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Label-free detection of conformational changes in
switchable DNA nanostructures with microwave
microfluidics
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Detection of conformational changes in biomolecular assemblies provides critical information

into biological and self-assembly processes. State-of-the-art in situ biomolecular conformation

detection techniques rely on fluorescent labels or protein-specific binding agents to signal

conformational changes. Here, we present an on-chip, label-free technique to detect con-

formational changes in a DNA nanomechanical tweezer structure with microwave micro-

fluidics. We measure the electromagnetic properties of suspended DNA tweezer solutions

from 50 kHz to 110 GHz and directly detect two distinct conformations of the structures. We

develop a physical model to describe the electrical properties of the tweezers, and correlate

model parameters to conformational changes. The strongest indicator for conformational

changes in DNA tweezers are the ionic conductivity, while shifts in the magnitude of the

cooperative water relaxation indicate the addition of fuel strands used to open the tweezer.

Microwave microfluidic detection of conformational changes is a generalizable, non-

destructive technique, making it attractive for high-throughput measurements.
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Detecting conformational changes in large biomolecular
assemblies, such as proteins, protein complexes, and DNA
origami is critical to understanding the function of these

systems. Standard characterization methods to detect nanoscale
changes in biological systems include cryogenic transmission
electron microscopy (cryo-TEM) and atomic force microscopy
(AFM)1,2. These techniques, however, require extensive and
destructive sample preparation (cryo-TEM, for example), are lim-
ited in spatial resolution (AFM, for example), and can be pertur-
bative to the state in situ. They also typically capture the one-end
state of the conformational switch, making real-time measurements
of intermediate conformations technically challenging and limited
to single molecules3.

A common technique to probe biomolecular dynamics in situ
is Förster resonance energy transfer (FRET), where the distance
between two fluorophore labels is calculated from the energy
transfer efficiency between the fluorophores. The limit of FRET-
based distance measurements is around 1–10 nm (depending on
the dye pair) and requires site-specific modification of the tar-
geted analyte with the two fluorophores4. Site modifications are
technically challenging, and the size and hydrophobic nature of
the dyes make them potentially perturbative5. To address these
limitations, label-free methods to probe conformational changes
are an active area of research. These label-free methods also detect
protein binding with protein-specific binding agents (e.g., apta-
mers and antibodies)6. Typically, these protein-specific binding
agents are attached to a surface, and the ligand association per-
turbs a measurement signal. Ligand association detection tech-
niques include impedance spectroscopy, surface-enhanced
Raman scattering (SERS), acoustic waves, and calorimetry7–13.
However, both label- and aptamer-based protein detection tech-
niques require prior knowledge of the analyte and the targeted
experimental design14.

A label-free, generalizable method of detecting molecular
conformation changes in solution will advance high-throughput
and real-time biological characterization. Compared with
expensive and time-intensive alternatives (e.g., FRET), on-chip,
high-throughput methods facilitate quantitative characterization
at potentially lower costs. Orthogonal techniques for detecting
conformation changes in protein-based systems would also allow
for cross-comparisons, for example, to confirm that fluorescent
labels do not interfere with biomolecular dynamics in FRET
measurements. Fluorescent label interference inhibits progress in
“nano-machine” engineering, requiring characterization techni-
ques that do not rely on surfaces or labels to detect conforma-
tional changes14,15.

Frequency-dependent dielectric measurements can detect the
structure and dynamics of proteins, DNA, and cells in solution
without the need for specific binding agents16–24. Recent advances
in microwave metrology and instrumentation allow for on-chip
broadband dielectric measurements from DC to 110 GHz25–29.
Covering this wide-frequency range allows for measurements of
electrical properties of different charge-based phenomena in a
system that includes electrical double layers, ionic conductivity,
and molecular reorientations26,30–33. Microwave microfluidics is
an emerging field of study that integrates microfluidics with on-
chip microwave devices and electrical measurement techniques,
allowing for quantitative measurements of nanoliter volumes of
fluids, and provides a probe mechanism of aqueous and ionic
solutions, particles, cells, and more34–39.

