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Abstract. Multivariate Public Key Cryptography (MPKC) is one of the 
most attractive post-quantum options for digital signatures in a wide 
array of applications. The history of multivariate signature schemes is 
tumultuous, however, and solid security arguments are required to in-
spire faith in the schemes and to verify their security against yet undis-
covered attacks. The effectiveness of “differential attacks” on various 
field-based systems has prompted the investigation of the resistance of 
schemes against differential adversaries. Due to its prominence in the 
area and the recent optimization of its parameters, we prove the secu-
rity of HF Ev− against differential adversaries. We investigate the newly 
suggested parameters and conclude that the proposed scheme is secure 
against all known attacks and against any differential adversary. 
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1 Introduction and Outline 

In the mid 1990s, Peter Shor discovered a way to efficiently implement quantum 
period finding algorithms on structures of exponential size and showed how the 
modern world as we know it will change forever once the behemoth engineering 
challenge of constructing a large scale quantum computing device is overcome. 
His polynomial time quantum Fourier transforms for smooth integers can be 
employed to factor integers, to compute discrete logarithms and is powerful 
enough to efficiently solve hidden subgroup problems for well behaved (usually 
Abelian) groups. Given the ubiquity of these problems in deployed technologies, 
our e-society is confronted with the possibility that its public key infrastructure 
is terminally ill. 

It is not known how far this computational cancer may spread, how pervasive 
exponential quantum speed-ups will prove to be nor how fundamentally wide 
the gap between feasibility in the classical and quantum world are. Thus we 
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face the task in a rapidly maturing twenty-first century, with ever expanding 
interconnectivity, of securing open channel communication between unknown 
future devices, against machines with unknown capabilities, with an unknown 
date of inception. 

Charged with this challenge is a growing international community of ex-
perts in quantum-resistant cryptography. The world-wide effort has spawned in-
ternational standardization efforts including the European Union Horizon 2020 
Project, “Post-Quantum Cryptography for Long-Term Security” PQCRYPTO 
ICT-645622 [1], ETSI’s Quantum Safe Cryptography Specification Group [2], 
and NIST’s Post-Quantum Cryptography Workgroup [3]. The dedication of these 
resources is evidence that the field of post-quantum cryptography is evolving into 
a state in which we can identify practical technologies with confidence that they 
will remain secure in a quantum computing world. 

One of a few reasonable candidates for post-quantum security is multivariate 
cryptography. We already rely heavily on the difficulty of inverting nonlinear sys-
tems of equations in symmetric cryptography, and we quite reasonably suspect 
that that security will remain in the quantum paradigm. Multivariate Public Key 
Cryptography (MPKC) has the added challenge of resisting quantum attack in 
the asymmetric setting. 

While it is difficult to be assured of a cryptosystem’s post-quantum security 
in light of the continual evolution of the relatively young field of quantum al-
gorithms, it is reasonable to start by developing schemes which resist classical 
attack and for which there is no known significant weakness in the quantum 
realm. Furthermore, the establishment of security metrics provides insight that 
educates us about the possibilities for attacks and the correct strategies for the 
development of cryptosystems. 

In this vein, some classification metrics are introduced in [4–6] which can 
be utilized to rule out certain classes of attacks. While not reduction theoretic 
proof, reducing the task of breaking the scheme to a known (or often suspected) 
hard problem, these metrics can be used to prove that certain classes of attacks 
fail or to illustrate specific computational challenges which an adversary must 
face to effect an attack. 

Many attacks on multivariate public key cryptosystems can be viewed as dif-
ferential attacks, in that they utilize some symmetric relation or some invariant 
property of the public polynomials. These attacks have proved effective in appli-
cation to several cryptosystems. For instance, the attack on SFLASH, see [7], is 
an attack utilizing differential symmetry, the attack of Kipnis and Shamir [8] on 
the oil-and-vinegar scheme is actually an attack exploiting a differential invari-
ant, the attack on the ABC matrix encryption scheme of [9] utilizes a subspace 
differential invariant; even Patarin’s initial attack on C∗ [10] can be viewed as 
an exploitation of a trivial differential symmetry, see [5]. 

As is demonstrated in [4, 6, 11], many general polynomial schemes can have 
nontrivial linear differential symmetries. Specifically, in [6], systems of linear 
equations are presented which can have solution spaces large enough to guarantee 
the existence of nontrivial linear differential symmetries, while in both [4] and 
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[11] explicit constructions of maps with nontrivial symmetries are provided. The 
existence of such symmetries in abundance is the basis of attacks removing the 
minus modifier as in [7], and depending on the structure of the maps inducing 
the symmetry, may even provide a direct key recovery attack. Furthermore, 
the attack of [9] on the ABC simple matrix scheme teaches us that differential 
invariant techniques are a current concern as well. These facts along with the 
ubiquity of differential attacks in the literature are evidence that the program 
developed in [4–6] to verify security against differential adversaries is a necessary 
component of any theory of security for practical and desirable multivariate 
cryptosystems. 

This challenge leads us to an investigation of the HF Ev and HF Ev− cryp-
tosystems, see [12], and a characterization of their differential properties. Results 
similar to those of [4–6] will allow us to make conclusions about the differential 
security of HF Ev, and provide a platform for deriving such results for HF Ev− . 

