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Abstract: We describe second-order nonlinear optical mixing in non-birefringent, zincblende-
structurematerials that can be quasi-phasematched. Lack of birefringence and quasi-phasematching
together allow efficient nonlinear mixing between diverse polarization states. We derive six
coupled-wave equations that describe nonlinear optical mixing between the two orthogonal
polarizations of the three frequencies in the second-order nonlinear interaction. The interactions
of the additional polarization states can lead to apparent reduction in conversion efficiencies in
optical parametric oscillators and amplifiers.
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1. Introduction

Zincblende semiconductors such as GaAs, GaP, and ZnSe are attracting increasing attention for
nonlinear optical frequency conversion. These materials have large nonlinear susceptibilities
and wide transparency ranges extending far into the infrared. Cubic symmetry in zincblende
crystals implies isotropic linear optical properties, which means that birefringent phasematching
is not possible in bulk media. The difficulty in achieving phasematching in these materials
has historically limited their utility. The development of practical techniques to achieve quasi-
phasematching (QPM) [1] has enabled more widespread use of zincblende crystals for nonlinear
optics. Epitaxial methods of growing crystals with periodically alternating domain orientations
have been developed in GaAs [2–4] and GaP [5, 6]. These quasi-phasematched zincblende
materials have been used to demonstrate second-harmonic generation (SHG) [7–9], optical
parametric oscillation [10–15], difference frequency generation (DFG) [16–20] and optical
parametric generation [21].
High symmetry in the nonlinear susceptibility tensor for zincblende crystals combined with

the lack of birefringence allow for efficient mixing of a wide range of polarization states. The
only non-zero tensor elements in zincblende-structure (4̄3m point group) materials are dxyz

and its permutations (namely, dxyz = d14 = d25 = d36 in contracted notation). As a result, one
is no longer constrained to choose waves with specific combinations of linear polarization to
access the large non-zero coefficient. QPM allows phasematching to be achieved without relying
on birefringence and specific polarization states. Using QPM GaAs, polarization-insensitive
DFG [16], and optical parametric oscillation using various linearly polarized pump sources [10],
as well as circularly polarized and depolarized pump sources [11] were demonstrated.
In this paper, we build on the description of polarization dependence for nonlinear optical

mixing in zincblende crystals presented previously [10, 11, 19, 22]. The additional polarization
states participating in the nonlinear processes can affect the overall nonlinear conversion efficiency
and enhance back-conversion, especially during high gain or depleted pump conditions, such
as those occurring in optical parametric oscillators (OPOs) and optical parametric amplifiers
(OPAs).
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2. Coupled-wave equations

2.1. General driving equations

Assume a collinear interaction and assign the propagation axis to z′ along the propagation
direction k̂ (which may be different from the crystallographic ẑ direction). Typically experiments
in QPM zincblende semiconductors like orientation-patterned GaAs (OP-GaAs) and orientation-
patterned GaP (OP-GaP) have utilized k̂ along the [1̄10] crystallographic direction. We note that
propagation along the [001] direction in zincblende materials will produce no nonlinear optical
mixing because the non-zero tensor element dxyz requires electric field components along all
three crystal directions, x̂, ŷ and ẑ. If k̂ is parallel to ẑ for instance, then there will be no electric
field component of any frequency along ẑ.
In second-order nonlinear mixing between pump (ω3), signal (ω2) and idler (ω1) where

ω3 = ω1 + ω2, the electric field at frequency ωi is given by [23]

Ei(z′, t) = Re[Ei(z′)ei(kiz
′−ωi t)], (1)

where i = 1, 2 or 3 andEi(z′) is the slowly varying electric field amplitude. Analogous expressions
may be written for the nonlinear polarization, P(2)i (z′, t). If each electric field is written in terms
of its amplitude and a unit vector in the direction of its polarization, Ei(z′) = Ei êi , then P(2)i (z′, t)
becomes

P(2)1 (z
′, t) = Re[ε0E2

∗E3 (d : ê2ê3)ei[(−k2+k3)z′−ω1t]]

P(2)2 (z
′, t) = Re[ε0E1

∗E3 (d : ê3ê1)ei[(−k1+k3)z′−ω2t]]

P(2)3 (z
′, t) = Re[ε0E1 E2 (d : ê1ê2)ei[(k1+k2)z′−ω3t]]. (2)

where (d : ê2ê3) represents the vector resulting from projection of the tensor d on the field
directions ê2 and ê3, and similarly for the other two frequencies.