Here, we utilize microwave microfluidics to track the con-
formational changes in DNA “tweezer” nanostructures. In and of
itself, the DNA tweezer system provides a wide array of biological
detection capabilities, and similar structures have been used to
measure protein–protein interactions40,41. By using a nanos-
tructure that is well-defined with controllable binary states, these

microwave microfluidics experiments elucidate the relevant
electrical properties of the fluid that signal conformational
changes. This ability to detect DNA nanostructure changes
electrically means that we can use these nanostructures as a
model system to study large conformational changes in similar
systems. In addition, we can modify tweezers to detect and
amplify small conformation changes in complex biological sys-
tems. The former application will be useful when FRET dyes or
other probes are intractable due to the difficulties with synthesis
or excessive perturbation to the complex biological system under
test. In the latter application, DNA tweezers can serve as a model
system that mimics conformational changes in protein mechan-
isms42 and DNA origami43,44. The electrical characterization
methods developed here could provide a more user-friendly and
high-throughput alternative to optically based measurements,
such as FRET45.

The microwave microfluidic techniques we develop here are
widely applicable to any biological fluid system, opening avenues
for high-throughput in situ measurements for use by the bio-
technology, molecular biology, and biomanufacturing commu-
nities. Microfluidics allow integration with complementary lab-
on-a-chip technologies, including optical, thermal, mechanical,
and chemical stimuli and measurements, with high throughput
and nanoliter sample size46,47. Our devices and calibration pro-
tocol cover a six-decade frequency bandwidth from 50 kHz to
110 GHz. This large bandwidth uniquely captures both the low-
frequency regime where the electrical-double-layer effects dom-
inate as well as the high-frequency regime where the properties of
the solution dominate. We determined the presence of a weak
relaxation associated with the ion pairing in solution by fitting the
entire frequency regime of the dielectric spectrum on a loga-
rithmic scale. We extracted quantitative model parameters asso-
ciated with the ion-pairing relaxations, the bulk fluid properties,
and the electrical double layer, and correlated these parameters to
DNA tweezer conformational changes.

Results
DNA tweezers. As a model system for probing conformational
changes, we chose a DNA tweezer nanostructure48 consisting of
two rigid arms held closed by a hairpin stem–loop and two
extended locking strands (Fig. 1a, sequence in Fig. 1; see Sup-
plementary Information). The tweezer can be opened by the
addition of two fuel strands: one that binds to the hairpin (FUEL
1) and the other that breaks the locking strands (FUEL 2). FUEL
1 forms a duplex that rapidly forces the arms apart, in a spring-
loaded fashion. We can trigger a large conformational change in
the tweezer between a closed state (4-nm inter-arm distance) and
an open state (16-nm inter-arm distance). The clean transition
from closed to open tweezers with addition of fuel strands was
confirmed by atomic force microscopy (AFM, Fig. 1b–d) and
native polyacrylamide gel electrophoresis (PAGE, Fig. 1e). As a
control, we added dummy fuel strands (Fig. 1a) that were mis-
matched to their targets, which resulted in no change in tweezer
conformation (Supplementary Figures 2 and 3). We hypothesized
that the large difference between the closed and open states of the
tweezer would be detectable in the frequency shift of a relaxation
associated with the tweezer in solution, a phenomenon that has
been reported for DNA and protein suspensions20,33.

The microwave microfluidics device. We developed a microwave
microfluidics device (Fig. 2a) to measure the broadband electrical
properties of suspensions of DNA tweezers. The device consisted
of microfluidic channels with integrated coplanar waveguides
(CPWs) of varying lengths. Each of these devices (top–down view
in Fig. 2b) was connected to a vector network analyzer (VNA) via
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microwave probes to measure the raw scattering parameters (S
parameters) as a function of frequency. The S-parameters were
calibrated (see the Methods section) and used to extract the
distributed circuit parameters of the transmission line R0, L0, Ctot,
and Gtot, which correspond to the resistance and inductance
associated with the metal conductors in the transmission line, and
the capacitance and conductance associated with the materials in
the gap (Fig. 2c), respectively. We present calibrated fluid data as
Ctot and

