
1

Aggregating Vulnerability Metrics in Enterprise Networks using
Attack Graphs

John Homer1 , Su Zhang2 , Xinming Ou2 , David Schmidt2 , Yanhui Du3 ,
S. Raj Rajagopalan4 , and Anoop Singhal5

1Abilene Christian University, U.S.A.
2Kansas State University, U.S.A.

3Chinese People’s Public Security University, P.R. China
4HP Labs, USA

5National Institute of Standards and Technology, U.S.A.

Abstract

Quantifying security risk is an important and yet diÿcult task in enterprise network security man-

agement. While metrics exist for individual software vulnerabilities, there is currently no standard way

of aggregating such metrics. We present a model that can be used to aggregate vulnerability metrics

in an enterprise network, producing quantitative metrics that measure the likelihood breaches can oc-

cur within a given network confguration. A clear semantic model for this aggregation is an important

frst step towards a comprehensive network security metric model. We utilize existing work in attack

graphs and apply probabilistic reasoning to produce an aggregation that has clear semantics and sound

computation. We ensure that shared dependencies between attack paths have a proportional e�ect on

the fnal calculation. We correctly reason over cycles, ensuring that privileges are evaluated without any

self-referencing e�ect. We introduce additional modeling artifacts in our probabilistic graphical model to

capture and account for hidden correlations among exploit steps. The paper shows that a clear seman-

tics for aggregation is critical in interpreting the results, calibrating the metric model, and explaining

insights gained from empirical evaluation. Our approach has been rigorously evaluated using a number

of network models, as well as data from production systems.

Keywords

risk assessment, vulnerability metrics, attack graphs, enterprise network security management

Introduction

Currently, the evaluation and mitigation of security risks in an enterprise network appears to be more an

art than a science. System administrators operate by instinct and experience, often without any verifable

way to gauge the full ramifcations of any changes in the network. Without an objective measurement of risk,

there is no straightforward and reliable method to answer fundamental questions, such as: “How likely is it

that an attacker could gain privilege X?”, “Where is our network most vulnerable?” and “If we change A,

will our network be more or less secure as a result?” These questions must be asked when judging how scarce

resources can best be utilized to improve the security of an enterprise network. Oftentimes improvement

of security also comes with cost to functionality or ease of use; thus, it is important to understand how

much reduction in overall security risk a proposed change can achieve. Answering these questions requires

1

a quantitative model of security with clear measurements of risk and easy comparison of di�erent network

states.

Much work has already been done in analyzing network confguration data and identifying network

vulnerabilities to construct attack graphs [2, 6, 7, 8, 14, 16, 15, 19, 20, 21, 29, 30, 31, 32, 35, 37, 40, 41, 42, 44].

Attack graphs illustrate the cumulative e�ect of attack steps, showing how series of individual steps can

potentially enable an attacker to gain privileges deep into the network. One limitation of attack graphs,

however, is the assumption that any existing vulnerability can be exploited. In reality, there is a wide range

of probabilities that di�erent vulnerabilities could be proftably exploited by an attacker, dependent on the

skill of the attacker and the diÿculty of the exploit. Attack graphs show what is possible without any

indication of what is likely.

Recently, there has been signifcant progress in standardizing and developing metrics for individual vulner-

abilities, such as the Common Vulnerability Scoring System (CVSS) [27]. These risk measurements consider

both specifc qualities of vulnerabilities, such as the skill necessary to exploit the weakness, and known in-

formation about the availability of an exploit. The key limitation of such individual vulnerability metrics

is that it is not possible to capture the security interactions the vulnerabilities have within the context of

the enterprise network. For example, a vulnerability may have a high CVSS score (indicating it represents

high risk to a system when the vulnerability is exposed to an attacker). But the vulnerability may reside

at a location that is highly diÿcult for an attacker to access. Likewise, a vulnerability may have a lower

CVSS score but reside at a location that is relatively easy for an attacker to approach. To accurately refect

security risks vulnerabilities bring to an enterprise network, both measurement of individual vulnerabilities’

properties and the context within which they appear must be taken into account.

Since attack graphs represent the logical inter-relationship among possible attack steps, it is natural to

combine attach graph and individual vulnerability metrics like CVSS to calculate security risk metrics for

an enterprise network. The ground-breaking work by Dacier et al. [6] and Ortalo et al. [29] applies Markov-

chain model on an attack graph (called privilege graph in their work) to calculate metrics such as mean

time to security failure (MTTF) and mean e�ort to security failure (METF). This approach needs to frst

transform the attack graph to an “attack state graph” suitable to apply the Markovian model. Depending

on the assumptions made about attacker behavior, the attack state graph could quickly become too large to

be built [20, 29]. More recent works adopt probabilistic reasoning on dependency attack graphs [3, 9, 45, 47]

which can be generated more eÿciently. Frigault andWang adopt Bayesian Networks as the underlying model

for calculating attack success likelihood on such graphs [9, 10]. However, directed cycles are commonplace in

attack graphs [31, 45] which cannot be handled through black-box application of Bayesian Network reasoning.

Wang et al. made a number of crucial observations about cyclic attack graphs and proposed a customized

probabilistic reasoning method that can handle cycles in the calculation [45]. However, when combining

probabilities from multiple attack paths, the method uses a formula that assumes the multiple probabilities

are independent. Our observations of attack graphs produced from production systems indicate that multiple

attack paths are rarely independent and often share some common exploits. Such dependency needs to be

accounted for to prevent distortion of results.

1.1 Contributions

Our contribution is a security metric model that can be used for aggregating vulnerability metrics such

as CVSS. The model has a clearly defned semantics and a sound computation algorithm with respect to the

semantics. The soundness ensures that the output of the metric model has a clear meaning with respect to

the input. The input to the metric model, component metrics, represent conditional probabilities of success

for exploiting an individual vulnerability. The output of the metric model, cumulative metrics, indicate

2

P
1

P
2

e
1
: 0.5

e
2
: 0.5

e
6
: 0.5

e
3
: 0.5

P

e
5
: 0.5

e
4
: 0.5

Figure 1: Sample attack graph showing the importance of accounting for shared dependency

the absolute probability that a specifc network privilege could be obtained by an attacker, taking into

consideration all possible multi-step attacks that can lead to that privilege.

The aggregation of individual vulnerabilities’ metrics provides a measurement on the “exposure” of the

system to attacks from a probability perspective. In some sense it can be viewed as a measurement of attack

surface as defned in the literature [22, 23]. It does not account for other important risk factors such as asset

value and threat model. Even if a system has a large attack surface the risk is not necessarily high depending

on how valuable the asset in the network is and how likely an adversary will be after it. However, we believe

our metric model is an important frst step towards a comprehensive security metric model for enterprise

networks. The above mentioned additional risk factors can be plugged in as extensions to the basic model,

and provide metrics useful for decision making. For example, the asset value can be multiplied with the

probability that the asset may be compromised by the attacker, providing an expected loss in monetary

term. The threat model can be modeled as an adjuster on certain prior probabilities in the metric model.

A clear metric semantics of our aggregation method provides a solid foundation for such extensions, and

comprehensive security risk metrics for enterprise networks.

1.1.1 Why a clear metric semantics is important

One challenge for security metrics is that many times the input parameters to the metric model are

inevitably imprecise. For example, knowing the easiness a vulnerability can be successfully exploited is

important when deciding upon mitigation priorities. Such easiness can be characterized as probability

of exploit success assuming certain attacker skills and resources. However, such probabilities are virtually

impossibe to obtain. One would have to rely upon imprecise estimate. A clear semantics of metric calculation

makes it possible to interpret the metric result even with the presence of imprecise input. Without a clear

semantics, one would not be able to tell whether a seemingly unintuitive metric result is due to the fact

that the input is imprecise, or that the assumptions made in the metric model are not realistic. Work

continues to progress in refning metrics for better capturing the properties of network vulnerabilities. A

clear metric semantic model for combining these component metrics can actually help make them more useful

and even more precise: a cumulative assessment that is thought to be faulty can be traced back to either

the imprecision in the input component metrics, or incorrect assumptions made in the aggregation model.

This provides the important feedback loop for refnement and calibration.

Once a semantic model is chosen, it is important that the metric computation algorithm adhere to the

semantics. One may think that a slightly “unsound” calculation may not a�ect the result greatly, and thus

3

question the importance of ensuring that the model’s calculation is accurate, especially when the input is

inevitably imprecise. In Figure 1, we present an attack graph segment with a situation commonly found

in attack graphs generated from production systems we studied. The attacker’s initial privilege is p0. He

can launch exploit e1 to achieve privilege p1. From p1, he can launch one of the exploits e2, ...e6 to gain

privilege p2. In this example, we assume that each exploit has a success likelihood of 0.5 — the conditional

probability for him to succeed in that attack step given that the pre-condition privilege p1 has been achieved.

The correct probability for the attacker to be able to achieve p2 can be calculated as:

Pr[p2] = Pr[p2|p1] · Pr[p1] = (1− 0.55) · 0.5 = 0.48

The probability for achieving p2 is the multiplication of the probability of achieving p1 and the conditional

probability that the attacker can achieve p2 given that p1 is achieved. However, if we assume all the attack

paths from p0 to p2 are independent and combine the probabilities from each path (0.25) in a simplistic way,

we would get the following result:

(1− 0.755) = 0.76

Obviously this would create a deviation signifcant enough to lead to di�erent decisions.

1.2 Challenges in metric calculation under probabilistic semantics

Enterprise networks typically enable a great deal of interconnectedness between network hosts. Multiple

attack paths leading to a given network privilege are rarely independent but more likely share some depen-

dencies, as in Figure 1. This interconnectedness often leads to the appearance of cycles in an attack graph.

An accurate assessment of the probability that some privilege could be gained by an attacker should handle

shared dependencies and cycles based on realistic assumptions to prevent skewing the fnal result. Doing so

while controlling the computation complexity has been a major challenge in this work.

2 Related Work

The issue of security metrics has long attracted much attention [18, 24, 25], and recent years have seen

signifcant e�ort on the development of quantitative security metrics [1, 4, 33]. There is also skepticism on

the feasibility of security metrics given the current software and system architectures [5]. While we may

still be far from achieving objective quantitative metrics for a system’s overall security, a practical method

for aggregating vulnerability metrics in an enterprise network is highly valuable in practice. Although

forming only one aspect of a system’s overall security risk, such cumulative metrics can provide much needed

automated guidance on how to spend the limited IT management resources and how to balance security and

usability in a meaningful manner. Our work provides an important frst step in automated decision making

through sound models and algorithms for aggregating vulnerability metrics using attack graphs.

Attack graphs have emerged as a mainstream technique for enterprise network vulnerability analysis [2,

13, 14, 16, 20, 21, 31, 35, 41]. Recent years have also seen e�ort on computing various metrics from attack

graphs [10, 28, 39, 45, 47, 48]. Our work builds upon results from some of these previous works but is unique

in that it provides a model with clearly defned probability semantics and a sound algorithm for calculating

the semantics, which we believe is critical in refning and calibrating the metric models.

Idika and Bhargava [12] make a number of crucial observations on the limitations of existing attack graph-

based security metrics. The authors propose combining the existing metrics when comparing two enterprise

networks, and use additional metrics (called “assistive metrics”) when the main metrics (called “decision

metrics”) cannot correctly di�erentiate the security levels of two systems. We believe the limitations observed

4

http:0.755)=0.76

by the authors are due to the lack of clear and meaningful semantics of the existing security metric models.

We believe our approach addresses these issues and we demonstrate the e�ectiveness of our metric model by

applying it on production systems.

The Common Vulnerability Scoring System (CVSS) [27] provides an open framework for communicating

the characteristics and impacts of IT vulnerabilities. CVSS consists of three metric groups: Base, Temporal,

and Environmental. Each of these groups produces a vector of compressed textual representation that refects

various properties of the vulnerability (metric vector). A formula takes the vector and produces a numeric

score in the range of 0 to 10 indicating the severity of the vulnerability. A very important contribution of

CVSS is the metric vector: it provides a wide range of vulnerability properties that are the basis for deriving

the numerical scores. The main limitation of CVSS is that it provides scoring of individual vulnerabilities

but does not provide a methodology for aggregating the metrics for a set of vulnerabilities in a network to

provide an overall network security score. The overall security of a network confguration running multiple

services cannot be determined by simply counting the number of vulnerabilities or adding up the CVSS

scores. Our work provides a clearly defned mathematical model based on attack graphs that can be used

to aggregate CVSS metrics to refect the cumulative e�ect of vulnerabilities in an enterprise environment.

