
Understanding the Performance and Challenges of
DNS Query Name Minimization

Zheng Wang
National Institute of Standards and Technology, MD 20899, USA

Email: zhengwang98@gmail.com

Abstract—As a promising solution to DNS privacy, query
name minimization limits the unnecessary leakage of query
name information in DNS requests. Due to the lack of de-
tailed measurement study, there is little understanding of the
performance, compatibility, and security implications of query
name minimization. In this paper, we measure the performance
of query name minimization. We find that query name mini-
mization requires a significant query increase but NXDOMAIN
optimization technique can alleviate the increase. We propose a
DDoS vulnerability with query name minimization and evaluate
its impacts and defenses using NXDOMAIN optimization. Broken
empty non-terminals are measured and identified as the critical
obstacles to the transition to query name minimization.

I. INTRODUCTION

The Domain Name System (DNS) is an indispensable large-
scale database for the today’s Internet. Organized into a
globally distributed infrastructure over the hierarchical name
space, the DNS basically translates human-friendly names into
machine-readable network addresses. This way, Internet users
and applications heavily rely on the DNS to navigate to the
desired services.

The early design of the DNS did not take security and
privacy into the central considerations. As the DNS is increas-
ingly turned into a lucrative target for a diversity of attacks,
much effort has been devoted into protecting and harden-
ing this critical infrastructure. In comparison with the DNS
integrity issues addressed by the on-going transition to the
DNS Security Extensions (DNSSEC) [1][2], the DNS privacy
concerns and solutions are still not well studied. The DNS
requests and responses are never confidential on the Internet.
The DNS traffic in the clear is visible to an eavesdropper on
the wire. As enablers of DNS communications, authoritative
servers and recursive servers are also able to observe, store,
and analyze the privacy revealing DNS data. For example, the
public DNS recursive servers may readily collect the DNS
traffic from a large population of users and analyze their
behaviors; the authoritative servers, especially those serving
the upper level domains in the DNS tree, can see plenty of full
query names in clear text beneath their respective authoritative
domains.

In traditional name resolution, a recursive server simply
sends a full query name to each authoritative server in a
chain of referrals until one of them answers directly. However,
the full query name is not always required for any authorita-
tive server to do its name resolution job. For example, the
root server doesn’t need to know the full query name, say

“www.example.com”, to do its job; it just needs the TLD
(Top Level Domain) “com” , to refer the requester to the
authoritative server for that TLD. Since full query names
are conventionally and unnecessarily conveyed in every DNS
request from a recursive server, it is natural to trim the query
names following the principle of minimum disclosure. Thus
query name minimization (qname-min) [3] is proposed to
minimize the amount of information a recursive server sends
to the authoritative server.

In the problem statement of DNS privacy [5] by S.
Bortzmeyer, the query name was highlighted as the source of
DNS privacy risks. In the document, Bortzmeyer argued that
the query names in the DNS traffic gathered by authoritative
name servers may be sufficient to violate some privacy expec-
tations. Qname-min [3] was first proposed also by Bortzmeyer
in 2014 and agreed by the Internet Engineering Task Force
(IETF) in 2016. As of the time of writing, none of the major
DNS software vendors has built the qname-min functionality
into the production version of resolvers. As an emerging DNS
privacy-preserving technique, there are still few studies on the
performance measurement and enhancement of qname-min.
NXDOMAIN optimization [6], proposed by Vixie et al., was
initially intended to improve DNS caching for the conventional
name resolution before qname-min was unveiled.

This paper measures the performance of qname-min using
the real query names on the Internet. NXDOMAIN optimiza-
tion is evaluated and found to be an effective technique for
improving the performance of qname-min. A DDoS vulnera-
bility of qname-min is identified and its impacts and defenses
using NXDOMAIN optimization are evaluated. The broken
empty non-terminals (ENTs) are measured and identified as
the critical obstacles to the transition to qname-min.

II. PERFORMANCE

Our basic methodology for studying the performance of
qname-min is to probe the authoritative responses to real
queries observed by a recursive server. The intermediate query
names associated with each full query name were determined
as per the qname-min name resolution algorithm. Not only the
full query names but also their intermediate query names were
used in the active probing. The authoritative responses were
identified and analyzed on different qname-min configurations
and algorithms.