Gtot
ω as these quantities can be related to the real and

imaginary parts of the fluid permittivity (ε′ and ε′′), respectively:

ε′ ¼ Ctot � Cairð Þkþ ε0 and ð1Þ

ε′′ ¼ Gtot

ω
k; ð2Þ

where Cair is the per-unit-length capacitance of an air-filled
channel, ε0 is the permittivity of free space, and k is a geometric
constant dictated by device structure26. While Eqs. (1) and (2)
allow us to convert capacitance Ctot and scaled conductance Gtot

ω
directly to fluid permittivity values, we do not present measured
data in terms of permittivity when electrical double layer (EDL)
effects are present, because the EDL effects depend on the device
geometry and are not directly related to intrinsic fluid properties.

Fluid measurement and circuit model. We measured the dis-
tributed conductance and capacitance of air, deionized water (DI
water), tris-acetate-ethylenediaminetetraacetic acid with magne-
sium chloride (TAE-Mg2+) buffer, closed tweezers, and open
tweezers (0.5 μM concentration, both suspended in TAE-Mg2+

buffer) (Fig. 3a, b). The capacitance of air remained constant as a
function of frequency, while the DI water had a larger capacitance
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Fig. 1 Design of DNA tweezers and characterization of closed and open tweezers. a Design and dimensions of a closed tweezer with locking strands
(green) and an open tweezer with addition of fuel strand 1 (FUEL 1, blue) and fuel strand 2 (FUEL 2, orange). b Control tweezers with dummy fuel strands 1
and 2 (gray). c Zoom-out and zoom-in AFM images of closed tweezers with locking strands. d Zoom-out and zoom-in AFM images of open tweezers after
addition of both fuel strands. Scale bars are 50 nm for zoom-out images and 10 nm for zoom-in images. e Histograms for the distance between the ends of
the tweezer arms based on AFM imaging (red and white histograms are separate samples of closed and open tweezers, respectively). f Native PAGE gel
characterization of tweezer opening: lane M, double-stranded DNA ladder as a standard marker (distance along the gel marked in units of base pairs); lane
1, closed tweezer with locking strands; lane 2, open tweezer with addition of FUEL 1; lane 3, open tweezer with both FUEL 1 and FUEL 2
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Fig. 2 Microwave microfluidics devices and circuit schematic. a Image of
the microwave microfluidics device (scale bar is 12 mm). b Composite
microscope image of microfluidic channels with microwave probes landed
(scale bar is 1 mm). c Circuit model that describes the electrical behavior of
the CPW. The distributed circuit parameters R0, L0, Ctot, and Gtot are
frequency-dependent per unit length quantities, and Ctot and Gtot depend on
the fluid properties
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at low frequencies and a relaxation (a peak in the conductance
paired with a drop in the capacitance) at ~20 GHz due to the
cooperative relaxation of water molecules49. This water loss peak
was present in the aqueous solution samples as well. Previous
dielectric spectroscopy studies reported weak relaxations for pro-
teins (β- and δ-relaxations) and electrolytes (ion-pairing relaxa-
tions) at frequencies in the range of 10MHz to1 GHz24,50.
However, these relaxations were approximately three orders of
magnitude smaller than the water relaxation, and required careful
fitting treatment to extract quantitative information from dielectric
data. At low frequencies (below 107 Hz), we saw a peak in the
conductance and a drop in the capacitance for the solutions con-
taining ions, which we attributed to the relaxation of the EDL. To
clarify the changes in the broadband electrical properties for DNA
tweezers, we plotted the percent deviation in Ctot and Gtot ω−1

from the TAE-Mg2+ buffer as a function of frequency (Fig. 3c, d)
for open and closed tweezers, as well as control measurements with
dummy strands of DNA, and tweezers with only FUEL 1 or FUEL
2 added (~5 μM concentration), labeled as Lock and Loop,
respectively, in Fig. 3c, d. We observed an increase in Ctot and Gtot

upon the addition of tweezers, and a reduction upon the addition
of single-stranded DNA (fuel strands or dummy fuel strands,
Fig. 1a). Open tweezers had values for Ctot and Gtot that were
smaller than both the closed tweezer and all the control samples.