Only the component of the nonlinear polarization transverse to k̂ drives the propagating fields.
Thus, the slowly varying envelope equations are [23]

dE1(z′)
dz′

= iγ1P(2)1,trans(z
′)ei∆kz′

dE2(z′)
dz′

= iγ2P(2)2,trans(z
′)ei∆kz′

dE3(z′)
dz′

= iγ3P(2)3,trans(z
′)e−i∆kz′, (3)

where P(2)i,trans(z′) = P(2)i (z′) − (k̂ · P
(2)
i (z′))k̂, γi = ωi/(2ε0cni), and ∆k = k3 − k1 − k2.

Each of the vector quantities in Ei(z′) and P(2)i,trans(z′) can be projected onto two orthogonal
axes transverse to k̂. The use of a single ∆k in Eq. (3) is appropriate only for isotropic media such
as the zincblende semiconductors, or when propagating along an optical axis of a birefringent
crystal. What typically happens in birefringent crystals is that only one combination of pump,
signal and idler polarizations is phasematched, which enables neglect of the other three field
components and thus reduction of Eq. (3) to three scalar equations. However, by using QPM in
non-birefringent crystals, phasematching no longer constrains the polarization states that can
participate in the interactions so that Eqs. (3) represents six scalar equations instead of three.
The dynamics described by these equations can be very rich, some aspects of which we explore
in this paper.
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2.2. Amplitude and orientation equations

The six coupled-wave equations in Eq. (3) can be cast in terms of the amplitudes and polarization-
orientation angles of the interacting waves. In this discussion, we will limit ourselves to linear
polarization states and assume isotropic refractive indices. Let us consider linearly polarized,
orthogonal unit vectors (â, b̂) in the plane orthogonal to k̂. For the typical geometry in OP-GaAs
and OP-GaP, k̂ is parallel to [1̄10], and the transverse basis can be chosen as â along [110] and b̂
along [001]. We can write Ei(z′) as

Ei = Ei θ̂i,

θ̂i = cos θi â + sin θib̂, (4)

where Ei is the amplitude of the field, θi is the orientation angle of Ei relative to â. We note
that θ̂i differ from êi discussed in section 2.1 in that θ̂i are by construction perpendicular to the
propagation direction k̂ whereas êi refer to generic electric field polarizations. The derivative of
Ei with respect to z′ is

dEi

dz′
=

d
dz′

(
Ei θ̂i

)
=

dEi

dz′
θ̂i + Ei

dθi
dz′

θ̂i,⊥, (5)

where θ̂i,⊥ = − sin θi â + cos θib̂ is a unit vector orthogonal to θ̂i .
Combining Eqs. (3) and (5) and assuming ∆k = 0, it follows that

dE1
dz′
= iκ1E2

∗E3 θ̂1 · (d′ : θ̂2θ̂3) = iκ1E2
∗E3 f1(θ1; θ2, θ3)

dE2
dz′
= iκ2E3E1

∗ θ̂2 · (d′ : θ̂3θ̂1) = iκ2E3E1
∗ f2(θ2; θ3, θ1)

dE3
dz′
= iκ3E1E2 θ̂3 · (d′ : θ̂1θ̂2) = iκ3E1E2 f3(θ3; θ1, θ2)

E1
dθ1
dz′
= iκ1E2

∗E3 θ̂1,⊥ · (d′ : θ̂2θ̂3) = iκ1E2
∗E3 f1,⊥(θ1; θ2, θ3)

E2
dθ2
dz′
= iκ2E3E1

∗ θ̂2,⊥ · (d′ : θ̂3θ̂1) = iκ2E3E1
∗ f2,⊥(θ2; θ3, θ1)

E3
dθ3
dz′
= iκ3E1E2 θ̂3,⊥ · (d′ : θ̂1θ̂2) = iκ3E1E2 f3,⊥(θ3; θ1, θ2) (6)

where d′ = d/2d36 and κi = 2ε0d36γi = ωid36/nic.
In Eq. (6), we define the functions

fi(θi; θ j, θk) = θ̂i · (d′ : θ̂ j θ̂k)

fi,⊥(θi; θ j, θk) = θ̂i,⊥ · (d′ : θ̂ j θ̂k). (7)