Frigault et al. [9, 10] utilize the combination of attack graphs and Bayesian Networks (BN) in measuring

network security. The major limitation of using BN is that it does not allow directed cycles, which are

common in attack graphs. Our approach does not use BN reasoning as a black box. Instead, we utilize the

key concept of d-separation in BN inference and design customized algorithms for probabilistic reasoning on

attack graphs. Our approach not only handles cycles within the context of risk assessment but also takes

into consideration special properties of our metric’s semantics (e.g., that no real-time evidence needs to

be considered, the monotonicity property, and so on) which can eliminate some unnecessary overhead and

complexity in a general BN inference engine.

Wang et al. [45] recognize the presence of cycles in an attack graph and present useful ideas about

propagating probability over cycles. However, their probability calculation seems to assume that probabilities

along multiple paths leading to a node are independent, which is not generally true for attack graphs. Our

approach correctly handles both cycles and shared dependencies in attack graphs.

Anwar et al. [3] introduce an approach to quantitatively assessing security risks for critical infrastructures.

The approach captures both static and dynamic properties in the network, contained in network and workfow

models. However, the work did not provide a semantic model to explain what the calculated metrics mean.

Our risk metric has a clear semantics quantifying the likelihood an attacker can succeed in achieving a

privilege or carrying out an attack. Our metric algorithm provides a sound linkage between the input

component metrics and the output cumulative metrics based on this semantics.

Sawilla and Ou design an extended Google PageRank algorithm and apply it to attack graphs to rank

graph nodes by usefulness to an attacker for achieving his perceived goals [39]. Numeric values computed

from this algorithm only indicates relative ranks and cannot be used to indicate absolute security risks. Mehta

et al. also apply Google PageRank on a di�erent type of attack graph [26]. While this metric could be used

in calculating absolute risk based on probability semantics, the exponential nature [31] of the underlying

attack-graph model makes it hard to be used in practice. Our work provides a more practical method for

aggregating the absolute security exposure from vulnerabilities in an enterprise network, based on a more

eÿcient attack-graph model.

Wang et al. [46] introduce an approach that assumes cost metrics are present for all nodes in an attack

graph and use this information to identify a minimum-cost network hardening solution. Dewri et al. [8]

formulate security hardening as a multi-objective optimization problem, using a genetic algorithm to search

for an optimal solution based on costs of security hardening and potential damage. Homer and Ou [11]

5

demonstrate the e�ectiveness of using MinCostSAT as a basis for automated network reconfguration, with

numeric cost values being assigned to each confguration setting and reachable privilege in the attack graph.

Noel et al. [28] propose using attack graphs to calculate security risk metrics and using the metrics to do

cost-beneft analysis to support decision making. Our metric model and calculation algorithm can beneft

such e�ort of applying security metrics in practical network security management. Accurate probability

relationship between input and output of the metric model can improve the reliability and trustworthiness

of the cost-beneft analysis and the suggested hardening options.

3 Problem Overview

We utilize the MulVAL attack graph [31] as a structural basis for aggregating vulnerability metrics,

although our approach should be easily transferable to other tools that produce attack graphs with similar

semantics [14, 16, 37].

3.1 An example scenario

Figure 2 shows an example enterprise network, which we will use to introduce a number of terminologies

used in our security metrics algorithm.

0: attackerLocated(internet)
1: execCode(dbServer,root)
2: remote exploit of CVE-2009-2446

W eb 3: netAccess(dbServer,tcp,3306) In ternet
Server

4: multi-hop access D M Z
External Internal 6: execCode(webServer,apache)
Firew all F irew all 7: remote exploit of CVE-2006-3747

8: netAccess(webServer,tcp,80)
D atabase 9: multi-hop access

Server
11: execCode(workStation,userAccount) In ternal
12: remote exploit of CVE-2009-1918
14: accessMaliciousInput(workStation, user, IE)
15: victim browse a malicious website
21: victim browse a compromised website U ser

W orkstations 28: direct network access U ser
33: multi-hop access

28:1

0
21:0.5

15:0.8 14

12:0.9 11 9:1 8 7:0.2 6 4:1

3 2:0.6 1

33:1

Figure 2: Example scenario and a simplifed attack graph

Host and network reachability: There are three subnets mediated by an external and an internal frewall.

The web server is in the DMZ subnet and is directly accessible from the Internet through the external frewall.

The database server is located in the Internal subnet and holds sensitive data. It is only accessible from the

web server and the User subnet. The User subnet contains the user workstations used by the company’s

employees. The external frewall allows all outbound traÿc from the User subnet.

Vulnerabilities: The web server contains the vulnerability CVE-2006-37471 in the Apache HTTP service,

1Common Vulnerabilities and Exposures (CVE) is a dictionary of common names (i.e., CVE Identifers) for publicly known

6

by which a remote attacker could gain privileges to execute arbitrary code on the machine. The database

server contains the vulnerability CVE-2009-2446 in the MySQL database service, which could allow an

attacker to gain administrative access. The user workstations contain the vulnerability CVE-2009-1918

in Internet Explorer. If a user accesses malicious online content using the vulnerable IE browser, the user

workstation can be compromised. When a system admin is faced with these vulnerabilities, the frst questions

he will ask is: are any of these critical problems, and which one shall I deal with frst? Without a quantitative

model that captures the vulnerabilities’ cumulative e�ects on the network, it is hard to answer such questions

in an objective way.

Attack graph semantics: An attack graph G consists of a set of nodes GN of three types: (1) attack-step

nodes (collectively, set GC), represented within the graph as circular-shaped AND-nodes. Each node in

this set represents a single attack step which can be carried out when all the predecessors (preconditions

to the attack which are either confguration settings or network privileges) are satisfed; (2) privilege nodes

(collectively, set GD), represented within the graph as diamond-shaped OR-nodes. Each node in this set

represents a single network privilege. The privilege can be achieved through any one of its predecessor AND

node which represents an attack step leading to the privilege; (3) confguration nodes, which are not shown in

this graph. Each node in this set represents a fact about the current network confguration that contributes to

one or more attack possibilities. For probability reasoning, however, the confguration nodes can be removed

since they are known to be true and have no variance in probability. Excluding the confguration nodes leaves

us with an AND/OR graph, where an AND-node (attack-step) is only preceded by OR-nodes (privilege) and

always has exactly one successor OR-node. An OR-node, however, may have multiple successor AND-nodes,

representing di�erent attack steps requiring this privilege as a preceding condition.

The bottom of Figure 2 displays the MulVAL attack graph produced from the model of this network

confguration, with the confguration nodes removed. The attack graph shows that an attacker can frst

compromise the web server and use it as a stepping stone to attack the database server. Or he can frst

compromise the workstation and attack the database server from there. There are also a couple other al-

ternative sequences. Node labels can be found at the right-hand side of the network diagram. The label

for the OR nodes is in the general form of “predicate(parameters).” For example, node 1’s label is “exec-

Code(dbServer,root)”, where “execCode” is the predicate and “dbServer” and “root” are two parameters,

meaning “the attacker can execute arbitrary code with root privilege on host “dbServer”. Another example:

“netAccess(dbServer,tcp,3306)” means “the attacker has network access to host “dbServer” on port “3306”

through protocol “tcp”. The AND nodes’ labels are descriptors of the attack, e.g. remote exploit of a

vulnerability, or user actions like browsing a malicious website. These attack-step nodes are also associated

with a probability (following the colon), representing the likelihood of success given all preconditions; these

are explained further in the next subsection.

3.2 Component metrics

The input to the metric model are the component metrics, associated with each attack-step node. The

metric represents the conditional probability that the single attack step will succeed when all the prerequisite

conditions are met. For example, the component metric for node 7 represents the probability that the attacker

can successfully exploit the vulnerability CVE-2006-3747 when he already has obtained the precondition for

the exploit (represented by node 8): network access to the web server which runs the Apache service.

The component metrics indicate the severity of a single vulnerability, and we use the CVSS metrics to

derive the component metrics for our metric model. Specifcally, we take the Access Complexity (AC) sub-

metric in CVSS and map it to a conditional probability of exploit success. The AC metric takes values

information security vulnerabilities (http://cve.mitre.org/)

7

http:vulnerabilities(http://cve.mitre.org

in {low, medium, high} indicating the complexity of exploiting the vulnerability. In our experiment, we

use the mapping {low → 0.9,medium → 0.6, high → 0.2}. Intuitively, the more complex it is to exploit

a vulnerability, the less likely an attacker will succeed. The AC metrics for the Apache, MySQL, and IE

vulnerabilities in this example are: high, medium, and low respectively. There are also a few other component

metrics that do not come from CVSS. For example, node 15 is the attack step that involves tricking a user

on a workstation into accessing malicious content. The likelihood of succeeding in this is strongly a�ected by

the security awareness of users and thus is context-specifc. To provide these metric values, a risk analysis

tool can conduct an initial survey asking multiple-choice questions like, “How likely is it that a system user

will visit a malicious website?” Based on the answers provided by the user (system administrator or security

analyst) a set of component metrics representing the above likelihood can be derived and used in subsequent

analyses.

This simple component-metric scheme is used for experimentation, when our focus is on the cumulative

metric computation model; further research is needed on how best to assign the component metrics. For

example, time is a critical factor in component metrics: over a longer time period, it is more likely that

a user will at some point click a malicious link. Other factors include the presumed attacker’s skill level,

resources, and so on.

3.3 Cumulative metrics

In our metric model, the cumulative metrics represent the aggregate e�ect of all the vulnerabilities in

the network. Specifcally, we would like to capture the likelihood a privilege can be obtained by a dedicated

attacker, who will try all possible paths identifed by the attack graph to achieve the privilege. The cumulative

metric indicates the probability that he will succeed in achieving the privilege in at least one of the paths.

Here we give some basic notations used in formulating the calculation of the cumulative metrics under

this dedicated-attacker semantics. We use GM to denote the set of relevant component metric values; each

attack-step node c ∈ GC will have an assigned metric value denoted as GM [c]. Thus, for some attack-step

node e with predecessor set P , the probability of e given set P is represented by the component metric value:

Pr[e|P] = GM [c]. Additionally, the attack graph will have an assumed prior risk value, GV , representing

the probability that attacks will be attempted against the network. GV is associated with the root node of

the graph, GR (here, node 0). We will assume GV = 1 in the subsequent discussions.

Figure 3: An attack graph without a cycle Figure 4: An attack graph with a cycle

3.3.1 Handling shared dependency

In an attack graph, it is common to see multiple attack paths leading to a single network privilege. In

the example attack graph of Figure 2, node 3 has two paths leading into it, both of which depend upon node

11. Such shared dependency must be correctly accounted when calculating the joint probability that the

attacker succeed in both paths, to prevent distortion of results (see Figure 1).

To simplify discussion, we use a hypothetical attack graph shown in Figure 3, in which privilege P4 can

be obtained by an attacker using either of two attack steps — A4 or A5. Privilege P4 will be unobtainable

if an attacker cannot successfully carry out either A4 or A5. Pr[A4] and Pr[A5] are the probabilities that

8

A4 and A5, respectively, can be successfully carried out. If the paths to A4 and A5 are independent, we

would calculate the probability that an attacker might gain privilege P4 to be: Pr[P4] = Pr[A4] + Pr[A5]−

Pr[A4] · Pr[A5]. However, it is incorrect to assume that A4 and A5 are independent. Looking at Figure 3,

it is easily seen that attack step A4 is potentially a�ected by privilege P1, and attack step A5 fully depends

upon it. Because of this shared dependence on P1, A4 and A5 are not independent and the above formula

would skew the e�ect that privilege P1 has on the fnal result. In other words, assuming that all attack paths

in an attack graph are independent will lead to biased results in aggregating vulnerability metrics.

To correctly account for shared dependencies among attack paths, we will employ the notion of d-

separation within a causal network (such as a Bayesian Network) [17]. The concept of d-separation can be

utilized to establish conditional independence between node sets. The metric aggregation problem on attack

graphs is a di�erent problem than generic Bayesian-Network reasoning (see section 3.3.3); therefore, the

concept of d-separation is customized here for our specifc application.

Defnition 1 In an attack graph, two distinct node sets S1 and S2 are d-separated by an intermediate node

set V ⊆ GN (distinct from S1 and S2) if along every diverging path between S1 and S2, there is some v ∈ V

such that v is the point of divergence.

A d-separating set for two nodes always exist; naively, the graph nodes in the two nodes’ Markov blan-

kets [34] altogether d-separate the two nodes. Practicality, however, requires that a minimal set be found to

reduce calculation time. Because of attack graphs’ semantics, only shared dependencies (points of divergence

in shared paths) need to be considered in the construction of a d-separating set. For example, in Figure 3,

there is a diverging path A2 ← P1 → A3 between nodes A2 and A3; the point of divergence, P1, d-separates

these two nodes. Even though A2 and A3 are not independent (they are both infuenced by P1), when P1 is

fxed they become conditionally independent. The determination of a minimal d-separating set is addressed

in Section 4.1.