To extract physical values from the broadband electrical data,
we developed a circuit model to describe total admittance (inverse
of impedance) Ytot=Gtot+ iωCtot of the suspended DNA
tweezers (Fig. 4):

1
Ytot

¼ 2
YEDL

þ 1
Yf

; ð3Þ

where YEDL and Yf are the admittances of the EDL and fluid,
respectively. We describe the effect of the EDL as operating in
series with the admittance of the fluid for fluids with dissolved

ions. The EDL can be modeled as a Cole–Cole relaxation:26

YEDL ¼ YCPE þ GEDL þ iωCEDL ¼ YCPE þ iω
CEDL

1þ ðiωτEDLÞ1�αEDL
;

ð4Þ
where CEDL is the capacitance associated with the EDL, αEDL is a
shape-broadening parameter, and τEDL is the characteristic
relaxation time associated with the formation of the EDL under
an electric field. The Cole–Cole relaxation is in parallel with a
constant-phase element (CPE, with admittance YCPE):

YCPE ¼ Qω�nei
π
2n; ð5Þ

where Q and n are the fitting parameters, and where Q has the
units [S m−1 Hzn]. We fixed n=−1 since the concentration of
ions in the sample was low, and allowing n to vary did not change
the fit parameters.

We described the fluid admittance Yf as four parallelly
distributed circuit components:

Yf ¼ YIP þ Yw þ Gσ þ iωC1 ¼ iω
CIP

1þ ðiωτIPÞ
þ iω

Cw � C1
1þ ðiωτwÞ

þ Gσ þ iωC1;

ð6Þ
where C∞ is the capacitance of the suspension at frequencies far
above the relaxation frequency of water, Cw is the dipolar
contribution of the water, Gσ is the conductance due to
translation of ions and DNA, and CIP is the dipolar contribution
of the weak ion/DNA relaxation. The values for Gions and Gw

(Fig. 4a) represent the loss (imaginary part) of the Debye
relaxations Yw and YIP and are not separate fitting parameters.
The time constants τw and τIP correspond to the rotational
relaxation times of the water and the ion–counterion pair,
respectively. By developing an equivalent circuit model based on
Debye-type relaxations, we correlated the changes in charge-
based phenomena to the changes in DNA tweezer conformation,
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using our broadband measurements. Here, we determined
statistical significance in the changes in fit using a two-sided z
test with unequal variance and applying the Bonferroni criterion
for two simultaneous statistical tests within a single dataset51.

Fitting the fluid data to fluid circuit parameters. To fit these
regions with Debye-type models, we performed a nonlinear least-
squares fit to extract Ytot. Specifically, we simultaneously fit log
(Ctot) and log(Gtot) (Fig. 5a, e) for the whole frequency spectrum,
and Cw and Gw+Gσ for the frequency range 5–30 GHz, using fit
parameters and functions normalized to have magnitudes
approximately equal to one. The inclusion of Cw and Gw+Gσ

into the fitting model at high frequency was necessary to address
the colinearity between Gσ and CPE effects in the model, which
constrained CPE effects to lower frequencies. The full frequency
range of the fit was necessary to achieve the uncertainties pre-
sented here for all extracted fit parameters. The bulk fluid
properties contain the water relaxation Yw as well as the fluid
conductance Gσ, and the fit and the corresponding data are
presented in Fig. 5b, f. Including the ion relaxation peak (YIP in
Fig. 5c, g) was necessary in DNA tweezer suspensions and control
measurements of TAE-Mg2+ buffer to produce symmetric
(Cole–Cole) relaxations for the EDL, and resulted in overall lower
residuals across the high-frequency regime. Residuals for fits for a
single Cole–Cole relaxation versus two Debye-type relaxations at

high frequency have been reported elsewhere for Mg2+–EDTA
buffer, and are included for closed tweezers in Fig. 352.