As a starting point for our measurements, we captured the
query logs of a recursive resolver located at the NIST campus



1 2 3 4 5 6 7 8 9 10 11 >11
0

10

20

30

40

50

60

Number of labels

P
e

rc
e

n
ta

g
e

 

 

Unique queries

All queries

Fig. 1: Distribution of the number of labels for
queries.

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

Number of zone cuts

P
e

rc
e

n
ta

g
e

 

 

Unique queries

All queries

Fig. 2: Distribution of the number of zone cuts
for queries.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 >14
0

10

20

30

40

50

60

Maximum query increase by qname−min

P
e

rc
e

n
ta

g
e

 

 

Unique queries

All queries

Fig. 3: Maximum query increase by
qname-min.

in June 2015. The DNS data contains one-week’s queries
arriving at the recursive resolver. Using these DNS data, we
constructed each query as a pair of the form (query name,
query type). This resulted in 42,757 unique queries among a
total of 3,908,346 queries.

The performance of qname-min is strongly correlated to the
name structure of each individual query name. Generally, a
long query name with lots of labels tends to cause high over-
heads of qname-min. To better understand the measurements,
we first present the distribution of the number of labels for
queries in Fig. 1. More than 54% of unique query names have
three labels, and only a small proportion (no more than 0.6%)
of unique query names have more than 11 labels. The average
number of labels within an unique query name is 4.18. The
distribution of label counts changes greatly if all individual
query names are not grouped by the unique query names. For
all query names, 6 labels are most concentrated on by 23.8%
of the queries, and the query names with more than 11 labels
account for 22.2%. The number of labels then rises to 9.56
on average. The measurements show that a small number of
long query names attract a large number of queries. So those
long query names may degrade the performance of qname-min
without aggressive caching in place.

It is not always clear where the administrative zone bound-
aries in a full query name are set up. As delegations may occur
after just one label in some cases or after two (or more) in
others, qname-min is not always as simple as just revealing one
additional label in the successive queries. However, assuming
the recursive server has the knowledge about some zone
cuts associated with a query name, qname-min allows the
recursive server to start with the closet zone cut and gradually
prepend one more label from the full query name as it follows
referrals and descend deeper into the domain. Accordingly,
another explicit name structure metric that may impact the
performance of qname-min is the number of zone cuts within
a query name. Generally, for a constant number of labels, more
zone cuts increase the chance of starting qname-min probing
from a low zone cut point. Thus the number of queries required
by qname-min may be saved by the closest zone cut.

To find the zone cut points of a query name, we identify
each authoritative response as the following by retrieving and
analyzing relevant fields in the DNS response message:

• NX: a NXDOMAIN answer. The RCODE is NXDO-
MAIN.

• AUTH: an authoritative answer. The RCODE is NOER-
ROR, the answer section is not empty.

• REF: a referral (indicating a zone cut point). The
RCODE is NOERROR, the answer section is empty, and
the owner name of the NS RRset from the authority
section is the query name.

• NO: a NODATA answer. The RCODE is NOERROR, the
answer section is empty, and the owner name of the NS
RRset from the authority section is not the query name.

• FAIL: a failure answer. The RCODE is neither NXDO-
MAIN nor NOERROR, e.g., SERVFAIL.

The REF response indicates a zone cut point above the query
name. Together with REF, other types of responses will also
enable our measurement and analysis in the following sections.

The number of queries attempted by qname-min is largely
dependent of the relevant zone cut points known by the
minimizing recursive resolver. In the best efforts to protect
the query name’s privacy, the minimizing recursive resolver
may start at the closest zone cut point pertaining to the full
query name, query for just one label more than the closest zone
cut point, and progressively performs the label-wise probing
until the fully query name is queried for and responded.
Like conventional name resolution, the minimizing recursive
resolver can cache the zone cut points which may be utilized
for qname-min. In Fig. 2, we demonstrate the distribution of
the number of zone cuts for captured queries. Two zone cuts
consist of a majority, accounting for 64.1% for unique queries
and 72.8% for all queries. And the proportion of no more than
two zone cuts amounts to 88.6% and 84.6% of unique queries
and all queries respectively. That means most queries fall into
the SLDs (Second Level Domains) or higher domains. A query
name in the bailiwick of a SLD may hide its long label string
below that SLD, which has to be probed label-by-label via
qname-min despite of the prior knowledge about all relevant
zone cuts.