Specifically, we reduce the task of verifying trivial differential symmetric 
structure for a polynomial f to the task of verifying that the solution space 
of a large system of linear equations related to f has a special form. We eluci-
date the structure of these equations in the case of the central map of HF Ev and 
provide an algorithm for generating keys which provably have trivial differential 
symmetric structure. In conjunction with our later results on differential invari-
ants, the proof of concept algorithm verifies that information theoretic security 
against differential adversaries, as defined in [6], is possible with an instanta-
neous addition to key generation while maintaining sufficient entropy in the key 
space to avoid “guess-then-IP” attacks. We then extend these methods to the 
case of HF Ev−, deriving the same conclusion. 

Expanding on the methods of [6], we prove the following. 

Theorem 1 Let k be a degree n extension of the finite field Fq. Let f be an 
HF Ev central maps. With high probability, f has no nontrivial differential in-
variant structure. 

With a minimal augmentation of this method we extend this result to the case 
of HF Ev− . 

Theorem 2 Let f be an HF Ev central map and let π be a linear projection. 
With high probability, π ◦ f has no nontrivial differential invariant structure. 

Thus, with proper parameter selection, HF Ev− is provably secure against differ-
ential adversaries. Together with the existant literature on resistance to algebraic 
and rank attacks, this security argument provides significant theoretical support 
for the security of aggressive HF Ev− parameters, such as those presented in 
[13]. 

The paper is organized as follows. First, we recall big field constructions in 
multivariate public key cryptography. Next we review the HFE scheme from [14] 
and the HF Ev− scheme from [12]. In the following section, we provide criteria 
for the nonexistence of a differential symmetric relation on the private key of 
both HF Ev and HF Ev− and discuss an efficient addition to key generation 
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that allows provably secure keys to be generated automatically. We next review 
the notion of a differential invariant and a method of classifying differential 
invariants. We continue, analyzing the differential invariant structure of HF Ev 
and HF Ev−, deriving bounds on the probability of differential invariants in the 
general case. Next, we review the Q-rank and degree of regularity of HF Ev− , 
and discuss resistance to attacks exploiting equivalent keys. Finally, we conclude, 
discussing the impact of these results on the HF Ev− pedigree. 

2 Big Field Signature Schemes 

At Eurocrypt ’88, Matsumoto and Imai introduced the first massively multivari-
ate cryptosystem which we now call C∗, in [15]. This contribution was based on 
a fundamentally new idea for developing a trapdoor one-way function. Specifi-
cally, they used finite extensions of Galois fields to obtain two representations of 
the same function: one, a vector-valued function over the base field; the other, 
an univariate function over the extension field. 

One benefit of using this “big field” structure, is that Frobenius operations in 
extensions of conveniently sized Galois fields can be modeled as permutations of 
elements in the small field while computations in the small field can be cleverly 
coded to utilize current architectures optimally. Thus, one can compute a variety 
of exponential maps and products with great efficiency and obfuscate a simple 
structure by perturbing the vector representation. 

Typically, a big field scheme is built using what is sometimes called the 
butterfly construction. Given a finite field Fq, a degree n extension K, and an Fq -
vector space isomorphism φ : Fn

q → K, one can find an Fq -vector representation 
of the function f : K → K. To hide the choice of basis for the input and output 
of f , we may compose two affine transformations T,U : Fn

q → Fn
q . The resulting 

composition P = T ◦ φ−q ◦ f ◦ φ ◦ U is then the public key. The construction is 
summarized in the figure below: 

K
f

K 

φ−1φ 
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F Fn
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2.1 HFE 

The Hidden Field Equations (HFE) scheme was first presented by Patarin in 
[14] as a method of avoiding his linearization equations attack which broke the 
C∗ scheme of Matsumoto and Imai, see [10] and [15]. The basic idea of the 
system is to use the butterfly construction to hide the structure of a low degree 
polynomial that can be inverted efficiently over K via the Berlekamp algorithm 
[16], for example. 

More specifically, we select an effectively invertible “quadratic” map f : K → 
K, quadratic in the sense that every monomial of f is a product of a constant 
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and two Frobenius multiples of x. Explicitly any such “core” map f has the 
form: X Xi j i q +q qf(x) = αi,j x + βix + γ. 

i≤j i 
q i+qj ≤D q i≤D 

The bound D on the degree of the polynomial is required to be quite low for 
efficient inversion. 

One generates a signature by setting y = h, a hash digest, and computing, 
successively, v = T −1y, u = f−1(v) and x = U −1u. The vector x acts as the 
signature. 

For verification, one simply evaluates the public polynomials, P , at x. If 
P (x) which is equal to T ◦ f ◦ U(x) is equal to y, the signature is authenticated. 
Otherwise, the signature is rejected. 

2.2 HF Ev− 

Taking the HFE construction one step further, we may apply the vinegar mod-
ifier, adding extra variables x̃1, . . . x̃v to be assigned random values upon inver-
sion. The effect of adding vinegar variables is that new quadratic terms, formed 
from both products of vinegar variables and HFE variables and products among 
vinegar variables, increase the rank of the public key. The central map of the 
HF Ev scheme has the form: X Xi j i q +q qf(x) = αi,j x + βi(x̃1, . . . , x̃v)x + γ(x̃1, . . . , x̃v), 

i≤j i 
q i+qj ≤D q i≤D 

where αi,j ∈ K, βi : Fv → K is linear, and γ : Fv → K is quadratic. q q 
In contrast to HFE, f is a vector-valued function mapping Fn+v to Fn. The q q 

work of [17, 18, 6] show that representations of such functions over K are quite 
valuable. Thus it is beneficial to employ an augmentation of f , adding n − v 
additional vinegar variables, and say ŷ = {x̃1, . . . , x̃v, . . . , x̃n}, where x̃v+1 = 
x̃v+2 = . . . = x̃n = 0. Thus, our core map becomes � � 

f(x) = f̂  x
y 
ˆ
ˆ

. 