The fi functions represent the projections of the nonlinear susceptibility tensor onto the field
polarization directions. The first three equations in Eq. (6) are the same in structure as the usual
three-wave mixing equations, with the strength of the coupling modified by the fi functions. As
seen in Eq. (7), calculation of the fi functions is the same calculation as involved in evaluating
the effective nonlinear coefficient in the conventional three-wave case. An important difference
is that in the six-wave case, the strength of the coupling can change as the polarization states of
the interacting waves evolve. The second three equations in Eq. (6) describe the evolution of the
angles θi . If θi varies with z′, then the fi will also depend on z′. The evolution of each of the θi is
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driven by the orthogonal component of the nonlinear polarization, θ̂i,⊥ · P(2)(ωi) or equivalently
by fi,⊥. When fi,⊥ is non-zero, the transverse component of the nonlinear polarization, P(2)i,trans, is
not parallel to Ei , and so the polarization angle θi will evolve with z′.
The polarization-angle evolution equations in Eq. (6) show that dθi/dz′ is proportional to

1/Ei , which implies that when the field amplitude at ωi is small, the orientation angle of that field
is more easily changed compared to when Ei is large. As a result, we would expect that when
a wave has very little power (either at the initial portion of an interaction or when it becomes
highly depleted), its orientation angle may change rapidly.
For a down-conversion process where the initial idler field is zero, but E3(0) and E2(0) are

non-zero, the idler angle equation dictates that f1,⊥ = 0 at z′ = 0 in order for dθ1/dz′ to be finite
(since dθ1/dz′ ∝ 1/E1). The condition f1,⊥ = 0 is mathematically identical to the stipulation that
θ1 is chosen to maximize the gain (or magnitude of f1) for given θ2 and θ3. Similar considerations
apply for a sum-frequency or second-harmonic generation process where E3(0) vanishes.

3. Manley-Rowe relations

Even though the polarization orientation angles of the waves may change, Manley-Rowe
relations [23] still apply. The intensity at frequency ωi is given by I(ωi) = ε0cniE∗i Ei/2, so the
change in intensity with respect to z′ is

dI(ωi)
dz′

=
ε0cni

2

(
E∗i

dEi

dz′
+ Ei

dE∗i
dz′

)
. (8)

If we multiply the three amplitude equations in Eq. (6) by E∗1 , E∗2 , and E∗3 , respectively, add each
equation’s complex conjugate, and then compare terms, we see that if

f1(θ1; θ2, θ3) = f2(θ2; θ3, θ1) = f ∗3 (θ3; θ1, θ2) (9)

holds, then the Manley-Rowe relations

1
ω1

dI(ω1)
dz′

=
1
ω2

dI(ω2)
dz′

= − 1
ω3

dI(ω3)
dz′

(10)

are obeyed.
In lossless media, the components of d are real quantities [24, 25], and also exhibit full

permutation symmetry [24, 26]. We only consider linear polarization states and therefore, all fi
functions are real. These properties validate Eq. (9), and therefore the Manley-Rowe relations
hold. TheManley-Rowe relations can be shown to be obeyed by circular and elliptical polarization
states where the fi functions are complex. The proof for complex polarization states and for a
general propagation direction in zincblende crystal is given in the Appendix. It is worth noting
that a naïve calculation of nonlinear mixing for just one polarization component at each frequency,
rather than both as done here, can yield different effective nonlinear coefficients for up-conversion
compared to down-conversion, and hence an apparent violation of Manley-Rowe relations (see
Appendix B and figure B.1 in [22]).

Eq. (9) simplifies the notation and allows us to write fi(θi; θ j, θk) = f (θi, θ j, θk) = f . Once
the function f is derived for a particular propagation geometry, then fi,⊥ can be calculated using

fi,⊥(θi; θ j, θk) =
∂ f
∂θi

. (11)

Calculation of the f function is effectively the same as calculating the polarization dependence of
deff (as described in [11, 19, 22]). For example, the f and fi,⊥ functions for the case of k̂| |[1̄10],
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â| |[110] and b̂| |[001] in a zincblende crystal are

f = sin θ1 cos θ2 cos θ3 + cos θ1 sin θ2 cos θ3 + cos θ1 cos θ2 sin θ3

f1,⊥ = cos θ1 cos θ2 cos θ3 − sin θ1 sin θ2 cos θ3 − sin θ1 cos θ2 sin θ3

f2,⊥ = − sin θ1 sin θ2 cos θ3 + cos θ1 cos θ2 cos θ3 − cos θ1 sin θ2 sin θ3

f3,⊥ = − sin θ1 cos θ2 sin θ3 − cos θ1 sin θ2 sin θ3 + cos θ1 cos θ2 cos θ3. (12)