In the worst case of caching, some previously discovered
zone cuts may have already expired from cache, or some
new zone cuts cannot find their matching counterparts in
cache. Without any relevant zone cut information in cache,
the minimizing recursive resolver has to start the qname-min
from the root zone. Assume that a full query name Q has
ℓ(Q) labels and ℜ(Q) zone cuts. Considering no known zone
cuts, the maximum number of queries issued by qname-min
is ℓ(Q). By contrast, the conventional name resolution only



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 >14
0

10

20

30

40

50

60

Minimum query increase by qname−min

P
e

rc
e

n
ta

g
e

 

 

Unique queries

All queries

Fig. 4: Minimum query increase by
qname-min.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 >14
0

10

20

30

40

50

60

70

80

90

Maximum number of cut queries using NXDOMAIN optimization

P
e

rc
e

n
ta

g
e

 

 

Unique queries

All queries

Fig. 5: Maximum number of cut queries using
NXDOMAIN optimization.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 >14
0

10

20

30

40

50

60

70

80

90

Minimum number of cut queries using NXDOMAIN optimization

P
e

rc
e

n
ta

g
e

 

 

Unique queries

All queries

Fig. 6: Minimum number of cut queries using
NXDOMAIN optimization.

needs ℜ(Q) + 1 queries. Thus the maximum query increase
by qname-min ∆max(Q) is ℓ(Q)−ℜ(Q)− 1. In other words,
the maximum overhead of qname-min is determined by the
total non-zone-cut-point labels in a query name. Fig. 3 shows
the maximum query increase by qname-min. The average of
maximum query increase is 1.28 for unique query names while
it rises sharply to 6.44 for all query names. The intensive and
heavily repeated queries for some long query names contribute
much to the qname-min performance drop.

Consider the caching best case where all zone cuts relevant
to a full query name are presumably available in cache.
For that case, qname-min may skip to the lowest zone cut,
which is also the authoritative zone of the query name, as the
starting point. So the qname-min probing narrows down to
the authoritative zone, using label-by-label progressive queries
within the authoritative zone. Assume that a full query name
Q has ℓ′(Q) labels below the apex of the authoritative zone.
Qname-min would need ℓ′(Q) queries at minimum to obtain
the final answer, but the conventional name resolution always
requires one query at minimum regardless of ℓ′(Q). So the
minimum query increase by qname-min ∆min(Q) is ℓ′(Q)−1.
Accordingly, a query name with its labels “deep” into its
authoritative zone is likely to result in a larger query increase
by adopting qname-min. It is obvious that ℓ′(Q) is always
no more than the total number of non-zone-cut-point labels
in a query name, which ensures ∆max(Q) ≥ ∆min(Q).
Fig. 4 shows the minimum query increase by qname-min.
Compared with Fig. 3, the distribution of query increase is
only slightly changed. The comparative measurements show
that the learning, caching, and employing of closest zone cut
does not seem to give much improvement to the qname-min’s
efficiency.

III. NXDOMAIN OPTIMIZATION

While closest zone cut optimizes the starting point of
qname-min, the minimizing recursive server still has to per-
form progressive probing until the last label. Fortunately, the
intermediate name responding specified in the DNS gives the
possibilities for further optimizing qname-min performance
by truncating the tailing labels. In the DNS, an ENT is
referred to as a name that does not have any valid record
but has at least one descendant name with valid record(s).
For an ENT, the negative response should set the RCODE
to NODATA, indicating a valid name, but with no RRsets

present. By contrast, all descendant names of an invalid name
have no valid records. Thus the negative response to an
invalid name should set the RCODE to NXDOMAIN rather
than NODATA. That RCODE distinction between ENT (valid
intermediate name) and invalid intermediate name enables
the early identifying of invalid names in qname-min. More
specifically, the minimizing recursive server may interpret the
NXDOMAIN response to an intermediate query name as the
indicator of the respective invalid full name. Once encounter-
ing an intermediate NXDOMAIN response, the minimizing
re- cursive server can stop searching down the DNS tree
and return a NXDOMAIN response to the full query name.
NXDOMAIN optimization can be amplified if NXDOMAIN is
not only used on-the-fly but also cached for future responces to
any full query names with matching intermediate names. When
searching downward in its cache, a recursive server should
stop searching if it encounters a cached NXDOMAIN. The
response to the triggering query should then be NXDOMAIN.
The aggressive use of NXDOMAIN may cut the number of
queries as well as the lookup delays for qname-min.