Nodes with multiple successor nodes are called “branch nodes”; the set of all branch nodes is denoted as

GB . Since the confguration nodes have been removed and attack-step nodes have exactly one successor each,

the set of branch nodes must necessarily be a subset of the privilege nodes — GB ⊆ GD . The d-separating

set D for two node sets will then be a subset of GB , so that the elements in D “block” all diverging paths

between the two node sets. To identify a minimal set of nodes that d-separates two node sets, we only need

to consider branch nodes along the paths from the root node GR to the nodes. Consider A4 and A5 in

Figure 3 as an example; here, we only need to consider the branch nodes along the paths to A4 and A5,

which is D = {P0, P1}. We can see from the fgure that D d-separates A4 and A5. Once the nodes in D are

fxed, A4 and A5 become conditionally independent, and we can then calculate the joint distribution.

Theorem 3.1 Let D,N be node sets such that D d-separates any pair of nodes in N . Then:

Pr[N] =
X

(
Y

Pr[n|D]) · Pr[D]
D n2N

Proof: X
Pr[N] Pr[N,D]=

D X
Pr[N |D] · Pr[D]=

D

=
X

(
Y

Pr[n|D]) · Pr[D]
D n2N

By Bayes theorem, Pr[N |D] · Pr[D] produces the joint probability Pr[N,D]. Summing over all possible

values of D will marginalize D from the joint distribution Pr[N,D]. Since D d-separates any pair of nodes

9

Y
in N , all nodes n ∈ N are conditionally independent given D: Pr[N |D] = Pr[n|D].

n2N

Using the above theorem, we have a way to calculate the joint probability Pr[A4, A5], which is needed to

calculate Pr[P4]. We can sum over all possible values of d-separating set {P0, P1} to solve Pr[A4, A5], and

we can decompose a joint conditional distribution to singleton conditional probabilities:

Pr[P4] = 1− Pr[A4, A5]

= 1−
X

Pr[A4|P0, P1] · Pr[A5|P0, P1] · Pr[P0, P1]
P0 ,P1

The formation and use of calculations will be discussed in greater detail in later sections.

3.3.2 Handling cycles

It is also common to fnd cycles in attack graphs. The example attack graph in Figure 2 contains a cycle

(6-21-14-12-11-9-8-7-6). To simplify discussion, we use another small hypothetical attack graph shown in

Figure 4, where some graph nodes comprise a cycle — {P2, A4, P3, A5}. When evaluating the probability of

a node within a cycle, such as Pr[P2], we must be careful that node P2 does not a�ect its own probability

of occurrence via cyclic attack paths. According to the graph, it is possible that an attacker can use attack

step A2 to obtain privilege P2, then use attack step A4 to obtain privilege P3, and then use attack step

A5 to obtain privilege P2 again. Although this path does technically exist within the graph, one must take

care so that the existence of such cycles do not distort the probability calculation result. For example, even

though an attacker could traverse a cycle to return to a prior privilege, this shall not increase his success

likelihood in obtaining the privilege. We must be able to evaluate nodes within the cycle while eliminating

any cyclic infuence in the probability calculation. One straightfoward approach is to unfold any cyclic graph

into an equivalent acyclic graph such that each node appears exactly once in any path, but this procedure

almost always results in an exponential blowup in the size of the unfolded graph. Unfolding the graph is

actually not necessary if we apply a data fow analysis to the cyclic nodes so that we can evaluate the same

probabilities as on the unfolded graph, but without actually unfolding it. Through dynamic programming

and other optimizations in the data fow analysis process, we can avoid some increase in the complexity of

the calculation.

3.3.3 Relationship to Bayesian Networks

Our method conducts Bayesian reasoning on attack graphs for the purpose of caculating the cumulative

metrics under the dedicated-attacker semantics. Existence of directed cycles in attack graphs preclude direct

application of Bayesian Network (BN) reasoning systems, which require the graphical model to be acyclic.

Our algorithm does adopt the core-concept of Bayesian-Network reasoning, d-separation, in calculating the

probability metrics. It handles directed cycles (which cannot be handled by a general BN system) based on

the application semantics, and utilizes specifc features of our metric semantics to simplify computation. Thus

our algorithm is neither a specialization nor a generalization of the standard Bayesian Network reasoning

system. It overlaps with BN in that both utilize the notion of d-separation in calculating probabilities.

4 Cumulative Metric Computation

4.1 Defnitions

For describing our approach of computing cumulative vulnerability metrics, it is convenient to defne and

employ the following notations.

Function 1 For a node n ∈ GN , °(n) represents the absolute probability that node n is true (i.e., the prob-

ability that the privilege/attack step represented by node n can be successfully gained/launched). Similarly,

°(n) represents the probability that node n is false. °(n) + °(n) = 1.

10

For example, in Figure 3, °(P4) is the probability that node P4 is true, while °(P 4) is the probability that

P4 is false. We extend the notation to represent joint probability for multiple nodes. For example, °(A4, A5)

is the joint probability that nodes A4 and A5 are both false.

Function 2 For a node n ∈ GN , (A, n) represents the conditional probability that node n is true given the

condition A. We also extend the notation to a set of nodes similarly as before.

For example, in Figure 3, ({P0, P1}, P2) is the probability that P2 is true given that P0 and P1 are true.

This eliminates any infuence that A1 has on node P2. We use ei to denote the component metric value for

each attack-step node Ai, i.e. ∀Ai ∈ GC , GM [Ai] = ei, so ({P0, P1}, P2) = e2 +e6 −e2e6. Another example:

({P0, P 1}, P2) is the probability that P2 is true given that P0 is true and P1 is false. ({P0, P 1}, P2) = e6.

Function 3 For n ∈ GN , ˜(n) = {b | b ∈ GB and b appears in at least one attack path leading to node n}.

˜(n) is the set of all branch nodes that appear in at least one attack path to n and so a�ect the probability

of n. For example, in Figure 3, ˜(A2) = {P0, P1}. The ˜ set is used to identify a minimal d-separating set

for a node set. For any two nodes m and n, the set {˜(m) ∩ ˜(n)} includes all branch nodes that lie on

paths leading to both nodes; fxing the values of these nodes will d-separate m and n.

Defnition 2 Within the attack graph, for any node n, a logical dominator is any node d such that n is true

only if d is true. This relationship is denoted d⇐ n.

Function 4 For n ∈ GN , �(n) = {d|d ∈ GB and d⇐ n}.

�(n) is the set of all branch nodes that logically dominate (appear in all attack paths to) n, so that

∀d ∈ �(n), (d, n) = 0. In other words, n is false if any d ∈ �(n) is false. In Figure 3, node P1 ⇐ A5 since A5

is true only when P1 is true: all attack paths to A5 must frst accomplish P1. But P1 does not dominate A4,

since there is a path to A4 through A6 which does not require P1. The � set is used to optimize calculations

over a d-separating set.

Employing these notations, we will now consider how to calculate the probability values for every node

within an attack graph.

4.2 Specifcation of the computation

The following propositions set forth recursively-defned equations for the calculation of the functions

defned in the previous section. These propositions provide a sound basis for the evaluation for any node

n, accounting for the e�ect of all preceding nodes in all possible paths leading to n. The root node of the

attack graph, GR, will be initialized at the beginning of the algorithm and will serve as an anchor for the

° recursion. When calculating (A, n), the recursion must reach a point where n ∈ A (so that n must be

true), n̄ ∈ A (so that n must be false), or A∩ ̃ (n) = ∅ (so that n is independent of A, assuming A contains

branch nodes only); these base cases will serve to halt the recursion.

Proposition 4.1 For any privilege node n ∈ GD with immediate predecessor set W,

°(n) = 1− °(W)

(A, n) = 1− (A,W)
[

˜(n) = ˜(w)
w2W \

�(n) = �(w)
w2W

11

A privilege node n will be true when at least one of its predecessors is true; conversely, it will be false

only when all of its predecessors are false. The ˜ set for n is the set of branch nodes that a�ect at least one

path to some w ∈ W and so at least one path to n; the � set for n is the set of branch nodes that a�ect all

paths to n (and so logically dominate n). Thus ˜ can be found by a union over the ˜ sets for all predecessors,

and � can be found by intersecting the � sets for all predecessors. Since the predecessors of a privilege node

are all attack nodes, they cannot be branch nodes themselves.

Proposition 4.2 For any attack-step node n ∈ GC with immediate predecessor set W,

°(n) = GM [n] · °(W)

(A, n) = GM [n] · (A,W)
[

˜(n) = (˜(w)) ∪ (GB ∩ W)
w2W [

�(n) = (�(w)) ∪ (GB ∩ W)
w2W

When all predecessors are true, an attack step node n is true with conditional probability GM [n]. Simi-

larly, given set A, n is true with conditional probability GM [n] when all predecessors are conditionally true.

The ˜ set for n is the set of branch nodes that a�ect at least one of its predecessors together with any of its

predecessors that are branch nodes themselves. Since n requires that all predecessors be true, the � set for

n is the set of branch nodes that logically dominate any predecessor (and so logically dominate n) as well as

any one of its predecessors that are branch nodes themselves.

Pseudocode specifcations of the computation algorithms are provided below; sample computations, pre-

sented in the Appendix, demonstrate the application of this algorithm over acyclic and cyclic graphs, re-

spectively.

4.3 Algorithm for Cumulative Metric Computation

Algorithm 1 presents the core algorithm for vulnerability metric aggregation over an attack graph. This

algorithm consists primarily of a controlling loop that will iteratively consider each individual non-cyclic

node or set of cyclic nodes in the graph. This loop will terminate only when a risk assessment evaluation

has been performed for every node.

The algorithm assumes a MulVAL attack graph node set, with confguration nodes removed and a new

privilege node (representing the attacker’s starting point) added to serve as a root node for the graph. Cycles

in the graph are identifed using Tarjan’s algorithm for strongly connected components [43]. We also use

dynamic programming to store partial results of the computation to improve eÿciency.

Before entering the control loop, the data set is initialized for the graph root node. The probability that

this node is true is exactly the same probability that the network will be attacked - GV . Because this is the

root node, the ˜ and � sets are empty; no other nodes will a�ect the root node.

Within the loop, we attempt to fnd an individual, non-cyclic node n that is itself unevaluated but for

which all predecessors have already been evaluated. Then depending on whether the node is OR or AND

node, we calculate the probability of n and the ˜ and � sets based on Proposition 4.1 or Proposition 4.2

respectively. If n is a branch node, we also set up the base case for (n, n).

Defnition 3 For some set C ⊂ GN comprising a strongly connected component (cycle) within the graph,

the entry nodes are the set of nodes Q such that Q ∩ C = {} and ∀q ∈ Q, ∃c ∈ C, (q, c) ∈ GE . That is, the

entry nodes are not in the cycle, but each entry node does have an arc leading into the cycle.

12

Algorithm 1: Pseudocode for cumulative metric computation

1: Identify cyclic subsets

2: n ← GR {Begin with graph root node}

3: °(n)← GV

4: ˜(n)← ∅

5: �(n)← ∅

6: U ← GN − n { Initialize set of unevaluated nodes, excluding root node}

7: while U =6 { } do { some nodes remained unevaluated }

8: if ∃ n | n ∈ U, ∀p | [p, n] ∈ GE , p 6∈ U then { node n is ready to be evaluated }

9: P ← {p | [p, n] ∈ GE } { Immediate predecessors of n }

10: if n ∈ GD then

11: °(n) = 1− evalProb(P) { Call Algorithm 2 } [
12: ˜(n) = { ˜(p)}

p2P \
13: �(n) = { �(p)}

p2P

14: if n ∈ GB then

15: (n, n)← 1

16: end if

17: else { n ∈ GC }

18: °(n)← GM [n] · evalProb(P) { Call Algorithm 2 } [
19: ˜(n) = (GB ∩ P) ∪ ˜(p)

p2P [
20: �(n) = (GB ∩ P) ∪ �(p)

p2P

21: end if

22: U ← U − n { Mark node n as evaluated }

23: else { a cycle is ready for evaluation }

24: C ← cyclic set ready for evaluation (all non-cyclic predecessors evaluated)

25: M ← evalCycle(C) { Call Algorithm 4 }

26: U ← U \ M { Mark node set M as evaluated }

27: end if

28: end while

If no individual node n can be found ready for evaluation, it must be the case that at least one cycle

in the graph is ready for evaluation. A cycle C is “ready” for evaluation when all entry nodes to the cycle

(Defnition 3) have been evaluated. In this case, Algorithm 4 will be called to handle the cyclic node set C;

the return value will be set M ⊂ C, the subset of nodes in set C that have multiple immediate predecessors.