which algebraically identifies f as a bivariate function over K. We may now write 
f in the following form: X X Xi j i j i jq +q q q q +qf(x, y) = αij x + βij x y + γij y . (1) 

0≤i≤j<n 0≤i,j<n 0≤i≤j<n 
iq +qj ≤D q i≤D 

Here we see an obvious distinction among the types of monomials. We will 
label the monomials with α coefficients the “HFE monomials,” those with β 
coefficients the “mixing monomials” and the monomials with γ coefficients the 
“vinegar monomials.” 
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The HF Ev− scheme uses the HF Ev primitive f above and augments the 
public key with the minus modifier. The minus modifier removes r of the public 
equations. This alteration is designed to destroy some of the information of the 
big field operations latent in the public key. 

3 Differential Symmetry 

The discrete differential of a field map f : K → K is given by: 

Df(a, x) = f(a + x) − f(a) − f(x) + f(0). 

It is simply a normalized difference operator with variable interval. In [7], the 
SFLASH signature scheme was broken by exploiting a symmetric relation of the 
differential of the public key. This relation was inherited from the core map of 
the scheme. 

Definition 1 A general linear differential symmetry is a relation of the form 

Df(Mx, a) + Df(x, Ma) = ΛM Df(a, x), 

where M, ΛM : K → K are Fq-linear maps. 

A differential symmetry exists when linear maps may be applied to the discrete 
differential inputs in such a way that the effect can be factored out of the dif-
ferential. Furthermore, we say that the symmetry is linear when the relation is 
linear in the unknown coefficients of the linear maps. It can be shown that any 
such linear symmetric relation implies the existence of a symmetry of the above 
form, hence the term “general.” 

While attacks similar to that of [7, 19] exploited some multiplicative relation 
on central maps of schemes with some algebraic structure over the base field, it 
was shown in [4] that general linear differential symmetries based on more com-
plex relations exist, in general. Therefore, when analyzing the potential threat of 
a differential adversary, as defined in [6], it becomes necessary to classify the pos-
sible linear differential symmetries. If we succeed in characterizing parameters 
which provably eliminate nontrivial differential symmetric relations, we prove 
security against the entire class of differential symmetric attacks, even those 
utilizing relations not yet discovered. 

To this end, we evaluate the security of HF Ev against such adversaries. We 
explicitly consider parameter restrictions which necessarily preclude the exis-
tence of any nontrivial differential symmetry. 

3.1 Linear Symmetry for HFEv 

In our analysis, we will begin by considering the differential of our core map. 
From the perspective of our adversary, the discrete differential would be �� � � �� 

â x̂
Df̂  , = Df(a, b, x, y).

b̂ ŷ
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By the bilinearity of Df̂  we see that Df is multi-affine; Df is affine in each of 
its inputs when the remaining inputs are fixed. Evaluating this differential we 
obtain 

X i j j i q q q q+ xDf(a, b, x, y) = αi,j (x )a a
0≤i≤j<n 
iq +qj ≤D X i j i jq q qβi,j (x bq + a y )+ (2) 
0≤i,j<n 
q i≤D X i j j i q qγi,j (y bq + y bq ),+ 

0≤i≤j<n 

noting that Df is a K-bilinear form in [a b]T and [x y]T . For ease of computation, 
we will choose the following representation for K: 

2 n−1 q q qx 7→ [x x x ... x ]T . 

Similarly, we may map our oil-vinegar vector as 

2 n−1 2 n−1 q q q q q q[x y] 7→ [x x x ... x y y y ... y ]T , 

and Df is thus represented by the 2n × 2n matrix where the (i, j)th and (j, i)th 
entries in the upper left n × n block are the coefficients αi,j , and the (i, j)th 
entries in the upper right block and the (j, i)th entries in the lower left block are 
the coefficients βi,j , while the (i, j)th and the (j, i)th entries in the lower right 
block are the coefficients γi,j . PNote, that any Fq-linear map M : K → K can be represented by Mx = 

n−1 
mix. Thus, as demonstrated in [6], under our representation, i=0 

⎞⎛ 

M = 
⎜⎜⎜⎝ 

m0 m1 · · · mn−1 
q q qm m · · · mn−1 0 n−2 
. . .. . . . . .. . . 
n−1 n−1 n−1 q q qm m · · · m1 2 0 

⎟⎟⎟⎠ 
. 

�� 

However, when viewing an Fq-linear map over our vector 
x
y 
ˆ
ˆ

, we may consider 

the 2n × 2n matrix 
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⎞⎛ 

M = 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

m00,0 m00,1 · · · m00,n−1 m01,0 m01,1 · · · m01,n−1 
q q q q q qm m · · · m m · · · m00,n−1 00,0 00,n−2 m01,n−1 01,0 01,n−2 
. . . . . .. . . . . . . . . . . .. . . . . . 
n−1 n−1 n−1 n−1 n−1 n−1 q q q q q qm m · · · m m m · · · m00,1 00,2 00,0 01,1 01,2 01,0 

m10,0 m10,1 · · · m10,n−1 m11,0 m11,1 · · · m11,n−1 
q q q q q qm m · · · m m · · · m10,n−1 10,0 10,n−2 m11,n−1 11,0 11,n−2 
. . . . . .. . . . . . . . . . . .. . . . . . 
n−1 n−1 n−1 n−1 n−1 n−1 q q q q q qm m · · · m m m · · · m10,1 10,2 10,0 11,1 11,2 11,0 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

. 

