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CRYPTOGRAPHIC PRIMITIVES RELATIVE TO 
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ABSTRACT. In this work we present a modification of 
a well-established measure of dependence appropriate for 
the analysis of stopping times for adversarial processes 
on cryptographic primitives. We apply this measure to 
construct generic criteria for the ideal behavior of fixed 
functions in both the random oracle and ideal permutation 
setting. More significantly, we provide a nontrivial extension 
of the notion of hash function indifferentiability, transporting 
the theory from the status of providing security arguments 
for protocols utilizing ideal primitives into the more realistic 
setting of protocol assurance with fixed functions. The 
methodology this measure introduces to indifferentiability 
analysis connects the security of a hash function with 
an indifferentiable mode to the security of the underlying 
compression function in a quantitative way; thus, we prove 
that dependence results on cryptographic primitives provide 
a direct means of determining the practical resistance or 
vulnerability of protocols employing such primitives. 

1. Introduction. Many real world phenomena can be studied by 
associating them with a sequence of identically distributed discrete 
random variables, corresponding to measurements, which take values in 
some finite set. If the random variables are independent, the behavior 
of such processes is well known, both in its long term, or asymptotic 
behavior and in its behavior over an intermediate finite number of 
measurements. The situation for dependent processes, however, is less 
clear. Although the limit theory for dependent random sequences has 
also been extensively developed, the behavior of dependent processes 
in the “semi-long term” has received less focus. 

Hash analysis provides an excellent example of a process for which 
this “semi-long term” behavior is of the greatest significance. Specif-
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ically, an adaptive adversary trying to discover a weakness in a hash 
function will choose a strategy which depends on the information ob-
tained through interaction with the function. The experiment will con-
tinue until some predetermined information is gleaned from this pro-
cess. Since practical hash functions have a finite output, the stochastic 
process defined by the interactions of the adversary with the hash func-
tion has a stopping time. 

The stopping time of such a dependent process is of critical impor-
tance in cryptography. An attack on a hash function can take many 
forms, as one may construe as an attack any process which gathers 
enough information to distinguish the fixed function from an ideal func-
tion with the same codomain. For any meaningful attack, the measure 
with which we can judge the resistance of such a function is determined 
by the stopping time of the adaptive adversarial process. 

The purpose of this work is to provide a mathematical framework 
upon which we may study the stopping times of optimal adaptive ad-
versarial strategies. More specifically, we introduce measures of de-
pendence relevant to the study of stopping times for dependent sto-
chastic processes and apply these measures, determining the properties 
required of a hash primitive to achieve various security criteria. 

The manuscript is organized as follows. Section 2 introduces two 
classical measures of dependence employed in limit theory to determine 
the asymptotic behavior of mixing random sequences. In Section 3 we 
present the appropriate terminology required for the cryptographic ap-
plication. In the following sections, namely Sections 4 and 5, we derive 
analogues of the measure of dependence appropriate to the study of 
stopping times, and apply the resulting theory to fixed random func-
tions and fixed permutations, respectively. In Section 6 we further 
employ the dependence condition extending the powerful indifferen-
tiability framework to provide assurance in a more practical setting. 
Finally, in Section 7 we apply this extension of indifferentiability to 
some actual hash functions and offer some directions for future work. 

2. Mixing Coefficients. Strong mixing conditions have been used 
greatly, both in the context of random sequences and in the broader 
context of random fields, in order to study phenomena for which 
observations which are close to each other in time or location may show 
considerable influence on one another, while observations which are far 
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apart in time or location are almost independent. Many results in the 
study of strong mixing conditions for random sequences have been in 
the literature in connection with various fields of study: Rosenblatt 
[25] and Zhurbenko [26], with respect to the estimation of spectral 
density; Phillips [23], for the use of ARMA models in the study of 
economics; Dabrowski, McDonald, and Rösler [10], in connection with 
the flow of electrical signals in the heart or nerve membrane; Halversam 
and Wise [15], related with the detection of a signal in the presence of 
noise; Philipp [22], in connection with some random processes arising 
from number theory; Kesten and Papanicolaou [17], with respect to the 
motion of a particle in a velocity field; and Davydov [11] and Meyn 
and Tweedie [19], for Markov chains. 

In 1956, Rosenblatt [24] proposed one particularly useful type of 
dependence which he referred to as the “strong mixing condition” or 
the α-mixing condition. Since then, a lot of progress has been made in 
this area (see [25], [23], [10], [15], [22], [17], [11], [19], [6]) in relation 
to the following mixing coefficients. Suppose (Ω, F , P) is a probability 
measure space, and A, B ⊂ F are two σ-fields. Define the following 
measures of dependence: 

α(A, B) := sup |P (A ∩ B) − P (A)P (B)|, 
A∈A,B∈B 

and 
φ(A, B) := sup |P (B|A) − P (B)|. 

A∈A, B∈B, P (A)>0 

It is well known and elementary (see [5], Proposition 3.11(a)) that 

0 ≤ 2α(A, B) ≤ φ(A, B) ≤ 1. 

It is obvious to notice that if the σ-fields A, B are independent, then 
α(A, B) = 0 and ρ(A, B) = 0, and vice versa. 

Suppose ξ := (ξk, k ∈ Z) is a (not necessarily stationary) sequence 
of random variables. For −∞ ≤ J ≤ L ≤ ∞, define the σ-field 

FL := σ(ξk, J ≤ k ≤ L),J 

the σ-field generated by the random variables (ξk, J ≤ k ≤ L). It 
is understood that the index k is restricted to the integers. These 
notations will also be used for (not necessarily stationary) “one-sided” 
random sequences ξ := (ξ1, ξ2, ξ3, . . .), with the obvious modification 
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that σ-field FJ
L is defined only for 1 ≤ J ≤ L ≤ ∞. In this paper, for 

the “one-sided” random sequences ξ := (ξ1, ξ2, ξ3, . . . , ξn) the σ-field 
FL is defined only for 1 ≤ J ≤ L ≤ n. For each integer n, define the J 
following dependence coefficients: 

α(n) := α(ξ, n) := sup α(FJ )−∞, FJ
∞ 
+n

J∈Z 

and 
φ(n) := φ(ξ, n) := sup φ(FJ ).−∞, FJ

∞ 
+n

J∈Z 

The random sequence ξ := (ξk, k ∈ Z) (whether stationary or not) is 
said to be “strongly mixing” (or α-mixing), respectively “φ-mixing” if 
α(n) → 0 and φ(n) → 0, respectively, as n → ∞. The strong mixing 
condition α(n) → 0 was introduced by Rosenblatt [24], and the φ-
mixing condition φ(n) → 0 was introduced by Ibragimov [16], and also 
studied by Cogburn [8]. While in this paper we are not interested in 
the asymptotic behavior of the random process, due to the fact that n 
is an arbitrary fixed integer, it is necessary to emphasize the challenge 
of showing the behavior for our random process when the number of 
steps is large and fixed, without looking at its limiting behavior. 

