

IDCC | Practice Paper

Navigating Unmountable Media with the Digital Forensics
XML File System

Alex Nelson Alexandra Chassanoff
National Institute of Standards and Massachusetts Institute of Technology

Technology Libraries

Alexandra Holloway
Jet Propulsion Laboratory / California

Institute of Technology

Abstract
Some computer storage is non-navigable by current general-purpose computers. This
could be because of obsolete interface software, or a more specialized storage system
lacking widespread support. These storage systems may contain artifacts of great cul-
tural, historical, or technical signifcance, but implementing compatible interfaces may be
beyond available resources.

We developed the DFXML File System (DFXMLFS) to enable navigation of arbitrary
storage systems that fulfll a minimum feature set of the POSIX fle system standard. Our
approach advocates for a two-step workfow that separates parsing the storage’s fle sys-
tem structures from navigating the storage like a contemporary fle system, including fle
contents. The parse extracts essential fle system metadata, serializing to Digital Forensics
XML for later consumption as a read-only fle system.

Submitted October 19, 2016

Correspondence should be addressed to Alexander Nelson, 100 Bureau Dr., MS 8930, Gaithersburg, MD 20899. Email:
alexander.nelson@nist.gov. Authors after frst listed in alphabetical order.

An earlier version of this paper was presented at CurateGear 2016: Enabling the Curation of Digital Collections.

The International Digital Curation Conference takes place on [TBC] in [TBC]. URL: http://www.dcc.ac.uk/events/
international-digital-curation-conference-idcc

Copyright rests with the authors. This work is released under a Creative Commons Attribution 4.0
International Licence. For details please see http://creativecommons.org/licenses/by/4.0/

1

mailto:alexander.nelson@nist.gov
http://www.dcc.ac.uk/events/international-digital-curation-conference-idcc
http://www.dcc.ac.uk/events/international-digital-curation-conference-idcc
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1

2 | Navigating Unmountable Media with DFXMLFS

Introduction

Since their inception, computer storage systems have had a user interface with a fxed
primitive set, including the named fle that references addresses for fle content. However,
despite this stable conceptual base, accessing fles on antiquated storage systems is not
always possible. Hardware and software age and fall out of support as operating system
design progresses, making some storage uninterpretable. Further, some specialized
storage systems—e.g. game consoles (Nelson, Steggall, and Long, 2014)—decline to
implement widespread support for commercial or consumer operating systems.

We address in this paper the problem of treating the data of an outdated or uncommon
computer storage system like the data of a contemporary fle system. Contemporary
computer operating systems have code to attach (i.e. “mount”) current fle systems to their
storage namespace, enabling users and programs to walk the fle system, and read and
write fles. If a fle system isn’t supported in the operating system, but access to its fles
and their metadata are desired, then software must be developed. Typically, that software
bundles logic to parse the storage with other interfacing software, from custom navigation
shells2 to full original fle system kernel modules. Unfortunately, in these approaches,
functionality can be hindered or prevented due to ongoing maintenance requirements and
lack of implementation resources.

We present a fle system called the Digital Forensics XML File System (“DFXMLFS”),
and an accompanying workfow that normalizes access to storage systems, requiring only
the development of a storage system parser. The key element of our approach is separating
fle system parsing from fle system interfacing. We provide background on why this
approach is possible, historically and technologically. We describe scenarios in which this
practice can be benefcial and critical. Finally, we characterize essential components and
provided examples to assist motivated developers with the broader goal of enabling access
to outdated or uncommon storage systems as economically as possible.

Background

File systems have grown feature sets from a core concept of hierarchical fle organization.
Some examples of integrated features include full-disk encryption (e.g. APFS for
macOS, 2016), data and metadata checksumming (e.g. ZFS for OpenSolaris, 2005), live
system repair (e.g. ZFS), and quota groups (e.g. Btrfs). Yet for the typical computer
user, interaction with the fle system and corresponding user needs have not evolved much
beyond search and access capabilities. The POSIX family of standards from the late 1980s
defned a consistent user interface in terms of command-line functionality, including the
1 Certain products may be identifed in this document, but such identifcation doesn’t imply recommenda-

tion by the US National Institute of Standards and Technology or other agencies of the US Government,
nor does it imply that the products identifed are necessarily the best available for the purpose.

2 Durno (2016) provides many examples of tools with custom fle system interfaces.

IDCC | Practice Paper

http:technologically.We

Alex Nelson et al. | 3

way the user navigates the fle system and the way that the fle system is displayed (IEEE,
1988). Even with the popularization of graphical windowed environments, the feature
set of fle systems—particularly what is visible to the user—has remained largely the
same (Reimer, 2008). Indeed, fle system user interfaces have remained largely the same
in the past 30 years or more (S. Ames, Maltzahn, and Miller, 2008). Users typically
have little knowledge or insight into fle system level features such as journaling or data
de-duplication; even with those advanced features, users may rely on fle listings alone
for organization and access. As we increasingly make and accumulate our own streams
of data on a variety of media, users may wish to examine specifc fle system features
for different purposes and through a variety of methods. Digital archivists and forensic
analysts share some needs for metadata features that have remained stable since near
the beginning of fle systems. For example, an archivist may wish to gather contextual
information about the modifcation, access, and change (MAC) times of a fle system to
ensure provenance (Woods, Lee, and Misra, 2013). A scholar may also wish to recover
a fle that was previously thought to be deleted (Kirschenbaum, Ovenden, Redwine, and
Donahue, 2010).

