduce inefficiencies due to 
externalities.  Note in passing that cyber insurance can be 
viewed as a market mechanism intended to eliminate or at least 
mitigate some of these obstacles created by incomplete 
information availability to the selfish participants.   

Probably the simplest incentives/penalties scheme for a 
general network penalizes violation of the constraints (41) once 
systemic infection emerges by redistribution of the losses due 

0
iC

jC

}1)(:{ λγ ≤= CCF

)(εoptC

)(* εC

)(εopt
i i CC Σ=

)(εO
)()0()( *** εε OCC +=

)(εoptCΣ

)(εoptCΣ
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to systemic infection.  Broader perspective on 
incentives/penalties can be gained from the observation that 
regulations (41) force/incentivize more systemically important 
nodes to invest more in the recovery capability, where node 

Ni ,..,1=  systemic importance is quantified by this node 

degree 
≠

=
ij iji Ad .  This broader perspective assumes that 

a “central planner,” being capable of measuring the aggregate 

loss due to contagion aveave
agg
ave PNHH =: , where portion of 

infected nodes is −=
i iave PNP 1 , and overall average node 

loss due to infection is −=
i iiaveave cPHNPH )()(: 1 , 

allocates cost/penalty to each specific node Ni ,..,1=  

according to this node centrality measure iπ , where 

1=
i iπ .  This means that the central planner (a) imposes 

additional cost/penalty on node i  equal to iiavei HPH −π  if 

iiavei HPH >π , and (b) the central planner provides 

credit/payment aveiii HHP π−  to node i  if iiavei HPH <π .  

An example of a centrality measure is )( aveii Ndd=π , 

where id  is node i  degree, and aved  is the average node 

degree.  In this short paper we only note that proper notion of 
node centrality in a general network can be derived from matrix 
perturbation theory [6].  In the rest of this subsection we 
demonstrate how a node degree based centrality measure can 
eliminate inefficiency of selfish investment in a random 
uncorrelated network. 

For a random uncorrelated network, we assume that the  

“central planner” is aware of parameters ih , ,..2,1=i  , and 

can monitor the average loss per node   

                          
≥

=
1i iiiave qphh .                                       (42) 

The central planner compensates all infected nodes for their 
losses, and then imposes tax/penalty on each infected node of 

degree ,..2,1=i  proportional to i : Ziti = , where constant 

Z  is chosen to balance the tax inflow and compensation 
outflow: 

             
≥≥

=
11 j jjj jjj qjpqphZ .                          (43) 

Thus, node ,..2,1=i  individual optimization problem 

becomes 

                       ])([min
0 iiic

ccZip
i

+
≥

,                                         (44) 

and according to (40), for 1>>ih , can be rewritten as follows: 

                     2

0
min[ ( ) ]

i
i i ic

Z i c cλ τ
≥

+ .                                      (45) 

The solution to optimization problem (45) is given by 

                       
2( ) 1 ( )i ic Z iτ λ′ = − ,                                       (46) 

where Z  is selected according to (43), ensures that then the 
system stays on the boundary of the infection free region due to 

our assumption 1>>ih , ,..2,1=i  . 

We end this subsection with the following observations for 
this scheme.  In practical situations, a central planner can 
determine the aggregate parameter Z  adaptively by increasing 
(decreasing) Z  in the presence (absence) of a systemic 
infection.  We leave specific adjustment algorithms for future 
work.  Note that the proposed algorithm compensates for node 
underinvestment/overinvestment over the socially optimal 

levels.  When ihi ~ , all nodes underinvest, and the proposed 

algorithm forces all nodes to proportionally increase their 
investments.   In other cases, the proposed algorithm not only 
raises the aggregate investment, but also rebalances investments 
by nodes of different degrees. 

V. FUTURE RESEARCH 
Our current research concentrates on performance 

evaluation, optimization, and practical implementation of the 
proposed incentive/penalty scheme for random uncorrelated 
network and generalization of this scheme to arbitrary 
networks.  Results in this paper owe their computational 
tractability to the assumption of very large infection losses, 
which results in the solutions on the boundary of the infection-
free region.  A possibility of relaxing this assumption is an open 
question. 
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