3. Cryptographic Primitives and Modes. In cryptography, hash 
functions are designed in such a way to simulate a random function 
while committing to its output values. For a good hash function, it 
should be computationally infeasible to find a pre-image of a known 
hash value, alter a known input/output pair to find a second pre-image, 
or generate two inputs which hash to the same value. A simple reason 
for these design criteria is that they are requisite for a function to be-
have like a random oracle, a theoretical function often used to prove 
the security of complex protocols. 

A finite random oracle, ro : A → B, is a function chosen uniformly 
at random from among all functions from the finite set A to the finite 
set B. To collect information about any function F one may submit 
queries, inputs for which F provides outputs, and catalogue the results. 
If a query has never been made to the function previously, it is called a 
fresh query. Random oracles have the property that every fresh query 
produces an output which is uniformly distributed and independent of 
all previously catalogued information. 
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We may define a variable input length random oracle, RO : 
{0, 1}∗ → B, with a similar property by selecting a sequence of uni-
formly distributed independent and identically distributed (i.i.d.) B-
valued random variables, Xλ, and defining RO(λ) = Xλ. To make this 
object well-defined as a function, it is understood that RO commits to 
its outputs. 

Random oracles are not appropriate for all theoretical applications. 
In particular, in some contexts it is important for a permutation to 
behave unpredictably. In such contexts, we employ ideal permutations. 
An ideal permutation, π : A → A, is a permutation chosen uniformly 
at random from among all permutations of the finite set A. 

One model for building a practical hash function is to chain together 
fixed finite functions which are designed to mimic the behavior of a 
finite random oracle or an ideal permutation. A hash mode is a method 
for creating a variable input length function from such functions of 
fixed input length. If a particular hash mode is proven secure when its 
components are assumed to be ideal primitives (either a finite random 
oracle or an ideal permutation, depending on the design), then the task 
of creating a secure hash function is reduced to the challenge of creating 
fixed functions which behave like the ideal functions. 

These ideal functions provide a road-map for proving the security of 
a practical hash function. First, the hash mode is analyzed with the 
fixed primitives replaced by ideal primitives. If the resulting variable 
input length function is shown to be indistinguishable from a variable 
input length random oracle, the mode is considered secure. It then 
suffices to show that the actual fixed primitives employed in the hash 
design are indistinguishable from ideal primitives. 

4. Fixed Random Functions. Consider a finite fixed function, F . 
An adversary, trying to reveal a weakness in F may attempt a collision 
attack (finding two inputs which map to the same output), a preimage 
attack (finding a preimage for some given fixed but arbitrary value 
of the codomain of F ), or a second-preimage attack (finding a second 
preimage for a known input/output pair). For such a fixed function, 
there may exist some symmetry which a diligent adversary can discover 
through interaction with the function and possibly exploit to effect one 
of the above attacks. 
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Consider in contrast the interaction of an adversary with a finite 
random oracle, ro. Clearly, there is no benefit to submitting a single 
query repeatedly to the oracle, thus we may assume that the adversary 
submits fresh queries. Consequently, we can define a sequence of 
uniformly distributed i.i.d. random variables, ξ1, ξ2, . . ., corresponding 
to each successive output of ro. 

Let the random variable X denote the number of rounds of querying 
before the adversary is able to form a collision with outputs of ro. 

(n−1)! −xThen its probability density function is f(x) = x n , where(n−x)! 
x = 1, 2, . . . , n. Consequently, the expected value of X is given by 

nX (n − 1)!
i2 −i(4.1) E(X) = n . 
(n − i)!

i=1 

Classical calculation shows the relative size of this quantity; specifically, 
by Markov’s inequality, E(X) ≥ αP (X ≥ α), and we may find a lower 
bound for E(X) by finding α satisfying P (X ≥ α) ≥ 1/2. Clearly, this 
is equivalent to finding P (X < α) ≤ 1/2. Since for all i ≤ n we have 
P (X > i − 1) > 0, we obtain, for all α ≤ n: � �α−1 α−1X X i 1 α 
(4.2) P (X < α) ≤ P (X = i|X > i − 1) = = . 

n n 2 
i=1 i=1 

Setting this quantity equal to 1/2, we may derive that �√ � 
α = 4n + 1 + 1 /2. 

This fact implies that �√ � �√ � 
E(X) ≥ 4n + 1 + 1 /2P (X ≥ α) ≥ 4n + 1 + 1 /4, 

√ 
which shows that the sum in (4.1) is Ω( n). 

To get the upper bound, notice that the expected number of rounds 
to get the first collision must be less than or equal to the number of 
rounds for the expected number of collisions to be at least one, since 
there can be at most one collision in any given round. Therefore, we √ 
can show that this number is order n. Let Ii,j be the indicator 
that the ith and jth nodes visited coincide. Let Y be the number 
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of collisions, that is, 
σ−1 σX X 

Y = Ii,j , 
i=1 j=i+1 

where σ represents an arbitrary number of rounds. Therefore, consid-
ering the fact that P (Ii,j = 1) = 1/n, we have: � �σ−1 σX X 1 σ 1 
(4.3) E(Y ) = = . 

n 2 n 
i=1 j=i+1 p

Thus, for E(Y ) = 1, we need σ = d 2n + 1/4 + 1/2e. Thus our sum √ √ 
is O( n), and therefore, Θ( n). 

The critical question in the context of random functions is, “What 
happens when we are not guaranteed independence among function 
output in each of the rounds?” For each i ∈ {1, 2, . . . , n}, let us define 
ξi to be a simple random variable taking the values {1, 2, . . . , n}, where 
each integer represents the output of a fixed function, F , in round i. 