DFXMLFS is a FUSE (Szeredi, 2006) fle system that leverages DFXML (S.
Garfnkel, 2012) to separate the fle system parsing and interface software. DFXMLFS
is largely possible because of fle systems’ long-lasting interface stability. It presents
a navigable interface to robust fle system metadata while also complying with a broad
common denominator in contemporary storage interface requirements, such as adhering
to the navigating and fle-reading components of the POSIX interface (IEEE, 1988). The
end result is the ability to navigate any hierarchical storage medium that has previously
implemented the POSIX interface, even if the medium’s last living interface software
lost support decades ago. Critically, the work required for this functionality restoration
is signifcantly less per fle system type, in comparison with updating an original
implementation most likely tied to an also-obsolesced operating system. It joins two
technologies to enable storage system access and demonstrates the benefts of adopting an
in-common practice, following an in-common language specifcation.

FUSE

Filesystem in Userspace (FUSE) (Szeredi, 2006) is a library that offers an alternative
system for developing fle systems. FUSE moves fle system development from im-
plementing a kernel module to instead writing userspace functions. This has aided the
prototyping of many fle system designs that were either experimental or more ft for
userspace operations. The related work section will discuss some example alternatives to
traditional hierarchical fle navigation.

DFXML

Digital Forensics XML (DFXML) provides a plaintext language for viewing fle system
artifacts. DFXML stores storage-forensic tool output, enabling capture and representation
of fle system metadata to ensure provenance, authenticity, and integrity of storage media

IDCC | Practice Paper

4 | Navigating Unmountable Media with DFXMLFS

(Woods, Chassanoff, and Lee, 2013). One objective behind its development was to
automate some components of storage analysis that could frequently be done without
access to the disk image (S. L. Garfnkel, 2009; S. Garfnkel, 2012). For instance, timeline
analysis and fle signature recognition only need limited metadata from the storage system
(fle timestamps and content checksums), and only once.

DFXML is a suffcient manifest to enact full storage navigation and fle extraction
without needing to re-parse on-disk structures after the XML is generated. DFXML
provides a vocabulary that supports the data necessary to create an in-memory fle system
tree, including fle properties like name, path, size, times, data addresses, and checksums.

This is not the full extent of fle properties that DFXML can capture, but it is suffcient
for most fle system navigation and content viewing needs. The Digital Forensics XML
schema3 provides full documentation on the structure and other metadata felds in a
DFXML fle.

Related Work

FUSE & Alternate Approaches to Navigating Files

Some projects have taken an attribute-based approach to navigating fles, including
hierarchies like metadata query construction. For example, a virtual directory entitled
“mp3” could flter an audio fle collection down to MP3s, and another directory under that
titled “bitrate_320kbps” further flters to select a certain bit rate. Folder hierarchies
can also be used to organize parameterized experiment results, using directories to note
parameter values used (Strong, Jones, Parker-Wood, Holloway, and Long, 2011). This
approach to navigating fle sets by attributes carries several challenges in metadata
identifcation and indexing (A. Ames et al., 2005; Parker-Wood, Long, Miller, Rigaux,
and Isaacson, 2014), but can offer a useful alternative to fxed directory hierarchies when
considering fles with rich and consistent metadata.

It is possible to use FUSE as more of an intermediary layer to access another fle
system. The SSH File System (SSHFS) acts in the same way an NFS client does,
“mounting” a remote system’s directory locally, but only requiring SSH access instead of
an NFS server process to be actively exporting a share.

Normalizing Storage System Interfaces

Recovery of computer storage contents has several different levels of challenges. One
challenge Nelson et al. (2014) identifed in inspection of an uncommon fle system
was that several of the analysis tools employed for analyzing fle systems were designed
assuming that the input disk image was expected to be an image of the disk partition
containing the fle system. Unfortunately, storage analysis in forensic and curation
processes typically begin with images of entire disks, which have a partition management

https://github.com/dfxml-working-group/dfxml_schema/blob/master/dfxml.xsd

IDCC | Practice Paper

3

https://github.com/dfxml-working-group/dfxml_schema/blob/master/dfxml.xsd

Alex Nelson et al. | 5

format that further points to disk partitions. The game console fle system Nelson et al.
inspected also had a custom partition management system. They applied a subset of the
same practice as suggested in this paper, but for the purpose of accessing fle systems: a
forensic tool would inspect the partition management system, and then present a FUSE-
based fle system, UPartsFS, that offered each disk partition as its own virtual fle. This
relieves fle system analysis tools from needing additional logic to handle partitioning
systems as well.

The present implementation of UPartsFS relies on a version of The SleuthKit (Carrier,
2003) modifed to analyze this uncommon storage. UPartsFS could be modifed to use an
XML representation of partition tables, which would remove its reliance on a customized
version of another tool’s code base. Then other tools can be used to recognize disk images,
and output appropriate partition type and size metadata (e.g. as DFXML). Switching to
an XML representation for partition data would help integrate research from fle type
identifcation (Underwood, 2013).

Current Access Strategies

DFXMLFS offers one strategy to enable access to an uncommon storage medium that is
unsupported by current operating systems. There are several other strategies also available
today, listed in Table 1 in mostly decreasing order of implementation diffculty.

DFXMLFS provides an alternative option, requiring a smaller base of programming
experience. A forensic tool can be developed from scratch (or adapted from available-
source options) to parse a storage system and serialize the storage data structures as a
metadata manifest in DFXML, instead of implementing a user interface. DFXMLFS then
handles joining the tool’s output with a kernel’s fle system interface, enabling standard
fle-listing and directory-walking interactions by mounting the DFXML fle like any
read-only medium. If data addresses or fle extraction commands are included in the
XML, the original disk image can also be provided alongside the DFXML to enable
read-only fle extraction. However, only some DFXML generation strategies can yield
that level of supporting metadata.