NXDOMAIN optimization eliminates the qname-min prob-
ing at the first NXDOMAIN response. So the excessive
number of queries required by qname-min will be cut off
by NXDOMAIN optimization. We consider the query cut
performance with caching effects and without caching effects
respectively. With the cached closest zone cut in place, the
queries saved by NXDOMAIN optimization are limited to the
labels below the first NXDOMAIN label within the authorita-
tive zone. Thus NXDOMAIN optimization gains the minimum
benefit for qname-min. As the opposite extreme, without the
help of caching, NXDOMAIN optimization will terminate
qname-min at the first NXDOMAIN label below the root. Thus
the number of queries decreased by NXDOMAIN optimization
rises to the maximum. We present the maximum and minimum
number of cut queries using NXDOMAIN optimization in
Fig. 5 and Fig. 6 respectively. As we can see, there is only a
slight difference between the two distributions. In both figures,
the query cut effects of NXDOMAIN optimization are much
more pronounced for all query names than for unique query
names. The average of maximum number of cut queries is 0.81
for unique query names and 6.12 for all query names. For the
minimum, the average is almost the same as the maximum:
0.81 for unique query names and 6.12 for all query names.
Those results are consistent with our findings in Section 2



1 1.5 2 2.5 3 3.5 4 4.5 >=5
0

10

20

30

40

50

60

Amplification factor

P
e
rc

e
n
ta

g
e

 

 

Unique queries

All queries

Fig. 7: The amplification factor without known
zone cuts.

1 2 3 4 5 6 7 8 9 10 11 12 13 >=14
0

10

20

30

40

50

60

Amplification factor

P
e

rc
e

n
ta

g
e

 

 

Unique queries

All queries

Fig. 8: The amplification factor with known
closest zone cut.

1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

100

Amplification factor

P
e

rc
e

n
ta

g
e

 

 

Unique queries

All queries

Fig. 9: The amplification factor without known
zone cuts by NXDOMAIN optimization.

that the caching of the closest zone cut matters little in terms
of qname-min performance. It is notable that some long query
names (19.2% in both figures) can be significantly optimized
by NXDOMAIN optimization for all query names, leaving
more than 14 cut queries.

IV. DDOS VULNERABILITY

NXDOMAIN optimization is necessary for qname-min not
only because of its efficiency but also because of its defense
against DDoS attacks. Qname-min increases the attack surface
of a recursive server, especially for DDoS attacks. A DDoS
attacker can send a flooding stream of DNS queries to the vic-
tim recursive server. These queries are subtly constructed for
randomly generated but invalid query names with deep labels.
Without the NXDOMAIN optimization, qname-min would
be likely to perform label-by-label lookups for a number of
intermediate names in the resolution for each query name. So
a single attacking query will trigger a serial of iterative qname-
min DNS lookups by the victim recursive server. Unlike the
conventional name resolution, the amplification vulnerability
of qname-min cannot be alleviated by caching because the
query names may be seldom or never repeated. With the
NXDOMAIN optimization, qname-min name resolution can
stop early at the most upper NXDOMAIN label of the query
name, thereby decreasing its DDoS vulnerability to almost as
low as the conventional name resolution.

To make the qname-min based DDoS attacks more devas-
tating, another approach for bypassing the mitigating caching
is to register some “cannon” zones dedicated for attacks. The
most threatening “cannon” zones should be like: 1) they should
reside at the high level of the DNS tree, allowing for more
labels below the zone apex (within the length limit to a domain
name); 2) they should set small (or even zero) TTLs (Time-
To-Lives) of the resource records leveraged for DDoS attacks.
Thus attackers, who send flooding queries for the lengthy
domains in the “cannon” zones, can trigger tremendous ampli-
fied DNS traffic between the targeted recursive server and the
authoritative servers. Since authoritative servers of individuals
or small businesses are usually hosted by the domain service
providers, the domain service providers may also become
victims of such DDoS attacks.

