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An effective attractive potential can be introduced between colloidal particles dispersed in a binary
solvent when the solvent condition approaches its demixing temperatures. Despite the debate of the
physical origins of this effective attraction, it is widely termed as the critical Casimir force and is
believed to be responsible for the colloidal stability in a wide range of particle concentration at both
critical and near-critical solvent concentrations. Here, we study the effective attraction and equilib-
rium phase transition of charged spherical silica particles in the binary solvent of 2,6-lutidine and
water as a function of the particle volume fraction and temperature at the critical solvent concen-
tration. By analyzing our small angle neutron scattering (SANS) data, we found that at a relatively
small particle volume fraction, the density fluctuation introduced attraction between silica particles
can be satisfactorily explained by the function form commonly used for the critical Casimir interac-
tion. However, at large silica particle volume fractions, an additional long range attraction has to be
introduced to satisfactorily fit our SANS data and explain the large shift of the phase transition tem-
perature. Therefore, while at relatively low volume fractions, the solvent introduced attraction may
be dominated by the critical Casimir force, the physical mechanism of the effective attraction at large
particle volume fractions seems to be different from the critical Casimir force. Furthermore, the range
of this long range attraction is consistent with a recently proposed new theory, where the attraction
can be introduced by the solvent capillary condensation between particles. We also demonstrate that
the reduced second virial coefficient close to the particle phase transition is similar to the values of
the binodal transition of the sticky hard sphere system. https://doi.org/10.1063/1.5038937

I. INTRODUCTION

Since first discussed by de Gennes and Fisher in the late
1970’s,1 the effective interaction between colloidal particles
in a binary solvent near its critical point has been intensively
studied in the past several decades.2–6 It causes reversible
aggregation observed in many experiments when the binary
solvent approaches its demixing temperature2,7–10 and can be
used to tune the colloidal self-assemblies.11,12 Recently, this
kind of aggregation is found to be highly sensitive to the parti-
cle size and can be utilized to efficiently separate nanoparticles
by size.8 The colloidal system with the binary solvent has been
also used as model systems to study the properties of active
matter systems.13

When colloidal particles are dispersed in a binary sol-
vent, they usually preferentially adsorb one component of the
binary solvent. By moving the solvent condition toward the

a)Electronic mail: yunliu@nist.gov or yunliu@udel.edu

critical point, the adsorption layer thickness increases and is
controlled by the correlation length of the solvent density fluc-
tuation.14 Such a phenomenon is called critical adsorption.14,15

Critical adsorption has been confirmed experimentally by opti-
cal studies and neutron reflectometry.16–18 The adsorption of
the preferred solvent molecules on colloidal particle surfaces
can introduce an effective attraction between colloidal parti-
cles,19,20 which has been widely termed as the critical Casimir
force (CCF) since the 1990’s.21 And the CCF is believed to
be responsible for particle aggregation and the instability of
colloidal systems close to the demixing temperatures of the sol-
vent. In systems with a binary solvent, changing temperature
close to the critical temperature can cause gelation, glass tran-
sition,22,23 and crystal formation12 at relatively high particle
concentrations. The attraction induced by the solvent fluctua-
tion has been mostly attributed to the critical Casimir force in
these experiments.

Recently, one experiment using the total internal reflec-
tion microscopy showed that the interaction potential between
a particle and a flat surface at or near the critical solvent

0021-9606/2018/149(8)/084905/9/$30.00 149, 084905-1

https://doi.org/10.1063/1.5038937
https://doi.org/10.1063/1.5038937
https://doi.org/10.1063/1.5038937
https://doi.org/10.1063/1.5038937
mailto:yunliu@nist.gov
mailto:yunliu@udel.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5038937&domain=pdf&date_stamp=2018-08-31
julieb
Highlight

julieb
Highlight



084905-2 Wang et al. J. Chem. Phys. 149, 084905 (2018)

concentration follows the theoretical prediction by the
critical Casimir force.20 However, when the solvent concen-
tration is far away from the critical concentration, the bridg-
ing attraction introduced by the segregation of the solvent
may dominate the attractive potential.19,24 Some theoretical
works also studied the difference of the attraction strength
between samples at critical conditions and off-critical condi-
tions.25,26 The bridging attraction at off-critical conditions, an
analog of the capillary condensation of the solvent, has been
proposed to explain the attraction for samples at off-critical
conditions.26