DFXMLFS Usage Workfow

The objective of DFXMLFS is to normalize navigation of arbitrary hierarchical fle
systems. DFXMLFS usage follows a parse–serialize–transport–deserialize workfow.
Our workfow serializes fle systems to DFXML as an intermediary, text-based format,
and uses the FUSE framework to deserialize that text into a modern-acting fle system in
a later process—even on a separate system. The DFXMLFS program—the implemented
FUSE interface—handles deserialization and user presentation. Usage of DFXMLFS is
still a “Workfow,” because DFXMLFS does not come built in with a universal parser
for all fle systems. Each fle system requires special-case handling, in many cases by
whomever fnds themselves with an uncommon storage system in hand. What is required

IDCC | Practice Paper

6 | Navigating Unmountable Media with DFXMLFS
Table 1. Strategies

to
enable fle

system
interaction

foruncom
m

on
storage

m
edia.

Strategy
Pros

C
ons

Preserve in situ ac-
cess,

using
original

hardw
are

• Provides the original experience
• E

ntails m
aintaining the original devices

• T
here m

ay be issues w
ith exporting data (e.g. no fle

system
 interface in gam

e
consoles)

V
irtualize or em

ulate
the original system

• O

ffers nearly original-device experience
• C

an be provided as-a-Service (W
oods,

L
ee,

Stobbe, L
iebetraut, and R

echert, 2015)

• R
equires extensive know

ledge of original hardw
are

• E
fforts taken on one system

 don’t necessarily general-
ize

Im
plem

ent
or

m
od-

ernize a kernel m
od-

ule

• A
llow

s a current host system
 using the chosen

kernel to m
ount the storage device as norm

al
• R

equires selecting a set of kernels to support
• R

equires w
orking know

ledge of the internals of the
kernels chosen to receive developm

ent efforts
• Suffers from

 effort fragm
entation—

kernel m
odules

not guaranteed to be portable (e.g. B
SD

vs. L
inux)

• R
un-tim

e parsing faults cause bad brow
sing-user ex-

perience

Im
plem

ent
a

FU
SE

fle system

• Provides m

ostly sam
e

user experience as kernel
m

odule
• R

em
oves kernel developm

ent know
ledge re-

quirem
ent

• R
un-tim

e parsing faults cause bad brow
sing-user ex-

perience

E
xtend, or design and

im
plem

ent, an inde-
pendent forensic tool

• Tool can be w
ritten in the style of the im

ple-
m

enter’s choice
• Parsing faults seen by analyst, not necessarily

brow
sing user

• D
evelopm

ent freedom
 com

es w
ith the need for a user

interface (e.g.
custom

 com
m

and-line shell, custom

G
U

I)
• N

on-standard storage interactions lead to fragm
ented

user experiences

IDCC | Practice Paper

Alex Nelson et al. | 7

Disk Imaging

Curation

Build XML tree
File system

parsing

In-memory representation

Extract essential
file system
metadataRepresent on-disk

data structures as
inodes and dirents

Serialize

User interfaceXML conversion

Display
browsable disk

structure to userRepresent XML as
inodes and dirents

Parse Deserialize

Figure 1. DFXML-based workfow: The disk image is parsed for the metadata in its inodes and
dirents. These are serialized into an XML tree with essential fle system metadata, and
the result is later deserialized for user interaction. XML conversion and time-separated
deserialization for display to the user are the core contribution of DFXMLFS.

most of that analyst is locating or developing the frst of the workfow steps: A parser.

Storage parsing

A fle system parser is a program that populates data structures of a fle system API—
nominally, the POSIX Virtual File System interface. At other points in this paper, instead
of fle systems, storage systems are referenced. A storage system is meant to entail some
storage device or image that contains one or more fle systems, organized by a partition
system. A storage system parser has the additional step of parsing partition systems before
parsing fle systems.

A fle system parse will typically result in fnding at least the following information:

• File size

• Timestamps, such as last modifcation, last metadata change, last access, and
creation

• File path from the root of the fle system

Normally, the kernel would also want some type of list of on-disk addresses of data
blocks that store fle and directory contents. However, this is not strictly necessary. A run-
ning fle system process only needs to be able to respond sanely to a read(dest_buffer,
offset, length, file_handle) system call, which only requires bytes yielded from
a byte stream.

Serialization

Navigating serialized metadata may be best illustrated by observing directory listing
information. For example, Figure 2 shows a recursive directory listing in a modern,
POSIX-based fle system. It is possible to construct a navigable fle system from this
information: the listing shows there are two directories with four named fles, and their
modifcation times. However, this text listing is not suffcient to view the fle contents. To
meet that objective, we turn to DFXML to represent usual fle metadata users see, as in ls
output, and data location metadata as well.

IDCC | Practice Paper

http:contents.To

8 | Navigating Unmountable Media with DFXMLFS

$ ls -lR .
.:
-rw-r--r-- 1 alex alex 377 Sep 13 11:09 Makefile
-rw-r--r-- 1 alex alex 244619 Sep 13 14:54 dfxmlfs.pdf
-rw-r--r-- 1 alex alex 1164 Sep 13 11:09 dfxmlfs.tex
drwxr-xr-x 3 alex alex 102 Sep 9 16:16 figures

./figures:
-rw-r--r-- 1 alex alex 72823 Sep 9 15:53 image001.png

Figure 2. A recursive directory listing.