For computational reference, we will label each row and column modulo(n), i.e., 
each coordinate of the entry (i, j), will be represented by a residue class modulo 
n. 

If we assume that f is vulnerable to a differential attack, then there exists 
a non-trivial linear mapping M such that the differential symmetry in (1) is 
satisfied. To compute such a symmetry inducing map requires the solution of 

24n highly dependent but random equations in the 8n unknown coefficients of 
M and ΛM over K. Since trivial symmetries (such as multiplication by scalars) 
are exhibited by every map, we know that there exist nontrivial solutions. Even 
assuming unit time for K-arithmetic operations, for realistic parameters this pro-
cess is very inefficient; with the more realistic assumption of costly K-arithmetic 
operations, this task is unsatisfactory in key generation. 

To make the solution of such systems of equations more efficient, we derive 
the structure of the equations and develop a two step process for verifying trivial 
differential symmetric structure. The first step involves finding equations which 
only involve a subset of the variables. The existence of such equations is guar-
anteed by the degree bound of the HFE monomials. This information is then 
bootstrapped to eliminate many unknown coefficients of M resulting in a very 
small system of equations which can be solved explicitly. 

We remark here that this methodology also suggests a method for estimat-
ing the probability of the existence of a differential symmetry for the HF Ev 
primitive. The existence of a nontrivial symmetry corresponds to systems for 
which the rank of the system of equations is less than 8n. Under the heuristic 
that under row reduction these systems of equations behave like random 8n× 8n 
matrices, we obtain a probability of roughly 1−q−1 that the scheme has no non-
trivial differential symmetry. We note that this heuristic is almost certainly false 
since trivial symmetries do exist. This quantity does represent a lower bound, 
however, and thus may offer support for larger base fields. 

T 
We begin by considering the entries of the matrix M Df + DfM . The 

i j

contribution of any monomial αi,j x
q +q to the ith row of DfM is given by �� 

j j j j j j· · · · · ·αi,j m00,−j αi,j m00,1−j αi,j m00,−1−j αi,j m01,−j αi,j m01,1−j αi,j m01,−1−j 
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while the contribution to the jth row is � � 
i i i i i iαi,j m00,−i αi,j m00,1−i · · · αi,j m00,−1−i αi,j m01,−i αi,j m01,1−i · · · αi,j m01,−1−i . 

T 
By symmetry, the ith and and jth columns of M Df are the same as their 
respective rows. 

It is clear that the rows and columns associated with coefficients of vinegar 
monomials as well as terms associated with mixing monomials may be repre-
sented similarly. However, it should be noted that those terms associated with 
mixing monomials will be multiplied by linear coefficients m00,·, m01,·, m10,·, and 
m11,·, while coefficients associated with vinegar variables are multiplied only by 
linear coefficients m10,· and m11,·. 

The above patterns can be extended to characterize the contribution to the 
i j i jq q q +qith row and jth row of monomials of the form βi,j x y and γi,j y , as well. 

We note, however, that γ coefficients interact with entries from the lower block 
matrices while β coefficients interact with coefficients from all block matrices. 

Now that we have characterized the left side of (1), we will consider the 
i j r s q +q q qentries of Λ Df . For every monomial of f , say αi0,j0 x , βr,sx y , orM 

s v i+` j+` q +q q +q, we have under the mapping of Λ terms of the form: l`α
q ` 

,γu,vy M i,j x
r+` s+` j ` u+` v+` q q q +ql`β

q x y , and l`γq y . Clearly, this results in every nonzero entry, r,s u,v 
` say (r, s), of our Df matrix being raised to the power of q and shifted along a 

forty-five degree angle to entry (r + ̀ , s + ̀ ). Thus, for each monomial in f there 
are two possible nonzero entries in the ith row, with possible overlap. 

This discrete geometrical interpretation of the action of M and D on the 
coefficients of f is central to this analysis. A graphical representation of these 
relations is provided in Figure 1. 

As in [6], the possibility of a differential symmetry can be determined by 
setting the matrix representation of MT Df + DfM equal to the matrix ΛM Df . 
We will demonstrate an algorithm, given some specific constraints, that will help 
provide secure keys to be generated automatically. 

Due to the structure of our M matrix, we need to work within each mi,j 

matrix independently. The following algorithm for m0,0 extends very naturally 
to the other 3 matrices. For clarity, all m terms in description below are m0,0 

terms. 
Let αi,j , βr,s, γu,v represent the coefficients of our monomials in our core map. 

Consider the ith row of MT Df +DfM . For all w not occurring as a power of q of 
our HFE or mixing monomials in f , or difference of powers of q in an exponent 

j jq qof a monomial in f plus i, the (i, w) entry is αi,j m = 0 (resp. βi,j m ).w−j w−j 
Consider the rth row. For all w not occuring as an exponent of q in a vinegar 
monomial or as a difference of powers of q in an exponent of a monomial in f 

s 

plus s, the (r, w)th entry is βr,sm
q = 0. Hence, we can use those relations to k−s 

look for non-zero entries of m0,0. 
After putting those relations into Algorithm 1, see Figure 3a, you can gen-

erate a set for every i and r, exponents that occur in your core map. Each set 
provides a list of indices of all possible non-zero m’s. For each index not occuring 
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Fig. 1: Graphical representation of the equation MT Df +DfM = ΛM Df for the 
i j r s u v q +q q q q +qHF Ev (actually, vC∗) polynomial f(x) = αi,j x + βr,sx y + γu,vy . 