Since changing the solvent composition may change the
dominating contribution to the attraction force from the critical
Casimir force to the bridging attraction,27 it is not imme-
diately evident if the critical Casimir force can still be the
dominating attraction force when the particle concentration is
increased at the critical solvent composition.15,28 Therefore,
in this paper, we study the effective inter-particle potential
for a model silica colloidal system dispersed in a well-studied
binary solvent, the mixture of water and 2,6-lutidine, using
small angle neutron scattering (SANS). The radius of silica
particles is about 14.5 nm. Note that our particle size is sig-
nificantly smaller than some experimental studies mentioned
above.12,20

In order to eliminate the effect of the scattering due to the
solvent density fluctuation, we have mixed the heavy water
(D2O) and normal water (H2O) to match the scattering length
density (SLD) of the lutidine. As a result, the coherent scatter-
ing due to the solvent fluctuation is invisible to SANS so that
we can focus on the coherent scattering intensity dominated
by the particles dispersed in solution.

II. MATERIALS AND EXPERIMENTAL METHODS

Charged silica particles dispersed in normal water (Ludox
TM-50) were purchased from SIGMA-ALDRICH. Heavy
water (D2O) with purity of 99.8% was purchased from Cam-
bridge Isotope Laboratories. Milli-Q water (18.2 MΩ cm) was
used whenever normal water was needed. The critical solvent
composition for the normal water/2,6-lutidine system con-
tains 29% mass fraction lutidine and 71% mass fraction of
normal water. In order to match the SLD of the 2,6-lutidine,
D2O was added to prepare water with the mass ratio of 27:73
between D2O and H2O, which has been determined previ-
ously.8 Because D2O and H2O have different mass, when
adding D2O, we kept the mole ratio of 2,6-lutidine to water at
the critical composition. Hence, the final mass concentrations
of water and 2,6-lutidine of our solvent are 28.4% mass frac-
tion of 2,6-lutidine and 71.6% mass fraction of water (mixture
of D2O and H2O).

Samples with silica particles were prepared at 0.12%,
0.48%, 1.2%, 2.4%, 6.5%, and 9% volume fractions. Samples
with the volume fraction larger than 9% are phase separated
even at room temperature and are not studied here. To prepare
samples, normal water is first mixed with the ludox solu-
tion. Then D2O is added to the diluted ludox solution. Finally
lutidine is added.

Dynamic Light Scattering (DLS) was performed by using
the Dynapro NanoStar instrument. It measures the intensity

autocorrelation function, g2(t), which is defined as29

g2(t) − 1 = β(ΣAie
−t/τi )2, (1)

where Ai is the amplitude of the relaxation mode, t is the cor-
relation time, and τi is the characteristic relaxation time. τi

is related to the diffusion coefficient D, which can be written
as

τi =
1

DiQ2
, (2)

where Q = (4πn/λ) sin(θ/2) is the difference of the wave num-
ber between incident and scattered light. n is the refractive
index of the solvent mixture. λ is the wavelength of the inci-
dent light in vacuum. θ is the scattering angle. For a pure
water/lutidine solvent without colloidal particles, the mutual
diffusion coefficient Ds is related to the critical fluctuation and
can be approximated as30

Ds =
kBT

6πηξ
[K(Qξ) +

ξ0

ξ
], (3)

where kB is the Boltzmann constant, T is the absolute tem-
perature, and η is the solvent viscosity. The viscosity of the
solvent mixture of 2,6-lutidine and water is obtained from
published experiment results.31,32 K(Qξ) = 3

4 {1 + (Qξ)−2

+[Qξ−(Qξ)−3] tan−1(Qξ)} is the Kawasaki function, and ξ0 is
the critical amplitude whose order of the range is of molecular
interactions.

The phase transition temperature of samples with sil-
ica particles was also determined by our DLS instrument by
observing the intensity change as a function of the temperature.
The temperature accuracy is within 0.1 ◦C.