Clearly, whatever the adversary’s criteria for a successful attack may 
be, he or she may only consider the attack successful by referring to 
information from the current round and past rounds. The adversary 
may only make judgements in round i based on information from 
the previous rounds. Therefore, to study the stopping time of the 
adversarial process, we are specifically interested in a measure of 
dependence involving past events and events in round i, a measure 
which consequently bounds the performance of an optimal adversary. 

Definition 1. Consider the process {ξk} where k ∈ {1, 2, . . . , n}
together with a collection of pairs of sigma fields, Ai and Bi, where 
A1 is the trivial sigma field, Ai = F i−1 for 2 ≤ i ≤ n, and Bi = F i for1 i 
1 ≤ i ≤ n. We define the dependence sequence of this process in the 
following way: for i ∈ {1, 2, . . . , n}, 

(4.4) φi = φ(Ai, Bi) = sup |P (B|A) − P (B)|, P (A) > 0. 
A∈Ai 
B∈Bi 

If the ξi are the outputs of a random function, F , with a finite codomain 
of size n, then we say that F is a φ[p]-mixing random function provided 
that φi ≤ n−p for all i < n. 
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By an easy calculation one may notice that for each i ∈ {1, 2, . . . , n}, 
if A ∈ σ(ξ1, . . . , ξi−1) and B ∈ σ(ξi), then 

(4.5) |P (A ∩ B) − P (A)P (B)| ≤ P (A) · φi. 

Now we compute bounds on the probability of obtaining the first 
collision on round i. Clearly, larger probabilities of collision in early 
rounds result in a lower expected number of rounds to form a collision. 
With this in mind, we compute each probability assuming that each 
previous round attains the theoretical maximum probability of collision. 
For the first round we use the formal notation φ1, which simply 
represents zero, since there are no events occurring before the first 
round. 

In this manner, we compute that the probability of getting a collision 
in the first round is 1/n = 1/n + φ1. Therefore, the probability of 
noncollision in the first round is (n − 1)/n − φ1. Were the outcome in 
the second round uniformly distributed and independent of the outcome 
of the first round, the probability of a collision in the second round and 
a noncollision in the first round would be ((n − 1)/n − φ1)(2/n). The 
definition of φ2 provides us with a possible error in this estimation; 
specifically, we may be as far off the correct value as ((n−1)/n−φ1)φ2. 
Therefore, the probability that the first collision occurs in round two 
is bounded by ((n − 1)/n − φ1)(2/n + φ2). 

For each i ∈ {1, 2, . . . , n}, we may compute the probability of Ci, the 
event that the first collision occurs in round i, given that each collision 
event is assigned the maximal probability sequentially, 

� � � �Yi n − k 
(4.6) P (Ci) = + φi − φk . 

n n 
1≤k<i 

Consider this expression as a polynomial in R[φ1] . . . [φi]. For each 
(k)

i ∈ {1, 2, . . . , n}, we use Ψ to denote the sum of the total degree ki 
terms in this bound. Then we obtain 

(0) i (n − 1)!
(4.7) Ψ = .i ni (n − i)! 
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(1)
We denote the terms contained in Ψ by i ( 

φi n! if j = i(1) ni (n−i)!(4.8) Ψ = iφj n!i,j − i if j < i, n (n−i)!(n−j) 

where i represents the number of rounds and j represents the index 
of the variable φ used. Thus, equation (4.6) becomes: for each 
i ∈ {1, 2, . . . , n}, X 

(0) (1)
(4.9) P (Ci) = Ψ + Ψ + higher degree terms.i i,j 

1≤j≤i 

Now we can explicitly write down a lower bound formula on the 
expected number of rounds, X, required to form a collision relative to 
the φi’s. Specifically, we have that 

n n iX X X 
(0) (1)

(4.10) E(X) = iΨ + i Ψ + higher degree terms.i i,j 
i=1 i=1 j=1 

P √n (0)
From the birthday paradox we obtain iΨ = Θ( n). To i=1 i 

evaluate the second summation in equation (4.10), we divide into two 
cases: 

Case 1: j = i. Under this condition, the second summation in 
(4.10) contributes positively to the expected value. Specifically, this 
sum is bounded below by 

nX i (n − 1)! 
n min(φl) . 

l≤n ni (n − i)!
i=1 

(0)
Notice that each term in the sum above is exactly Ψ , the probability i 
of forming a collision among the n outputs at step i. Therefore this 
entire term simplifies to n minl≤n(φl), which is nonnegative. On a side 
note, in conjunction with our subsequent calculations, this lower bound 
for the summand provides a natural upper bound on the dependence √ 
coefficients, φi. Note that E(X) = O( n), which implies that any fixed 
function has some dependence coefficient smaller than Cn−1/2 . Case 1 
is complete. 
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Case 2: j < i. Under this condition, the second sum in equation 
(4.10) becomes: 

n i−1 n−1 nXX φj i
2 n! X nφj 

X i2 (n − 1)!
(4.11) − = − . 

ni (n − i)!(n − j) n − j ni (n − i)!
i=2 j=1 j=1 i=j+1 

Note that the inner sum on the index i above is a partial sum with √(0)
terms iΨ ; therefore, it is bounded by C n. Thus the right-hand i 
side of (4.11) is lower bounded by 

n−1 n−1 n−1X X Xφj φn−j 1 −Cn3/2 = −Cn3/2 ≥ −Cn3/2 max φi . 
n − j j i j

j=1 j=1 j=1 

Consequently, since the partial sum of the harmonic series above is 
bounded by ln(n) + 1, we obtain that for n > 1, 

n−1X 
−Cn3/2 max φi 

1 ≥ −Cn3/2(ln(n) + 1) maxφi. 
i j i 

j=1 

Therefore, the condition φi < n−1−� is sufficient to conclude that the 
second sum in (4.10) is o(n1/2) and hence, the lower bound of the √ 
expected value is Ω( n), provided that the higher degree terms are 
negligible for such values of φi. 

The following theorem will show the fact that the higher degree 
terms are indeed negligible if φi < n−1−� for all i ∈ {1, 2, . . . , n}. 

Theorem 1. A function, F , has ideal collision resistance provided it 
is φ[1 + �]-mixing for some � > 0. 