A commonly used DNS based DDoS attack is DNS am-
plification. In a typical DNS amplification attack scenario,
the attacker sends relatively small queries that are known to

generate much larger responses to the reflecting resolvers.
The source IP addresses for the queries are spoofed as the
address of the victim so the reflecting resolvers process the
recursive queries and deliver the amplified response traffic
to the spoofed “origin”: the victim. DNS amplification could
be exploited to magnify DDoS attack consequences with the
origin of the attack concealed from the victim. The ampli-
fication capability is basically measured by the amplifica-
tion factor and is computed as: response size

query size . Unlike DNS
amplification attack, the qname-min based DDoS attack can
target authoritative servers and recursive servers, which are
leveraged by DNS amplification attack as reflectors. Using
“deep” query names that are known to produce many times
larger number of qname-min probing queries than the con-
ventional name resolution, an attack can create an immense
amount of DNS transactions between the (victim) authoritative
servers and the (victim) recursive servers. Here we define
the amplification factor of qname-min based DDoS attack
as: the number of queries in qname−min

the number of queries in conventional name resolution . The
bigger the amplification factor is, the larger the resource
consumption is inflicted on the victim.

Assuming all zone cuts are unknown to the recursive server,
we present the amplification factor in Fig. 7. The average
amplification factors for unique queries and for all queries
are 1.47 and 3.15 respectively. Some queries even have a
amplification factor as high as 8.19. With known closest
zone cut, the amplification factor is illustrated in Fig. 8. The
average amplification factors for unique queries and for all
queries increase to 2.26 and 7.37 respectively. The largest
amplification factor is 25. Both the recursive servers and the
respective authoritative servers are expected to handle at least
several times larger number of DNS transactions if qname-min
is implemented at the recursive servers. In the best efforts of
qname-min based DDoS attack, some query names may be
carefully selected to have as many as possible labels falling
into the target zone. Due to the length limit of a valid DNS
name (no more than 253 octets), each of those in-zone labels
in the maliciously generated names should be shortened to
the minimum, allowing for more in-zone labels. In most cases
of qname-min, amplification factors of 30 or more can be
easily obtained. The large amplification factors, if employed
by DDoS attackers, pose great threats to authoritative servers
and/or recursive reservers.

To illustrate the effects of NXDOMAIN optimization on



1 2 3 4 5 6 >=7
0

10

20

30

40

50

60

70

80

90

Amplification factor

P
e

rc
e

n
ta

g
e

 

 

Unique queries

All queries

Fig. 10: The amplification factor with known
closest zone cut by NXDOMAIN optimization.

0 10 20 30 40 50 60 70
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of unique queries for the broken zone

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
 f

u
n

c
ti
o

n

Fig. 11: The identification algorithm of ENT
broken query name.

0 500 1000 1500 2000 2500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of all queries for the broken zone

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
 f

u
n

c
ti
o

n

Fig. 12: The identification algorithm of ENT
broken zone.

the amplification factor, we present the amplification factor
without known zone cuts and with known closest zone cut
in Fig. 9 and Fig. 10 respectively. The average amplification
factor without known zone cuts is decreased by NXDOMAIN
optimization to 1.003 for unique queries and 1.004 for all
queries. And for known closest zone cut, NXDOMAIN opti-
mization lowers the average amplification factor to 1.45 for
unique queries and 1.24 for all queries. We can see that
NXDOMAIN optimization can greatly alleviate the amplifica-
tion factor to slightly higher than 1. Thus with NXDOMAIN
optimization, qname-min has its overheads comparable to
conventional name resolution. To get around the caching at
recursive servers and trigger outstanding queries from recur-
sive servers, a qname-min based DDoS attack is likely to
use (randomly generated) invalid in-zone labels that cause
NXDOMAIN responses. Those query names for NXDOMAIN
responses make it possible for NXDOMAIN optimization to
play its role in defending against qname-min based DDoS
attacks.

V. ENT BROKENNESS

Despite of the significance of NXDOMAIN optimization
for qname-min in terms of both performance and security, its
use is not always safe assuming authoritative servers would
respond properly to ENTs. As defined by the DNS, a query
for an ENT should result in the NOERROR RCODE in the
response. When a response to an intermediate or non-terminal
name has the NXDOMAIN RCODE, it simply means no
valid descendant name exists below that name. That is, the
standard DNS rules out the possibility that a name with the
NXDOMAIN response would find at least one descendant
name with RRsets or return a NOERROR response. However,
the possibility does emerge if some misbehaving authoritative
servers return NXDOMAIN rather than NOERROR responses
to ENTs. Since only full query names are typically requested
in the conventional name resolution, ENT brokenness has
negligible adverse impacts on resolution. However, qname-
min with NXDOMAIN optimization may be misled by the
erroneous NXDOMAIN response for an intermediate query
name into giving up further probing and responding NX-
DOMAIN as the final response. The consequences of ENT
brokenness includes failures/errors of name resolution, or even
unavailability and blocking of DNS subtrees.

