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ABSTRACT

Maintenance has largely remained a human-knowledge cen-
tered activity, with the primary records of activity being text-
based maintenance work orders (MWOs). However, the bulk
of maintenance research does not currently attempt to quan-
tify human knowledge, though this knowledge can be rich
with useful contextual and system-level information. The un-
derlying quality of data in MWOs often suffers from mis-
spellings, domain-specific (or even workforce specific) jar-
gon, and abbreviations, that prevent its immediate use in
computer analyses. Therefore, approaches to making this
data computable must translate unstructured text into a for-
mal schema or system; i.e., perform a mapping from infor-
mal technical language to some computable format. Key-
word spotting (or, extraction) has proven a valuable tool in
reducing manual efforts while structuring data, by providing
a systematic methodology to create computable knowledge.
This technique searches for known vocabulary in a corpus
and maps them to designed higher level concepts, shifting the
primary effort away from structuring the MWOs themselves,
toward creating a dictionary of domain specific terms and the
knowledge that they represent. The presented work compares
rules-based keyword extraction to data-driven tagging assis-
tance, through quantitative and qualitative discussion of the
key advantages and disadvantages. This will enable mainte-
nance practitioners to select an appropriate approach to infor-
mation encoding that provides needed functionality at mini-
mal cost and effort.

Thurston Sexton et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Maintenance is a vital function in every industry, including
manufacturing, construction, chemical, infrastructure asset
management, resource extraction industries, and many others.
It involves all actions necessary to ensure a piece of equip-
ment is in a state suitable to safely and consistently perform
a required function (AS IEC 60300.3.14, 2005). Thus the re-
lated theory of maintenance practice can be split into strategy
development and work management components. (Márquez,
2007; Kelly, 1997; Palmer, 1999) This paper focuses on the
work management component of maintenance.

Work management includes the maintenance processes of
work identification, planning, scheduling, execution, comple-
tion, and review. Data generated through these processes is
typically captured using a maintenance work order (MWO),
and while data about maintenance tasks differs from domain
to domain (or even company to company within a domain),
some or all of the following data are usually collected: 1)
the asset and/or its components, 2) observed symptoms, 3)
the time of failure, 4) the time for maintenance, 5) possible
causes, 6) actions taken, and 7) the name of the technician(s).
They often contain a mixture of human-generated, unstruc-
tured text, and structured field entries. These fields usually
take the form of drop-down menus, lists, or entry fields, and
times/dates for items such as order creation, progress, and
completion.

This data is primarily recorded by the technicians who actu-
ally perform the maintenance; given that there are multiple
technicians within an enterprise, the human-generated data is
often inconsistent, error-filled, and replete with domain spe-
cific jargon. For example:
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Technician A: “bearing broken at Station 1”
Technician B: “bearing failure at cutoff unit of S1.”

Both of these representations describe the same overall prob-
lem of “broken bearing,” located at “Station 1,” but they take
very different forms, especially if the end goal is to perform
automated analysis (like finding all instances of “broken bear-
ing” on this data). If this data could be parsed, it could lead
to calculations such as failure mode identification, rework,
problem spot identification, and more accurate mean time to
repair (MTTR) or mean time between failure (MTBF), which
can lead to improved maintenance strategy, reduced risk of
failure and improved maintenance efficiency.

There have already been some successes in parsing these
types of records in other domains. This is specifically true in
the medical field, given the parallels between MWO records
and patient medical records: both record symptoms, diag-
noses and actions taken using unstructured text. Indeed,
considerable work has been done on mining text in patient
records; Heinze et al. (2001) applied natural language pro-
cessing (NLP) across a wide variety of medical domains,
while Tremblay et al. (2009) specifically applies it to fall-
related injuries in veterans, and the MedIE system extracts
and mines text from clinical medical records, generally (Zhou
et al., 2006). While these efforts are significant achievements,
the medical field has significant advantages over the domains
we are concerned with:

1. data-sets tend to be much larger and cover longer time-
spans by comparison, and

2. there are widely adopted controlled vocabularies avail-
able through medical ontologies.1

A number of research efforts exist in the engineering domains
being addressed, that attempt to mitigate these issues.