√ 
Proof. From above, we have that E(X) = Ω( n)+ a sum of degree 

two and higher terms. We need to show that the sum of the terms with √ 
total degree greater than or equal to two is o( n). For this, since there 
are fewer than n possible total degrees, it suffices to show that the sum 
restricted to each total degree is o(n−1/2). Consider the degree d ≥ 2 Pn (d)
sum, iΨi . Allowing j1 < j2 < . . . < jd ≤ i, we denote the terms i=1 
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(d)
in Ψ by i 
(4.12) ( ···φjd−1 n!(−1)d+1 φiφj1 if jd = i(d) ni−1 (n−i)!(n−j1)···(n−jd−1)Ψ = i,j1,...,jd (−1)d iφj1 ···φjd n! 

ni−1 if jd < i. (n−i)!(n−j1)···(n−jd) 

We may bound the absolute values of sums of these terms with jd = i 
and with jd < i individually. As before, we consider the following two 
cases: 

Case 1: jd = i. Under this condition, we obtain that 

n i−1 j2−1X X X 
. . . |iΨi,j1,...,jd−1,i|

i=d jd−1 =d−1 j1=1 
(4.13) 

n−1 j2−1 nX X X 
= . . . |iΨi,j1,...,jd−1,i|. 

jd−1 =d−1 j1 =1 i=jd−1+1 

By (4.12), replacing the φk’s with their maximum values and multiply-
ing and dividing by n in the right-hand side of (4.13), we obtain: 

n−1 j2 −1 nX X X1 1 i n! 
n max(φl

d) . . . . 
l≤n n − jd−1 n − j1 ni (n − i)!

jd−1 =d−1 j1=1 i=jd−1+1 

Since the innermost sum is the probability that it takes more than 
jd−1 rounds to have a collision in the outputs of a random oracle, our 
quantity above is bounded by 

n−1 j2−1X X 
n max(φl

d)
1 · · · 1 ≤ n max(φl

d)(ln(n)+1)d−1 . 
l≤n n − jd−1 n − j1 l≤n 

jd−1 =d−1 j1=1 

The condition φi < n−1−� assures that the sum in (4.13) is o(n1−d), 
which for d ≥ 2 means it is o(n−1) and in particular, o(n−1/2). As a 
consequence, Case 1 is complete. 

Case 2: jd < i. In this second case, we have: 

n i−1 j2−1 n−1 j2−1 nX X X X X X 
(4.14) . . . |iΨi,j1,...,jd | = . . . |iΨi,j1,...,jd |. 

i=d+1 jd=d j1 =1 jd=d j1=1 i=jd+1 
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We can rewrite the right-hand expression above as 

n−1 j2−1 nX X X i2nφj1 · · · φjd n! 
. . . . 

(n − j1) · · · (n − jd) ni (n − i)!
jd =d j1=1 i=jd+1 

Again, since the inner-most sum is a partial sum of the expected number 
of rounds required to form a collision in the outputs of a random oracle, 
we can bound it by Cn1/2 . Therefore, we have !d n−1 j2−1 n−1X X Xφjd φj1Cn3/2 · · · ≤ Cn3/2 max(φl

d)
1 

n − jd n − j1 l≤n i 
jd =d j1=1 i=1 

≤ Cn3/2 max(φl
d)(ln(n) + 1)d . 

l≤n 

3/2−d)Using the given bound, φi < n−1−�, we obtain a bound of o(n
for the sum in (4.14), which for d ≥ 2 it implies the sum is o(n−1/2). 
Therefore, Theorem 1 is complete. � 

Corollary 1. A fixed function, F , has ideal collision resistance if the 
dependence sequence satisfies φi < n−1−� for 1 ≤ i ≤ C 

√ 
n for some 

constant C. 

Proof. For any fixed function, F , let us denote 
σX 

E(X|X ≤ σ) := iP (X = i|X ≤ σ). 
i=0 

Define now EX≤σ(X) = E(X|X ≤ σ)P (X ≤ σ), which is exactly the 
σth partial sum of E(X). Therefore, {EX≤σ} forms a monotonically 
increasing sequence with index σ. Thus all “little-oh” bounds from P 
Theorem 1 and before hold for the negative parts of iΨ

(
i
d) 
, d ≥ 1. 

Hence, it suffices to show that for a random oracle, EX≤C 
√ (X) = n√ 

Ω( n). 

Fix σ to be the smallest integer such that P (X ≤ σ) ≥ 1/2. From √ 
the discussion at the beginning of this section, σ = C n. We need √ 
only to show that E(X|X ≤ σ) = Ω( n). 

Again, by Markov’s Inequality, E(X|X ≤ σ) ≥ αP (X ≥ α|X ≤ σ). 
We find an α such that P (X ≥ α|X ≤ σ) ≥ 1/2; this is equivalent to 
finding α such that P (X < α|X ≤ σ) ≤ 1/2, which for α < σ becomes 
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P (X < α) ≤ P (X ≤ σ)/2. Since P (X ≤ σ) ≥ 1/2, it suffices to find 
an α such that P (X < α) = 1/4. 

As in this section’s prologue, � � 
1 α 

P (X < α) ≤ , 
n 2 p

and we find that α must be roughly n/2 to satisfy our inequality. √ 
Therefore, the partial sums of E(X) for a random oracle are Ω( n)√ 
provided that there are at least Ω( n) summands. Thus, if φi < n−1−� 

√ √ 
for 1 ≤ i ≤ C n, E(X) > EX≤C 

√ (X) = Ω( n), and the corollary is n

complete. � 

5. Fixed Permutations. Clearly, collision resistance is not a con-
cern for a permutation; however, we can analyze a random walk model 
similar to the random oracle process of the previous section to simulate 
the process of deriving a cycle in the permutation. Obviously, having 
an easily derived short cycle is a weakness for a permutation, since 
such a cycle may produce a free-start collision in a naive mode using 
the permutation. With this in mind, we compute the expected number 
of queries required to form a cycle in an ideal permutation. 

Let F : {1, 2, . . . , n} → {1, 2, . . . , n} be an ideal permutation. Since 
the properties of an ideal permutation imply that each element in the 
domain has the same probability of belonging to a cycle of any specified 
length, we may analyze a random walk starting with the initial value 
IV , computing F (IV ), F (F (IV )), . . . , F i(IV ) = IV . 

To determine the probability that F i(IV ) = IV , we first count the 
number of permutations for which F j (IV ) 6 IV = for all 0 < j < i. 
There are (n − 1)!/(n − i)! choices for a prefix of an i-cycle beginning 
with IV , the choice F i(IV ) = IV is forced, and there are (n − i)! 
ways of permuting the remaining n − i elements. Therefore, there 
are (n − 1)! permutations in which F i(IV ) = IV . Thus, for all i, 
P (F i(IV ) = IV ) = 1/n. 