Assuming all of the name servers for a zone respond
the same way, we list a name or zone as broken despite

0 10 20 30 40 50 60 70
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of unique queries for the broken zone

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n
 f
u
n
c
ti
o
n

Fig. 13: CDF of the no. of unique
queries for the broken zones.

0 500 1000 1500 2000 2500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of all queries for the broken zone

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n
 f
u
n
c
ti
o
n

Fig. 14: CDF of the no. of all
queries for the broken zones.

the fact that the real DNS responder is one of those name
servers. We provide the identification algorithm of ENT broken
query name in Fig. 15. The algorithm may start from any
intermediate name including the root. However, if the starting
name is not the root, only descendant broken ENTs below the
starting name can be identified by the algorithm. Like qname-
min probing, the algorithm progressively exposes one more
label in each successive query. The first phase is dedicated
for discovering the first NXDOMAIN returning name. If
no NXDOMAIN is found until the last label, the name is
identified as good. Otherwise, the successful detecting of the
first NXDOMAIN name initiates the second phase: searching
for possible NOERROR descendant names. The searching
either ends with the first NOERROR descendant name or
finally fails to find any NOERROR descendant name until
the last label. For the former case, the algorithm returns
reporting that the query name is good; for the latter case, the
algorithm returns with the detection of a broken query name.
The identification algorithm can be integrated into the qname-
min algorithm, since the query issuing and response parsing
are largely shared between them. Using the identification
algorithm, the minimizing recursive server can detect ENT
brokenness on-the-fly without any significant extra overhead.

Using the identification algorithm of ENT broken servers,
we measured the good responses and the broken responses
to queries. The broken responses account for 10.1% of unique
query names. This non-trivial proportion illuminates the preva-
lence of ENT brokenness on the Internet. More surprisingly,
the rate of the broken responses increases to 45.1% for all
query names. As the explanation to the rise, we find that the
ENT broken query names are more likely to have repetitions
than the good query names. The root cause in this observation
is that clients tend to repeat a query if the presumably
erroneous response to the first query does not meet their



Algorithm: FindBrokenDomain(DOMAIN) % Input: a domain to be checked
1: domain ← “ ” % Initialize the domain under inspection as the root
2: res ← NULL % Initialize the response
3: while domain ! = DOMAIN & res ! = NXDOMAIN do
4: domain ← GetLeftLabel(domain, DOMAIN) + “.” + domain

% Concatenate one more label from the left
5: res ← GetResponse(domain)

% Query the domain to get the response

6: if res = NXDOMAIN then
7: while domain ! = DOMAIN & res ! = NOERROR do
8: domain ← GetLeftLabel(domain, DOMAIN) + “.” + domain

9: res ← GetResponse(domain)
10: if res = NOERROR then

% A NOERROR child domain below a NXDOMAIN ancestor is found
11: Return(“DOMAIN is detected as ENT broken”)
12: else
13: Return(“DOMAIN is NOT detected as ENT broken”)
14: else

% No NXDOMAIN subdomains are found
15: Return(“DOMAIN is NOT detected as ENT broken”)

Fig. 15: The identification algorithm of ENT broken query name.