1.1. Size of Datasets

How do maintenance practitioners in engineering obtain large
quantities of data to robustly perform statistical analyses? In
the authors experience within the manufacturing and mining
equipment datasets, MWO dataset sizes for individual com-
panies range from a few thousand records to upwards of one
million MWOs each year. This quantity of MWO data is
smaller than what most out-of-the-box solutions for NLP are
built for (and regularly validated on), such as “tweets,” or
Amazon product reviews (Davidov et al., 2010).

One scheme to circumvent this issue promotes sharing data
1An ontology defines a machine-readable vocabulary to enable reasoning and
with which queries and assertions are exchanged. Notable developments in
medicine to underpin this capability include: SNOMED (Spackman et al.,
1997), a nomenclature for human and veterinary medicine; the GENE On-
tology for biology (Ashburner et al., 2000), a tool for the unification of
biology; and the Unified Medical Language System (Bodenreider, 2004),
a repository of biomedical vocabularies developed by the US National Li-
brary of Medicine.

within a domain, and using a then-standardized dataset as
training for data-driven tools that clean and analyze new data.
This sharing is difficult when MWOs might contain propri-
etary information (machine identification numbers, techni-
cian names, specific processes for specific parts, etc.). There
is ongoing research in anonymizing data-sets for this purpose,
for example, focusing on “usefulness” as measured by infor-
mation utility functions (Fang & Chang, 2008). Even using
such an approach, information in a data-set will not be per-
fectly anonymized — there is a trade-off between privacy, and
how much useful information remains for sharing.

1.2. Use of Ontologies

In the past, developers of Computerized Maintenance Man-
agement Systems (CMMS) have tried to ensure proper data
structure through enforcing controlled vocabulary and prob-
lem code assignment for MWOs. In practice, these ap-
proaches have had limited success in improving data qual-
ity (Molina et al., 2013; Unsworth et al., 2011). With mainte-
nance data especially, language used by one group (the main-
tenance technicians) can be quite different to that used by
others (the engineers, or CMMS developers) (Murphy, 2010).
Subsequently, the codes provided by engineers are often in-
adequate for expressing of the details of the event or action
the maintainers take. Further, interpretations of events dif-
fer among the technicians themselves, and individuals might
choose different codes for the same event.

There is growing interest in the potential value of ontolo-
gies to codify structures of meaning for maintenance. Early
developments include the European project Proteus in 2005
from Rasoyska et al., with more recent work by, for example,
Karray et al. (2012); Ebrahimipour & Yacout (2016). In the
process-plant and engineering design sector, ISO15926 Stan-
dard Formal Ontology (ISO, 2003) could potentially be used
for through-life support data. To date, however, there has
been little uptake of ontological approaches by industry—in
part because they have been developed in isolation. As a re-
sult, they are rarely interoperable, and lack scalability (Semy
et al., 2004).

There remains a need for an agreed-upon upper ontology for
maintenance. Current projects, such as the adaptation of Ba-
sic Formal Ontology (BFO) to the manufacturing sector (Arp
et al., 2015), do include a sub-focus to provide an ontology
for maintenance in manufacturing. Alternatively, the use of
Natural Language Processing (NLP) to extract relevant infor-
mation from the unstructured data sets promises to directly
provide insights and analytics, even while maintainers con-
tinue to enter data in their own words. (Sharp et al., 2016;
Sexton et al., 2017). This approach is somewhat ironically
limited by the size of available training examples, mentioned
previously.