The permutation symmetry among θ1, θ2, and θ3 in f is apparent in the first equation.
For difference frequency generation where the initial angles θ2 and θ3 are fixed, the idler

emerges at the angle where f is maximized. By setting ∂ f /∂θ1 = 0 and solving for θ1 in Eq.
(12), we find that

tan θ1 =
cos θ2 cos θ3
sin(θ2 + θ3)

f =
√

sin2(θ2 + θ3) + cos2 θ2 cos2 θ3

=

√
cos2 θ2 + sin2 θ2 cos2 θ3 + 2 cos θ2 cos θ3 sin θ2 sin θ3. (13)

These agree with expressions for the effective nonlinear coefficient in [19, 22]. Eq. (13) can be
applied to sum-frequency generation by interchanging the roles of θ1 and θ3.

4. Effective gain reduction in OPOs and OPAs

The simultaneous phasematching of multiple polarizations in zincblende materials can lead to an
apparent reduction in gain and conversion efficiency in nonlinear frequency conversion. The cause
of the apparent gain reduction is phasematched back-conversion to a field at the pump frequency
but polarized in a direction orthogonal to the original pump. The back-conversion process to the
orthogonally polarized pump is an unseeded, cascaded process. In the absence of this process,
generation of signal and idler would proceed until the pump becomes depleted, at which point
back-conversion of the pump with a 180◦ phase inversion begins. However, in non-birefringent
materials, both pump polarizations are phasematched, and if f3,⊥ , 0, back-conversion of the
field at ω3 polarized orthogonally to the original pump will begin as soon as finite amplitudes
of the signal and idler fields are present. This back-generated field together with the remaining
pump field in the input polarization will manifest as a rotation of the polarization angle of the
pump field.

We examine the effective gain reduction associated with polarization-independent phasematch-
ing in optical parametric amplification and show the close relationship between gain reduction
and polarization rotation. We also look at a plane-wave OPO based on a quasi-phasematched
zincblende crystal. The conversion efficiency and output polarization-orientation angles of the
OPO differ from those quantities of an OPO with fixed polarization angles.

4.1. Optical parametric amplification

In optical parametric amplification, a strong pump at frequency ω3 amplifies a seed signal at ω2
while producing an idler at ω1 (with ω3 = ω1 + ω2). Let us assume that the pump is undepleted
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(E3 = E3,0) and that the idler is unseeded (E1(0) = 0). If ∆k = 0, we find from Eq. (6)

d2E1

dz′2
= iκ1E3,0

(
dE∗2
dz′

f + E∗2

(
∂ f
∂θ1

dθ1
dz′
+
∂ f
∂θ2

dθ2
dz′
+
∂ f
∂θ3

dθ3
dz′

))
= iκ1E3,0

(
dE∗2
dz′

f + E∗2

(
f1,⊥

dθ1
dz′
+ f2,⊥

dθ2
dz′
+ f3,⊥

dθ3
dz′

))
= E1

(
κ1κ2 |E3,0 |2 | f |2 − κ2

1
(E∗2 )

2E2
3,0

E2
1

f 2
1,⊥ − κ1κ2E2

3,0
E∗1 E∗2
E1E2

f 2
2,⊥ − κ1κ3 |E2 |2 f 2

3,⊥

)
. (14)

In the previous section, we argued that if E1(0) = 0, then f1,⊥ = 0 at z′ = 0. We can choose
the polarization angle at ω2 to maximize gain, which implies that ∂ f /∂θ2 = f2,⊥ = 0 at z′ = 0.
In the low-conversion limit, we may approximate that f1,⊥ ≈ 0 and f2,⊥ ≈ 0 over the entire
propagation length. With these simplifying assumptions, the last expression in Eq. (14) becomes

d2E1

dz′2
= E1(κ1κ2 |E3,0 |2 | f |2 − κ1κ3 |E2 |2 f 2

3,⊥). (15)

Using similar arguments for the amplification of the signal at ω2, we find

d2E2

dz′2
= E2(κ1κ2 |E3,0 |2 | f |2 − κ2κ3 |E1 |2 f 2

3,⊥). (16)

In Eqs. (15) and (16), we can identify √κ1κ2 |E3,0 | | f | as the OPA gain coefficient in the absence
of polarization rotation. The second term on the right-hand sides of Eqs. (15) and (16) involving
f3,⊥ are associated with back-conversion to the orthogonally polarized pump, which is manifested
as rotation of the pump polarization from the initial orientation and reduction of the net OPA
gain coefficient. Note that the gain reduction for E1 depends on the magnitude of the input signal
compared to the pump. The reduction in gain for E2 depends on the magnitude of E1 compared
to E3,0; |E1 | is small since we are assuming low-conversion and that the idler is initially unseeded,
so the evolution of E2 will be dominated by the first term in Eq. (16). As the signal and idler
grow with z′, the deviations in gain increase, ultimately violating the assumption of small pump
depletion.