<fileobject>
<filename>figures/image001.png</filename>
<filesize>72823</filesize>
<mtime>2016-09-09T19:53:42Z</mtime>
<ctime>2016-09-09T20:16:16Z</ctime>
<atime>2017-01-21T21:32:23Z</atime>
<crtime>2016-09-09T19:53:42Z</crtime>
<byte_runs>

<byte_run
img_offset="42949672960"
fs_offset="41875931136"
file_offset="0"
len="72823" />

</byte_runs>
<hashdigest type="md5">fc9a9233...</hashdigest>
<hashdigest type="sha1">86e2663c...</hashdigest>

</fileobject>

Figure 3. DFXML of image001.png from Figure 2. This illustrates output of a tool that provides
data addresses. (Some content has been trimmed for print.)

IDCC | Practice Paper

Alex Nelson et al. | 9

A DFXML document provides a stream of fileobject elements, optionally within
volume elements for disk partitions. Figure 3 shows an excerpt of DFXML that would
represent the graphic fle from Figure 2.

Deployment

DFXMLFS is implemented and currently available. What is left to the interested digital
curator or storage analyst is parsing and serializing the storage, either by fnding a DFXML
generator or developing one. A later section describes available generators, which can
serve as working examples if code meeting the analysis objective is not available. First,
we describe the implementation of DFXMLFS, so the user may understand what is needed
to enable normal storage interaction.

DFXMLFS Implementation

DFXMLFS joins two technologies that have focused on simplifying fle system design
and analytics, in order to implement read() and other calls that comprise a fle system
interface. DFXML’s Python support includes a library of Objects4, which read and write
XML documents and provide an object-oriented programming interface. DFXMLFS
implements fle system functions in the Python FUSE bindings (Szeredi, Henk, Delafond,
James, and Epler, 2004) that are suffcient to expose a read-only fle system to the user.

Figure 2 showed that with inode data extractable with the stat command, one can
populate all but fle contents for an entire directory hierarchy. This information is often
exposed by tools that implement a navigation shell. The more diffcult challenge is in
presenting fle content. A DFXML generator has to provide one of two things:

1. byte_runs elements for each fle’s content.

2. A command to use a tool to extract fle content into a cache, to which the FUSE
bindings can pass reading operations with regular system calls.

There is a trade-off in the choice made for fle extraction strategy. If individual
extraction commands are embedded in the DFXML fle, then fle viewing is dependent
on the original parsing tool being (1) present at navigation time, and (2) stateless in its
execution.

For contrast, one example of a stateful parser is the uxtaf tool (Ladan, 2007), a parser
and navigation shell for XBox 360™ disk partitions. It maintains an “environment” fle
that tracks, among other things, the current working directory of its custom shell between
shell calls (e.g. the fle records the new current working directory on calling “cd”).
Simultaneous calls to extract fles from separate directories are not supported by such a
model, meaning DFXMLFS would need to support a global read lock, to be acquired
when a fle is read. Another stateful parser, hfsutils (Leslie, 1996), uses a single state
fle in the user’s home directory, making simultaneous access of multiple disks impossible.

https://github.com/simsong/dfxml/blob/master/python/Objects.py

IDCC | Practice Paper

4

https://github.com/simsong/dfxml/blob/master/python/Objects.py

10 | Navigating Unmountable Media with DFXMLFS

Alternatively, implementing byte_runs elements to report fle content locations
makes later fle viewing independent of the parsing tool. byte_runs elements also make
the tool’s results more comparable with fle system differential analysis (Nelson et al.,
2014). However, they require a fairly complete understanding of a fle system’s on-disk
data structures, and if the DFXML generator is a tool extension, extensive understanding
of the tool internals.

For the purposes of DFXMLFS, the objective level of DFXML generation is to report
byte runs, but this is near the end of a simplifed spectrum of “Feature completeness” of a
generator. This is an approximate order of levels of completion for a generator:

1. Identifying directories and fles.

2. Identifying directory and fle timestamps.

3. Reporting fle checksums for fxity.

4. Reporting byte runs.

5. Reporting other non-essential metadata.

These were chosen as generator development milestones due to the various types of
approaches that can be taken for implementation (with examples of each approach given
in a later section). All but the last can be used to fulfll “essential” metadata roles a full
fle system implementation must typically fulfll (especially inode data and data block
pointers).

Figure 4 shows a working example of DFXMLFS, mounting the results of a tool
that generates byte_runs elements, hfs2dfxml (Dietrich, 2015). Because the data block
references are encoded in the XML, this textual representation of Apple HFS fle systems
can be mounted on a system without any HFS parsers present, including the hfsutils suite
that originally generated the XML.

Versus fle-set approaches
Another alternative to using DFXML or DFXMLFS is to simply provide as parser

output the set of all fles the tool could fnd, perhaps packaged as a compressed archive.
As an alternative to providing a simple fle set, the DFXMLFS approach offers some
advantages, including:

• Some timestamps, aside from modifcation time, cannot be preserved in an extracted
fle set. It could be important to an analysis to know what the original creation time
of a fle was, but that cannot be re-created for an extracted fle, because the host
operating system will overwrite that timestamp with the time of extraction—when
the fle was “created” on the host fle system (Grier, 2011).

• A storage system that violates name uniqueness could cause fles in an extracted set
to be overwritten. DFXML provides a fle metadata manifest that can detect name
duplication.

IDCC | Practice Paper

Alex Nelson et al. | 11

Figure 4. Screenshot of DFXMLFS mounting an HFS disk image with a supporting DFXML doc-
ument. No HFS utility is used to mount the disk, but fle content and metadata are
available to the graphical fle navigator—note there is suffcient information to populate
a thumbnail from recognized fle contents, and to report fle size.