To find the expected number of queries, X, required to form a cycle, 
we calculate: 

n nX X i n + 1 
E(X) = iP (X = i) = = . 

n 2 
i=1 i=1 
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Definition 2. A permutation, F , is said to have the ideal cycle property 
F (i)if the number of queries, Q, required to discover a cycle, , is 

Θ(n), the number of queries to perform the same task for an ideal 
permutation. 

For an ideal permutation, the hypotheses of Theorem 1 are not 
satisfied. In particular, for each i ∈ {1, 2, . . . , n} consider calculating 
the dependence sequence, {φi}, corresponding to the ideal permutation. 
Again, φ1 = 0 since there are no events occurring before the first round. 
For the second dependence coefficient, 

φ2 = sup |P (B|A) − P (B)|, P (A) > 0. 
A∈σ(ξ1) 
B∈σ(ξ2) 

Consider the events A = [ξ1 = IV ] and B = [ξ2 =6 IV ]. Clearly, 
P (A) = 1/n. By the above calculation, P (B) = (n − 1)/n. Notice, 
however, that A ∩ B = ∅, since if ξ1 = IV then ξ2 = IV . Therefore, 
φ2 ≥ (n−1)/n. Although Theorem 1 is not applicable, we can, however, 
still apply the techniques from Section 4 and generalize the results to 
give us a meaningful result. 

In contrast to a random oracle, the outputs of fresh queries to an 
ideal permutation do not form an i.i.d. sequence of random variables. 
In particular, the outputs of the permutation are definitively not inde-
pendent. If we consider the dependence sequence of the previous section 
in a new light, however, we can generalize this technique to construct 
an useful measure of variation between the output distributions of a 
fixed permutation and an ideal permutation. 

Note that if the ith input to a random oracle is fresh, then for all 
A ∈ σ(ξ1, . . . , ξi−1) and B ∈ σ(ξi), we have that P (B|A) = P (B). 
Therefore we can consider the dependence sequence of the previous 
section as a measure of variation between the distribution of outputs 
of the fixed function, F , and the random oracle RO. To make this 
formal, we need to define a sequence of relative dependence coefficients 
depending on two sequences of random variables. 

Definition 3. Let F be a fixed function with a finite codomain of 
size n and let π be an ideal function. Define ξi to be the random 
sequence of outputs of F under fresh queries. Similarly, define ζi to 
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be the random sequence of outputs of π under fresh queries. Let 
FL := σ(ξk, J ≤ k ≤ L) and GL := σ(ζk, J ≤ k ≤ L). Define aJ J 
map τ : F1 

n → Gqn by τ [(ξ1, . . . , ξn) ∈ A] = [(ζ1, . . . , ζn) ∈ A] for any 
subset, A, of {1, . . . , n}n . For each i ∈ {1, 2, . . . , n}, let Ai = F i−1 

1 
where A1 is the trivial sigma field, let Bi = F i, and define the relative i 
dependence sequence, 

ˆ(5.1) φi = sup |P (Bi|Ai) − P (τ (Bi)|τ (Ai))|, 
Ai∈Ai 
Bi∈Bi 

with P (Ai)P (τ (Ai)) > 0. F is said to be φ̂[p]-mixing if φ̂i ≤ n−p for 
all i < n. 

Note that if ξi and ζi are identically distributed and in addition ζi are 
also independent, then φ̂i = φi. This fact is the analytic expression of 
the intuition that the measure of dependence φ is essentially a measure 
of variation between the given process and an idealized independent 

ˆversion of the process. As a consequence, φi = φi if τ maps to the 
sigma field generated by the outputs of a random oracle. 

Define an i-singleton event by Ai = [ξ1 = a1, . . . , ξi = ai] ∈ 
σ(ξ1, . . . , ξi), and an (i, k)-singleton event by Bi,k = [ξk+1 = bk+1, . . . , ξi = 
bi] ∈ σ(ξk+1, . . . , ξi). Clearly, in the case of an ideal permutation, 

(n−i)! (n−i+k)!we have that P (Ai) = for all i and P (Bi,k) = for all n! n! 
k < i. Using this relation, we derive the following permutation mea-
suring lemma: 

Lemma 1. Fix 1 ≤ i ≤ n. Let F be a fixed permutation. Assume 
that ξi, fresh query outputs for F , and ζi, fresh query outputs for an 
ideal permutation, π, are identically distributed. Let Ai ∈ F i−1 and1 

nBi ∈ Fi
i . Then |P (Ai ∩ Bi) − P (Ai)P (Bi)| ≤ P (Ai)φ̂i. n+1−i 

Proof. If P (Ai) = 0, then the result is obviously valid. If P (Ai) > 0, 
then P (τ(Ai)) > 0; consequently, |P (Bi|Ai) − P (τ(Bi)|τ (Ai))| ≤ φ̂i. 

n nP (Bi)Note |P (Ai ∩ Bi) − P (Ai)P (Bi)| = |P (Ai ∩ Bi) − P (Ai) |. n+1−i n+1−i 

Since Bi ∈ σ(ξi) and ξi and ζi are identically distributed, we 
obtain the relation P (Bi) = P (τ(Bi)). Now τ(Ai) can be expressed 
as the disjoint union of a (i − 1)-singleton events, and τ(Bi) can be 
expressed as a disjoint union of b (i, i − 1)-singleton events of the form 
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1[ξi = k], each having probability . Therefore we compute, using the n 
above mentioned relation for (i − 1)-singleton events, the quantities 

a(n+1−i)!P (τ (Ai)) = , and P (τ(Bi)) = b . n! n 

Moreover, since the event τ(Ai) ∩ τ(Bi) must be the disjoint union 
ab(n−i)!of a · b i-singleton events, it follows that P (τ(Ai) ∩ τ(Bi)) = . n! 

b nP (τ (Bi))We therefore have that P (τ (Bi)|τ (Ai)) = = = n+1−i n+1−i 
nP r(Bi) . We thus obtain, |P (Ai ∩ Bi) − P (Ai)P (τ(Bi)|τ(Ai))| = n+1−i 
P (Ai)|P (Bi|Ai) − P (τ(Bi)|τ (Ai))|, since P (Ai) > 0. This quantity 
is bounded by P (Ai)φ̂i, and, consequently, the lemma holds. � 

Using a technique similar to that of Section 4, we compute the proba-
bility of obtaining the first cycle on round i. Again, larger probabilities 
of cycle formation in early rounds result in a lower expected number 
of rounds to form a cycle; therefore, we compute each probability as-
suming that every previous round attains the theoretical maximum 
probability of cycle formation. As in the random oracle case, φ̂1 = 0. 