4.2. Optical parametric oscillation

The gain and conversion efficiencies in optical parametric oscillators based on QPM zincblende
materials will also be affected by phasematched back-conversion and evolution of the polarization
angles. To frame the discussion, let us first recall a simple model of a phasematched (∆k = 0),
plane-wave, singly resonant OPO with low loss and low outcoupling, and single polarization
states at the pump, signal and idler [27]. Eq. (6) suggests that the expressions in [27] can to first
order be modified to include polarization-dependent gain by the substitution κi → κi f . Thus, the
gain in an OPO is related to the times above threshold, N , by

N =
(

E3(0)
E3,th(0)

)2
=
κ1κ2 f 2E3(0)2L2

as
=

1
sinc2βL

, (17)

where E3(0) is the pump amplitude at the crystal entrance, E3,th(0) is the pump amplitude at
oscillation threshold, L is the crystal length, as is the round-trip power loss at the signal, and

β =
√
κ1κ3E2 f . (18)

This plane-wave OPO model assumes that variation in E2 with z′ is small, which is appropriate
for steady-state operation of a low-loss, low out-coupling OPO. The pump will be depleted
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Fig. 1. Numerical modeling of a zincblende OPO including polarization rotation for the case
of N = 2, 0.3% output coupling and pump polarization θ3(0) = 45◦ to [110]. The top row
(a)-(c) shows the relative intensities, the second row (d)-(f) shows the polarization angles,
and the last row (g) shows the evolution of the function f as a function of crystal location.

according to

PD =
I3(0) − I3(L)

I3(0)
= sin2 βL, (19)

where PD represents pump depletion. If we assume all of the loss is from outcoupling
(as = 1−R), then the external signal photon conversion efficiency, η′2 = (1−R)ω3I2(L)/(ω2I3(0)),
is η′2 = (βL)2/N = PD. The problem with this model for non-birefringent media is that it does
not account for the existence of polarization diversity in the six-wave interactions. f and β
are not constant inside the OPO. The following numerical example illustrates the polarization
rotation effects.
To examine these issues quantitatively, we compared the model that neglects polarization

rotation effects to numerical modeling of a QPM zincblende OPO pumped at two times above
threshold (N = 2) and where all the losses are from outcoupling. For N = 2, an OPO will have
conversion efficiency predicted by the above equations of η′2 = 96.8%. We performed the OPO
simulation by integrating Eq. (6) over many roundtrips with appropriate boundary conditions
and different initial pump polarization angles. We assumed 100% transmission of the pump and
100% reflection of the signal at the input coupler; 100% transmission of the pump and idler, and
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Fig. 2. Signal photon conversion efficiency, η′2, as a function of pump angle for fixed
times above threshold (N = 2). As comparison, the solid line plots the prediction with the
polarization angles fixed to maximize the gain at threshold.

(1 − R) = 0.3% transmission of the signal at the output coupler. We chose this low outcoupling
for convenient comparison to the analytical low-loss results. The crystal was assumed to be
lossless, and the sample geometry was k̂| |[1̄10], â| |[110] and b̂| |[001]. In the our calculations, we
first calculated the optimal angles (θ1,opt, θ2,opt) that maximized f for a given pump orientation
θ3 and hence the gain at threshold where cascading effects are absent. Eq. (18) allowed us to
estimate E2 for given N and f (θ3, θ1,opt, θ2,opt). These optimal angles would be the polarizations
expected from Eq. (12) if there were no polarization rotation effects. We used the optimal angles
and the estimate for E2 as initial guesses for the OPO, then numerically propagated over many
round trips until steady-state amplitudes and polarization angles were reached. Since E1 = 0 at
the input of the crystal, we assumed the idler takes on the polarization orientation that optimizes
f given the input pump polarization and the signal polarization found from the previous round
trip.
Figure 1 shows results of the numerical modeling with the input pump polarized at 45◦