2



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

1.3. Paper Outline

Informed by the dichotomy discussed, this paper com-
pares two promising methods for automated data structuring
through keyword extraction: a data-driven tagging method
vs. a rules-based expert system. A publicly available min-
ing equipment data-set is used to compare these methods for
cognitive load on the human using these techniques, the abil-
ity of the method to calculate maintenance specific metrics
(Median Time to Fail/ MTTF), and identification of problem-
spots. The rest of the paper is structured as follows: Sec-
tion 2 discusses background of both the rules-based method
and the tagging method; Section 3 describes the data-set and
how the two methods are compared, while Section 4 discusses
these results; lastly, Section 5 presents conclusions and future
work.

2. METHODS FOR ENCODING INFORMATION

We present a comparison of both previously discussed
methodologies for encoding the tacit knowledge in MWOs
into a more structured format. While obviously an incomplete
overview of solutions to this common problem, we hope that
the two selected methods are representative of two archetypes
within the domain, namely: precisely-engineered, initially
labour-intensive automation through design of “rules”; and
data-driven, human-in-the-loop extraction that theoretically
sacrifices precision for ease-of-use and statistical representa-
tiveness.

2.1. Rules-Based Methods

In rule-based data processing unstructured data is trans-
formed into a predetermined format using explicit rule sets.
These rule sets, often called “expert systems”, are comprised
of a series of ‘if condition then perform action’ statements
where an action is performed if the given conditions are sat-
isfied. Rule-based data processing requires progressive itera-
tion of rule development and application in order to tune data
sets to be capable of transforming unstructured data into the
appropriate format (Rahm & Do, 2000; Prasad et al., 2011).
An example output of a Rules-Based Method can be seen in
Fig. 1.

It is important to have a purpose for the data structuring. In
the case of maintenance work order records a common aim is
to identify end-of-life events so that reliability metrics such
as MTTF can be calculated. Other aims are to identify fail-
ure causes, track rework and develop troubleshooting capa-
bilities. In each case a minimum viable data set to support
the intended analysis needs to be identified. For calcula-
tion of time-to-end-of-life event, beyond just having a suf-
ficient number of repeated events to sufficiently characterize
the TTF distribution, the necessary data types are: an iden-
tifier of the asset or maintainable item that reached end-of-
life, an identifier of the end-of-life event, the usage based

on hours, distance, cycles or other measure to calculate life,
and a means of identifying if the end-of-life event was due
to censoring or not. Right censoring occurs when an item is
removed before it reaches its end-of-life and when the obser-
vation period for data collection ends but the item is still in
use.

Challenges in rule-based structuring include managing rule
sets of increasing complexity and size. Rule sets are often ex-
ecuted sequentially with the order of rules important in deter-
mining the outcome of the transformation. Rule conflicts can
occur which require the use of conflict resolution, often man-
ual in nature to determine the appropriate output. As rule sets
grow in size they become increasingly hard to manage, with
each additional rule providing incrementally less benefit, yet
with a possibility of degrading any previously executed rules.

2.2. Data-Driven Tags Method

Another approach to data-structuring is to derive patterns for
recognition of good data using statistical aggregation, or any
of several machine learning techniques. In this paradigm, text
is processed in order to be represented “numerically”. Previ-
ous work has compared several ways of using Natural Lan-
guage Processing (NLP) on MWOs, including Bag of Words
models and Word2Vec (Sharp et al., 2016). Regardless of the
technique, the goal is to develop a computational represen-
tation of the text, that captures some fundamental statistics
in the original language, and to develop a machine-learning
(ML) pipeline to predict the correct organization of some set
of work-orders. The primary issue then becomes creating a
data-set to train the ML model, which is a labor-intensive
task requiring at least a tacit rules system. Additionally, the
amounts of data involved in this domain, as noted above, are
smaller than typical use-cases for NLP, with high technical-
ity, and not nearly sufficient examples to statistically cover
the broad functionality-space.