Once these are solved, all remaining (single-predecessor) cyclic nodes can be solved without consideration of

the cycle [45]. After a cycle has been evaluated, it will be abstracted to a single node for representation in

the graph. In this way, successor nodes following the cycle can be treated acyclically.

After each loop iteration, a single node n or a node set M will be removed from the set of remaining,

unevaluated nodes. The loop will re-iterate at this point, continuing until calculations have been made for

all nodes in the graph.

13

Algorithm 2: Pseudocode for computing evalProb(N)

Require: Parameter N , such that

N = {n0, n1, ..., nj } ⊆ GN , such that ∀ni ∈ N,°(n) has already been evaluated

1: { Find d-separating set D for node set N } [
2: D ← ˜(m) ∩ ˜(n)

m,n2N

3: if D = ∅ then Y
4: return °(n)

n2N
5: else X
6: return evalCondProb(D,N) · evalProb(D)

D
7: end if

Algorithm 3: Pseudocode for computing evalCondProb(D,N)

Require: Parameters D,N , such that

N ⊆ GN , |N | ≥ 1, such that ∀ni ∈ N,°(n) has been evaluated

D ⊆ GN , such that D d-separates all n ∈ N

1: if |N | > 1 then Y
2: return evalCondProb(D, {n})

n2N

3: else if N = {n} then { N contains exactly one negative element }

4: return 1− evalCondProb(D, {n})

5: else { N = {n}, so that N contains exactly one positive element }

6: J ← {j | j ∈ D} { All positive elements in D }

7: K ← {k | k ∈ D} { All negative elements in D }

8: if n ∈ J then

9: return 1

10: end if

11: { If n or a dominator of n is negated in D }

12: if n ∈ K or K ∩ �(n) =6 ∅ then

13: return 0

14: end if

15: { If set D does not a�ect the value of n }

16: if D ∩ ˜(n) = ∅ then

17: return °(n)

18: end if

19: P ← {p | [p, n] ∈ GE } { Immediate predecessors of n }

20: if n ∈ GD then

21: return 1− evalCondProb(D,P)

22: else { n ∈ GC }

23: return GM [n] · evalCondProb(D,P)

24: end if

25: end if

14

Algorithm 2 calculates °(N) — the joint probability of an acyclic node set N , when each element of N ’s

probability has already been calculated. Dynamic programming is used in the implementation; thus if the

size of N is 1 the value of °(N) is already computed and the cached result will be returned immediately.

Otherwise the algorithm fnds a d-separating set D such that all n ∈ N are conditionally independent given

D. Based on Defnition 1, it suÿces to construct D by fnding all branching nodes that may a�ect two or

more elements in N . If D is an empty set, then all n ∈ N are fully independent. In this case, the probability

of N is equal to the product of the probabilities of all n ∈ N . Otherwise, the probability is calculated

according to Theorem 3.1.

Algorithm 3 – evalCondProb(D,N) – calculates the conditional probability of node set N given d-

separating set D. If the node set N contains multiple nodes, then the conditional probability of N given D

is equal to the product of the conditional probability of n given D, over all n ∈ N . This is due to the nature

of d-separating set D, so that all n ∈ N are conditionally independent given D. When N contains exactly

one element, the algorithm frst checks whether a base case has been reached (line 8, 12, 17). If none of the

base cases is reached, the algorithm recursively calls itself on the predecessors of n (line 21 and 23).

Algorithm 4: Pseudocode for evalCycle(C) - assessment over nodes in cycle

Require: Parameters C, such that

C = {c0, c1, ..., ck} ⊂ GN comprises a strongly connected component in G

1: { Trace all acyclic reaching paths }

2: AllPaths← ∅

3: for all {(p, a) | p 6∈ C, a ∈ C, [p, a] ∈ GE } do

4: AllPaths← AllPaths ∪ tracePaths(a, {p}, C) { Algorithm 5 }

5: end for

6:

7: {Solve all nodes in cycle with multiple predecessors}

8: Q← set of entry nodes (non-cyclic nodes, leading into cycle)

9: M ← {m | m ∈ C, ∃p, q.(p 6 q, [p,m] ∈ GE , [q,m] ∈ GE)}=

10: for all m ∈ M do

11: P ← {p | p ∈ AllPaths and p ends with m}

12: V ← set of possible instances of m (such that each v ∈ V is attainable by exactly one path p ∈ P)

13: { Find set of nodes appearing in multiple acyclic paths in set P } [
14: T ← (p ∩ q)

p,q2P

15: { Identify d-separating set within cycle for all paths to m }

16: D ← (GC ∩ T) \ Q

17: { Find the probability of m, transitively d-separating by Q and D }

18: if m ∈ GD then { m is an OR-node }
⎛ ⎡⎛ ⎞ ⎤⎞

X X Y
19: °(m) 1− ⎝evalP rob(Q) · ⎣⎝ (GM [d]) ⎠ · evalCycleNode(Q [D,V)⎦⎠

Q D d2D

20: else { m is an AND-node }
⎡ ⎛ ⎡⎛ ⎞ ⎤⎞⎤

X X Y
21: °(m) GM [m] · ⎣1− ⎝evalP rob(Q) · ⎣⎝ (GM [d]) ⎠ · evalCycleNode(Q [D, V)⎦⎠⎦

Q D d2D

22: end if

23: end for

24: return M

15

Handling cycles

Figure 4 contains an attack graph that we will now use as an aid to explain and demonstrate cumulative

metric computation over an attack graph containing cycles. This attack graph contains one cycle, node set

{P2, P3, A4, A5}. Figure 5 shows an equivalent representation of the same attack graph. This unfolded attack

graph is acyclic, containing all the unique, acyclic paths that traverse the cycle. Node P2, for example, can

be reached as P2A or P2B ; the dotted-line arcs indicate that reaching either of these instances means that

P2 has been reached. In other words, P2A and P2B can be viewed as “partial values” for P2 and P2 is true

when either of them is true. Intuitively, we will identify all acyclic paths traversing the cycle and use this

knowledge to logically identify unique possible instances of cyclic nodes. We can then d-separate over the

set of reaching paths to calculate the probability that the cyclic node will be reached.

Figure 5: Cyclic attack graph (left, from Figure 4) shown with cycle unfolded (right)

We can simplify the handling of cycles by calculating values only for cyclic nodes with multiple immediate

predecessors [45]. For a node N with only one immediate predecessor P , P necessarily dominates N and

thus N cannot have any infuence on P ’s probability. The probability of N is then completely dependent on

the probability of P according to Propositions 4.1 and 4.2, without double-counting any node’s infuence.

For this reason, once we have computed the probabilities for the nodes with multiple predecessors, the rest

of the nodes can be handled in the same manner as in the acyclic case.

Algorithm 4 controls probability calculation for certain nodes within a cyclic node set C. This algorithm

is called from the main algorithm [Algorithm 1] to consider cyclic components within the attack graph.

Given a cyclic node set C, this algorithm frst identifes all acyclic reaching paths that lead from outside of

the cycle to a node within the cycle [Algorithm 5]. It then calculates a risk assessment value for each m ∈ C

such that m has multiple predecessors (multiple arcs leading to m).

For each multi-predecessor node m ∈ C, there is a set V of “partial values,” or di�erent instantiations

of m reached by di�erent paths. The node m will be true except when all of these “partial values” are

unreachable. To fnd a d-separating set D within the cycle for all v ∈ V , the algorithm identifes all attack-

step nodes appearing on multiple paths in P , excluding the entry nodes Q (which are not in the cycle). Recall

that the d-separating set for any node is earlier stated to be a subset of GB (Section 3.3.1). However, each

node B ∈ GB ⊂ GD along a specifed partial path will have probability equal to its preceding attack-step

node (Proposition 4.1); the attack-step nodes appearing on multiple paths will precede any branching nodes

and thus, for purposes of calculation, represent a suÿcient set to determine a d-separating set D. Because

all possible acyclic paths are considered, the set of attack-step nodes lying along each path is unique to

that path. We will not use the full probability of these nodes, but only the individual component metrics

associated with them, calculating the likelihood of success for each path within the cycle. Together with a

set of cycle entry nodes Q, we can now solve for the probability of node m.

If m is a privilege node, then m is true except when all v ∈ V are false. To fnd this value, we must

marginalize over sets Q and D, eliminating their conditional infuence on m. If m is an attack-step node, it is

similarly computed, considering also the individual component metric value of m - GM [m]. Because we are

16

using only the component metric values for D, the order and derivation of each attack path is unimportant;

only the product of the individual probabilities is needed.

Once probabilities have been calculated for all multi-predecessor nodesM ⊂ C, the set M will be returned

to the main algorithm to be marked as evaluated. Again, all single-predecessor cycle nodes will be treated

as acyclic, to reduce overall run-time of the algorithm. In this way, the cycle is properly evaluated, so that

no node infuences its own probability.

Algorithm 5: Pseudocode for tracePaths(n, P, C) - tracing acyclic paths through cycle

Require: Parameters n, P, C, such that

n ∈ C, a strongly connected component

P = {p0, p1, ..., pm} ⊂ Q ∪ C is a sequence of nodes comprising a simple path to node n

1: P ← P :: n { Append n to P }

2: Paths← {P}

3: { Get set of successors to n not appearing in path set P }

4: S ← {s | s ∈ C, s 6∈ P, [n, s] ∈ GE }

5: for all s ∈ S do

6: Paths← Paths ∪ tracePaths(s, P ∪ n,C)

7: end for

8: return Paths

Algorithm 5 – tracePaths(n, P, C) – performs a logical “unfolding” of the strongly connected graph

component C, comparable to the graphical unfolding discussed in Section 3.3.2 in that all acyclic reaching

paths are identifed for each node c ∈ C. The paths are primed by cycle entry nodes. As a node is visited,

a unique, non-cyclic path set (suÿcient for obtaining one instance of that node) will be saved for future

reference, representing one non-cyclic path to that node. This algorithm will never produce duplicate paths

to any one node. Whenever the algorithm discovers a connecting node that is already in the path set P , this

avenue of exploration is ceased, to prevent cyclic paths from occurring. In this way, all of the exploratory

paths will eventually end, so the algorithm will terminate successfully. These partial paths and values are

stored for use in calculating probability for multi-predecessor cycle nodes in Algorithm 4.

Algorithm 6 – evalCycleNode(D,N) – calculates conditional probability for a set N of node instances

given a d-separating set D. D is the union of the set of cycle entry nodes and the attack-step nodes appearing

on multiple partial paths within the cycle. This algorithm is called from evalCycle(N) [Algorithm 4]. It

is similar in many respects to evalCondProb(D,N) [Algorithm 3], but utilizes the acyclic reaching paths

identifed within the cycle to perform its probability calculations.

If node set N contains multiple nodes, then the product of the conditional probability for all n ∈ N is

calculated and returned. If node set N contains exactly one node n, and that node is disabled, then n holds

except when n is conditionally true. This value, the inverse, will be calculated and returned.

If node set N contains exactly one node n, and that node is enabled, we must calculate a conditional

probability for n given D. Set P contains all attack-step nodes in entry nodes or cycle nodes that lie along

the acyclic reaching path to node instance n. If some node in path P is negated in D, then n cannot be

reached by path P and so has probability zero. Otherwise, we must remove from P all nodes that are forced

true in D, since these can have no e�ect on the probability of n by path P .

17

Algorithm 6: Pseudocode for evalCycleNode(D,N)

Require: Parameters D,N , such that

D d-separates all n ∈ N , and

N = {n0, n1, ..., nj } are partial values for some node n ∈ C

1: if |N | > 1 then Y
2: return evalCycleNode(D, {n})

n2N

3: else if N = {n} then

4: return 1− evalCycleNode(D, {n})

5: else { N = {n}, so that N contains exactly one element, enabled }

6: P ← partial path (set of attack-step nodes) leading to node instance n

7: J ← {j | j ∈ D} { All enabled nodes in D }

8: K ← {k | k ∈ D} { All disabled nodes in D }

9:

10: { If node in path is negated, n cannot be reached by path P }

11: if K 6 ∅ then ∩ P =

12: return 0

13: end if

14:

15: { Discard any path nodes forced true }

16: P ← P \ J

17: Y
18: return GM [p]

p2P

19: end if

Once all such fxed values have been accounted for, we know that the node is reachable along path P .