Horizontal and vertical lines represent nonzero entries in MT Df + DfM while 
diagonal lines represent nonzero entries in ΛM Df . We may consider this diagram 
as a genus 4 surface containing straight lines. 

in any such set, the corresponding coefficient m must equal zero due to the fact 
that there must be a coordinate in the equation MT Df +DfM = ΛM Df setting 
a constant multiple of m to zero. Thus, the intersection off all sets generated 
produces a list of all possible non-zero entries for the sub-matrix m0,0. 

Once this list is obtained, the variables shown to have value zero are elimi-
nated from the system of equations. After repeating a similar algorithm for each 
of the remaining three submatrices a significantly diminished system of equations 
is produced which is then solved explicitly. 

After running this algorithm with realistic values satisfying the above con-
straints and matching the parameter sizes of [13] along with using mild restric-
tions on the powers of the mixing and vinegar monomials, the only non-zero 
value obtained is m0. 

We note that it is possible that these restrictions, especially the restriction 
for these experiments on the number of monomials, place a lower bound on the 
number of vinegar variables required to achieve such a structure. On the other 
hand, with numerous small-scale experiments without parameter restrictions and 
using the full number of monomials we found that structurally the only nonzero 
value for the matrix m0,0 is the m0 term. 

Since we have only a single non-zero term, our m0,0 matrix is a diagonal 
matrix. A similar analysis for each of the remaining submatrices reveals the 
same structure. Thus we find that the only possible structure for M under these 
constraints satisfying a differential symmetry for HF Ev is � � 

cI dI 
M = . 

dI cI 
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Furthermore, we can prove by way of Theorem 2 from [20], that the coefficients 
c, d ∈ Fq. 

We note that this map induces a trivial differential symmetry. To see this, 
note that the (nonpartial) differential of any bivariate function is bilinear in its 
vector inputs. Thus 

Dg(M [a b]T , [x y]T ) = Dg([ca + db da + cb]T , [x y]T ) 

= Dg([ca + db cb + da]T , [x y]T ) 

= Dg(c[a b]T , [x y]T ) + Dg(d[b a]T , [x y]T ) (3) 

= cDg(a, b, x, y) + dDg(b, a, x, y) 

= (c + d)Dg(a, b, x, y). 

Consequently, for the parameters provided by Algorithm 1, HF Ev provably has 
no nontrivial differential symmetric structure. 

It should be noted that the restrictions provided on the powers of q of the 
monomials of our f does lower the entropy of our key space and likely raise 
the number of required vinegar variables to a level which is either unsafe or 
undesirable. However, there is still plenty of entropy with these restrictions and 
we obtain provable security against the differential symmetric attack. The re-
strictions provided are just a base line for this technique and our experiments 
with small scale examples indicate that even when we insist that every possible 
monomial satisfying the HFE degree bound is required to have a nonzero coef-
ficient, the generalized algorithm still outputs only the trivial solution. Thus we 
can achieve provable security with minimal loss of entropy. 

3.2 HF Ev− 

Now, the algorithm extends naturally to HF Ev− . Every non-zero entry from 
the system generated by HF Ev is also in that generated by HF Ev−, but with a 
few more, see Figure 2. We choose a basis in which an example minus projection 

2is a polynomial of degree q . For every ith row, we also have for any w not a 
jqpower of α + n or β + n where n < 2, the (i, w)th entry is αi,j m = 0. For the w−j 

sth row, for all w not being a power of β + n or r + n where n < 2, the (s, w)th 
entry is βr,sm

q r 

= 0. A visualization is provided in Figure 2. w−r 

Again, we can use these relations, along with the relations described in the 
HF Ev system, to create a list of sets of all non-zero areas on m0,0 using Algo-
rithm 2, see Figure ??. Each of these sets contains indices which are possibly 
non-zero, thus entries not in that set are definitively equal to zero. 

By taking the intersection of all the sets, you can find the final locations of 
non-zero entries for our sub matrix m0,0. In doing so, with realistic values from 
[13], the only non-zero value obtained is m0. This again gives us security against 
symmetrical attacks by having M being a block matrix consisting of diagonal 
matrices with an argument similar to [6]. 
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Fig. 2: Graphical representation of the equation MT Df +DfM = ΛM Df for the 
qHF Ev− with the minus modifier given by the projection π(x) = x
2 
+ ρxq + τx. 

Horizontal and vertical lines represent nonzero entries in MT Df + DfM while 
diagonal lines represent nonzero entries in ΛM Df . We note that each triple of 
lines corresponds to a single monomial in the central map. 