To circumvent this issue, it is possible to use the concept of
tagging as a form of user annotation of MWOs, to balance
structure and flexibility. Tags are un-controlled, multi-label
feature-assignments of text (or anything, potentially) that can
be mapped quite easily to a bag-of-words representation. The
problem now becomes creating a mapping between the exist-
ing language in historical MWOs and the set of tags that user
might want to represent the MWOs through. Here, as in Sex-
ton et al. (2017), we exploit statistical aggregation methods
used in NLP (specifically, term-frequency/inverse-document-
frequency weighting) to present users with the “most impor-
tant” text-fragments—called “tokens”—first, allowing an an-
notator to generate a tag vocabulary list for post-facto auto-
mated extraction of these tags from historical MWOs. The
output of tagging can be seen in Fig. 2. This allows the
technicians to continue writing text with abbreviations and
highly domain-specific, technical descriptions, while allow-
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Figure 1. Illustrating the Rules Based Method for transforming MWOs. Rules are created given an expert’s knowledge of the
MWOs, however, they can grow with complexity as more situations are encountered. For example, if there are more

“Maintainable items”, the rules need to account for how to address multiple items. The Rules Based Method can handle
misspellings, jargon, and abbreviations if the expert knows them beforehand. As seen in the figure, there is no rule for the

”Issue” for this case, therefore, none is assigned.

Figure 2. Illustrating the procedure for tagging a MWO. The tags are created using the original MWOs and are mapped to tags
by a human expert. The output is the Items, Problems, and Solutions. This method creates structured data from the

unstructured natural language MWO data. The tagging method can account for misspellings, jargon, and abbreviations in the
original MWOs, but is dependent on how often these anomalies occur and how many tokens the human expert encounters. The

tagging method, on its own, can not easily determine systems and subsystems (called Subunit in Fig. 1), while the
Rules-Based Method can capture that information with the aid of a human expert.

ing an annotator/tagger to automatically extract tags from
this text at their desired level of abstraction, thus drastically
reducing the number of low-frequency concept-occurrences
(see example experiment in Fig. 4).

Once a set of tags has been assigned to the set of MWOs, it
is possible to perform queries by boolean set operations on
tag occurrences. For example, if a sufficient number of re-
lated tokens have been mapped to the “broken” tag, a query
over “broken” (conditional on particular machines) could be
used as a good proxy for failure occurrence markers. Addi-
tionally, tag co-occurrences are naturally represented as graph
“edges” between tag “nodes”, making available a suite of
graph database techniques and advantages.

3. DESCRIPTION OF EXPERIMENT

This comparative study consists of two steps: First, in the
information encoding step, both methods described above
are implemented on a single dataset, to perform the desired
knowledge extraction. Subsequently, the structured forms are

used to perform basic survival analysis, by approximating the
labels for several major subsystems within the dataset, deriv-
ing these labels through the information encoded with both
methods.

3.1. Information Encoding

The data set is an extract of maintenance work order records
from a Computerized Maintenance Management database for
five 1400 HP mining shovels. The data are publically avail-
able through the UWA Prognostics Data Library (Sikorska et
al., 2016). Four fields are used in this analysis: Date the Work
Order is created, Asset identifier, Short Text, and Cost. The
Short Text field contains unstructured text populated by the in-
dividual generating the work order usually the asset operator,
maintainers, maintenance planner or supervisor. Information
that may be contained in the Short Text field is: the reason for
the maintenance activity such as the observed symptoms of
failure, a description of the work performed, the subunit(s) or
maintainable items on which the work was performed and po-
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sitional information (e.g right side, under). Typical examples
of Short Text are 1) Replace centre and LH lip shrouds which
describes the work performed ((replace) and the component
(centre and left hand lip shrouds) and 2) Broken grease line
on bucket which describes the problem (broken grease line)
and the component (bucket). The data set used in this anal-
ysis (5485 records) has had the following cleaning prior to
being made available in the data library: work orders were
discarded due to issues such as incorrect functional location
allocation, duplication, an absence of hours or costs logged
and if the work order did not result in the repair or replace-
ment i.e., inspections are not included.