• DFXML can be used to compare tool results at a fner metadata granularity than
extracted fles (Nelson et al., 2014), in part because some felds are diffcult
to preserve when extracted to a new host fle system (e.g. rarely-implemented
time stamps and extended metadata attributes that may not be supported in the
content-presenting operating system).

• A polyglot storage system, such as a CD-ROM that presents two fle systems for
multiple operating systems while sharing data pointers (e.g. PC-Mac hybrid games
from the late 1990’s), would be more cumbersome to report as a fle set without use
of hard links.

Deleted content offers a presentation-time challenge for both the fle-set and DFXML
approaches. DFXML provides deletion-analysis capabilities that a fle-extracting tool
could duplicate with a class of messages in its extraction log, but this induces another
interface design to inspect the deleted content. If the end user wishes to see deleted
content, both approaches would need to resolve issues with naming the deleted fles in a
way to avoid conficts. A run-time option on DFXMLFS may offer more fexibility to the
end user than having to rename fles from a compressed archive.

IDCC | Practice Paper

12 | Navigating Unmountable Media with DFXMLFS

Potential Applications of the Framework

There are several usage scenarios that beneft from separating storage system parsing from
navigation.

Viewing fle contents of obsolete storage

Digital curation is a practice that is likely to encounter storage systems that are no longer
supported by current operating systems. For example, there are collections by artists
who used early versions of Adobe Photoshop™ on Macintosh™ computers that only
used the HFS fle system (Dietrich and Adelstein, 2015). There are several challenges in
curation at different levels of computing practice: Given the device, reading the bytes;
given the bytes, parsing the fle system; and given the fles, viewing or migrating their
content. The problem of interacting with bygone user-level applications is out of scope of
this paper, but is handled by some others with software emulation (Woods, Lee, Stobbe,
Liebetraut, and Rechert, 2015). The DFXMLFS approach leans closer to data annotation
and migration.

Some curation exhibits only partially present computer storage contents to patrons (or
students). One might not necessarily want to release fle contents—e.g. fle contents may
require sanitization for privacy purposes—but it could be permissible for an exhibit to
exhaustively list metadata. In this case, or if media are unavailable or yet un-processed,
the XML can be mounted and a user can navigate the hierarchy, noting fle names, and
then requesting fles that are key to their interests. DFXML could also be used to highlight
subsets of a fle system for other reasons, such as by showing fles added or changed since
a prior known state of the same disk, found by differential analysis (S. Garfnkel, Nelson,
and Young, 2012).

Low-bandwidth retrieval planning

For applications in which the communication bandwidth is extremely limited, obtaining
all of the fle contents of a storage device may be impractical or impossible, while
metadata may be tenable. An example of such a domain is obtaining fles from a device
on another planet.

The communication path from Earth to the Mars Science Laboratory (Curiosity) has
a portion that can only transmit in the hundreds of bits per second (Brat, Rungta, and
Venet, 2013). The decision process on which of up to 300,000 rover fles called “data
products” to transmit back from the rover requires a prioritization queue system on the
rover itself. Data products will have predetermined priorities at creation time, which can
be changed by sending commands to the spacecraft. However, due to the relative positions
of Earth, Mars, the rover, the orbiters, and the difference in time between an Earth day
and a Martian day, human-in-the-loop planning and telecommunication asset scheduling
sees latency of a full day or more.

A full manifest of data products may be requested from the rover in order for operators

IDCC | Practice Paper

Alex Nelson et al. | 13

to determine the state of on-board memory. Moreover, a delta-manifest may be requested
more frequently for correlating changes in memory state, e.g., when items are created,
deleted, or marked sent. These deltas are incorporated into a database consisting of all
Earth knowledge of data products onboard the rover. Thus, the metadata for the rover’s
data products is most often viewed as results of a database query.

Another way that manifest or delta-manifest of data products can be navigated is as
a fle system. A generator can construct DFXML from the rover’s delta-manifest, or a
combination of these manifests, illustrating fle system changes over time. DFXMLFS
could then render the re-formatted manifest to a fle browser, enabling operators and
scientists to browse the data product manifest in a similar experience to walking the
rover’s fle system. Some operations staff may beneft from the alternative usability
experience of browsing, searching, fltering, and making sense of the fle system contents,
using this view to update the data product delivery priority queue.

Contemporary, but uncommon, storage

Some storage systems are not intended for general use. For example, the XBox™ and
XBox 360™ game consoles used a custom variant of the FAT fle system not used in
any other computing systems (Nelson et al., 2014). That fle system behaved much like
FAT, but used custom data structures and a hard-coded partition management system,
both of which required reverse engineering. The fle system received a partial kernel
implementation for FreeBSD (Ladan, 2007), but otherwise was mostly accessed by either
game consoles or forensic tools. DFXMLFS normalizes access to such specialized storage
systems, albeit in a read-only fashion.

Parsing security

A forensic tool can pre-process a disk image to make the XML fle, and then the XML
is what is presented to the kernel Virtual File System layer. The original disk image is
not presented to the VFS or kernel space. This provides a signifcant security beneft: if
a storage system contains malicious constructs intended to attack vulnerable kernel code,
a userspace program would not present the same attack surface. Additionally, if multiple
parsers are used, an anti-forensic technique that attempts to evade an expected adversary’s
parser may fail against alternate tools, and even highlight payload data with fle system
differencing.