Because the attack-step nodes in P are treated independently, knowing the probability that all will jointly

succeed gives us the likelihood that an attacker will succeed along path P . The algorithm therefore calculates

the product of the component metric values for all remaining nodes in path P ; this value is the probability

that n is true by path P , given set D.

5 Evaluation Results

We have implemented our cumulative metric algorithm in the Python language. To evaluate the e�ec-

tiveness of using the metric model for risk assessment, we carried out three lines of study:

• Testing how the metrics can help making security hardening decisions.

• Evaluation on a production system to gain empirical experience of the metric model.

• Testing the scalability of metric computation.

5.1 Evaluating the use of metrics to guide hardening decisions

For this evaluation, we used the small example network in Figure 2. For this confguration, the cumulative

metrics result is shown in the “Initial scenario” column of Table 1. In the table, the numbers indicate the

likelihood various machines can be successfully compromised by an attacker.

18

Host Initial scenario
Patch

web server
Patch

db server
Patch

workstations
Change

network access

Database server 0.47 0.43 0 0.12 0.12
Web server 0.2 0 0.2 0.2 0.2
Workstations 0.74 0.72 0.74 0 0.74

Table 1: Probabilities of compromise for hosts in Figure 2 (columns refect di�erent scenarios)

Consider again the sample network confguration (and associated attack graph) shown in Figure 2. When

considering improvements in network security, a network administrator is constrained in terms of money and

time. For example, some changes, though preferable, may not be feasible because of the time necessary to

make the change and the system downtime that would occur while the change was made. Considering the

network topology in this example, it is not immediately clear which of the vulnerabilities should be patched

frst, assuming that a fx is available for each of the three, or what other changes could be made to reduce

security risk. The columns in Table 1 show new metric values based on various mitigation options: patching

di�erent vulnerabilities or changing the network access rules so that the user workstations cannot access the

database server.

Patching the vulnerability on the web server would eliminate the known risk of compromise for the web

server, but have little e�ect on the other two hosts. The web server does not contain sensitive information,

so protecting this host frst may not be the best choice.

Patching the vulnerability on the database server would eliminate the known risk of compromise for the

database server, but have no e�ect on the risk in the other two hosts, since privileges on the database server

do not enable new attacks on the other hosts. This option would secure the sensitive data on the database

server, which may be most desirable, but at the cost of having a period of downtime on the database server

which may a�ect business revenues.

Patching the vulnerability on the user workstations would eliminate the risk to the workstations, as well

as signifcantly reduce the risk to the database server, but the risk to the web server would remain unchanged.

This may be a more feasible solution since downtime on the workstations is less costly than on the server,

especially if the patching can be done outside of normal working hours.

Network confguration changes can also have drastic e�ects on the security risk. The fnal column in the

table shows the e�ect of blocking network access from the workstations to the database server. This option

eliminates an attack path to the database server that depends on privileges on the workstations, lowering

the risk of compromise for the database server, but it leaves the web server and workstations vulnerable.

Depending on other resource constraints and asset valuations, this may also be a viable solution.

There may not be a single “best” option for all organizations. Indeed, di�erent administrators could easily

make di�erent choices, based on the perceived importance of the hosts and the expected time necessary to

enact proposed changes, as well as human resources available. The quantitative security metrics make clear

the e�ects emerging from each of these possible changes, thereby providing a network administrator with

objective data benefcial for judging the relative value of each option. Our cumulative metrics could also

be combined with quantitative asset values and costs of various mitigation options, fed into an optimization

engine such as the one proposed by earlier works [11, 28, 38, 46], to automatically compute optimal hardening

options.

19

109 :0 .6

1 5 1 : 0 . 9 9 3 9 7 5 2 9 6

1 0 8

107 :0 .6

1 0 6

105 :0 .6

1 0 4

103 :0 .6

1 0 2

101 :0 .6

1 0 0

99 :0 .6

9 8

97 :0 .6

9 6

95 :0 .6

9 4

93 :0 .6

9 2

91 :0 .6

9 0

89 :0 .6

8 8

87 :0 .6

8 6

85 :0 .6

8 4

83 :0 .6

8 2

81 :0 .6

8 0

79 :0 .6

7 8

77 :0 .6

7 6

75 :0 .6

7 4

73 :0 .6

7 2

71 :0 .6

7 0

69 :0 .6

6 8

67 :0 .6

6 665:0 .8

64 :0 .8

6 3

62 :0 .9

6 1 60 :0 .8

59 :0 .8

5 8

57 :0 .9

5 6

55 :0 .9

5 4

53 :0 .9

5 2

51 :0 .9

5 0

150 :0 .6 49 :0 .9

4 8

47 :0 .9

4 6

45 :0 .9

4 4

43 :0 .9

4 2

41 :0 .9

4 01 4 9

148 :0 .6

1 4 7146 :0 .8

145 :0 .8

1 4 4

143 :0 .6

1 4 2

141 :0 .6

1 4 0

39 :0 .9

3 8

37 :0 .9

3 6

35 :0 .9

3 4

33 :0 .9

3 2

31 :0 .9

3 0

139 :0 .6

1 3 8

137 :0 .6

1 3 6

135 :0 .6

1 3 4

133 :0 .6

1 3 2

131 :0 .6

1 3 0

29 :0 .9

2 8

27 :0 .9

2 6

25 :0 .9

2 4

23 :0 .9

2 2

21 :0 .9

2 0

9 :0 .2

87

129 :0 .6 127 :0 .6 125 :0 .6 123 :0 .6 121 :0 .6 19 :0 .9 17 :0 .2 15 :0 .2 13 :0 .2 11 :0 .2 119 :0 .6 117 :0 .6 115 :0 .6 113 :0 .6 111 :0 .6

6 :0 .8 1 2 8

5 :0 .8

4

1 2 6

32

1 2 4

1

1 2 2 1 2 0 1 8 1 6 1 4 1 2 1 0 1 1 8 1 1 6 1 1 4 1 1 2 1 1 0

(a)

1 9 : 0 . 8 9 2 4 1 6

18 :0 .6

1 7

16 :0 .6

1 514:0 .8

13 :0 .8

1 2

11 :0 .6

1 0

9 :0 .6

87 6 :0 .8

5 :0 .8

4 32 1

(b)

Figure 6: Attack graphs from two production servers

5.2 Insights gained from evaluation on a production system

To study how the metric model works on production systems, we have conducted an OVAL vulnerability

scan on all the Windows servers and workstations in the CIS departmental network of Kansas State Uni-

versity. OVAL2 is part of the SCAP standard [36] for communicating security information. It is a language

for reporting discovered known vulnerabilities on a host. The OVAL scan is performed periodically, and the

vulnerability assessment reports are automatically sent to a central data repository, providing continuous

fresh data for evaluating our metric model.

The departmental network has a fairly simple network topology. There is no frewall control in the internal

network, so all the servers can talk to each other. The servers are well-managed so that most of the service

program vulnerabilities have been patched. However, there are still a large number of client-side and local

vulnerabilities on each machine. These vulnerabilities pose relatively low risk, since it is very unlikely that a

user will access the server to launch those client programs, and as long as no user is compromised, the local

vulnerabilities cannot pose any danger to the systems. For this reason, these systems are good candidates

for evaluating the security metric methods — there is a signifcant amount of residual risk that needs to

be quantifed. The calculated security metrics can be used in comparison to the system administrator’s

rationale for delayed patching of these non-critical vulnerabilities.

As we ran our metric algorithm on the model, a problem quickly became obvious. It is best illustrated

by the results in Figure 6, which shows the attack graphs for two servers.3 Server (a) has many more

vulnerabilities than (b), as can be seen immediately from the density of the attack graphs. The attack graph

for (a) is so wide that it is shown almost like a line in the limited space on paper. However, when it comes

2(http://oval.mitre.org/)
3The square nodes are confguration nodes which have been omitted in the previous attack-graph examples.

20

http:2(http://oval.mitre.org

Pv

Av

ev
{e1, e2, e3, e4}

Set e1 = e2 = e3 = e4 = 1

P0

P1

A1 A2 A4A3

e1 e2 e4e3

Pv

Av

ev
{e2,e4}

= 1

= 1

P1

P2

A1 A2

A4A3

e1 e2

e4e3

(a) (b)

Figure 7: Modeling artifacts for capturing hidden correlations

to cumulative security metrics results, the two do not show a signifcant di�erence: 0.99 vs. 0.89. Indeed,

most of the machines we have evaluated had at least a dozen attack paths, which raises the likelihood of

attack success to almost 1. This necessarily prompts the question: is this a realistic measurement of risk?

We presented the result to the system administrator. His opinion was that it depends on the underlying

di�erences in the existing vulnerabilities. A machine with 10 vulnerabilities in a single application has a

lower risk than a machine with 10 vulnerabilities in 10 di�erent applications, because vulnerabilities in the

same application may not give an attacker signifcant advantage in exploiting them. The exploits for these

vulnerabilities may not be truly independent: if the attacker lacks skill or experience in exploiting a specifc

application, the presence of more vulnerabilities in that application will not help a lot. On the other hand,

if the 10 vulnerabilities are dispersed across 10 di�erent applications, the chance that the attacker possesses

the skill to exploit at least one of them will be signifcantly higher. This dependency among exploits based

on the similarity of applications is not captured by the attack-graph structure. For the attack graph in

(a), there are only four vulnerable applications but 67 distinct vulnerabilities, of which 62 are in the same

application (Firefox). For (b), there are four vulnerabilities in two applications. Intuitively, (a) has a much

higher risk than (b), more than the di�erence between the two calculated metric numbers indicate.

This observation has also led to another manifestation of the hidden-correlation problem. Suppose the

same vulnerability appears on two di�erent hosts and the attacker needs to exploit both of them in a multi-

stage attack. If he has succeeded in exploiting the frst one, he will very likely succeed with the second. This

dependency also is not captured by the attack graph, which could lead to a lower evaluation of risk than

really exists. If the chance of success for the attacker to exploit the vulnerability is 0.6, the likelihood for

him to succeed in the two-stage attack chain should be very close to 0.6, since a successful attack in the frst

step will lead, with a likelihood of almost 1, to success in the second. Based on the attack-graph model,

however, our metric algorithm will produce a result of 0.36, by multiplying the two probabilities.

Modeling artifacts for capturing hidden correlations To correctly account for such hidden correla-

tions among attack steps, we introduced additional modeling artifacts in attack graphs so that the hidden

correlations become explicit. Essentially, we grouped vulnerabilities for the same application and introduced

a virtual modeling node to capture the case in which an attacker has succeeded in exploiting the application.

This applies to both vulnerabilities on the same host (Figure 7.a) and on di�erent hosts (Figure 7.b). The

success likelihood of exploiting this vulnerability is associated with the added virtual exploit node Av , and

21

the original exploit nodes are associated with a likelihood of 1. This makes the hidden correlation explicit in

the graphical model. In (a), if the attacker fails in exploiting the vulnerability, he will fail on all four instances

A1, ...A4, avoiding (incorrectly) bumping the success likelihood of P1 to almost 1. In (b), if the attacker

succeeds in exploiting the vulnerability, he will succeed in both attacks A2 and A4, avoiding (incorrectly)

discounting the success likelihood of the two-step chain.

After this revision of the graphical model, our risk assessment algorithm produces signifcant di�erent

metrics for the two systems: 0.98 vs. 0.73; the di�erence between the two values is more consistent with the

intuitive assessment provided by experienced system administrators. Moreover, the number of applications

that enable an attacker to compromise the system also became obvious in the new attack-graph model. The

results of this grouping are shown in Figure 8.

However, the new metric numbers would still imply that both hosts were at high risk and the vulnerabili-

ties should be addressed. This was not adopted by the system administrator, after looking at the applications

that had the vulnerabilities — most of them existed in client applications rarely used on the servers. Thus

the likelihood a user will launch one of those vulnerable programs was very low. In our evaluation we used

a fxed value (0.8) to represent this likelihood, resulting in the high metric values. This indicates that to

obtain more realistic security metrics, we need to assign this input parameter based on the knowledge of

whether and how often a client application is used, which we leave as future work.

We would like to stress that the reason we can refne our metric model and interpret the results based on

such empirical observations is largely due to the fact that the metric calculation is sound. This ensures that

when we get a non-intuitive result, we can easily trace it back to the root cause, without having to wonder

whether it was due to errors introduced in the calculation.