3.1.1. Rules-Based Case Study

Rule files (also known as token files, not to be confused with
NLP text “tokens”) are constructed as a series of “if con-
dition perform action”statements. Condition statements are
comprised of between one to three logic statements: the lo-
cation in the unstructured data-set to search; logical oper-
ator (choices of: equals, not equals, has, excludes, >, <);
and patterns (regular expressions or numeric values) required
to satisfy condition. Pattern matching (keyword spotting)
is designed to be case insensitive and includes the ability
to search through grammar, white space and alphanumeric
search terms. Additional functionality includes: rule-conflict
resolution to identify where multiple rules provide conflicting
classifications on any given record, rule frequency statistics
on how many times a rule action was activated, and records
of the sequence of rules executed on each individual event.

Rules are developed using a piece-wise approach and stored
in generic rule libraries, with one library per field to minimize
interactions and mismatches between rule libraries. This al-
lows the successful execution of other rules even in the pres-
ence of missing information that may cause other groups of
rules to fail. The partitioning of rules allows development and
reuse of rule libraries that can be used across multiple main-
tainable items. Generic rule libraries are developed by the se-
lection and examination of training sets from more than one
million MWOs for mobile mining assets such as haul trucks,
shovels, excavators, loader and drills (Ho, 2015). These rule
libraries are for a) maintenance action performed, b) failure
mode or observed symptom of failure, c) maintainable item
(for partial failures), d) location Identifier (e.g., “left rear” or
“position 1”), e) active repair time, and f) down time. The
development and subsequent reuse of generic rule libraries
reduces development time.

All the rules are compiled into a token file. This token file was
used to structure the data set for the five mining shovels used
in this paper. The token file has 469 rules. Records require a
minimum of three rules and can need as many as eleven.

Data about the problem and action are contained in the Short-
Text field of the MWO. This has no set sentence structure,

contains a high number of unique entries and technical jar-
gon, abbreviations and spelling mistakes. Keyword spotting
is used due to the prevalence of unambiguous keywords (e.g.,
“Engine” or “Leaking”) which can be mapped directly to
fields in the required minimum data-set such as asset or end
of life event. Rules are developed manually to correct jargon,
misspellings, variants and abbreviations.

The Work-Order Type and Short-Text fields are used to deter-
mine censoring status for the maintenance event. An event is
classified as a failure if it contains one or more of the follow-
ing criteria: WorkOrder Type code corresponding to a correc-
tive maintenance code of the organization, a recorded failure
mode, failure cause or symptom of failure in the ShortText,
recording of a non-preventative maintenance action in the
ShortText, recent job request or work order with a ShortText
field recording symptoms of failure (job requests or work or-
ders are classified as recent if they occurred since the previous
scheduled service event), or active usage time of the maintain-
able item is less than half of the expected replacement interval
recorded in the organization’s maintenance plan. Events are
classified as censored when the asset has been replaced; the
work order type corresponds to the preventative maintenance
code of the organization; and there are no recorded symptoms
of failure or corrective maintenance actions, machine rebuilds
or overhauls at fixed intervals, accidental damage, and sec-
ondary failures resulting from failure of a different maintain-
able items. Finally, all data is right censored at the end of the
data collection period.

Data sets structured using the rule-based keyword spotting
system are checked manually. Issues include duplicate rules
and the need for conflict resolution if rule mismatches occur.
For example when one rule classifies a work order as preven-
tative yet another rule identifies the failure mode of break-
down. Identification of statistical outliers in time-to-failure
data is used to review rules leading to the outliers. Other
flags are when the time-to-failure interval is greater than fixed
replacement interval specified by the organization’s mainte-
nance plan. Coded fields such as the Asset (also called Func-
tional Location) and Work-Order Type fields can also con-
tain inaccurate entries. Functional Locations fields are often
recorded with values for an incorrect maintainable item or to
a higher level in the functional location hierarchy. Numeri-
cal fields such as Total Actual Cost, Total Planned Costs and
Man-hour fields are often populated by null values or with
values that only reflect a partial cost of the maintenance work.
Data quality issues in these coded and numerical fields neces-
sitate the cross correlation of mismatching or missing infor-
mation from text based fields. Interpretation of free-form text
fields such as the Short-text field is required to cross-correlate
with other data fields and extract relevant data elements that
may be absent such as the identification of the maintainable
item.
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At the conclusion of data structuring an Excel file is cre-
ated containing the new fields identifying the sub-system and
maintainable item, the maintenance action, failure mode (if
available), time since previous event, and a censoring indica-
tor.