1 1The probability of forming a cycle in the first round is = + φ̂1;n n 
n−1consequently, the probability of noncollision in the first round is − n 

φ̂1. By Lemma 1, the probability of getting a cycle in the second round � � 
ˆ n 1and no cycle in the first round is bounded by P (A) φ2 + , where n−1 n 

A represents the event that there is no cycle formed in the first round. � � � � 
n−1 − ˆ ˆ 1This quantity simplifies to φ1 · φ2 + . n n−1 

Similarly, for each i ∈ {1, 2, . . . , n}, we derive the probability of 
Ci, the event that the first cycle formation occurs in round i, given 
that each cycle formation event is assigned the maximal probability 
sequentially, � � � �Y1 n − k 
(5.2) P (Ci) = + φ̂i − φ̂k . 

n + 1 − i n + 1 − k 
1≤k<i 

Again, let us consider this expression as a polynomial in R[φ̂1] . . . [φ̂i] 
(k)

with i ∈ {1, 2, . . . , n}. Let Ψ denote the sum of the total degree ki 
terms in this bound. Then we obtain 

1(0)
Ψ = i . 

n 
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(1)
We denote the terms in Ψ by i ( 

(n+1−i)φ̂i 
(1) if i = jnΨ = i,j (n+1−j)φ̂j− if j < i. n(n−j) 

Thus equation (5.2) becomes: X 
(0) (1)

(5.3) P (Ci) = Ψ + Ψ + higher degree terms.i i,j 
1≤j≤i 

We now derive an explicit lower bound formula for the expected number 
of rounds, X, required to form a cycle relative to the φ̂i’s. We obtain 

n n iX X X 
(0) (1)

(5.4) E(X) = iΨ + i Ψ + sum of higher degree terms.i i,j 
i=1 i=1 j=1 Pn (0) n+1From the analysis earlier in this section, iΨ = . Thei=1 i 2 

following theorem provides conditions for which the sum of these terms 
constitutes the dominant term. 

Theorem 2. A permutation, F , has the ideal cycle property provided 
it is φ̂[1 + �]-mixing for some � > 0. 

(d)
Proof. First, we note that the terms in Ψi , the sum of the total 

degree d terms, satisfy: ⎧ ⎨(−1)d+1 (n+1−j1)···(n+1−jd)φ̂j1 ···φ̂jd if jd = i(d) n(n−j1)···(n−jd−1)Ψ = i,j1,...,jd ˆ⎩ (−1)d (n+1−j1)···(n+1−jd)φ̂j1 ···φjd if jd < i. n(n−j1)···(n−jd) Pn (0)
By the calculations shown at the beginning of this section, iΨ = i=1 i 

Θ(n). It therefore suffices to show that the absolute value of the sum Pn (d)
of the negative terms, iΨ with d > 0 is o(n).i=d i 

(d)
Now, Ψ is negative when either jd = i and d > 0 is even, or jd < i i 

and d is odd. In particular, since we have taken care of the d = 0 case, Pn (d)
we consider the absolute value of the sum iΨ when jd < i i=d i,j1,...,jd 

and d ≥ 1 is odd, and when jd = i and d ≥ 2 is even. 

Case 1: jd = i and d ≥ 2 is even. 
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Under these conditions, we have that 
(5.5) ⎛ ⎞d−1 

n n n−1X X X 
(d) i(n + 1 − i) n + 1 − j

i|Ψ | ≤ max φ̂d ⎝ ⎠ .i,j1,...,jd−1 ,i l 
l≤n n n − j

i=d i=1 j=1 

The first sum in the right-hand side of (5.5) evaluates to 

n � �X i(n + 1 − i) 1 n + 1 
= , 

n 3 2 
i=1 

while the second sum in (5.5) simplifies to 

(5.6)⎛ ⎞d−1 !d−1 n−1 n−1X Xn + 1 − j 1 d−1⎝ ⎠ = n − 1 + ≤ (n + ln(n)) . 
n − j k 

j=1 k=1 

Thus the right-hand sum in (5.5) is bounded by the quantity � � 
1 n + 1 d−1 
max φ̂d (n + ln(n)) .l3 l≤n 2 

Since by hypothesis maxl≤n φ̂l < n−1−�, we have � � � � 
1 

φ̂d n + 1 d−1 1 −d−d� n + 1 d−1 
max (n + ln(n)) < n (n + ln(n)) ,l3 l≤n 2 3 2 

which is O(n1−d�), and hence, Case 1 is complete. 

Case 2: jd < i and d ≥ 1 is odd. 

Under these conditions, we obtain that ⎛ ⎞d 
n n n−1X X X 

(d) i n + 1 − jˆ ⎠i|Ψ | ≤ max φd ⎝ .i,j1,...,jd l
l≤n n n − j

i=d i=1 j=1 

Using the bound maxl≤n φ̂l < n−1−�, this expression simplifies to 

−d−d� n + 1 d 1−d�),n (n + ln(n)) = O(n 
2 

and Case 2 is complete. 
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Taking the maximum constant, C, from each of the “big-oh” expres-
sions in the n values of d, we obtain the following bound for the sum 
of the negative terms in (5.4): 

nX 11−d� ≤ Cn (5.7) C n = o(n). 
n� − 1 

d=1 

Therefore the total sum in (5.4) is Θ(n) and Theorem 2 is complete. � 

6. Application to Indifferentiability. The indifferentiability frame-
work for hash functions provides a security criterion for the replacement 
of an ideal function with a fixed function. Specifically, we have the fol-
lowing definition based on [9, 18]. 

Definition 4. An interactive Turing machine T with oracle access 
to an ideal primitive F is said to be (tA, tS , σ, �)-indifferentiable from 
an ideal function G if there exists a simulator S such that, for any 
distinguisher A, we have: ��P (AT,F ⇒ 1) − P (AG,S ⇒ 1) 

�� ≤ �. 