Detecting conformational changes. We tracked fit parameters
from the Ctot fit for the TAE-Mg2+ buffer, closed tweezers, open
tweezers, and a series of control measurements. The controls
included closed tweezers with dummy strands that do not open
the tweezers, and closed tweezers with FUEL 1 or FUEL 2 added.
By extracting quantitative information from our calibrated
broadband dielectric measurements, we determined physical
parameters that strongly indicate (p < 0.05, two-sided Z test with
unequal variance) conformational changes in the tweezer system.
The value Cw (Fig. 6a) corresponds to the dipolar contribution of
the cooperative water relaxation, and indicates changes in the
state of the water. Reduction in the dipolar contribution of water
can come from displaced water molecules, water immobilized on
the surface of the DNA tweezers (i.e., bound water in hydration
layers), changes in the concentration-dependent charge density of
DNA, and changes in the charge state of the buffer20,32,53,54. All
tweezer samples had smaller Cw values, and there was a statisti-
cally significant increase in Cw from both closed and closed-with-
dummy-strands to the open configuration (p < 0.05, two-sided Z
test with unequal variance). To determine the impact of excess
fuel strands, we varied the amount of excess fuel strand in the
open tweezer sample from 4.5 to 7.5 μM (see Supplementary
Figure 8). The linear relationship between Cw and the con-
centration of fuel strands suggests that the change in Cw is due to
the additional single strands of DNA in the solution, rather than a
change in conformation. Notably, the magnitude of Cw increased
upon the addition of more single-stranded DNA, meaning that
there is less bound water in the system, overall. This counter-
intuitive result could be due to the changes in the buffer, or the
concentration-dependent charge density of the DNA itself53,54.

The relaxation time of the water loss peak τw also shifts when
DNA or ions are added to water (Fig. 6b). Shifts in the water
relaxation in ionic, protein, and DNA systems have been attributed
to disruption of the hydrogen-bonding network and increases in
solution viscosity55. An increase in τw occurred for the buffer, and
the addition of closed tweezers further increased the relaxation time.
Open tweezers and tweezers with dummy strands had a reduced
water relaxation time, compared with closed tweezers, demonstrat-
ing that single-stranded DNA can cause a reduction in τw similar to
what we observe in the open tweezers. However, when we varied
the excess FUEL strands in open tweezers, we found that changing
the concentration of excess FUEL strands did not affect τw
(Supplementary Figure 9). This suggests that τw could be an
indicator of conformational changes in the tweezers, and the FUEL
strands and dummy have distinct effects on the water relaxation. In
addition, studies of globular proteins in water found a linear
relationship between Cw and τw. This finding was not the case in the
DNA tweezer system, which we attributed to the presence of
diverse, complex charged species in solution55.

The bulk ionic conductivity Gσ is a sensitive indicator of both
the addition of fuel strands as well as the conformational changes
of the tweezers (Fig. 6c). The closed tweezers had a greater ionic
conductivity compared with the buffer, consistent with molecular
orbital theory and measurements of DNA systems with
nanopores and dielectric spectroscopy20,56–59. The addition of
dummy FUEL strands slightly decreased the overall ionic
conductivity of the solution, suggesting a lower ionic conductivity
for single strands in solution, as compared with tweezer
structures. We observed reductions in Gσ beyond the dummy
strand control measurements for the addition of the locker and
central loop strands (FUEL 1 and FUEL 2, respectively),
demonstrating that these binding events are detected on an
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individual basis. The open tweezer had a lower conductivity than
all control measurements, showing the utility of Gσ as a
parameter for measuring conformational changes and binding
events in DNA-based systems.