5.3 Testing scalability

Table 2: Network Reachability

source destination protocol port
Webservers Database Servers tcp 3306
Internet Webservers tcp 80
Workstations1 Internet * *
Workstations1 Fileservers nfs
Workstations2 Internet * *
Workstations2 Historians * *
Workstations2 Fileservers nfs
Workstations2 Mailservers tcp 25
Mailservers Internet tcp 25

In order to test the scalability of our approach, we constructed several testing models based on networks

of varying sizes and complexity, created MulVAL input fles representing each network, and evaluated them

with the current implementation of our algorithm. Figure 9 indicates the general network topology of the

hypothetical network confgurations used in our testing. The reachability information between various groups

of machines is given in Table 2 (* is wild card). The vulnerability information can be found in Table 3. We

performed our tests based on abstracted network models. In an abstracted model, each host represents a

group of hosts having the same network reachability and similar confguration features (e.g., they may be

under the same software package management server). Therefore, every machine in Table 2 and Figure 9

represents a group of hosts. The run-time for metric computation of this network model was extremely short

(less than a second).

22

2 9

30 :0 .8

2 8 : 1

3 9 : 0 . 9 8 1 1 5 4 2 0 1 6

2 726:0 .6

25 :0 .6

24 :0 .8

23 :0 .8

2 2

2 1 : 1

2 09:0 .6

1 1 : 1

8 :0 .6

19 :0 .927

3 8 : 1

1 8 : 1

6 :0 .8

17 :0 .6

5 :0 .8

16 :0 .6

4

13 :0 .8 15 :0 .8

3

14 :0 .8

2 1 1 2

1 0 3 7 36 :0 .92

3 5 : 1

34 :0 .6

33 :0 .6

32 :0 .8

31 :0 .8

(a)

19 :0 .7296

1 8 : 1

1 7 16 :0 .6

15 :0 .6

14 :0 .8

13 :0 .8

1 2

1 1 : 1

1 0 9 :0 .6

8 :0 .6

7 6 :0 .8

5 :0 .8

4 32 1

(b)

Figure 8: Attack graphs with modeling artifacts for capturing hidden correlations

Figure 9: General network topology

23

Table 3: Host vulnerabilities

of vulnerabilities
Host

Local Remote Client Remote Server
Webservers 0 1 1
Database servers 0 0 1
workstations1 0 1 1
Fileservers 1 0 1
Workstations2 0 1 1
Historians 0 0 1
Mailservers 0 0 1

To further test the limit of the algorithm’s scalability, we picked 10 and 100 as the number of host groups

in each subnet, and every machine can reach another subnet. Each time, we ensure that the host group with

the deepest attack path (the one having the largest number of inter-subnet hops from the initial location of

the attacker) is in the set of attack goals. The deepest goal will take the longest running time on the metric

calculation. We also added 10 vulnerabilities per host with all three types (local, remote client, and remote

server). The running time of the algorithm for these scenarios is shown in Table 4.

Table 4: Scalability of Risk Assessment

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

Num of
host groups per subnet

depth of the deepest inter-subnet
attack hops

1 2 3

10 2s 2s 3s
100 1m38s 16m14s 46m36s

The limiting factors in the current algorithm and implementation are the size of the d-separating set (the

number of nodes which must be marginalized in calculating conditional probability values) and the number of

paths that must be considered in the calculation of each multi-predecessor node within a cycle. As either of

these increases, the number of recursive calls made by the algorithm increases, and the evaluation time grows

correspondingly. In the worst case, the computational increase could be exponential. However, as Table 4

shows, for realistic network settings, our algorithm can fnish metric calculation for suÿciently large network

confgurations. The biggest case in the confguration consists of 100 host groups per subnet, 3 inter-subnet

attack steps in the longest attack path, and 10 vulnerabilities of all three types per host. We believe this is

a reasonable estimation on the large cases the tool will need to handle in reality. It is believed that most

enterprise intrusions will take no more than three inter-subnet steps. After grouping and abstraction, 100

host groups per subnet and 10 vulnerabilities with all types per host represents a signifcantly large scenario

for risk assessment analysis. For the worst-case scenario, our implementation of the algorithm can fnish

computation in less than an hour.

Conclusion

We have presented an approach to aggregating vulnerability metrics in an enterprise network through

attack graphs. Our approach is sound in that, given component metrics which characterize the likelihood that

individual vulnerabilities can be successfully exploited, the model computes a numeric value representing the

cumulative likelihood for an attacker to succeed in gaining a specifc privilege or carrying out an attack in

the network. Our method handles both cyclic and shared dependencies in attack graphs correctly, surpassing

24

6

previous e�orts on this problem. Preliminary testing results show the e�ectiveness and practicality of the

approach and how it can be used to help system administrators decide between risk mitigation options.

References

[1] Ehab Al-Shaer, Latif Khan, and M. Salim Ahmed. A comprehensive objective network security metric

framework for proactive security confguration. In ACM Cyber Security and Information Intelligence

Research Workshop, 2008.

[2] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, graph-based network vulnerability

analysis. In Proceedings of 9th ACM Conference on Computer and Communications Security, Washing-

ton, DC, November 2002.

[3] Zahid Anwar, Ravinder Shankesi, and Roy H. Campbell. Automatic security assessment of critical cyber-

infrastructures. In Proceedings of the 38th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), July 2008.

[4] Davide Balzarotti, Mattia Monga, and Sabrina Sicari. Assessing the risk of using vulnerable components.

In Proceedings of the 2nd ACM workshop on Quality of protection, 2005.

[5] Steven Bellovin. On the brittleness of software and the infeasibility of security metrics. IEEE Security

& Privacy, 2006.

[6] Marc Dacier, Yves Deswarte, and Mohamed Kaâniche. Models and tools for quantitative assessment of

operational security. In IFIP SEC, 1996.

[7] J. Dawkins and J. Hale. A systematic approach to multi-stage network attack analysis. In Proceedings

of Second IEEE International Information Assurance Workshop, pages 48 – 56, April 2004.

[8] Rinku Dewri, Nayot Poolsappasit, Indrajit Ray, and Darrell Whitley. Optimal security hardening using

multi-objective optimization on attack tree models of networks. In 14th ACM Conference on Computer

and Communications Security (CCS), 2007.

[9] Marcel Frigault and Lingyu Wang. Measuring network security using Bayesian network-based attack

graphs. In Proceedings of the 3rd IEEE International Workshop on Security, Trust, and Privacy for

Software Applications (STPSA’08), 2008.

[10] Marcel Frigault, Lingyu Wang, Anoop Singhal, and Sushil Jajodia. Measuring network security using

dynamic Bayesian network. In Proceedings of the 4th ACM workshop on Quality of protection, 2008.

[11] John Homer and Xinming Ou. SAT-solving approaches to context-aware enterprise network security

management. IEEE JSAC Special Issue on Network Infrastructure Confguration, 2009.

[12] Nwokedi Idika and Bharat Bhargava. Extending attack graph-based security metrics and aggregating

their application. IEEE Transactions on Dependable and Secure Computing, 9(1), 2012.

[13] Kyle Ingols, Matthew Chu, Richard Lippmann, Seth Webster, and Stephen Boyer. Modeling modern

network attacks and countermeasures using attack graphs. In 25th Annual Computer Security Applica-

tions Conference (ACSAC), 2009.

[14] Kyle Ingols, Richard Lippmann, and Keith Piwowarski. Practical attack graph generation for network

defense. In 22nd Annual Computer Security Applications Conference (ACSAC), Miami Beach, Florida,

December 2006.

25

http:attackgraphs.In

[15] Sushil Jajodia and Steven Noel. Advanced cyber attack modeling analysis and visualization. Technical

Report AFRL-RI-RS-TR-2010-078, Air Force Research Laboratory, March 2010.

[16] Sushil Jajodia, Steven Noel, and Brian O’Berry. Topological analysis of network attack vulnerability.

In V. Kumar, J. Srivastava, and A. Lazarevic, editors, Managing Cyber Threats: Issues, Approaches

and Challanges, chapter 5. Kluwer Academic Publisher, 2003.

[17] Finn V. Jensen and Thomas D. Nielsen. Bayesian Networks and Decision Graphs. Springer Verlag, 2

edition, 2007.

[18] Daniel Geer Jr., Kevin Soo Hoo, and Andrew Jaquith. Information security: Why the future belongs

to the quants. IEEE SECURITY & PRIVACY, 2003.

[19] Wei Li, Rayford B. Vaughn, and Yoginder S. Dandass. An approach to model network exploitations

using exploitation graphs. SIMULATION, 82(8):523–541, 2006.

[20] Richard Lippmann and Kyle W. Ingols. An annotated review of past papers on attack graphs. Technical

report, MIT Lincoln Laboratory, March 2005.

[21] Richard P. Lippmann, Kyle W. Ingols, Chris Scott, Keith Piwowarski, Kendra Kratkiewicz, Michael

Artz, and Robert Cunningham. Evaluating and strengthening enterprise network security using attack

graphs. Technical Report ESC-TR-2005-064, MIT Lincoln Laboratory, October 2005.

[22] P.K. Manadhata and J.M. Wing. An attack surface metric. IEEE Transactions on Software Engineering,

June 2010.

[23] Pratyusa Manadhata, Jeannette Wing, Mark Flynn, and Miles McQueen. Measuring the attack surfaces

of two FTP daemons. In Proceedings of the 2nd ACM workshop on Quality of protection, 2006.

[24] John McHugh. Quality of protection: measuring the unmeasurable? In Proceedings of the 2nd ACM

workshop on Quality of protection (QoP), Alexandria, Virginia, USA, 2006.

[25] John McHugh and James Tippett, editors. Workshop on Information-Security-System Rating and Rank-

ing (WISSRR). Applied Computer Security Associates, May 2001.

[26] Vaibhav Mehta, Constantinos Bartzis, Haifeng Zhu, Edmund Clarke, and Jeannette Wing. Ranking

attack graphs. In Proceedings of Recent Advances in Intrusion Detection (RAID), September 2006.

[27] Peter Mell, Karen Scarfone, and Sasha Romanosky. A Complete Guide to the Common Vulnerability

Scoring System Version 2.0. Forum of Incident Response and Security Teams (FIRST), June 2007.

[28] Steven Noel, Sushil Jajodia, Lingyu Wang, and Anoop Singhal. Measuring security risk of networks

using attack graphs. International Journal of Next-Generation Computing, 1(1), July 2010.

[29] Rodolphe Ortalo, Yves Deswarte, and Mohamed Kaâniche. Experimenting with quantitative evaluation

tools for monitoring operational security. IEEE Transactions on Software Engineering, 25(5), 1999.

[30] Xinming Ou. A logic-programming approach to network security analysis. PhD thesis, Princeton Uni-

versity, 2005.

[31] Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A scalable approach to attack graph generation.

In 13th ACM Conference on Computer and Communications Security (CCS), pages 336–345, 2006.

26

[32] Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel. MulVAL: A logic-based network secu-

rity analyzer. In 14th USENIX Security Symposium, 2005.

[33] Joseph Pamula, Sushil Jajodia, Paul Ammann, and Vipin Swarup. A weakest-adversary security metric

for network confguration security analysis. In Proceedings of the 2nd ACM workshop on Quality of

protection, 2006.

[34] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan

Kaufman, 1988.

[35] Cynthia Phillips and Laura Painton Swiler. A graph-based system for network-vulnerability analysis.

In NSPW ’98: Proceedings of the 1998 workshop on New security paradigms, pages 71–79. ACM Press,

1998.

[36] Stephen Quinn, David Waltermire, Christopher Johnson, Karen Scarfone, and John Banghart. The

Technical Specifcation for the Security Content Automation Protocol (SCAP): SCAP Version 1.0. The

National Institute of Standards and Technology Special Publication 800-126, 2009.

[37] Diptikalyan Saha. Extending logical attack graphs for eÿcient vulnerability analysis. In Proceedings of

the 15th ACM conference on Computer and Communications Security (CCS), 2008.

[38] Reginald Sawilla and Craig Burrell. Course of action recommendations for practical network defence.

Technical Report TM-2009-130, Defence Research and Development Canada, 2009.

[39] Reginald Sawilla and Xinming Ou. Identifying critical attack assets in dependency attack graphs. In

13th European Symposium on Research in Computer Security (ESORICS), Malaga, Spain, October

2008.

[40] Oleg Sheyner. Scenario Graphs and Attack Graphs. PhD thesis, Carnegie Mellon, April 2004.

[41] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M. Wing. Automated

generation and analysis of attack graphs. In Proceedings of the 2002 IEEE Symposium on Security and

Privacy, pages 254–265, 2002.

[42] Laura P. Swiler, Cynthia Phillips, David Ellis, and Stefan Chakerian. Computer-attack graph generation

tool. In DARPA Information Survivability Conference and Exposition (DISCEX II’01), volume 2, June

2001.

[43] Robert Tarjan. Depth-frst search and linear graph algorithms. SIAM Journal on Computing, 1(2):146–

160, 1972.