To study the attractions between colloidal particles, small
angle neutron scattering (SANS) experiments were carried out
on NG7SANS and NGB30SANS from the Center for Neutron
Research at National Institute of Standards and Technology
(NCNR) in USA. Because the contrast between lutidine and
water is tuned to zero by mixing the right ratio of D2O and
H2O, the coherent SANS intensity is thus only from silica
particles in solution.33

In order to analyze the SANS data, the inter-particle struc-
ture factor is calculated by solving the Orstein-Zernike (OZ)
equation, through which the inter-particle potential informa-
tion is obtained. The previously proposed closure form is used
with the implemented thermodynamic self-consistency.34–36

Computer simulation has been used to verify the accuracy of
this method.35

The ionic strength of the solvent is further estimated to
calculate the screened Coulomb interaction. It is noted that
accurately calculating the charge interaction between silica
particles is very challenging in a binary solvent. The adsorp-
tion of one component of the binary solvent on the particle
surface will change the dielectric constant of the solvent layer
around a particle, which in turn affects the zeta potential and
the effective charge interaction.37 But we will discuss later
in the paper that the challenge of accurately estimating the
charge interaction will not affect our main conclusion of this
paper.

The ionic strength of the solvent mixture is mainly due to
the hydrolysis of lutidine in water. The ionization of lutidine
is determined by the following formula:
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[C7H10N+][OH−]
[C7H9N]

= 10−pKb , (4)

where [ ] denotes the molar concentrations of different com-
ponents in units of mol/l. pKb for lutidine is 7.4 at 25 ◦C.
Henry’s law is used to calculate the solubility vs. temperature
of the solvent. The result can be written as pKb = 7.4-0.035
× (T − 25). The contribution to the ionic strength by dissoci-
ated ions from charged silica particles is also included in the
calculation.

The charge number of the silica particles is estimated
based on the measured zeta potential, which is around −36
mV.38 The zeta potential is fixed at that value in the fitting.
The charge number of the silica particle in the solution can be
calculated by39

C = 4πa2εε0κψeff(1 +
1
κa

), (5)

where a is the particle radius, ε is the relative permittivity of
the solvent mixture, ε0 is the dielectric constant of vacuum, κ
is the inverse of the Debye length, and ψeff is the zeta potential
of the particle. For the solvent mixture, the relative permittivity
is calculated by linear interpolation.40 The Debye length can
be calculated by

κ−1 =
0.304
√

Is
, (6)

where the unit of κ−1 is nm and the unit of Is is mol/l.
The screened Coulomb repulsion potential between sil-

ica particles can be calculated from the ionic strength and
charge number of silica particles by the well-developed
theory.41–43

III. RESULTS AND DISCUSSIONS

Figure 1 shows the schematic picture of two particles
immersed in a binary solvent mixture. The Ludox silica par-
ticles preferentially adsorb water on their surfaces based on
a recent study.16 The thickness of the adsorption layer is
proportional to the correlation length of the solvent density
fluctuation, ξ.16

FIG. 1. Schematic picture of two particles immersed in a binary solvent. The
red spheres are silica particles with radius a. The outer layer is the adsorption
layer with the mixture of two components of the solvent. The composition
of the adsorption layer depends on the composition of the solvent and the
temperature. The particle surface-surface distance is D.

DLS is first used to determine the correlation length of
the solvent fluctuation as a function of the temperature. It is
known that ξ should follow the asymptotic power law behavior,
ξ(T ) = ξ0|T r |−ν , where ξ(T ) is the correlation length at the tem-
perature, T, and ξ0 is the critical amplitude. T r is the reduced
temperature defined as T r = (T − T c)/T c. And ν ≈ 0.63 is the
universal correlation length exponent. Using Eqs. (1)–(3), ξ is
obtained by fitting g2(t) of the binary solvent. One data set at
T = 32 ◦C is shown in Fig. 2(a) together with the fitted curve.
The obtained correlation length at different temperatures is
shown in Fig. 2(b). By fitting the experimental results of ξ(T )
with ξ0|T r |−ν , T c and ξ0 are found to be 32.4 ◦C and 0.2 nm,
respectively, consistent with the previous result.16 Note that the
use of D2O shifts the critical temperature to a smaller value
compared with that of the solvent prepared with only normal
water.