HFEvKeyCheck 
Input: An HF Ev central map f , a flag flg 
Output: Set of indices of coefficients mi of submatrix m00 

linear map inducing differential symmetry for f . 
01. for monomial αi,j x

q i+qj 
in f 

02. Si = {}; 
03 Sj = {}; 
04. for monomial with powers r and s in f 
05. Si = Si ∪ {r − j, s − j, i − j + r − s, i − j + s − r}; 
06. Sj = Sj ∪ {r − i, s − i, j − i + r − s, j − i + s − r}; 
07. end for; 
08. end for; 
09. if flg 
10. then 
11. return all Si; 
12. else 
13. return 

T 
Si; 

14. end if; 

which are possibly nonzero in a 

(a) Algorithm 1: HF Ev 

HFEv-KeyCheck 
Input: An HF Ev− central map π(f), the corank of π, r 
Output: Set of indices of coefficients mi of submatrix m00 

linear map inducing differential symmetry for π(f). 
01. Call: HFEvKeyCheck(f,1); 
02. for all Si 

03 Ti = {}; 
04. for j from 0 to r − 1 
05. Ti = Ti ∪ (j + Si); 
06. end for; 
07. end for; 
08. return 

T 
Ti; 

which are possibly nonzero in a 

(b) Algorithm 2: HF Ev− 

Fig. 3: Algorithms 1 and 2 
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4 Differential Invariants 

Definition 2 Let f : Fn
q → Fm

q be a function. A differential invariant of f is 
a subspace V ⊆ K with the property that there is a subspace W ⊆ K such that 
dim(W ) ≤ dim(V ) and ∀A ∈ SpanFq (Dfi), AV ⊆ W . 

Informally speaking, a function has a differential invariant if the image of a sub-
space under all differential coordinate forms lies in a fixed subspace of dimension 
no larger. This definition captures the notion of simultaneous invariants, sub-
spaces which are simultaneously invariant subspaces of Dfi for all i, and detects 
when large subspaces are acted upon linearly. 

If we assume the existence of a differential invariant V , we can define a 
corresponding subspace V ⊥ as the set of all elements x ∈ K such that the 
dot product hx, Avi = 0 ∀v ∈ V, ∀A ∈ Span(Dfi). We note that this is not the 
standard definition of an orthogonal complement. V ⊥ is not the set of everything 
orthogonal to V , but rather everything orthogonal to AV , which may or may 
not be in V . By definition, it is clear that V and V ⊥ satisfy the relation 

dim(V ) + dim(V ⊥) ≥ n. 

Assume there is a differential invariant V ⊆ Fn , and choose linear maps q 

M : Fn
q → V and M⊥ : Fn

q → V ⊥. For any differential-coordinate-form, we have 

[Df(M⊥y, Mx)]i = (M ⊥ y)T (Dfi(Mx)) (4) 

Since M⊥y is in V ⊥, and DfiMx ∈ AV , we must then have that 

[Df(M⊥y, Mx)]i = (M⊥ a)T (Dfi(Mx)) = 0 (5) 

Thus, as derived in [5], 

∀y, x ∈ Fn, Df(M⊥y, Mx) = 0 or equivalently, Df(M⊥Fn,MFn) = 0 (6)q q q 

This relation restricts the structure of M and M⊥, and provides a direct means 
of classifying the differential invariant structure of f . 

We follow an analogous strategy to that of [6], adapted to the structure of 
the central HF Ev− map f . First, we recall a result of [6]. 

Proposition 1. ([6]) If A, B are two m × n matrices, then rank(A) = rank(B) 
if and only if there exist nonsingular matrices C, D, such that A = CBD. 

Without loss of generality we assume that rank(M⊥) ≤ rank(M). If the 
ranks are equal, then we may apply the proposition and write M⊥ = SMT , 
with S and T nonsingular. If rank(M⊥) < rank(M), compose M with a singular 
matrix X so that rank(XM) = rank(M⊥), and then apply the above result so 
that M⊥ = S(XM)T . Then we can express M ⊥ = S0MT , where S0 is singular. 
Restating our differential result (6) in this manner, we have that if M⊥ = SMT , 
and M : Fn

q 
+v → V , then 

∀x, y ∈ Fn
q , Df(SMT y, MT x) = 0. (7) 
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4.1 Minimal Generators over Intermediate Subfield 

For lack of a good reference, we prove the following statement about the structure 
of the coordinate ring of a subspace of an extension field over an intermediate 
extension. 

Lemma 1 Let L/K/Fq be a tower of finite extensions with |L : K| = m and 
|K : Fq | = n. Let V be an Fq -subspace of L. Then I(V ) has m multivariate 
generators over K of the form X i(k) qMV (x0, . . . , xm−1) = aijkx .j 

0≤i<n 
0≤j<m 

1, e1, . . . , em−1} for L over K. is an FqProof. Choose a basis {e0 = Since V -P i qmn−1
subspace of L, the minimal polynomial of V over L, MV (X) = αiX ,i=0 
is Fq-linear. Note that the operations of addition and left multiplication by 
elements in L are K-linear, whereas the Frobenius maps are merely F-linear. 

Now, since MV (X) is linear it is additive, hence ⎞⎤⎡⎛ 
x0 ⎟⎠⎥⎦ 

Xm−1

= MV (xiei).MV (X) = MV 
⎢⎣ 

⎜⎝ . . . 
i=0xm−1 

In each summand of MV (xj ej ), we have Xm−1

j 
i=0 

i i i i q q q(xj ej )
q = xj ej = x riei 

for some r0, . . . , rm−1 ∈ K. As a vector over K this quantity is ⎡ ⎤i qr0xj 
. . . 

i qrm−1xj 

⎢⎢⎣ 
⎥⎥⎦ . 

n−1 q qThus MV (xj ej ) is an m-dimensional vector of K-linear combinations of xj , xj , . . . , x .j 

Thus MV (X) is of the form ⎡ ⎤P i⎤⎡ aij0x
q 

M(0) 
V 

0≤i<n j(x0, . . . , xm−1) ⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 

0≤j<m 
. . 

⎢⎢⎣ 
⎥⎥⎦ 

. . . MV (X) = = ,. 
iP M(m−1) 

V 
q 
j(0, . . . , xm−1) 0≤i<n aij(m−1)x

0≤j<m 

as required. 