[44] T. Tidwell, R. Larson, K. Fitch, and J. Hale. Modeling Internet attacks. In Proceedings of the 2001

IEEE Workshop on Information Assurance and Security, West Point, NY, June 2001.

[45] Lingyu Wang, Tania Islam, Tao Long, Anoop Singhal, and Sushil Jajodia. An attack graph-based

probabilistic security metric. In Proceedings of The 22nd Annual IFIP WG 11.3 Working Conference

on Data and Applications Security (DBSEC’08), 2008.

[46] Lingyu Wang, Steven Noel, and Sushil Jajodia. Minimum-cost network hardening using attack graphs.

Computer Communications, 29:3812–3824, November 2006.

[47] Lingyu Wang, Anoop Singhal, and Sushil Jajodia. Measuring network security using attack graphs. In

Third Workshop on Quality of Protection (QoP), 2007.

27

http:attackgraphs.In

[48] Lingyu Wang, Anoop Singhal, and Sushil Jajodia. Measuring the overall security of network confgu-

rations using attack graphs. In Proceedings of 21th IFIP WG 11.3 Working Conference on Data and

Applications Security (DBSEC’07), 2007.

28

Appendices

A Sample Symbolic Computations

A.1 Computation for Acyclic Graph

We will now work through the sample graph shown in Figure 3, demonstrating our approach and showing

its e�ectiveness at recognizing and correctly handling shared dependencies within the graph. This graph is

acyclic, so we can recursively calculate the probability value for each node, utilizing previously calculated

individual probability values and computing joint probabilities only as needed. A table showing all calculated

values will be included at the end of this example.

We begin with the root node, P0. The probability that node P0 is true is GV which is assumed to be 1.

Thus °(P0) = 1. As the root node, P0 has no preceding nodes, so ˜(P0) = { } and �(P0) = { }.

Now that we have calculated °(P0), we can calculate for either A1 or A6. Let us next calculate for A6.

A6 has exactly one predecessor, P0. So, °(A6) = GM [A6] · °(P0) = e6 · 1 = e6; furthermore, ˜(A6) = �(A6) =

{P0}.

We cannot yet evaluate node P2, because not all of its predecessors have been evaluated. We will

return, then, to evaluate node A1. Similar to the calculation for A6, °(A1) = GM [A1] · °(P0) = e1;

˜(A1) = �(A1) = {P0}.
¯We can now evaluate node P1. Node P1 also has only one predecessor. Thus, °(P1) = 1 − °(A1) =

°(A1) = e1; ˜(P1) = �(P1) = {P0}.

From this point, we could evaluate either A2 or A3. Let us next calculate for A2. °(A2) = GM [A2] ·

°(P1) = e2 · e1 = e1e2; ˜(A2) = �(A2) = {P0, P1}.

Now both predecessors to P2 have been solved and we can calculate for this node. Proposition 4.1 specifes

the calculation for a privilege node with multiple predecessors. So, °(P2) = 1 − °({A2, A6}). In previous

cases with single predecessors, we already knew the probability of the predecessor, but in this case we do not

yet know the joint probability of °({A2, A6}) and so must solve for it. To calculate °({A2, A6}), we must

fnd a d-separating set for these two nodes so that we can utilize Theorem 3.1. One such set can be found

by taking the intersection of the ˜ sets for these nodes, so that D = ˜(A2) ∩ ˜(A6) = {P0}. D contains all

branch nodes that diverge to paths leading to A2 and A6, which should be suÿcient to d-separate the nodes

(Defnition 1). Using the set D, we can now solve for °({A2, A6}):

X
= ({P0}, A2, A6)°({P0})

P0 X
= ({P0}, A2) ({P0}, A6)°({P0})

P0

= ({P0}, A2) ({P0}, A6)°({P0}) +

({P 0}, A2) ({P 0}, A6)°({P 0})

= (1− e1e2)(1− e6)(1) + (1)(1)(0)

= 1− e1e2 − e6 + e1e2e6

Then, °(P2) = 1 − °({A2, A6}) = 1 − (1 − e1e2 − e6 + e1e2e6) = e1e2 + e6 − e1e2e6. Also, ˜(P2) =

˜(A2) ∪ ˜(A6) = {P0, P1}, and �(P2) = �(A2) ∩ �(A6) = {P0}.

Nodes A3, A4, A5, P3 are calculated very similarly to nodes we’ve already seen here, so we will skip over

the details of these. The resulting values are in Table 5.

29

Finally, we evaluate for node P4, a privilege node with multiple predecessors, so again we will apply

Proposition 4.1: °(P4) = 1−°({A4, A5}). The d-separating set for {A4, A5} is D = ˜(A4)∩˜(A5) = {P0, P1}.

Using the set D, we can now solve for °({A4, A5}):

X
= ({P0, P1}, A4) ({P0, P1}, A5)°({P0, P1})

P0 ,P1

= ({P0, P1}, A4) ({P0, P1}, A5)°({P0, P1}) +

({P0, P 1}, A4) ({P0, P 1}, A5)°({P0, P 1}) +

({P 0, P1}, A4) ({P 0, P1}, A5)°({P 0, P1}) +

({P 0, P 1}, A4) ({P 0, P 1}, A5)°({P 0, P 1})

= (1− e4(e2 + e6 − e2e6))(1 − e3e5)(e1)+

(1− e4e6)(1)(1− e1) + (1)(1)(0) + (1)(1)(0)

= 1− e1e2e4 + e1e2e4e6−

e1e3e5 − e4e6 + e1e3e4e5(e2 + e6 − e2e6)

Then, °(P4) = 1− °(A4, A5) = e4e6 + e1(e2e4 + e3e5)− e1e2e4e6 − e1e3e4e5(e2 + e6 − e2e6). Also, ˜(P4) =

˜(A4) ∪ ˜(A5) = {P0, P1}, and �(P2) = �(A2) ∩ �(A6) = {P0}.

We have now solved for the probability of each node in the graph. The computed ° values for individual

nodes are shown in Table 5, together with the ˜ and � sets for each node. In our implementation, joint and

conditional probability values are calculated only as needed, to reduce the amount of computation performed.

We also apply dynamic programming techniques to cache the calculated values to avoid repeating the same

computation.

Table 5: Risk assessment calculations for Figure 3
N °(N) �(N) ˜(N)

P0 1 {} {}

P1 e1 {P0} {P0}

P2 (e1e2 + e6 − e1e2e6) {P0} {P0, P1}

P3 e1e3 {P0, P1} {P0, P1}

P4 (e4e6 + e1(e2e4 + e3e5)− e1 e2e4e6
− e1e3e4e5(e2 + e6 − e2e6))

{P0} {P0, P1}

A1 e1 {P0} {P0}

A2 e1e2 {P0} {P0, P1}

A3 e1e3 {P0, P1} {P0, P1}

A4 e4(e1e2 + e6 − e1e2e6) {P0} {P0, P1}

A5 e1e3e5 {P0, P1} {P0, P1}

A6 e1 {P0} {P0}

A.2 Computation for Cyclic Graph

In the previous example, we showed that the probabilities for graph nodes depend on the probabilities

of their predecessors, so a recursive approach can be employed for this calculation. Within a cycle, however,

recursing backward through predecessor sets will create an infnite loop. It is clear that a di�erent approach

is needed for cyclic nodes.

We will now work through the sample graph shown in Figure 4, demonstrating our approach and showing

its e�ectiveness at recognizing and correctly handling cycles within the graph. A table showing all calculated

30

values will be included at the end of this example.

Nodes P0, A1, P1, A2, A3 will be calculated very much as demonstrated in Section A.1 and so we will

not go through the detailed calculations for those nodes. Once these have been calculated, however, the

remaining graph nodes comprise a cycle and therefore must be handled di�erently.

Table 6: Risk assessment calculations for Figure 4
N °(N) �(N) ˜(N)

P0 1 {} {}

P1 e1 {} {}

P2 e1e2 + e1e3e4 − e1e2e3e4 − −

P3 e1e3 + e1e2e5 − e1e2e3e5 − −

A1 e1 {} {}

A2 e1e2 {P1} {P1}

A3 e1e3 {P1} {P1}

A4 e4(e1e3 + e1e2e5 − e1e2e3e5) − −

A5 e5(e1e2 + e1e3e4 − e1e2e3e4) − −

First, we will trace all acyclic paths through the cycle, to determine all valid ways that these nodes can

be reached. This trace essentially performs a logical unfolding of the graph, marking unique passes through

each node. The acyclic paths through this cycle are:

P2A = {A2} P3A = {A2, P2A, A4}

P3B = {A3} P2B = {A3, P3B , A5}

There are two unique instances of node P2 in this logical unfolding of the graph, P2A and P2B . The

probability that node P2 is true will equal the probability that at least one of these instances is true, or

°(P2) = 1− °(P 2A, P 2B).

To calculate °(P 2A, P 2B), we must calculate the joint probability of the set of entry nodes {A2, A3} and

we will also need to identify a d-separating set D within the cycle, to ensure that the instances of P2 are

conditionally independent. A cyclic d-separating set can be found by intersecting the sets of possible paths

leading to the node instances and identifying common attack-step nodes within the cycle. In this case, a

cyclic d-separating set is not needed for nodes P2A and P2B ; because the cycle is so small, these partial paths

are already conditionally independent, given the entry points into the cycle. The formula of computation is

shown below.

31

°(P 2A, P 2B)
X

= °({A2, A3}) ({A2, A3}, P 2A) ({A2, A3}, P 2B)
A2,A3

= °({A2, A3}) ({A2, A3}, P 2A) ({A2, A3}, P 2B) +

°({A2, A3}) ({A2, A3}, P 2A) ({A2, A3}, P 2B) +

°({A2, A3}) ({A2, A3}, P 2A) ({A2, A3}, P 2B) +

°({A2, A3}) ({A2, A3}, P 2A) ({A2, A3}, P 2B)

= (0) + (0) + (e1e3(1 − e2))(1)(1 − e4)+

(e1(1 − e2)(1 − e3) + 1− e1)(1)(1)

= 1− e1e2 − e1e3e4 + e1e2e3e4

So, °(P2) = 1 − (1 − e1e2 − e1e3e4 + e1e2e3e4) = e1e2 + e1e3e4 − e1e2e3e4. By a similar calculation,

°(P3) = e1e3 +e1e2e5 −e1e2e3e5. Once these have been solved, it is easy to see that °(A4) = GM [A4]·°(P3) =

e4(e1e3 + e1e2e5 − e1e2e3e5) and °(A5) = GM [A5] · °(P2) = e5(e1e2 + e1e3e4 − e1e2e3e4).

The full results are shown in Table 6. Nodes P2, P3, A4, A5 do not have ˜ or � sets, because these values

are not used for evaluation within a cycle. Once a cyclic node set is calculated, however, successor nodes

can include a virtual node representing the cycle in their ˜ and � sets.

32

Responses to Reviewers’ Comments

REVIEWER 3

The cited work on attack graphs should probably include more recent work from MIT/LL. E.G. “Model-

ing Modern Network Attacks and Countermeasures Using Attack Graphs” Dec. 2009.

We have added a citation for this work on attack graphs.

When the attack graph semantics are introduced on page 5 with fgure 2 there is no explanation for the

number following the colon in the graph nodes. This is explained later, but there should be a brief explana-

tion here, since it is in the fgure.

We added an explanatory sentence and reorganized some text within the subsection “Attack Graph Se-

mantics” to explain this more clearly

Page 6. Component metrics: “The input to the metric model is the component metrics” Should metrics

be singular? (or change “is” to “are”?)

This has been corrected (changed to “are”)

Page 7 mentions the determination of a minimum d-separated set. In Bayesian Networks, this is known

as the ”Markov Blanket”.

We added a reference to Markov Blanket after Defnition 1.

Also, the statement: “The metric aggregation problem on attack graphs is a more specifc problem than

generic Bayesian Networks” implies that this approach is a specifc application of Bayesian Networks. Is it?

On page 21, there is some discussion of the relationship to Bayesian Networks and this approach. But it is

not apparent whether it would be correct to say this is a specifc application of Bayesian Networks. If that is

not a correct statement, what is it about this approach that is contrary to the rules of Bayesian Networks.

We added a section (3.3.3) to clarify the relationship.

For example, it seems to me that once cycles have been removed to form a DAG, the same rules for cal-

culating the probability of a given event would be used that is used for a BN. It isn’t clear exactly how this

approach relates to BN: application? refnement? Departure?

The diÿculty is that one cannot remove cycles from an attack graph without exponentially blowing up

the resulting DAG’s size (discussed in section 3.3.2). To have a more eÿcient calculation, we chose to design

a customized algorithm to aggregate probability metrics on attack graphs based on Bayesian rules. We hope

the newly added section 3.3.3 and some revision of the texts in the previous sections help to clarify these

issues.