expectation.
To look further into the sources of ENT brokenness, we

seek to figure out what authoritative zones do the broken query
names fall into. The identification algorithm of an ENT broken
zone is illustrated in Fig. 16. The algorithm can start from
any zone cut point, e.g., the TLD, which is initialized as the
current zone cut point. The algorithm maintains a set of broken
zone cuts, which is initialized as empty. Like the qname-min
probing, the algorithm first attempts to find the NXDOMAIN
label by progressively prepending labels from the full query
name. If no NXDOMAIN is found until the last label, the
algorithm outputs the reporting of no broken zone due to the
empty set of broken zone cuts. Otherwise, the finding of the
first NXDOMAIN switches the searching to the next label. If
the algorithm fails to find any NOERROR label until the last
label, the set of broken zone cuts is still empty, as the result
is a report of no broken zones. Otherwise, the NOERROR
label can be further classified into zone cut label and non-
zone-cut label. For a zone cut label, the algorithm first adds
the current zone cut to the set of broken zone cuts and then
updates the current zone cut as the zone cut itself. Using the
new zone cut, the algorithm starts over and may potentially
add more zone cuts to the set of broken zone cuts. For a non-
zone-cut label, the algorithm just adds the current zone cut to
the set of broken zone cuts and continues with the searching
for zone cut. Note that multiple NOERROR labels within the
same current zone cut may result in more than one times of
broken zone cut adding, but the set operations themselves can
automatically remove all duplicate members and ensure the
uniqueness. In all cases, the algorithm continues until the last
label and outputs the set of broken zones as it terminates. The
identification algorithm can also be embedded into the qname-
min algorithm, since the progressive probing results of qname-
min can be simply parsed and interpreted by the identification
algorithm.

Using the identification algorithm of ENT broken zones,
we measured the number of queries for each broken zone.
The cumulative distribution function of the number of unique

Algorithm: FindBrokenZones(DOMAIN, zone) % Input: a domain to be checked,
and a zone to start with (zone should be “ ” for a complete run)

1: domain ← zone % Initialize the domain under inspection
2: BrokenZones ← ∅ % Initialize the broken zone set as empty
3: res ← NULL % Initialize the response
4: while domain ! = DOMAIN & res ! = NXDOMAIN do
5: domain ← GetLeftLabel(domain, DOMAIN) + “.” + domain

% Concatenate one more label from the left
6: res ← GetResponse(domain)

% Query the domain to get the response
7: if res indicates a zone cut then
8: zone ← domain % Find a new zone to inspect

9: if res = NXDOMAIN then
10: while domain ! = DOMAIN & res ! = NOERROR do
11: domain ← GetLeftLabel(domain, DOMAIN) + “.” + domain

12: res ← GetResponse(domain)
13: if res = NOERROR then

% A NOERROR child domain below a NXDOMAIN ancestor is found
14: BrokenZones ← BrokenZones + zone

15: if res indicates a zone cut then
16: BrokenZones ← BrokenZones + FindBrokenZones(DOMAIN,

domain) % Find a new zone to inspect

17: Return(BrokenZones)

Fig. 16: The identification algorithm of ENT broken query name.

queries and all queries for the broken zone are illustrated in
Fig. 13 and Fig. 14 respectively (excluding the heaviest hitter).
We can see that the distribution is highly skewed towards a
small number of hot zones. The findings imply that while the
few broken zones can be relatively easy to discover because
of their intensive query traffic, a majority of broken zones are
much more difficult to detect.

VI. CONCLUSION

In this work, we provide a measurement study on qname-
min. We find that the privacy earning by qname-min poten-
tially comes at the cost of name resolution performance. Since
the query increase by qname-min is largely companioned by
NXDOMAIN responses, NXDOMAIN optimization is found
to be effective in cutting the number of queries in qname-
min. A DDoS vulnerability exploiting large qname-min am-
plification factors is discovered to pose serious threats to au-
thoritative servers and/or recursive servers. And NXDOMAIN
optimization plays a defensive role against such vulnerability.
We find the widespread presence of broken ENTs and identify
them as the sources of failures/errors of qname-min name
resolution. The study highlights at least two requirements for
qname-min implementations: 1) NXDOMAIN optimization
should be adopted; 2) good robustness against ENT brokenness
should be provided.

REFERENCES

[1] Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: Resource
Records for the DNS Security Extensions. IETF RFC 4034 (2005).

[2] Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: Protocol
Modifications for the DNS Security Extensions. IETF RFC 4035 (2005).

[3] Bortzmeyer, S.: DNS Query Name Minimisation to Improve Privacy.
IETF RFC 7816 (2016).

[4] Lewis, E.: The Role of Wildcards in the Domain Name System. IETF
RFC 4592 (2006).

[5] Bortzmeyer, S.: DNS Privacy Considerations. IETF RFC 7626 (2015).
[6] Vixie, P., Joffe, R., Neves, F.: Improvements to DNS Resolvers for

Resiliency, Robustness, and Responsiveness. IETF Draft in Progress
(2010).