Other parameters included in the measurement corresponding
to the EDL and the ion-pairing relaxation did not yield
statistically significant changes for different tweezer conforma-
tions. We attributed ion-pairing relaxation observed in the buffer
to the solvent-mediated interactions between different buffer

components32,60. The addition of closed DNA tweezers did not
shift the relaxation magnitude CIP or time constant τIP within the
error of the measurement (Supplementary Figure 6). The
electrical double-layer relaxation fit parameters, CEDL and τEDL,
represent the accumulation of charged species on the surface of
the electrode. CEDL measures the capacitive contribution of the
EDL, and τEDL is the recovery time of the EDL after it is
perturbed by the electric field26,61,62. These parameters were
particularly sensitive to ionic conductivity changes, and adding
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DNA increases capacitance CEDL and decreases the relaxation
time τEDL (Supplementary Figure 5). However, no significant
changes were found between any of the tweezer samples. The
large time constant τEDL of the EDL relaxation in this system

increased the uncertainty in the fit. In future measurements, this
uncertainty could be reduced by extending the broadband
measurement to lower frequencies. Such an approach could
improve the viability of the use of the EDL to probe DNA systems
with microwave microfluidics.

Discussion
While this technique is promising as a method to detect con-
formational changes in biomolecular systems, several key technical
improvements are required to reach its full potential. To realize the
promise of this technique and make these measurements accessible
to nonspecialist biological laboratories, it is critical to increase the
time resolution and develop lower-cost measurements. While lower
bandwidth dielectric spectroscopy techniques are commercially
available, the broadband nature of these microwave measurements
is critical to determining the fitting parameters, including Gσ with
high accuracy. Fitting the full range of frequencies allows us to
capture the effects of ion pairing and the EDL, whose contributions
to the electrical signal overlap with the frequency range used to
extract Gσ (1MHz–1 GHz). Without accounting for these addi-
tional signals, the confidence intervals on the extracted fit para-
meters would not be small enough to distinguish between open and
closed tweezers.

Further studies of biomolecular systems will improve our
understanding of the relationship between specific hydration and
ion interactions, and the changes in broadband electrical prop-
erties that we observe. Our results indicate that more studies are
required to elucidate the mechanisms that contribute to the
changes in the water relaxation in DNA solutions. For future
studies of biomolecules, it is also important to note that the EDL
and ion-pairing effects that we detect could both have reasonably
been indicators of conformational changes, and may prove to be
more sensitive to conformation changes in other systems.

In this report, we demonstrated the first label-free electrical
detection of conformational changes in DNA tweezer nanos-
tructures by microwave microfluidics. The extremely wide-
frequency range of these measurements allowed us to isolate
the effects of the EDL, ionic conductivity, ion-pairing relaxation,
and solvent relaxation. We quantified the parameters associated
with each of these physical mechanisms and found that the
conformational change of the DNA tweezers was most readily
detected in the ionic conductivity and the frequency dependence
of the water relaxation, while the presence of fuel strands was
detected in the water loss relaxation. In particular, the label-free
detection of conformational changes on-chip offers opportunities
to improve biomolecule characterization by integrating stimuli
such as temperature, offering further avenues to measure DNA
melt curves and temperature-dependent conformational changes
with high sensitivity and high-confidence level (concentration
sensitivity of ~20 μg mL−1, p < 10−5, two-sided Z test with
unequal variance, for Gσ) for nanoliter sample volumes63,64.
While the measurement techniques developed here are broadly
applicable to biological fluids, further microwave measurements
and computational studies are necessary to expand the theoretical
foundations beyond model systems to interpret the impact of
conformational changes on electrical properties. A combination
of label-free conformational testing with DNA nanomachines
represents a powerful toolbox for understanding the fundamental
biological mechanisms, hastening progress in pharmaceuticals,
biotechnology, and molecular engineering.

Methods
Device fabrication. The device fabrication for the microwave microfluidics devices
is described in detail elsewhere25,26,65. Briefly, all devices were co-fabricated on
500-μm-thick fused silica wafers (76.2 -mm diameter). We fabricated two separate
types of chips: a test chip containing all microfluidic devices (Fig. 2a) and a
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reference chip containing bare coplanar waveguide devices for calibration. Metal
for coplanar waveguides was deposited by electron-beam evaporation (Ti(5 nm)/
Au (500 nm)). All CPW structures were designed and fabricated with 50-μm-wide
center conductors, 5-μm-wide gaps, and 200-μm-wide ground planes.