Presentation security

Content scrubbing and redaction is part of some digital archivist workfows. If an exhibit
doesn’t intend to extract fles from a disk image (e.g. because of wanting to preserve
resource forks in an HFS image), a disk image can have sectors “white-listed,” using the
byte run information to blank out everything but sectors essential for fle contents, an
example of partial disk imaging (Grier and Richard, 2015). In contrast, DFXML has been
used by others to blacklist fles (Woods et al., 2011; Woods et al., 2015).

IDCC | Practice Paper

14 | Navigating Unmountable Media with DFXMLFS

DFXML Generator Examples

There are several available open source DFXML generators. They demonstrate different
approaches to parsing storage and normalizing the storage state, yielding different levels
of completeness of essential fle system metadata. On the sparser end of the spectrum,
only directory and fle names are reported—e.g. as derivable from a fle manifest listing
one fle path per line. On the more complete end of the spectrum, content addresses
are included for fles, meaning no forensic tools need be required on the navigating
computers. The order of the approaches here roughly decreases in effort required to
generate DFXML, while simultaneously increasing dependence on a storage parsing tool
to be present to let DFXMLFS provide fle contents.

Forensic tool APIs

Some forensic tools provide scripting or library support for using their parsing engine.
The original DFXML paper (S. L. Garfnkel, 2009) introduced the tool Fiwalk as an
extension to The SleuthKit, employing The Sleuthkit’s internal bindings to direct storage
parsing and report the results as XML.

For digital forensic storage analysis tools that provide programmatic access to their
parsing engines, it should be possible to produce DFXML given training or familiarity
with the exposed APIs. For instance, the forensic tool EnCase provides a scripting engine
with its own custom language. One user wrote a script in this language to use EnCase’s
API to generate DFXML (Bourdon-Richard, 2014), including byte_runs elements.

Forensic tool injection and extension

With some forensic tools, an API may not be provided for external code linking, yet it
may be possible to extend software in any case. Nelson et al. (2014) extended two fle
system parsers5 to generate DFXML, by inserting generating functions and data structure
support into the code bases.

If taking this approach, much can be learned from tool behaviors with debug print
statements, such as what a tool believes are the addresses of directory tree data structures
to name fle references. Later, the logic making those debug print statements can be
re-purposed to make DFXML instead—suffciently complete to let DFXMLFS read the
disk’s fles without the (possibly customized) tool on the browsing system. However, care
should be taken with this approach to not negatively affect the parsing routines as code is
inserted.

The modifed versions of the two parsers, uxtaf and py360, can be found at: https://users.soe.ucsc.edu/
~ajnelson/research/nelson_dfrws14/.

IDCC | Practice Paper

5

https://users.soe.ucsc.edu/~ajnelson/research/nelson_dfrws14/
https://users.soe.ucsc.edu/~ajnelson/research/nelson_dfrws14/

Alex Nelson et al. | 15

Forensic tool output parsing

Some storage forensic tools offer custom command-line navigation interfaces, producing
output for every fle. This kind of tool output can be parsed, converting un- or semi-
structured text output into DFXML, but requires implementing a custom “shell script” for
what is a custom shell provided by the program. For instance, hfs2dfxml (Dietrich, 2015)
scripts calls to the stateful shell provided by hfsutils (Leslie, 1996), parsing the text output
with regular expressions.

This DFXML-generating approach may be a preferable alternative to modifying tool
source code in some situations. However, if the tool does not provide addresses of data in
any of its shell commands, then DFXMLFS cannot provide fle contents.

Userspace consumers

Some DFXML generators do not perform any storage parsing, and instead consume
storage state as the operating system presents it to the user. The Python script
walk_to_dfxml.py takes the data of the stat structure and formats it into DFXML
with the Objects.py library. walk_to_dfxml.py also generates hashes by reading fle
contents, but has no access to block pointers, and thus cannot create byte_runs elements.
Similarly, the hashdeep (Kornblum, 2008) family of tools written in C++ produces hashes
for sets of fles, relying on the kernel to handle storage parsing.

DFXML generated in this style, relying on the operating system to present storage
contents, can be used to verify later that fle contents are extracted consistently. However,
beyond providing inode numbers and checksums, DFXML generated this way cannot
further assist with fle extraction if the storage parsing interface becomes absent. Such
a DFXML fle can be mounted and navigated, but attempts to read would receive
“Not-implemented” error messages.

Future Work

A library in the DFXML code base, Extractor.py, facilitates serving fle contents
using shell calls instead of byte runs. However, at the moment it is hard-coded to use
The SleuthKit commands. Future development of Extractor.py, and an extension to the
DFXML language, can standardize a <fileobject> child element that stores a fle-
reading script. It is likely this kind of an interface, instead of byte runs, will be necessary
in many cases for some fle systems because of features like transparent compression
and encryption. Other forensic languages or frameworks, such as Hansken (van Beek
et al., 2015), include a notion of a forensic derivation chain similar to the forensic path of
bulk_extractor (S. Garfnkel, 2013), where one can specify that a fle must be decrypted,
uncompressed, XOR’d, and have any other transformations applied. This type of recursive
processing functionality does not presently exist in the DFXML libraries.

Another beneft comes from DFXMLFS separating storage parsing from interfacing.

IDCC | Practice Paper

http:Extractor.py
http:Extractor.py
http:walk_to_dfxml.py
http:Objects.py
http:walk_to_dfxml.py

16 | Navigating Unmountable Media with DFXMLFS

DFXML created for one subject image and multiple independently-developed tools can
have its contents verifed, or fagged for further scrutiny, from differential analysis. One
fle system has received a DFXML-based storage meta-analysis. If forensic fle sytem
parser users contribute DFXML generators for their own subject media, storage forensic
analysis as a whole benefts from getting cross-examinable results.