to [110]. The optimal signal and idler polarization angles that maximize f (and thus the
effective nonlinearity) are θ1,opt = θ2,opt = 31.72◦. The plots show the steady-state intensities
and polarization angles of the OPO as a function of position inside the nonlinear crystal as
well as the evolution of the f function. The simulations in Fig. 1 show that the steady-state
signal polarization angle was 29.593◦ and η′2 = 96.0%. The polarization angle of the pump is
significantly different at the exit of the crystal compared to the input (66.1◦ vs. 45◦), which is an
effect related to back-conversion to the orthogonally polarized pump.
To see the effects at different input pump polarization angles, we ran a family of simulations

with fixed times above threshold. The f (θ3, θ1,opt, θ2,opt) parameter varied with different input
pump polarization angles, and hence from Eq. (17), we had to adjust the input pump intensity
in order to hold N constant. Figure 2 plots external signal conversion efficiency for several
different input pump polarizations with N = 2 in the OPO simulations. We see in Fig. 2 that the
conversion efficiencies are generally reduced. When the pump is polarized along [001] (90◦)
or along [111] (35.3◦), the conversion efficiency match the fixed-angle cases; at these special
orientations, the fi,⊥ functions go to zero and hence the polarization angles do not change. When
the pump angle tends towards 0◦, the conversion efficiencies for the simulations also approach
the fixed-angle result, 96.8%. θ3 = 0◦ corresponds to the interesting case of [110] pumping,
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Fig. 3. Comparison of polarization angles at the output of the OPO if the polarization
rotation effects are neglected (θi,opt, solid line) or included (θi,sim, open circles) for N = 2.
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zincblende OPO with times above threshold, N = 2.

which we discuss in greater detail later.
The output polarization-orientation angles in the OPO differ from optimal angles θi,opt we

expect from simply maximizing f . Fig. 3 shows the output polarization angles if the polarization
rotation effects are included compared to θ1,opt, θ2,opt and θ3,in. Figure 4 shows the deviations of
the simulated output angles relative to the angles expected in the absence of polarization rotation.
For the pump, ∆θ3 is the calculated output pump angle minus the input pump angle, and for the
signal and idler, ∆θi = θi,sim − θi,opt. It should be noted that the θi,opt are not necessarily the
same as the polarization angles at z′/L = 0 because the steady-state OPO incorporates angular
changes of the signal and idler, even at z′/L = 0 (examples of this effect are illustrated in Figs.
1(d) and 1(e)).

Comparing Figs. 2 and 4, we see a correlation between the decrease in OPO conversion
efficiency and the magnitude of pump-angle change, |∆θ3 |. When the pump is polarized along
[001] or [111], the pump, signal and idler polarizations do not rotate away from the expected
angles, and there is no decrease η′2 between the varying- and fixed-angle cases. As the pump
approaches [110] polarization, the signal and idler angles deviate increasingly from θi,opt. At
θ3 = 0◦, θ1,opt = θ2,opt = 45◦, but the OPO simulations instead show that θ1 → 0◦ and θ2 → 90◦.
We also looked at simulation results at different times above threshold, N . These results as a

function of N for three different incident pump polarization angles are presented in Fig. 5. Of
the three cases, the conversion efficiencies were highest for θ3(0) = 90◦ where the polarizations
do not evolve, which was also seen in Fig. 2. Other pump polarization angles show reduced
conversion efficiency, but as shown in Fig. 5(a), the reduction is modest. As N approaches
(π/2)2 = 2.47 where full conversion is expected in a low-loss OPO [27], the pump becomes
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deviation in pump polarization angle for several incident pump polarization angles. (1−R) is
set to 0.003. The signal and idler output polarization angles for (c) 45◦ and (d) 10◦ incident
pump polarization angles.
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strongly depleted and we observe large changes in the pump polarization angles (Fig. 5(b)). The
signal and idler polarization angles also change more at large N (see in Figs. 5(c) and 5(d)). The
magnitudes of the changes in θ1 and θ2 depend on θ3(0).

We also examined the dependence of the zincblende OPO on outcoupling rate, (1 − R), while
still assuming as = 1 − R. Figure 6 plots the dependence of the photon conversion efficiency
and the output pump polarization angle on N for 1 − R = 0.003, 0.12, and 0.5. The incident
pump polarization angle was set to θ3(0) = 10◦ in these simulations. There is a slight increase
in η′2 with increasing outcoupling rate. Larger (1 − R) also produced larger deviations in pump
polarization angles. Interestingly, changing (1− R) did not affect the signal and idler polarization
angles much, with simulation results for θ1 and θ2 almost identical to those shown in Fig. 5(d).
We also looked at cases where OPO loss arose from both outcoupling and absorption loss at at
the signal (that is, as > 1− R) and found the output intensities and polarization angles essentially
depended only on the total round-trip loss and not on whether the loss was from absorption in the
nonlinear medium or occurred at the output coupler.