In addition to CPWs of different lengths, we fabricated series resistors, series
capacitors, and short-circuit reflects on the reference chip. The series resistor
consisted of a 10-μm-wide strip of Ti (1.5 nm)/PdAu (11 nm ± 0.5 nm) resistive
material with a measured sheet resistance of ~ 50Ω. The series capacitor was
identical in structure to the series resistor, with the exception that the resistive
material was omitted. The short circuit consisted of a region of conductors
spanning the ground planes, gaps, and center conductors, connected to a length of
transmission lines on either side equal to the length of the thru.

We designed devices with two-layer microfluidic channels consisting of ~50 μm
of the SU-8 photoresist, covered with an upper channel layer (~50 μm) of the
patterned polydimethylsiloxane (PDMS). The SU-8 microfluidic channels were
~80-μm wide, and were patterned to expose the lengths of CPW directly to the
fluid channel (0.50, 0.66, 1.32, 1.98, and 3.13 mm). We chose the CPW gap width
and SU-8 channel height so that the electromagnetic fields interact with fluids and
SU-8 rather than the PDMS layer. An acrylic press bar screwed into an aluminum
chuck was used to clamp the PDMS block to the chip.

Measurements. We measured the CPWs with a VNA on a manual microwave
probe station (Fig. 2b). We measured the complex scattering parameters (S para-
meters) as a function of frequency. We acquired 640 frequency points from
100 kHz to 110 GHz on a log- frequency scale, at an AC power of −20 dBm (where
0 dBm corresponds to a power of 1 mW), and with an intermediate frequency
bandwidth of 10 Hz. All measurements were performed on a temperature stage
controlled to (25 ± 2) °C. After the measurements were performed on the reference
and empty test devices, fluid was injected into the channels and held for at least
2 min at zero-flow rate prior to fluid measurements. Each sample measurement
lasted ~20–30 min.

We transformed the measured S parameters to distributed circuit parameters
for each transmission line segment we measured using the hybrid calibration
scheme26,27,29,66. Specifically, we performed a two-tier calibration consisting of a
reference chip and the fluid-loaded chip. For the first-tier calibration, we measured
S parameters for seven different bare CPW lengths (0.420, 1.000, 1.735, 3.135,
4.595, 7.615, and 9.970 mm), a series resistor, a series capacitor, and a short-circuit
reflect, all located on the reference chip. The calibration structures used in this
work had the same geometry, as described in previous calibrations67. We first
performed a multiline thru-reflect-line (TRL)29 calibration to determine the
propagation constant of the bare-CPW lines (γ0), followed by the series-resistor
calibration66 to compute the capacitance per unit length of the bare CPW section
(C0). In the second-tier calibration, we measured four transmission lines, as well as
a single short-circuit reflect structure loaded with fluid on the test chip. We then
performed multiline TRL calibration and series resistor calibrations with a de-
embedding procedure to obtain the propagation constant for the microfluidic
channels (γtot). The propagation constant for the bare-CPW lines can be written as

γ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðR0 þ iωL0ÞðG0 þ iωC0Þ
p

; ð7Þ
where ω is the angular frequency and R0, L0, G0, and C0 are the distributed resistance,
inductance, conductance, and capacitance per unit length of the bare-CPW lines,
respectively, as a function of frequency. We assumed that the conductivity of fused
silica was negligible, and the microfluidics fluids over the CPW devices were
nonmagnetic. These assumptions allowed us to derive R0 and L0 from the reference
chip, and relate them to the propagation constant of a fluid-loaded line:

γtot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðR0 þ iωL0ÞðGtot þ iωCtotÞ
p

: ð8Þ
The multiline TRL calibration on the microfluidic test chip allowed us to relate

the propagation constant of the fluid directly to the capacitance Gtot and
conductance Gtot for frequencies in the range of 1–110 GHz. For frequencies below
1 GHz, where the on-chip CPWs were not long enough to perform multiline TRL,
we utilized the series resistor calibration and de-embedded26–28 our raw
measurements to the fluid-loaded portion of the line by accounting for the effect of
cables, probes, and the CPW sections leading up to the fluid. For every
measurement set, we first measured both air and deionized water in the channels to
establish baseline levels for Ctot and Gtot for known fluid properties.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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