Conclusion

The DFXML File System enables access to storage system contents without requiring one
to have knowledge of implementing an operational fle system, in kernel space or user
space. It reduces the challenge of bridging the end user to an uncommon storage device;
instead, our workfow calls for a simple parse of on-storage contents and the generation of
a text fle. A digital curator, and ultimately an end-user, should not require kernel-level fle
system implementation training to simply view the contents of antique or uncommon fle
systems. The creation of DFXML generators for non-contemporary fle systems lowers
the barrier to the curation and forensic communities to read their own instances of those
storage formats.

Following the DFXMLFS workfow, only fle system on-disk data structure knowledge
is needed to navigate contents of an uncommon storage medium. DFXMLFS reduces
the knowledge required to the more specialized and localized topic of the medium’s
fle systems, and the parsing can be done with analysis tools of varying implementation
quality, from lightly-tested, experimental code that re-formats debugging print statements
or current tool output, to full-fedged kernel modules. Formatting storage media contents
into DFXML lets those contents be navigated like in their original setting, but separated
in time and even space from the parsing process.

The forensic and curation communities beneft from having several generators
available for any one fle system type. Taken together, independent implementations
of storage parsers improve understanding of individual storage systems, different fle
systems’ specifcations, and of the practice of storage parser testing. These are all benefts
of decoupling parsing and navigation, and further of using an in-common representation
of fle systems that differ vastly in on-disk organization. If an archivist or investigator
is faced with a storage system their current operating system cannot mount, DFXMLFS
presents a lighter coding path to reading the storage like any other fle system of today.

Resource Availability

DFXMLFS is available on Github at https://github.com/ajnelson-nist/dfxmlfs.

Acknowledgements

Portions of this work were performed by the Jet Propulsion Laboratory, California Institute
of Technology, under contract with the National Aeronautics and Space Administration.

IDCC | Practice Paper

https://github.com/ajnelson-nist/dfxmlfs

Alex Nelson et al. | 17

Some materials in this paper previously appeared in a presentation at CurateGear,
2016 (Nelson, 2016).

Thanks to Simson Garfnkel, Kevin Fairbanks, and members of the BitCurator Access
Advisory Board for fruitful discussion. Thanks to Dianne Dietrich for hfsutils notes.

References

Ames, A., Bobb, N., Brandt, S. A., Hiatt, A., Maltzahn, C., Miller, E. L., . . . Tuteja, D.
(2005, April). Richer fle system metadata using links and attributes. In Proceedings
of the 22nd IEEE / 13th NASA Goddard Conference on Mass Storage Systems and
Technologies. Monterey, CA.

Ames, S., Maltzahn, C., & Miller, E. L. (2008, October). Quasar: a scalable naming
language for very large fle collections (tech. rep. No. UCSC-SSRC-08-04).
University of California, Santa Cruz.

Bourdon-Richard, S. (2014). Generate DFXML with EnCase. Retrieved January 11, 2017,
from https://github.com/Sebastienbr/DFXML-EnCase

Brat, G., Rungta, N., & Venet, A. (2013, May). Proceedings of nasa formal methods, 5th
international symposium (nfm 2013). Moffett Field, CA, USA: Springer.

Carrier, B. (2003). The SleuthKit. Retrieved October 8, 2016, from http://sleuthkit.org/

Dietrich, D. (2015). Hfs2dfxml. Retrieved January 11, 2017, from https://github.com/cul
-it/hfs2dfxml/

Dietrich, D. & Adelstein, F. (2015, August). Archival science, digital forensics, and new
media art. In Proceedings of the 15th Annual Digital Forensic Research Workshop
(DFRWS USA). Philadelphia, PA.

Durno, J. (2016, October). Digital archaeology and/or forensics: working with foppy
disks from the 1980s. Retrieved from http://journal.code4lib.org/articles/11986

Garfnkel, S. (2012, February). Digital Forensics XML and the DFXML toolset. Digital
Investigation, 8(3–4), 161–174.

Garfnkel, S. (2013, February). Digital media triage with bulk data analysis and
bulk_extractor. Computers & Security, 32, 57–72.

Garfnkel, S. L. (2009). Automating disk forensic processing with SleuthKit, XML and
Python. In Fourth International IEEE Workshop on Systematic Approaches to
Digital Forensic Engineering (SADFE ’09) (pp. 73–84).

IDCC | Practice Paper

https://github.com/Sebastienbr/DFXML-EnCase
http://sleuthkit.org/
https://github.com/cul-it/hfs2dfxml/
https://github.com/cul-it/hfs2dfxml/
http://journal.code4lib.org/articles/11986

18 | Navigating Unmountable Media with DFXMLFS

Garfnkel, S., Nelson, A. J., & Young, J. (2012, August). A general strategy for differential
forensic analysis. In Proceedings of the 12th Annual Digital Forensic Research
Workshop (DFRWS).

Grier, J. (2011, August). Detecting data theft using stochastic forensics. In Proceedings of
the 11th Annual Digital Forensic Research Workshop (DFRWS). New Orleans, LA.

Grier, J. & Richard, G. G. (2015, August). Rapid forensic imaging of large disks with
sifting collectors. In Proceedings of the 15th Annual Digital Forensic Research
Workshop (DFRWS USA). Philadelphia, PA.