3.1.2. AI-Assisted Tagging Case Study

Starting from the same raw-text MWO descriptions as out-
lined above, text-fragment tokens are parsed from the entire
corpus, and passed to a graphical user interface (GUI) that:

• presents an expert with tokens to “tag” in order of their
TF-IDF score (Leskovec et al., 2014).

• suggests a list of potentially related tokens from the cor-
pus, to promote terminology unification

• prompts a classification of each tag as “Problem”, “So-
lution”, or “Item”.

An expert spent 60 minutes using this GUI to create and clas-
sify tags, saving their progress after every 10-minute interval.
Fig. 3 demonstrates how quickly a large portion of the MWOs
have a near-total classification rate—this can be calculated
via positive predictive value (PPV)2 by comparing the total
number of raw tokens found in the work-order (i.e., the pos-
itives) to the number of tokens that have a valid tag mapping
and classification (true-positives) 3 . Another way to measure
the effectiveness of the tagging process as a form of termi-
nology unification is by comparing the tag-frequency distri-
bution to the original token frequencies (shown in Fig. 4). Far
from the tokens—whose most common frequency is 1 by a
large margin—tags created in this case-study are most likely
to have between 5 - 15 occurrences, making this representa-
tion of the data much more amenable to statistical techniques.

3.2. Application Case Study: Survival Analysis

To compare the usage of each structuring approach, a basic
application of survival analysis is performed, with the goal
of comparing the median time to fail for assets, according
to several major subsystems. This can be done with both
parametric and non-parametric models, from which Kaplan-
Meier estimation and Weibull distribution models are repre-
sented here, respectively. All analysis was completed using
the lifelines python package (Davidson-Pilon et al., 2018).

3.2.1. Kaplan-Meier Estimation

When there is a sufficient number of observations available,
one can approximate the survival function of a population
through a non-parametric estimator, the most well-known of

2Typically called “precision” in an information-retrieval context.
3In theory, a complete rule-based method would map all observed, useful
tokens to some structured information. In this way, we might assign the
rules-based method a baseline PPV of 1.0 for all MWOs, to which the tag-
based method is being compared.

Figure 3. Information encoding over time — This figure
demonstrates that the fraction of observed

text-fragments/tokens that have a defined tag (with
corresponding classification) increases rapidly as the tagger

annotates the importance-ranked vocabulary list.

Figure 4. Token vs. Tag frequency distributions — the
effect of mapping multiple low-occurrence tokens to some

unified tag representation has a marked effect on the overall
frequencies, dramatically decreasing the number of 1x or 2x

occurring tags, and increasing the frequency of the
most-recurring concepts, as is desired for statistical analysis.
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which is the Kaplan-Meier (K-M) estimator (Meeker, 1998):

Ŝ(t) =
∏
i :ti ≤t

(
1 −

di
ni

)
, (1)

where each ti is the time from initialization to the time of
some event observation (a failure), di is the number of events
occurring at ti , and ni is the number of population individ-
uals known to survive or not have been censored at ti . This
allows censored data to be taken into account—for example, a
part replaced in the course of scheduled maintenance has not
failed, but is un-observable beyond its time of replacement,
making this MWO a right censoring event.

Each point of Ŝ(t), then, is an estimate of the probability that
any given member of a population will survive beyond the
time t , given its previous survival up to that point.