For all samples with silica particles, we also used DLS
to observe the phase transition as a function of temperature.

FIG. 2. DLS data together with the fitting results for the pure solvent. (a)
The raw data and fitting curve for g2(t) at T = 32 ◦C. (b) The extracted
correlation length ξ at different temperatures together with the fitting curve of
ξ(T ) = ξ0 |T r |−ν .
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Because light scattering is very sensitive to large objects in
solution, it is very sensitive to the particle aggregation in
our system. When increasing the temperature, the solvent
fluctuation induced attraction becomes stronger and stronger.
Charged silica particles stable at room temperature begin to
form clusters and eventually become phase separated. The
DLS scattering intensity was recorded as a function of tem-
perature, which is shown in Fig. 3(a). At the beginning, the
intensity increases as the temperature increases indicating the
formation of clusters in solution. However, at a certain temper-
ature, the intensity begins to decrease due to the precipitation of
the silica particles forming very large clusters. The temperature
with the maximum scattering intensity is named “precipitation
temperature,” Tp. Because the light scattering only accesses
a very small Q value and Tp is relatively far away from T c,
the scattering intensity from the solvent can be ignored here.
Tp is observed to shift to a lower temperature when the sil-
ica particle volume fraction is increased. Interestingly, Tp is

FIG. 3. (a) The DLS intensity for samples at different silica volume fractions
as a function of temperature. The peak for each curve is defined as the “pre-
cipitation temperature,” Tp. (b) The linear fit of Tp as a function of the silica
volume fraction φs.

found to decrease almost linearly with the silica volume frac-
tion, which is shown in Fig. 3(b). And the data points can
be fitted with a linear line, Tp = 32.4 − 0.61 × φs. Note
that when the particle concentration increases, it needs less
attraction between particles to introduce a phase separation.
It is thus expected that the transition temperature decreases
when the particle concentration increases. Also, residual impu-
rities in the ludox suspension may also affect the transition
temperature.44

To understand the inter-particle potential, SANS patterns
of our samples at different concentrations were measured as
a function of the temperature for T < Tp. For a system with
monodispersed particles, the SANS scattering intensity can be
expressed as

I(Q) = φs∆ρ
2VpP(Q)S(Q) + Ib, (7)

where φs is the volume fraction of the particle, ∆ρ is the scat-
tering length density contrast between the particle and solvent,
Vp is the single particle volume, P(Q) is the form factor, S(Q)
is the inter-particle structure factor, and Ib is the background
mainly due to the incoherent scattering. Note that the coherent
scattering of the solvent can be ignored as there is no contrast
between lutidine and water prepared by mixing the right ratio
of D2O and H2O.

The scattering length density of silica particles of Ludox
TM-50 is ρsld = (3.46 ± 0.16) × 10−6 Å−2 that is esti-
mated by the contrast variation method. The form factor is
determined by measuring samples at two dilute concentra-
tions with φs = 0.12% and φs = 0.48% at room temperature.
Schultz distribution was used to account for the size poly-
dispesity.45,46 The raw data and fitted curves are shown in
Fig. 4. The extracted particle radius, a, is 14.5 ± 0.2 nm. And
the polydispersity, σR = 0.1a, is consistent with the literature
result.47

When further increasing the concentration, the inter-
particle structure factor, S(Q), is not unity anymore. To cal-
culate S(Q), we need to model the inter-particle potential. We
first tried the potential form shown as below,

V (r)
kBT

=




∞ r < 1,

−K1e−Z1D +
K2e−Z2D

r
r ≥ 1,

(8)

FIG. 4. SANS patterns of two samples with dilute silica volume fractions are
shown together with the fitting curves. The error bars are shown and smaller
than the size of the symbol.
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where the first exponential decay term on the second line is
the attraction introduced by the CCF,48 and the second term is
the screened Coulomb repulsion. r is the inter-particle distance
normalized by the particle diameter,σ. D is the surface-surface
distance defined as D = (r − 1)σ. The interaction potential
is infinite for r < 1 due to the excluded volume effect. Z1

is the inverse of the interaction range of the CCF. Accord-
ing to the literature, it should be proportional to 1/ξ. Z2 and
K2 are estimated from the ionic strength of the solution and
the charge number.41–43 K1 is the only fitting parameter for
Eq. (8).