5. Parametric processes with [110]-polarized pump

Pumping a parametric process in a QPM zincblende crystal with [110]-linearly-polarized light
and k̂| |[1̄10] leads to interesting polarization effects. It has been noted in [10, 11, 16] that if
the pump is exactly polarized along [110], then the gain becomes independent of the signal
polarization, which is the basis for polarization-independent optical parametric amplification [16].
In this section, we examine [110]-polarized pumping in more detail.
Consider a down-conversion process where the pump is polarized along [110] (θ3 = 0◦).

Assuming that f1,⊥ = 0 (which follows from choosing the idler polarization θ1 to maximize gain),
we can solve the second equation in Eq. (12) for θ1 as a function of θ2 and find that

tan θ1 = cot θ2. (20)

Substituting this result for θ1 back in expressions in Eq. (12) for f , f2,⊥ and f3,⊥, we find

| f | = 1,
f2,⊥ = 0,

f3,⊥ =
1
2

sin 2θ2. (21)

Together, Eqs. (20) and (21) show that in [110]-pumped down-conversion, the small-signal gain
(proportional to f 2) is independent of the signal polarization angle θ2. Eq. (20) implies that the
idler will be polarized complementarily to the signal. Furthermore, f2,⊥ = 0 automatically for
this combination of signal and idler polarizations.

Equation (21) indicates that unless the signal polarization, θ2, is 0◦, 90◦, etc., f3,⊥ is non-zero
and therefore the pump polarization will evolve away from [110] during propagation in the crystal.
As θ3 deviates from 0◦, the function f and the gain are no longer independent of θ2. f will
evolve with z′ in cases of significant pump depletion, unless θ2 = 0◦, 90◦, etc. However, in
optical parametric amplifiers where the pump power remains undepleted and much larger than
either the signal or idler powers, the change of pump polarization will be small since |dθ3/dz′ | is
proportional to |E1E2/E3 |. Also, when θ3 is near 0◦, f is only weakly dependent on θ2, so the
gain in down-conversion can be nearly (but not quite) independent of θ2.

The gain in a [110]-pumped down-conversion process is identical when the signal polarization
is along [110] or along [001]. With these polarization angles, fi,⊥ = 0 for all waves (including
the pump), so the angles will remain fixed during propagation in the crystal. Such a device
is of interest for signal-processing functions such as dual-polarization wavelength conversion
since two orthogonally polarized signal waves can be converted with the same efficiencies.
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Identical conversion efficiencies for TE and TM polarizations were demonstrated using AlGaAs
waveguides in [16]. However, signal waves polarized at angles other than θ2 = 0◦ or 90◦ will
experience slightly different gains as f3,⊥ and dθ3/dz′ are no longer zero.

The analysis presented here suggests that a [110]-pumped OPO is equally likely to oscillate with
(θ1, θ2) equal to (0◦, 90◦) or (90◦, 0◦). At these angles, fi,⊥ = 0 so the polarization-orientation
angles do not evolve in the OPO, which explains why the simulated conversion efficiencies near
θ3 = 0◦ in Fig. 2 approach the fixed-angle η2 values. The OPO is less likely to oscillate with other
angular combinations since the net gain is lower due to f3,⊥ , 0. The OPO essentially exhibits
“polarization eigenstates” where it stably oscillates with equal efficiency at (θ1, θ2) = (0◦, 90◦)
and (90◦, 0◦). Since θ2 = 0◦ and 90◦ mix equally well with the [110]-polarized pump, it should
be possible to insert a half-wave plate inside an OPO cavity in a ring configuration (quarter-wave
plate for a standing-wave OPO cavity) that rotates the polarization of the resonating signal wave
by 90◦ on each round trip. The light will make two trips around the cavity to complete one round
trip with amplification occurring on both trips through the crystal.