IEEE. (1988). IEEE Standard Portable Operating System Interface for Computer Environ-
ments. IEEE Std. 1003.1-1988. Retrieved from https://standards.ieee.org/fndstds/
standard/1003.1-1988.html

Kirschenbaum, M. G., Ovenden, R., Redwine, G., & Donahue, R. (2010). Digital forensics
and born-digital content in cultural heritage collections. Council on Library and
Information Resources.

Kornblum, J. (2008). Hashdeep. Retrieved January 11, 2017, from https://github .com/
jessek/hashdeep

Ladan, R. (2007). xbox360. Retrieved September 13, 2016, from https://github .com/
rene0/xbox360

Leslie, R. (1996). Hfs utilities. Retrieved January 21, 2017, from https://www.mars.org/
home/rob/proj/hfs/

Nelson, A. J. (2016, January). Navigating unmountable media with the Digital Forensics
XML File System. Presentation at CurateGear 2016. Retrieved from https://ils.unc
.edu/digccurr/curategear2016-talks/nelson-curategear2016.pdf

Nelson, A. J., Steggall, E. Q., & Long, D. D. E. (2014, August). Cooperative mode:
comparative storage metadata verifcation applied to the Xbox 360. In Proceedings
of the 14th Annual Digital Forensic Research Workshop (DFRWS USA). Denver,
Colorado.

Parker-Wood, A., Long, D. D. E., Miller, E. L., Rigaux, P., & Isaacson, A. (2014, June). A
fle by any other name: managing fle names with metadata. In Proceedings of the
7th Annual International Systems and Storage Conference (SYSTOR 2014).

Reimer, J. (2008, March). From BFS to ZFS: past, present, and future of fle systems.
Retrieved January 11, 2017, from http://arstechnica .com/gadgets/2008/03/past
-present-future-fle-systems/

Strong, C., Jones, S., Parker-Wood, A., Holloway, A., & Long, D. D. E. (2011, September).
Los Alamos National Laboratory interviews (tech. rep. No. UCSC-SSRC-11-06).
University of California, Santa Cruz.

IDCC | Practice Paper

https://standards.ieee.org/findstds/standard/1003.1-1988.html
https://standards.ieee.org/findstds/standard/1003.1-1988.html
https://github.com/jessek/hashdeep
https://github.com/jessek/hashdeep
https://github.com/rene0/xbox360
https://github.com/rene0/xbox360
https://www.mars.org/home/rob/proj/hfs/
https://www.mars.org/home/rob/proj/hfs/
https://ils.unc.edu/digccurr/curategear2016-talks/nelson-curategear2016.pdf
https://ils.unc.edu/digccurr/curategear2016-talks/nelson-curategear2016.pdf
http://arstechnica.com/gadgets/2008/03/past-present-future-file-systems/
http://arstechnica.com/gadgets/2008/03/past-present-future-file-systems/

Alex Nelson et al. | 19

Szeredi, M. (2006). Filesystem in Userspace. Retrieved September 21, 2016, from
https://github.com/libfuse/libfuse

Szeredi, M., Henk, C., Delafond, S., James, S., & Epler, J. (2004). Python-fuse. Retrieved
January 21, 2017, from https://github.com/libfuse/python-fuse

Underwood, B. (2013, January). Tools for fle format identifcation, validation and
characterization. Presentation at CurateGear 2013. Retrieved from https://ils.unc
.edu/digccurr/curategear2013-talks/underwood-curategear2013.pdf

van Beek, H., van Eijk, E., van Baar, R., Ugen, M., Bodde, J., & Siemelink, A. (2015).
Digital forensics as a service: Game on. Digital Investigation, 15, 20–38. Special
Issue: Big Data and Intelligent Data Analysis. doi:http://dx.doi.org/10.1016/j.diin
.2015.07.004

Woods, K., Chassanoff, A., & Lee, C. A. (2013, September). Managing and transforming
digital forensics metadata for digital collections. In Proceedings of the 10th Interna-
tional Conference on Preservation of Digital Objects (iPRES 2013) (pp. 203–208).
Lisbon, Portugal.

Woods, K., Lee, C. A., & Misra, S. (2013). Automated analysis and visualization of disk
images and fle systems for preservation. In Archiving 2013 - fnal program and
proceedings (pp. 239–244). Washington, DC.

Woods, K., Lee, C. A., Stobbe, O., Liebetraut, T., & Rechert, K. (2015, November).
Functional access to forensic disk images in a web service. In Proceedings of the
12th International Conference on Preservation of Digital Objects (iPRES 2015).
Chapel Hill, NC, USA.

Woods, K., Lee, C., Garfnkel, S., Dittrich, D., Russel, A., & Kearton, K. (2011). Creating
realistic corpora for forensic and security education. In 2011 ADFSL conference on
digital forensics, security and law. Richmond, VA: Elsevier.

IDCC | Practice Paper

https://github.com/libfuse/libfuse
https://github.com/libfuse/python-fuse
https://ils.unc.edu/digccurr/curategear2013-talks/underwood-curategear2013.pdf
https://ils.unc.edu/digccurr/curategear2013-talks/underwood-curategear2013.pdf
http://dx.doi.org/http://dx.doi.org/10.1016/j.diin.2015.07.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.diin.2015.07.004

	Introduction
	Background
	FUSE
	DFXML

	Related Work
	FUSE & Alternate Approaches to Navigating Files
	Normalizing Storage System Interfaces
	Current Access Strategies

	DFXMLFS Usage Workflow
	Storage parsing
	Serialization
	Deployment

	DFXMLFS Implementation
	Potential Applications of the Framework
	DFXML Generator Examples
	Future Work
	Conclusion
	Resource Availability
	Acknowledgements

	References