Using this potential form, the SANS patterns of silica par-
ticles at the volume fraction φs = 1.2% can be fitted very well.
The data together with the fitting curve are shown in Fig. 5(a).
The inset shows the fitting of the relatively large Q range in the
log-log scale. Based on the fitting, the attraction introduced by

FIG. 5. SANS data and their fitted curves. (a) The SANS data together with
the fitting curves for φs = 1.2% at different temperatures. (b) The SANS data
and fitted curves for φs = 2.4%, 6.5%, and 9%. Different colors indicate dif-
ferent temperatures of samples. The insets are log-linear plots showing the
results for the middle-Q and high-Q. The data for Q larger than 0.1 Å−1

are not shown as they are dominated by a constant incoherent scattering
background.

the solvent fluctuation can be satisfactorily explained by the
critical Casimir force. Note that at the highest temperature,
31.8 ◦C, the correlation length of the solvent fluctuation is
about 10 nm comparable to the particle radius. This correlation
length is short compared with the previous experiment where
the temperature is much closer to the critical temperature.20

Thus, the total internal reflection microscopy used in the pre-
vious experiment may not be sensitive enough to probe such a
small correlation length in our experiments.20 However, both
the amplitude and range of the attraction are large enough to
introduce the large change of the inter-particle structure fac-
tor in our experiments, from which the effective interaction
potential can be obtained.

Note that even though the adsorption of water on silica
particles may slightly change the solvent composition, we
do not expect this change to be significant. The shift of the
solvent composition due to the solvent adsorption on silica
particles can be estimated using the latest adsorption profile
obtained previously by Bertrand et al.16 Due to the parti-
cle surface adsorption, the shift of the lutidine concentration
depends on the sample temperature and volume fraction of
silica particles. The largest shift is at Tp in our experiment.
The final solvent composition of lutidine at Tp is estimated
to be 29.3%, 29.7%, 30.7%, 31.3% for φs = 1.2%, 2.4%,
6.5%, 9%, respectively. The difference between solvent com-
position at Tp and critical composition (29%) is relatively
small.

Compared with the interaction for small particle concen-
tration (1.2%), the whole scenario is completely different at
higher particle concentrations. Using Eq. (8) cannot fit the
SANS patterns for particle concentrations at 2.4% or larger
when T is close to Tp. A careful comparison of the exper-
imental data and SANS patterns indicates that the theoret-
ical pattern calculated using Eq. (8) cannot reproduce the
very strong low-Q upturn when the temperature is close to
Tp. This means that the range of attraction we have previ-
ously used is too short. And there should be an additional
attraction, whose range is longer than ξ. Therefore, we have
added an additional long range attraction term to the poten-
tial form. The new total potential is now expressed as given
below,

V (r)
kBT

=




∞, r < 1,

−K1e−Z1D +
K2e−Z2D

r
−

K3e−Z3D

√
r

, r ≥ 1.
(9)

The third function form in the second line is chosen from the
bridging attraction based on the capillary condensation.49,50

K3 and Z3 are the amplitude and the inverse range of this long
range attraction. Both of these two parameters are free fitting
parameters. The fitting results together with the experimental
data are shown in Fig. 5(b). The interaction range for the third
term is always significantly larger than the correlation length
of the solvent at the same temperature. Hence, this indicates
that the physical mechanism of the attraction for large par-
ticle concentration seems to be different from that in small
concentrations.

The overall good fitting quality achieved for all our data
indicates that the overall potential extracted from our fitting



084905-6 Wang et al. J. Chem. Phys. 149, 084905 (2018)

is reasonably accurate. However, we have to be careful in
interpreting the meaning of each fitting parameter for each
individual component. We tried our best to estimate the charge
interaction at the temperature far away from the demixing tem-
perature. But the dielectric constant is estimated based on the
homogeneous mixing of water and lutidine. When the temper-
ature increases, there is a layer of the solvent adsorbed on the
particle surface with more water concentration compared with
the nominal water concentration in a solvent.16 As a result,
there is a continuous change of the dielectric constant along
the radial direction on the surface of a particle. When the layer
thickness increases by increasing the temperature, the charge
repulsion estimated based on the condition at low temperature
may not be accurate enough. This can be partially compensated
by the change of the second term in Eq. (8). For example, for
1.2% volume fraction, Eq. (8) is used with only two potential
terms. If the estimated charge potential at high temperature was
not accurate enough, it would be compensated by the attrac-
tion term so that the total potential is still accurate. Therefore,
we only show the total potentials in Fig. 6 extracted from the
data fitting instead of providing the results of each individual
term of the total potential.