Section 3.1: To improve readability I suggest changing “Function 1” to “Function ?” and similarly for

functions 2-4.

Unfortunately, this suggestion appears to have been obscured when posted online, so we are unable to

respond to it and the function numbering remains unchanged.

Page 16. I suggest Figure 6a, be expanded vertically somewhat. It is very diÿcult to recognize it as a

graph in that form.

33

The fgure has been expanded vertically and is now more recognizable as a graph (although one with

many nodes)

Page 16 frst paragraph: “there is quite amount of residual risk” should be reworded.

This has been reworded as, “there is a signifcant amount of residual risk”

Page 16: The following statement: “A machine with 10 vulnerabilities in a single application has a lower

risk than a machine with 10 vulnerabilities in 10 di�erent applications.” may be true but I’m not convinced.

I claim it is not necessarily true. I’d like to see a better argument.

An explanation of the reasoning behind this statement is given in the paper. We make this statement

on the strength of empirical data gathered from a variety of sources. We acknowledge that the statement is

debatable; if future experiences dispute this perspective, our approach to risk assessment in such situations

can be easily adapted.

General comment: This paper provides an interesting approach that could be quite useful for decision making

IF credible numbers can be obtained for the component metrics (probability a given vulnerability will be ex-

ploited) Unfortunately it is very diÿcult to obtain credible numbers of that type. That is my main reservation

about the signifcance of the paper. I think it is valuable to have the theoretical foundation this paper provides.

We believe that there is value in setting forth a well-defned theoretical framework to risk assessment.

We agree that component metrics can be diÿcult to verify, but it is important to take steps toward a reliable

measurement. We believe that a well-defned approach can itself be used to calibrate the input parameters

provided, based on results obtained over time in realistic scenarios.

REVIEWER 5

This paper presents a method to aggregate vulnerability metrics so that a more informed decision could be

made for security hardening of enterprise systems unlike using the standard path-based metrics from attack

graphs. The main contribution of the paper is the handling of cycles in attack graphs, and the dependency

between the various paths in attack graphs. The vulnerability metric aggregation that is complicated by shared

dependency between paths is handled by a simple application of Bayes Theorem.

While the paper has several innovative aspects, it su�ers from poor presentation of the material. Start-

ing with the title, the paper makes several awkward remarks and self-congratulatory statements. Some facts

are presented in a very confusing way. The literature review could also be improved. The paper needs a

complete rewriting to bring it to the level of an archival publication. Below are some specifc comments.

1) The title is highly inappropriate. Both the title and abstract overuse the word “sound.” A more ap-

propriate title could be “Aggregating Attack Graph Based Vulnerability Metrics in Enterprise Networks.”

The usage of the word “sound” to describe the authors’ approach implies that all existing metrics are ad

hoc and useless (a strong statement). A metric needs to be sound to begin with. Otherwise, it is useless or

misleading. A model or a metric that is not sound is not a model or a metric at all. So, trying to sell the

contribution of the paper as a “sound approach” is an unnecessary stretch for a technical paper.

The paper title has been altered to, “Aggregating Vulnerability Metrics in Enterprise Networks using

Attack Graphs”. We agree that soundness is the basic requirement of any metric model, and we recognize

that there are signifcant challenges to create a sound probabilistic metric model for the purpose of enter-

34

prise network security assessment. Our main contribution is to tackle these challenges, to create a metric

model with well-defned probabilistic semantics, and to design a set of algorithms that calculate the metrics

correctly based on the semantics. We have revised/re-organized multiple parts of the introduction section

to better explain this contribution.

2) The writing at many places is ambiguous, speculative and awkward. See the following instances. In

page 2, “To accurately refect security risks vulnerabilities bring to an enterprise network, both measurement

of individual vulnerabilities’ properties and the context within which they appear must be taken into account.”

What do you mean by context here? Does your aggregation technique take this context information into con-

sideration more than the existing attack graph based evaluation systems? To a large extent, attack graphs do

consider context by way of incorporating the “system confguration” information and the “attacker skills.”

Therefore, some rewriting of this material is necessary.

The purpose of this statement is to explain the limitation of existing vulnerability metrics (such as

CVSS), and this leads into the next paragraph that explains why combining attack graphs and individual

vulnerability metrics is a good approach. Our approach actually brings in the context information through

attack graphs, so attack graph is a critical component in our approach, rather than an alternative.

We did revise multiple other parts of the introduction to better explain the motivation of our approach.

We hope these revisions help clarify some of the issues mentioned in the comments.

On page 3, Sec. 1.1.1, the statement “we believe there is value in capturing such vague assessment through a

sound model” is incorrect. The classifcation of risk as high, medium and low is not vague. This is a typical

way of doing risk assessment and is quite meaningful. It may be more instructive to say “....quantifcation

of risk as illustrated in this paper will provide more clarity to the risk assessment.”

We accept the standard high/med/low classifcations and did not intend to imply that they are not mean-

ingful, but were trying to address a perceived imprecision. Section 1.1.1 has been rewritten to emphasize

that our contribution is a clear semantic model for aggregating over vulnerability metrics, both utilizing

existing metrics and providing a feedback loop for refnement over time.

The fnal statement at the end of Section 4.3 is highly speculative. Without a detailed complexity analy-

sis, how could one make such a statement? You are better o� not making that statement at all.

This statement has been removed, as suggested.

3) On page 3, “attack exposure” is essentially the “attack surface” characterized in prior research in the

area of computer security. Using known terminology with a proper reference will make the writing tight.

Text altered to the term “attack surface”, with appropriate references

4) In Section 1.2, the discussion of cycles in attack graphs “such attack paths should be excluded from

the calculations” is confusing and is also incorrect. Cycles in attack graphs are inevitable. For example,

an adversary may take a “walk” in the graph to acquire “information” (come back to where he started and

proceed further with the acquired information and then exploit a vulnerability using the knowledge so gained).

This kind of analysis will lead to a cyclic representation. So, the current discussion in Section 1.2 is mis-

leading. As can be seen in later sections, you are not excluding cycles. You treat them in a di�erent way

(using the concept of d-separation, for instance). So, some rewriting is necessary to remove confusion.

Section 1.2 has been altered to avoid this confusion, including the removal of the specifc phrase “such

attack paths should be excluded from the calculations”. We also revised section 3.3.2 to better explain why

35

cycles are problematic in metric calculation.

5) Figure 2 is not a full attack graph for the given physical network. This must be stated early on (later on

you say that the confguration nodes are not included).

This is now more clearly stated, both in the fgure label and the text.

6) Why all the algorithms are pushed to the appendix? Why aren’t they important? I suggest that you

move back the main algorithm to the body of the paper and perhaps push the secondary algorithms to the

appendix. In order to conserve space, you may move some of the examples (call them concept illustrations)

which show the step-by-step derivations to the appendix.

As suggested, the algorithms now appear in the body of the paper and some sample computations have

been moved to the appendix.

7) The example in Section 3.4 is actually not just an example. It has some theory on how to handle cycles,

a key concept of the paper. I suggest that you move the theory part to Section 2.3 and beef up this section.

Section 2.3 (now 3.3) is meant as a high-level overview, addressing the need to correctly handle cycles.

Section 4.3 now uses this example to further explain how cycles are handled in our algorithms.

8) Finally, I would like to bring to the authors’ attention the following work by a group of researchers -

Nwokedi Idika, Bharat Bhargava, “Extending Attack Graph-Based Security Metrics and Aggregating Their

Application,” IEEE Transactions on Dependable and Secure Computing, vol. 99, no. 1, pp. , , 5555. This

paper is in pre-print stage and can be obtained from IEEE digital library. Though the authors have no way of

knowing someone else’s unpublished work, the fact is that this paper by Idika and Bhargava will be appearing

in print soon and is highly relevant to the paper by the current authors. Because of the closeness of these two

papers, I strongly suggest that the authors include a reference to this upcoming paper (if it appears in print

while revising your paper) and situate your work. A comparison of your metrics to the metrics of Idika and

Bhargava, if possible will add value to your work.

We have added a paragraph in the Related Works section addressing this work, and briefy comparing it

to our own approach.

REVIEWER 6

There are two papers here. One on the theory for attack graphs, and one on experimental results.

The theory part is pretty good, with the following changes.

1. in the abstract, quantify in some way how the new methods for accounting for non-independence im-

prove the theory/model of attack graphs.

We have included in the introduction an intuitive example that demonstrates the signifcant di�erence

in metric results introduced by non-independence. We hope this helps explain why accounting for such

non-independence is important.

2. move the related work section to be section 2. readers like to know the full situating context of your

work before they dive in to the details.

This section has been moved, as suggested.

36

3. soundness is a loaded word. When I hear it, I think: http://en.wikipedia.org/wiki/Soundness Please use a

di�erent word. Well-defned? Yes. I think what you’re looking for is face validity. http://en.wikipedia.org/wiki/Face validity

Soundness may not be the best word overall. We have rephrased this as “clear semantics” at several

points in the paper, and we stress that the algorithm produces correct metric result with respect to the

defned semantics.

4. Be clear about the accuracy or validity improvement over the current approach. can you say anything

quantitative? like a formula derived from an abstract model? or even for a specifc simple class of attack

graphs? that would be very useful and insightful.

We have used a small simple attack graph (Figure 1) to illustrate the validity improvement (see comment

1 above).

For the Experimental part, as far as I can tell you didn’t run experiments. You plugged in some data.

What are the hypotheses that you’re testing? Read Gauch on Scientifc Method in Practice (9780521017084).

Please rethink/rewrite and separate from the theory paper.

On the other hand, you could use the operational data to demonstrate how they quantitative benefts of

your approach are expressed in the particular instance of your data. But that’s not an experiment.

This section has been relabeled as “Evaluation Results”; at other points, “experiment” has been changed

to “test” or “evaluation”. This phrasing is more accurate.

37

http://en.wikipedia.org/wiki/Face
http://en.wikipedia.org/wiki/Soundness

	Structure Bookmarks
	P1 P2e1: 0.5 e2: 0.5 e6: 0.5 e3: 0.5 P e5: 0.5 e4: 0.5
	Figure
	Figure
	109:0.6 151:0.993975296 108 107:0.6 106 105:0.6 104 103:0.6 102 101:0.6 100 99:0.6 98 97:0.6 96 95:0.6 94 93:0.6 92 91:0.6 90 89:0.6 88 87:0.6 86 85:0.6 84 83:0.6 82 81:0.6 80 79:0.6 78 77:0.6 76 75:0.6 74 73:0.6 72 71:0.6 70 69:0.6 68 67:0.6 6665:0.8 64:0.8 63 62:0.9 61 60:0.8 59:0.8 58 57:0.9 56 55:0.9 54 53:0.9 52 51:0.9 50 150:0.6 49:0.9 48 47:0.9 46 45:0.9 44 43:0.9 42 41:0.9 40149 148:0.6 147146:0.8 145:0.8 144 143:0.6 142 141:0.6 140 39:0.9 38 37:0.9 36 35:0.9 34 33:0.9 32 31:0.9 30 139:0.6 138 137:0
	19:0.892416 18:0.6 17 16:0.6 1514:0.8 13:0.8 12 11:0.6 10 9:0.6 87 6:0.8 5:0.8 4 32 1
	Pv Av ev {e1, e2, e3, e4} Set e1 = e2 = e3 = e4 = 1 P0 P1 A1 A2 A4A3 e1 e2 e4e3 Pv Av ev {e2,e4} = 1 = 1 P1 P2 A1 A2 A4A3 e1 e2 e4e3
	29 30:0.8 28:1 39:0.9811542016 2726:0.6 25:0.6 24:0.8 23:0.8 22 21:1 209:0.6 11:1 8:0.6 19:0.927 38:1 18:1 6:0.8 17:0.6 5:0.8 16:0.6 4 13:0.8 15:0.8 3 14:0.8 2 1 12 10 37 36:0.92 35:1 34:0.6 33:0.6 32:0.8 31:0.8
	19:0.7296 18:1 17 16:0.6 15:0.6 14:0.8 13:0.8 12 11:1 10 9:0.6 8:0.6 7 6:0.8 5:0.8 4 32 1 (b) Figure 8: Attack graphs with modeling artifacts for capturing hidden correlations
	
	Figure
	= (P0,P1,A4) (P0,P1,A5)°(P0,P1)+ (P0,P1,A4) (P0,P1,A5)°(P0,P1)+ (P0,P1,A4) (P0,P1,A5)°(P0,P1)+
	Figure