We note that the minimal polynomials studied in [6] correspond to the special 
case of the above lemma in which m = 1. Given our characterization from Section 
2.2 of the central map of HF Ev− as a bivariate polynomial over K, we are 
primarily interested in the m = 2 case of Lemma 1. 
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4.2 Invariant Analysis of HF Ev 

As in [6], we consider Df(SMT a, MT x), where T is nonsingular, S is a possibly 
singular map which sends V into V ⊥ and M : k → k is a projection onto V . 
Without loss of generality we’ll assume that M projects onto V . Then MT 
is another projection onto V . SMT is a projection onto V ⊥ . An important 
distinction is that for this case, the a and x above are actually two dimensional 
vectors over k. Thus dim(V ) + dim(V ⊥) ≥ n. 

Proof (of Theorem 1). Let us denote by [x̂ ŷ]T the quantity MT [x y]T . 
Suppose we have X X Xi j i j i jq +q q q q +qf(x, y) = αij x + βij x y + γij y . 

0≤i≤j<n 0≤i,j<n 0≤i≤j<n 
iq +qj ≤D q i≤D 

T
Applying the differential (w.r.t. the vector [x y] ) as described in Section 

3.1, we obtain: � �X i j j i q q q qDf(a, b, x, y) = αij a x + a x
0≤i≤j<n 
q i+qj ≤D � �X i j i jq q q bq+ βij a y + x (8) 

0≤i,j<n 
q i≤D � �X i j j i 

bq q + bq q+ γij y y . 
0≤i≤j<n 

Substituting SMT [a b]T and MT [x y]T , we derive 

Df(S[â , ˆ y) = Df(S11â+ S12b, S21â+ S22b, ˆ y). b̂]T x, ˆ ˆ ˆ x, ˆ

For notational convenience let ˆ̂a= S11â+ S12 ̂b and ˆ̂b= S21â+ S22 ̂b. Plugging in 
these values in the previous equation we get � �X i j j i 

Df(ˆ̂a, x, ˆ αij (ˆ̂ ˆ + (ˆ̂ ˆˆ̂b, ˆ y) = a)q xq a)q xq 

0≤i≤j<n 
q i+qj ≤D � �X i j i jq q+ βij (ˆ̂a)q ŷ + x̂ (ˆ̂b)q (9) 
0≤i,j<n 
q i≤D � �X i j j i q q+ γij (ˆ̂b)q ŷ + (ˆ̂b)q ŷ . 

0≤i≤j<n 

In contrast to the situation with HFE, these monomials are not necessarily 
independent. By Lemma 1, the generators of I(V ) have the form X i X i q qrij x + sij y for j ∈ {1, 2}, 

0≤i<n 0≤i<n 
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where rij , sij ∈ K. Clearly, these expressions evaluate to zero on (x̂, ŷ). Evaluat-
ing (9) modulo I(V ) (only on the variables x̂ and ŷ), we obtain: X h 

i i 
i 

jqDf(ˆ̂a, x, ˆ ij (ˆ̂ ij (
ˆ̂ ˆˆ̂b, ˆ y) = α0 a)q + β0 b)q x

0≤i<n 
0≤j<dx X h i (10)

i i jq+ γ0 a)q + δ0 b)q ŷ ,ij (ˆ̂ ij (
ˆ̂

0≤i<n 
0≤j<dy 

where dx and dy are the largest powers of x̂ (resp. ŷ) occuring. After the re-
dx dy

duction modulo I(V ), the remaining monomials x̂, . . . , x̂q and ŷ, . . . , ŷq are 
ˆ̂independent. Thus, for Df(ˆ̂a, b, x,ˆ ŷ) = 0, each polynomial expression multi-

j j

plied by a single x̂q or ŷq must be identically zero, that is to say that for all 
0 ≤ j ≤ dx h iX 

α0 a)q i 

+ β0 b)q i 

ij (ˆ̂ ij (
ˆ̂ = 0 (11) 

0≤i<n 

and for all 0 ≤ j ≤ dy h iX i i 

γ0 a)q 
ij (

ˆ̂b)q (12)ij (ˆ̂ + δ0 = 0. 
0≤i<n 

The left hand sides of (11) and (12) are F-linear functions in S[â b̂]T . Thus 
we can express each such equality over F as h iT 

ˆ ˆLS â0 · · · ân−1 b0 · · · bn−1 = 0, 

where L is an n × 2n matrix with entries in F. We note specifically that the 
coefficients of L depend on V and the choices of coefficients in the central map 
f . For randomly chosen coefficients retaining the HF Ev structure, we expect an 
L derived from an equation of the form (11) or (12) to have high rank with very 
high probability, more than 1 − q−n. Thus the dimension of the intersections of 

−nthe nullspaces of each L is zero with probability at least 1 − 2q . 
Clearly, the condition for these equations to be satisfied is that S sends 

V to the intersection of the nullspaces of each such L. Thus S is with high 
probability the zero map on V and so V ⊥ = {0}. This generates a contradiction, 
however, since 2n ≤ dim(V ) + dim(V ⊥) < 2n. Thus, with probability greater 

−nthan 1 − 2q , f has no nontrivial differential invariant structure. 

4.3 HF Ev− 

The situation for HF Ev− is quite similar, but the probabilities are slightly dif-
ferent. Specifically one must note that since the condition of being a differential 
invariant is a condition on the span of the public differential forms, under pro-
jection this condition is weaker and easier to satisfy. For specificity, we consider 
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the removal of a single public equation, though, critically, a very similar though 
notationally messy analysis is easy to derive in the general case. 