For the 1.2% volume fraction case, the total potential
extracted from the data fitting is shown in Fig. 6(a). It can be
seen that at low temperature, the total potential is dominated
by a charge repulsion. When increasing the temperature, the
overall interaction slowly changes from the net repulsion to
the net attractive potential as increasing temperature enhances
the attraction, whose function form is the same as the function
form for a critical Casimir interaction. Clearly, at relatively
high temperatures (T > 30.5 ◦C), the potential becomes overall

attractive. This is in general the trend for all samples. How-
ever, for higher concentrations, such as 9% volume fraction,
the total potential becomes overall attractive even at very low
temperature such as 25 ◦C, which is about 7.4 ◦C away from
the critical temperature. As a result, the correlation length of
the solvent fluctuation is much smaller than the range of the
overall attraction.

In order to evaluate the interaction range of the long range
attractive portion of the overall potential, the total potentials
showing long range attraction are further analyzed. An empir-
ical equation is used to fit the overall repulsive and attractive
portion of the total potentials,51 which is expressed as

V (r) = Arepe−D/lrep − Aatte
−D/latt . (10)

Arep and Aatt are the amplitudes of overall repulsion and attrac-
tion. D = (r − 1)σ is the surface-surface particle distance. lrep

and latt are the ranges of the repulsion and attraction, respec-
tively. The relation between latt and T is shown in Fig. 7. ξ of
the solvent as a function of temperature is shown together as a
solid line in Fig. 7. For the sample at 1.2% volume fraction, the
range of attraction, latt, is actually very close to ξ indicating
that at this concentration, the CCF very likely dominates the
attraction between colloidal particles. However, at higher φs,
the fitted latt is always much higher than ξ at the same temper-
ature. This indicates that at larger concentrations, the driving
force between particles may be due to other mechanisms other
than the critical Casimir force.

Figure 8 shows the extracted S(Q = 0) for different samples
as a function of temperature. The divergence of S(Q = 0) is the
spinodal decomposition temperature of a system. By increas-
ing the temperature, S(Q = 0), all monotonically increase and

FIG. 6. The extracted total potential as
a function of the inter-particle distance,
r, is shown for different samples at dif-
ferent temperature. (a) The results for
the sample at φs = 1.2%. (b), (c), and
(d) correspond to φs = 2.4%, 6.5%, and
9%, respectively.
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FIG. 7. The fitted attraction range latt of the total potential is shown together
with the correlation length, ξ , of the density function of the pure solvent (solid
line).

eventually tend to diverge. The transition temperature clearly
shifts to lower temperatures when the sample concentration
increases. Especially for 9% volume fraction, the shift is so
large that the correlation length and the attraction strength
introduced by the critical Casimir force can be too small to
introduce a phase transition of colloidal particles. In fact, we
have calculated S(Q = 0) of all samples by using the potential
obtained by fitting the data of 1.2% volume fraction. The lines
in Fig. 8 are the theoretical calculations. By increasing the
volume fraction from 1.2% to 2.4%, the experimental phase
transition temperature shifts to a smaller temperature by more
than 0.8 ◦C. If the effective potential at 2.4% should be similar
to that of 1.2%, in which the critical Casimir force seems to
be able to explain all SANS data satisfactorily, the calculated
theoretical line (red solid line) at 2.4% using similar potential
should qualitatively reproduce experimental data. Instead, the
theoretical calculation shows no sign of divergence until much
larger temperature. Similar prediction happens for the samples
at 6.5% and 9% volume fractions. Hence, this also indicates
that the driving force of the phase transition of larger volume
fractions seems to be due to different mechanisms other than
the critical Casimir force.