The simulator S is an interactive Turing machine with oracle access 
to G running in time at most tS , the distinguisher A runs in time at 
most tA, the number of queries A is allowed to make is σ, and � is a 
negligible function of the security parameter of T . 

The indifferentiability bound, corresponding to the parameter σ in 
the definition, provides the order of magnitude of the stopping time 
for an optimal probabilistic adversarial process distinguishing between 
the hash mode utilizing an ideal primitive and a truly independent 
random process. The indifferentiability framework provides the most 
important theoretical means of verifying the security of a hash mode. 
In particular, an indifferentiable hash mode together with an ideal 
compression function is resistant to every single-stage generic attack, 
including any possible generic attack found in the future. As a result, 
the recent years have witnessed a great deal of work devoted to the 
indifferentiability security of the most significant hash modes. In [2, 7], 

nan indifferentiability bound of bits is derived for the hash function 2 
BLAKE; the same bound is also derived in [13, 14, 21, 4] for Skein, 
Gröstl, JH, and the SHA-3 winner Keccak, respectively. 
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As an application of the framework developed in the previous sec-
tions, we are able to extend any generic indifferentiability proof of hash 
mode H using an ideal primitive to the case of a φ̂[p]-mixing primitive. 
This advancement is due primarily to the observation that the tech-
nique advanced in [20] and [21] can be applied to any indifferentiability 
proof. Specifically, any indifferentiability proof can be modeled with 
the use of only three games: Game(RO, S), a game modelling interac-
tion with a variable input length random oracle RO and simulator S, 
Game(H, ip), a game modelling interaction with the actual hash mode 
H and ideal primitive ip, and G1, a single hybrid game with an in-
put/output distribution identical to that of Game(H, ip) and different 
from Game(RO, S) on an exhaustively specified set of events defined 
for each round i, denoted by BADi. 

The methodology employed in [20] and [21] recasts the typical 
quest for a long sequence of games into a purely mathematical problem 
involving the events BADi, denoting the event that some occurrance in 
the ith round may allow an adversary to determine with which entity T 
she is interacting, and GOODi, denoting j<i ¬BADj . Here ¬BADj 

denotes the complement of BADj . Specifically, any indifferentiability 
proof can in this way be reduced to checking that the catalogue of 
information retrieved by any indifferentiability adversary A is identical 
for the two games G1 and Game(RO, S) in round i if GOODi occurred 
followed by a simple computation of ¬GOODi. 

For the purpose of analysis of indifferentiability arguments involv-
ing φ̂[p]-mixing primitives one need not be concerned with the specific 
definition of GOODi, such is the task of the above standard of indif-
ferentiability proof. The only prerequisite is the relation GOODi = 
∩k≤iGOODk, which necessarily holds for this type of event. We note 
that the existence of any valid indifferentiability proof implies the ex-
istence of this collection of events and provides implicit bounds on the 
probabilities of BAD events, though it would seem to be prudent to 
include in any indifferentiability analysis an explicit defininition of the 
GOODi and BADi events, since these are precisely the events relevant 
to cryptanalysis. 

A key concept from this analysis is the fact that given a fixed view, 
any adversary A, being a probabilistic Turing machine, has a fixed 
distribution of state transitions. Consequently, even though given 
the same input/output distributions A may in one instance output 
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1 while in another instance output 0, the probability of each output is 
unchanged from one experiment to the next. 

Lemma 2. Let 0 ≤ a1, . . . , ak, b1, . . . , bk ≤ 1. Pk |ai − bi|.i=1 

Then 
���Qk Qk 

i=1 ai − i=1 bi ≤ 

Proof. The result is clearly true if k = 1. Assume the result is true 
for all values less than k. 

(6.1) 
k k k k−1

i=1 i=1 i=1 i=1 

YYYY ����� 
����� 

����� 
����� 

k−1

ai − bk ai + bk ai − 

k−1Y 
Y k

i=1 i=1 

Y 
ai − bi bi = 

k−1Y ����� 
����� Y ����� 

k−1k−1

≤ ai |ak − bk| + bk 

Y Yk−1

i=1 i=1 

ai − bi ≤ |ak − bk| + ai − bi . 
i=1 i=1 i=1 

Thus by induction, ����� 
����� 

k k k

i=1 i=1 i=1 

XYY 
ai − bi ≤ |ai − bi| . 

� 

Theorem 3. Let A be an indifferentiability adversary interacting with 
the hybrid game G(H, Fp), which utilizes a φ̂[p]-mixing primitive Fp, 
and Game(RO, S) while limited to σ queries. If when interacting with 
Game(RO, S) and the hybrid game G(H, ip), which utilizes an ideal 
primitive ip, and A is limited by σ queries we have 

(6.2) 
���P (AG(H,ip) ⇒ 1) − P (ARO,S ⇒ 1) 

��� ≤ �(σ), 

then the following inequality holds as well: 

(6.3) 
���P (AG(H,Fp) ⇒ 1) − P (ARO,S ⇒ 1) 

��� ≤ 2σn−p + �(σ). 

Proof. The left-hand side of (6.3) can be expanded in the following 
form: ���(6.4)P (AG(H,Fp) ⇒ 1) − P (AG(H,ip) ⇒ 1) + P (AG(H,ip) ⇒ 1) − P (ARO,S ⇒ 1) 

��� . 

���

����� 
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By (6.2), the equation (6.4) is bounded by ���P (AG(H,Fp) ⇒ 1) − P (AG(H,ip) ⇒ 1) 
���+ �(σ). 

Now let Gi denote the event GOODi for all i. Note that we can split 
the left summand above into: 

(6.5) 

+ P (AG(H,Fp) ⇒ 1|¬τ −1(Gσ)P (¬τ −1(Gσ)) − P (AG(H,ip) ⇒ 1|¬Gσ)P (¬Gσ ) 

���P (AG(H,Fp) ⇒ 1|τ−1(Gσ))P (τ−1(Gσ )) − P (AG(H,ip) ⇒ 1|Gσ)P (Gσ ) 

. 

By Lemma 2 and the triangle inequality, it suffices to obtain bounds 
on the following three quantities: ���P (AG(H,Fp) ⇒ 1|τ −1(Gσ)) − P (AG(H,ip) ⇒ 1|Gσ) 

��� , ��� ���P (AG(H,Fp) ⇒ 1|¬τ −1(Gσ)) − P (AG(H,ip) ⇒ 1|¬Gσ) , 

and ��P (τ −1(Gσ)) − P (Gσ) 
�� . 