We may model the removal of a single equation as a projection of the form 
π(x) = xq + x applied after the central map. 

Proof (of Theorem 2). Consider X X Xi j i j i jq +q q q q +qπ(f(x, y)) = αij x + βij x y + γij y
0≤i≤j<n 0≤i,j<n 0≤i≤j<n 
iq +qj ≤D q i≤D X X Xi+1 j+1 i+1 j+1 i+1 j+1 

αq q +q βq q q γq q +q+ + y + .ij x ij x ij y
0≤i≤j<n 0≤i,j<n 0≤i≤j<n 
iq +qj ≤D q i≤D 

(13) 

Taking the differential, we obtain � �X i j j iˆ̂ a)q q a)q qD(π ◦ f)(ˆ̂a, x, ˆ αij (ˆ̂ ˆ + (ˆ̂ xb, ˆ y) = x ˆ
0≤i≤j<n 
q i+qj ≤D � �X i j i jq q+ βij (ˆ̂a)q ŷ + x̂ (ˆ̂b)q

0≤i,j<n 
q i≤D � �X i j j i q q+ γij (ˆ̂b)q ŷ + (ˆ̂b)q ŷ

0≤i≤j<n X � � (14)
i+1 j+1 j+1 i+1 

αq a)q q a)q q+ (ˆ̂ x̂ + (ˆ̂ x̂ij 
0≤i≤j<n 
i jq +q ≤D � �X i+1 j+1 i+1 j+1 

βq a)q q q (ˆ̂b)q+ (ˆ̂ ŷ + x̂ij 
0≤i,j<n 
q i≤D � �X i+1 j+1 j+1 i+1 

γq q q+ ij (ˆ̂b)q ŷ + (ˆ̂b)q ŷ . 
0≤i≤j<n 

Again, we may evaluate modulo I(V ) and collect the terms for the distinct 
powers of x̂ and ŷ. By the independence of these monomials we obtain the 
relations h iX i i 

α00 a)q + β0 b)q = 0ij (ˆ̂ ij (
ˆ̂

0≤i<n X h i (15) 
γ00 ij (

ˆ̂
ij (ˆ̂a)

q i 

+ δ0 b)q i 

= 0. 
0≤i<n 

At this point, the analysis proceeds exactly as in the case of HF Ev. We once 
again arrive at the conclusion that with high probability S is the zero map on 
V , contradicting the existence of a differential invariant. We note here that this 
analysis works for any projection, though the exact values of the α00 and γ00 ij ij 
depend on the specific projection and the structure of f . 
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5 Degree of Regularity, Q-rank and Parameters 

Further considerations for the security of HF Ev− are the degree of regularity, 
a quantity closely connected to the complexity of algebraic attacks, and the Q-
rank of the public key. A careful analysis of each of these quantities reveals that 
they support the security of HF Ev− against an algebraic attack such as [21] 
and against the Kipnis-Shamir methodology and its improvements, see [17, 18]. 

In [22], it is shown that an upper bound for the Q-rank of an HF Ev− system 
is given by the sum of the Q-rank of the HFE component, the number of removed 
equations, and the Q-rank of the vinegar component. For Gui-96(96,5,6,6), here 
q = 2, n = 96, D = 5, v = 6 and r = 6, this quantity is roughly 15. Furthermore, 
in [13], experimental evidence in the form of analysis of toy variants is provided 
indicating that this estimate is tight. Thus the complexity of a Kipnis-Shamir 

3style attack is roughly O(n q15n). 
Also in [22], a formula for an upper bound on the degree of regularity for 

HF Ev− systems is derived. Given the parameters of Gui-96(96,5,6,6), the de-
gree of regularity is expected to be 9. Further, experiments are provided in [13] 
supporting the tightness of this approximation formula for toy schemes with n as 
large as 38. With this degree of regularity the expected complexity of inverting 
the system via Gröbner basis techniques is given by � �2.3766

96 − 6 + 9 ≈ 293 . 
9 

We note that an error in the approximation of the degree of regularity can easily 
change this estimate by a factor of a few thousand. Still, it seems clear that each 
of these avenues of attack is unviable. 

Still another attack vector is to put the entropy of the key space to the test 
with techniques such as those mentioned in [23] for deriving equivalence classes 
of keys. With our most restrictive instance of the key verification algorithm in 

13nSection 3.2, we have a key space consisting of roughly q central maps, roughly 
6nq of which can be seen as equivalent keys as in [23]. Thus provable security 
against the differential adversary can be achieved with a key space of size far 
beyond the reach of the “guess-then-IP” strategy. = 

6 Conclusion 

HF Ev− is rapidly approaching twenty years of age and stands as one of the 
oldest post-quantum signature schemes remaining secure. With the new param-
eters suggested in [13], HF Ev− has metamorphosed from the very slow form of 
QUARTZ into a perfectly reasonable option for practical and secure quantum-
resistant signatures. 

Our analysis contributes to the confidence and optimism which HF Ev− in-
spires. By elucidating the differential structure of the central map of HF Ev−, we 
have verified that a class of attacks which has proven very powerful against multi-
variate schemes in the past cannot be employed against HF Ev−. In conjunction 
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with the careful analysis of the degree of regularity and Q-rank of the scheme 
already present in the literature, we have succeeded in showing that HF Ev− is 
secure against every type of attack known. If the future holds a successful attack 
against HF Ev− it must be by way of a fundamentally new advance. 
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