FIG. 8. The experimental results (symbols) of S(Q) at Q = 0 obtained by fit-
ting SANS data are shown together with the theoretical curves (lines). The
theoretical curves are calculated by using the potential parameters obtained
from the sample at φs = 1.2%. The upper and lower 95% confidence inter-
vals are shown as error bars in the plot. The phase transition lines (vertical
solid lines) shift to lower temperatures when the particle volume fraction is
increased.

Since the driving force of the phase transition may not be
dominated by the critical Casimir force, one other possibility
is due to the bridging attraction similar to what has been dis-
cussed for systems, whose solvent concentration is far away
from the critical concentration. A recent paper has tried to cal-
culate the relation between the bridging attraction range and
the surface-surface particle distance.27 We can approximately
estimate the average surface-surface distance, Dm, between
particles in solution. During the estimation, face centered cubic
(FCC) arrangement is used to approximate how particles are
packed in solution. (Note that, the exact packing structure of
colloidal particles is not important here as it only rescales
the distance by a constant if different types of structures are
used.) To approximately estimate Dm, we can use the following
expressions

Lm = (4 × 4/3 × π × a3/φs)
1/3, (11)

Dm =
√

2/2 × Lm − 2 × a, (12)

where a is the silica particle radius, φs is the volume frac-
tion of silica particles in solution, and Lm is the length of the
cubic. Dm decreases when increasing φs. If we assume that the
long range attraction introduced in Eq. (9) is due to the bridg-
ing attraction, the bridging range, Rb, can be estimated by
Rb = σ/Z3.

Figure 9 shows the result of ξ/Rb as a function of ξ/Dm.
By increasing the temperature, ξ increases. ξ/Rb saturates
when ξ/Dm is large enough. It is interesting to notice that
at the highest temperature (T ≈ Tp), ξ/Dm is almost a con-
stant value for all the concentrations in the figure and uniquely
determines the phase transition. If we assume that Dm is a
good approximation of the average surface-surface distance
between particles, the phase separation happens when the cor-
relation length of the solvent fluctuation is about 9% of the
surface-surface distance. Note that, ξ/Dm at phase transition
temperature is about 13% and 11% for the concentration at
0.48% and 1.2% that are much larger than the value at higher
concentrations. This model independent parameter indicates
that the driving force of the phase separation is related with
the confinement of the solvent and driven by the same type of
interactions.

FIG. 9. The inverse range of the long range attraction obtained by fitting
SANS data is shown as a function of the correlation length normalized by the
estimated mean surface-surface distance Dm. Y-axis shows the ratio between
the correlation length, ξ , and Rb. Different symbols indicate different sample
volume fractions.
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FIG. 10. The reduced second virial coefficients B∗2 is calculated using the
fitted total potential for different samples. The shaded area shows the binodal
transition estimated using the data reported by Plattern et al.53

In addition, at relatively high concentration, ξ/Rb also
becomes almost a constant of 0.4 at large concentrations shown
in Fig. 9. If we assume that Rb is the interaction range, the
result is consistent with the bridging attraction predicted by
Okamoto and Onuki.27 We therefore believe that the bridg-
ing attraction, which is analogous with the capillary conden-
sation, is very likely the dominating force at large particle
concentrations.

We further estimated the reduced second virial coeffi-
cients B∗2 calculated from the fitting results. The reduced
second virial coefficient is defined as B∗2 = B2/BHS

2 (where
BHS

2 = 4v0 for a hard sphere system with the diameter, σ, and
volume v0 = (π/6)σ3).52 Figure 10 shows B∗2 at different tem-
peratures for different samples. B∗2 of the gas-liquid binodals
of sticky hard sphere systems can be obtained from the recent
results by Platten et al.53 Comparing the value of B∗2 of our
experimental results with that of sticky hard sphere systems,
we noticed that B∗2 of all our samples approaches the binodal
region when the sample temperature is close to the precipita-
tion temperature. This indicates that the precipitation is a kind
of phase separation in our system, which is consistent with the
results observed by Jayalakshmi and Kaler.3 And it is noted
that for very dilute conditions, the second virial coefficient of
charged latex particles in a binary solvent was investigated
before using light scattering.2