3.2.2. Weibull Distribution Fit

It is often the case that, due to the rarity of actual failures
for certain assets, one does not have enough data for a robust
non-parametric estimate. In these cases, it is common among
reliability engineers and others to assume that the set of “life-
times” in a population is approximately exponentially dis-
tributed, and fit a distribution’s parameters to available data.
However, a strict exponential model assumes that the hazard
rate of failure is constant in the population, meaning that the
probability of failure is the same, no matter the age of an as-
set. When these properties of an exponential distribution can-
not be assumed, then a Weibull distribution is often fit to the
data; the survival function derived through this model (i.e.,
1 − CDF) is given by:

S(t) = e−(t/η)
β
, (2)

allowing for the β parameter to adjust the hazard rate as con-
stant (β = 1), increasing (β > 1), or decreasing (β < 1).
For this study, these Weibull parameters are estimated by fit
the distribution to the observed failure inter-arrival times via
Maximum Likelihood.

4. RESULTS & DISCUSSION

The primary way in which the two methods are compared is
through the results of performing basic survival analysis on
the data-set, after being structured with each approach. In
the rules-based approach, each MWO is assigned to a “Major
Subsystem” through application of one or more rules, along
with a determination of whether the failure in this MWO was
censored or not (through application of another rule). Since,
in this data-set, the ID of each machine was noted in the
MWOs, it is possible to calculate the running time for each
machine between maintenance events, conditioned on each
subsystem.

For the tag-based approach, it is necessary to approximate
membership of each MWO into a subsystem by the set of
tags extracted. The most straight-forward way to accomplish
this is by selecting one tag that should be maximally repre-
sentative of the subsystem (for example, the tag “bucket” for
the bucket subsystem, etc.), and conditioning the failure inter-
arrival times on that tag’s occurrence. Obviously this will
tend to under-estimate the number of failures, since there will
be other objects or occurrences that are indicative of some
particular subsystem. For example, if a boom is replaced, to
which the bucket is attached (and therefore, also replaced),
the “bucket” tag itself may not be explicitly extracted, since
the bucket subsystem is only implicitly referenced via the
“boom” tag. The single tag query for “bucket” would miss

Table 1. Results of the bench-marking experiment, organized by major subsystem. Queries for a set of multi-tag input ti ∈ T
have an implied union: (∪T ). It is clear from the Weibull model that there are non-trivial decreases of the hazard rate occurring

over time for all of the subsystems, but especially the “Engine” subsystem, and that this is indicated for both rules- and
tag-based methods.

MTTF (days) Weibull Params.

Major System method query K-M Weib. β η

Bucket
rules-based Bucket 9.00 10.8 0.83±0.03 17±0.9
single-tag [bucket] 15.0 17.1 0.83±0.03 27±2
multi-tag [bucket, tooth, lip, pin] 9.00 10.5 0.82±0.02 16±0.9

Hydraulic System
rules-based Hydraulic System 8.00 9.07 0.86±0.02 14±0.6
single-tag [hyd] 25.0 24.1 0.89±0.04 36±3
multi-tag [hyd, hose, pump, compressor] 9.00 9.74 0.89±0.02 15±0.7

Engine
rules-based Engine 9.00 10.8 0.81±0.02 17±1
single-tag [engine] 10.0 11.8 0.79±0.03 19±1
multi-tag [engine, filter, fan] 8.00 9.31 0.81±0.02 15±0.8
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this type of MWO. Additionally, the censoring of failure ob-
servations (here, the scheduled replacement of a part, e.g.,
before it had actually failed) was approximated with the oc-
currence of a “changeout” tag, for which the previous caveat
also applies, but to action-words instead of subsystem item-
words. The comparison between these single-tag estimates
for Median Time to Failure (MTTF) and the rules-based esti-
mates are shown in Table 1.