By the definition of τ , given either of the event pairs (τ−1(Gσ ), Gσ ) 
or (¬τ−1(Gσ ), ¬Gσ), the view of the adversary in the game G(H, Fp), 
V1,σ, and the view of the adversary in G(H, ip), V2,σ, are identically 
distributed. Therefore, since the possible states of A interacting with 
G(H, Fp) and G(H, ip) are identically distributed, the corresponding 
output distributions are identical. Thus we have: ���P (AG(H,Fp) ⇒ 1|τ−1(Gσ )) − P (AG(H,ip) ⇒ 1|Gσ) 

��� = 0 
and ��� ��� = 0.P (AG(H,Fp) ⇒ 1|¬τ −1(Gσ)) − P (AG(H,ip) ⇒ 1|¬Gσ) 

To analyze the last of the three quantities, recall that Gi has the 
special property that Gi = ∩k≤iGk. Therefore, Yσ

P (Gσ) = P (G1) P (Gi|Gi−1), 
i=2 

���
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and τ −1(Gσ) satisfies a similar relation. Thus by Lemma 2, 
��P (τ −1(Gσ)) − P (Gσ) 

�� 
is bounded by 

σX �� ≤ 
σ

i=1 

X ̂
φi. 

��P (τ−1(Gi)|τ−1(Gi−1)) − P (Gi|Gi−1) 
i=1 

Pσ
Therefore, (6.5) is bounded by 2 which is bounded by i=1 φ̂i, 

2σn−p. � 

7. Results, Limitations, and Open Questions. Theorem 3 of 
the previous section provides a quantitative means of determining the 
indifferentiability security of practical hash functions. In particular, 
any distinguishing attach on a compression function provides bounds 
on the dependence sequence. 

For example, consider an (tA, tS , σ, �)-indifferentiable hash mode 
using an n-bit primitive, F , with an indifferentiability security bound 
of σ = 2n/4 . If one derives a near-collision attack finding a t-bit near-���queries with probability p, this 

(2n −2b+t−1)! 
collision on the n-bit primitive in 2b P2b 

���φ̂i is at least indicates that p − 1 + , by [1].i=1 2n(2b−1)(2n−2b+t−2b )! 

If, furthermore, this quantity exceeds 2b−n/4+1 and b < log(σ), then 
clearly F is not φ̂[ 1 ]-mixing and the hash function does not achieve a 4 

practical indifferentiability security bound of 2n/4 . This result on hash 
security depends only on Theorem 3 and an analysis of the primitive. 

On the other hand, Theorem 3 is valid only if the primitive is treated 
as a black box function. As a result, differential cryptanalyses on 
reduced-iteration variants of primitives such as [12] cannot be applied 
to find quantitative bounds on indifferentiability security. For any 
meaningful full-iteration attack, however, Theorem 3 applies to provide 
bounds on the indifferentiability security. 

The obvious question raised by this result asks if we can determine 
bounds on the dependence coefficients of important hash primitives 
such as the Keccak compression function, see [3]. In particular, we 
can approach the problem from the reverse direction and ask whether 
we can determine relations which show the dependence coefficients to 
be large enough to affect the indifferentiability results on the modes of 
these hash functions as seen in [13, 14, 21, 4]. Table 1 summarizes 
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the necessary φ̂-mixing rate to support the current indifferentiability 
results for some notable hash functions. 

Mode of 
operation 

Primitive 
input (a) 

Message 
block (`) 

Rate 
(`/a) 

Indiff. 
bound 

Primitive φ̂-mixing 
Rate 

BLAKE∗+ [2, 7] 4n 2n 0.5 n/2 ic 1 
2 

FWP [20] 2n n 0.5 2n/3 ro 2 
3 

Groestl∗ [14] 2n n 0.5 n/2 ip 1 
2 

JH [21] 2n n 0.5 n/2 ip 1 
2 

Keccak∗ [4] 2n n 0.5 n/2 ip 1 
2 

ˆTable 1. φ-mixing rate bounds required for the indicated indifferen-
tiability bound. (*) indicates that an explicit description of the events 
GOODi and BADi is missing from the literature. (+) indicates that 
the primitive is a 2 - 1 compression. The primitives ro, ic, and ip 
are shorthand for random oracle, ideal cipher, and ideal permutation, 
respectively. 

Another interesting direction to explore is whether these results 
can be extended in the case of hash functions based on block cipher 
compression functions to analyze a protocol consisting of the hash mode 
embedded with the block cipher protocol and using the block cipher 
round function as the primitive. If such a result can be achieved, then 
many reduced-iteration attacks in the literature can be used directly to 
compute dependence coefficients and bound indifferentiability results. 
This path seems, however, unlikely to produce a viable result based on 
the irregularity of such composed protocols. 

8. Conclusion. The measures of dependence derived in Sections 4 
and 5 provide a measure for fixed functions, determining such a func-
tion’s proximity to an ideal primitive in some sense. This framework 
supports the direct analysis of cryptographic primitives as exemplified 
in Sections 4 and 5 as well as providing a means of porting protocol 
security arguments involving ideal primitives into a more realistic set-
ting. 

Perhaps the most interesting application for these dependence co-
efficients has been the stopping time analysis for an indifferentiability 
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adversary provided in Section 6. An analysis of the dependence se-
quence for the primitives of the SHA-3 finalists and the winner of the 
SHA-3 competition, Keccak, may solidify the indifferentiability argu-
ments already present in the literature. Although the direct calculation 
of the dependence sequence of such fixed functions is itself a challenging 
task, such functions are often constructed from block ciphers and other 
iterative protocols which can be further broken down and analyzed. 

On the other hand, the determination of lower bounds for the de-
pendence coefficients of these hash primitives is a more immediately 
approachable problem. The discovery of particularly large dependence 
coefficients, while not constituting an invalidation of indifferentiability 
results on the hash mode, may call the practical resistance to distin-
guishing attacks of protocols employing such primitives into question. 
In fact, any nontrivial full-iteration relation on such primitives provides 
a lower bound on the dependence sequence and hence an upper bound 
on the indifferentiability security of the hash function. Furthermore, 
this methodology can be utilized for the construction of new heuristic 
arguments which may influence the construction of primitive random 
functions. 
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