6. Applications and future work

The nonlinear optical processes described above are just a few examples of the interesting
polarization dynamics arising from χ(2)mixing inQPMzincblende crystals. When all polarization
states are phasematched to require six rather than three coupled-wave equations (described in
Sections 2 and 3), the interactions of the additional three waves have similarities to simultaneously
phasematched processes, such as cascaded sum-frequency generation [21] or other multistep
parametric processes [28]. Most previous work on multistep processes has involved birefringent
crystals such as PPLN or KTP. In these previous treatments of mixing of different polarization
states, the discussions have typically involved multiple phase-mismatch factors or have ignored
interactions of certain polarizations that are far away from phasematching. When mixing
polarization states in a QPM zincblende crystal, the coupling coefficients for different polarization
combinations can be similar inmagnitude because of the highly symmetric nonlinear susceptibility
tensor and the fact that there are no constraints from phasematching on which polarization
states can interact. Hence it may be interesting to investigate nonlinear mixing in QPM
zincblende semiconductors for the effects of all-optical signal processing through polarization
switching [29–31].

7. Conclusion

Quasi-phasematching has allowed efficient nonlinear optical frequency conversion in bulk,
isotropic media such as zincblende semiconductors. In these non-birefringent systems, χ(2)
mixing is described by six rather than three coupled-wave equations since both polarization states
at each of the three frequencies can participate in the interaction. The six coupled-wave equations
can be cast in terms of amplitudes and polarization angles, which are similar in mathematical
structure to the amplitude and phase equations in conventional three-wave mixing [23, 24].
Cascaded conversion into orthogonal polarization states can act like parasitic processes. We show
that these cascaded processes can reduce conversion efficiencies in optical parametric oscillators
and amplifiers based on QPM zincblende materials. Simultaneously phasematched processes
in zincblende semiconductors lead to rich and complicated polarization dynamics with many
opportunities for further exploration.

Appendix. Manley-Rowe relations for general polarization states

The Manley-Rowe relations, dictating the exchange of energy in photon units, must be obeyed
in cubic crystals as in any other case, though proper framing of the relation for isotropic media
requires somewhat more care. If a single vector component of each field is considered at
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each frequency, as is the case in conventional birefringent media, apparent violations of the
Manley-Rowe relations can emerge; both transverse vector components of the field must be
considered in evaluating the effective nonlinear coefficient, and the change in that coefficient as
the polarization states evolve must be taken into account. Care must also be taken when using a
complex basis, e.g. circular polarizations, for describing the polarization states of the fields.

To illustrate these points, we derive the Manley-Rowe relations in a form suitable for isotropic
media, and with possibly complex polarization bases. We define the basis vectors orthogonal to
propagation direction k̂ as [â, b̂], where

â =
∑
i

ai î

b̂ =
∑
i

bi î

â · â∗ = b̂ · b̂∗ = 1
â · b̂∗ = 0. (22)

The unit vectors î represent the Cartesian directions (x̂, ŷ, ẑ), and the ai and bi coefficients may be
complex. Examining Eqs. (10), (8) and (3), it is straightforward to show that the Manley-Rowe
relations require that

(E∗3 · P3 + E3 · P∗3) = (E
∗
2 · P2 + E2 · P∗2) = (E

∗
1 · P1 + E1 · P∗1). (23)

Here, we use Ei and Pi to represent Ei(z′) and P(2)(z′), respectively. With the constitutive
relations given by Eq. (2), Eq. (23) can be shown to require that

E∗3 · (d : Ê1Ê2) = E2 · (d : Ê3Ê∗1)
∗ = E1 · (d : Ê∗2Ê3)∗. (24)

Expanding the fields for the first relation in Eq. (24) using the basis described in Eq. (22), we
obtain∑

i

(E∗3,aa∗i + E∗3,bb∗i )
∑
j,k

di jk(−ω3;ω1, ω2)(E1,aaj + E1,bbj)(E2,aak + E2,bbk)
 =∑

k

{
(E2,aak + E2,bbk)

[∑
i, j

dki j(−ω2;ω3,−ω1)(E3,aai + E3,bbi)(E∗1,aa∗j + E∗1,bb∗j)
]∗}

.(25)

Recalling that d(−ω) = d∗(ω), and in lossless media, d is real and obeys overall permutation
symmetry, it follows that d∗

ki j
(−ω2;ω3,−ω1) = dki j(ω2;−ω3, ω1) = di jk(−ω3;ω1, ω2) and we

see that the equality in Eq. (25) is satisfied. The other equalities required for Eq. (23) can be shown
similarly to hold. It can also be seen how the equalities can fail if only a single component of
each field were considered, and that care must be taken for consistent use of complex polarization
bases.
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