To approximate a remedy to the above “subsystem problem”,
and thus to derive more holistic approximations of the subsys-
tem MTTF—with minimal annotation effort from a human—
we also include an attempt by an expert to determine a reason-
able set of subsystem-related tags, along with the correspond-
ing approximation of the subsystem MTTF (to correspond to
the rules-based method). We allowed the use of several (less
than 5) tags that are strictly members of the relevant subsys-
tem. These multi-tag approximations of the subsystem are
simply the union of the set of MWO occurrences of each in-
dividual tag. As seen in Table 1, along with the K-M model
comparisons shown in Fig. 5, these multi-tag approximations
perform remarkably well at reaching a similar MTTF esti-
mate to the rules-based methodology.

5. CONCLUSIONS & FUTURE WORK

In this study, two approaches to structuring unstructured data
in the form of maintenance work orders were reviewed and
bench-marked through the calculation of basic survival anal-
ysis models. While single-tag estimates tended to under-
estimate the failure rate, from Table 1, the average discrep-
ancy between single-tag and rules-based estimates for MTTF,
across the three tested subsystems and two methods, was only
7.7 days, with the majority of that discrepancy coming from
the bucket subsystem (average of 16 days); when an expert is
able to use his prior system knowledge, as was done through
the previously-discussed multi-tag sets, that average discrep-
ancy goes down to less than a day.

It is important to note that the methods discussed here are
mainly compared between themselves — there is a distinct
lack of a “gold-standard” measurement for, e.g., calculat-
ing the “true” subsystem MTTF, because the actual MTTF
per-subsystem was never recorded in the first place. While
it may be possible, going forward, to obtain such a well-
curated reference dataset, the lack of this information speaks
more broadly to the state of data availability and overall lack
of standardized methodology through this process. We be-
lieve that the results here do not particularly advocate for one
method over another; the rules-based keywords display a high
level of thoroughness, but are only as complete as the num-
ber of hand-made rules being created, while the data-driven
tags have a tendency to miss both rare events, and “obvious”
physics-based relationships that inherently get encoded into
a set of hand-made rules. Rather, we advocate for a combi-

Figure 5. Survival function comparison — plotted on a
log-scale, the multi-tag system approximation is clearly able
to mirror the rules-based survival estimate across all relevant
time-scales. Noticeable differences do occur for the lifespan
extrema, though these effects are exaggerated in the plot and

only last for small portions of the curve.

nation of approaches going forward. The lack of a “gold-
standard” is not uncommon in the broader information re-
trieval community, where the weighted opinions of “experts”
are often combined to approximate an agreed-upon gold stan-
dard result. (Hripcsak & Rothschild, 2005)

Given the at least one-week-difference in annotation labor
time required between the two methods to achieve the re-
ported results, the authors believe the tag-extraction method-
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ology holds potential as an efficient tool for rapid MWO en-
coding. However, there are several key features of the rules-
based approach that are lacking from the tag-based, and most
important, perhaps, is the flexible definition of subsystem cat-
egorizations based on rule-matching. It would be very diffi-
cult to know, a priori, which set of tags and/or Boolean set
operations would be “best” for approximating the classifica-
tion of underlying subsystems.

Preferably, both rules-driven approaches, that encode some
system-level from experts, and statistically sound empiri-
cal patterns from observation and data analytics, will con-
tinue to be explored as points of evidence toward a robust-
yet-efficient standardized pipeline for encoding information
from unstructured sources. Taking this further, we imagine
a scheme where the development of taxonomies—or even
ontologies—for expert systems are initialized and guided by
latent patterns discovered from appropriate application of ma-
chine learning. Subsequent iterations of the machine learn-
ing pipelines for pattern discovery can then make use of hu-
man input via these “rule definitions”, closing the loop that
leads toward robust, hybridized, intelligence augmentation
systems.

We suggest future efforts be directed toward the merging
of automated tag extraction with the design of major func-
tional relationships (encoded as rules), into an architecture for
rapid, human-in-the-loop investigatory analysis. Such a sys-
tem could take advantage of both the efficient data-processing
from NLP techniques and the functional systems knowledge
that human experts bring to the table.
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