IV. CONCLUSION

In summary, combing DLS and SANS, we have investi-
gated the inter-particle potential of Ludox silica particles in
the binary solvent of water and 2,6-lutidine. Because water
can be prepared by mixing the right ratio of D2O and H2O
to match the scattering length density of lutidine, the solvent
fluctuation is invisible to SANS in our study so that we can
directly measure the scattering intensity of colloidal particles
only. The obtained SANS data are analyzed to extract the effec-
tive interaction potential. At low temperatures, the interaction
between particles are dominated by the charge repulsion. How-
ever, by increasing the temperature, an attraction between
particles becomes stronger and stronger. At relatively low par-
ticle concentration (1.2% volume fraction), all SANS data
can be satisfactorily fitted with a potential including both an

electrostatic repulsion and an attraction with the function form
of the critical Casimir force. The overall range of the attrac-
tion is about the same as the correlation length of the solvent
density fluctuation. However at larger particle concentrations
(2.4%, 6.5%, and 9%), an additional long range attraction
needs to be introduced in order to explain the change of the
SANS patterns at higher temperatures. The range of this long
range attraction is much larger than the correlation length of
the solvent fluctuation at the same temperature. This indicates
that for large particle concentration at the critical solvent con-
centration, the dominating force between colloidal particles
may be due to a different mechanism instead of the critical
Casimir force. This observation is further supported by the
investigation of the temperature shift of the phase transition
temperature when increasing the particle volume fraction. We
therefore feel that the bridging attraction, which is the ana-
log of the capillary condensation, is likely the driving force
of the phase transition at high temperatures and large particle
concentrations.

At the large particle concentration, we further notice that
the phase transition happens almost at the fixed ratio between
the correlation length of the solvent and the mean surface-
surface distance. The ratio between the correlation length of
the solvent fluctuation and the attraction range converges to
a similar value of about 0.4 at large particle concentrations,
which is consistent with one recently proposed bridging attrac-
tion mechanism. Our results further indicate that the reduced
second virial coefficient at Tp for our samples is close to the
value of a sticky hard sphere system at the binodal transition.
Hence, the precipitation is driven by the binodal transition of
particles in solution.

As concentrated particle solutions at the critical solvent
composition have been commonly used as model systems
to study the reversible aggregation and glass transitions, our
results indicate that even though the solvent induced attrac-
tion can be still generated by increasing the temperature,
we have to be prudent when interpreting the driving force
between particles, and should not always attribute it to the
critical Casimir force. Other interaction forces can become
dominating factors too. In our case, it seems that the bridging
attraction is very likely the dominating force at large particle
concentrations.

It is also noted that we may need to be careful to gen-
eralize our observation to systems with larger particle sizes
close to micrometer. This is because there may be a size
dependent effect on the phase separation and aggregation
of particles driven by the critical Casimir force or the sol-
vent induced bridging attraction. This kind of size effect
has not been systematically studied so far. For larger parti-
cles, in order to generate the phase transition, the experiment
temperature is usually much closer to the solvent critical
temperature than the cases studied in this paper. At the tem-
perature much closer to the solvent critical temperature, it
is still possible that the critical Casimir force can be the
dominating interaction even at large particle concentration.
However, for smaller particles in our system, the solvent fluc-
tuation induced attraction is strong enough to introduce the
aggregation and phase transition at the temperature a few
degrees away from the solvent critical temperature. Thus, the
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dominating force at large particle concentration in our cases is
not the critical Casimir force and very likely due to the bridging
attraction. It is also noted that the aggregate structure of larger
silica particles in water/lutdine mixture was investigated using
light scattering and Ultra-Small Angle X-ray Scattering.9,10 It
would be interesting to study the morphology of the aggregates
in our systems in future.
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47A. P. Eberle, R. Castañeda-Priego, J. M. Kim, and N. J. Wagner, Langmuir

28, 1866 (2012).
48M. T. Dang, A. V. Verde, V. D. Nguyen, P. G. Bolhuis, and P. Schall,

J. Chem. Phys. 139, 094903 (2013).
49P. A. Kralchevsky and K. Nagayama, Adv. Colloid Interface Sci. 85, 145

(2000).
50M. Oettel and S. Dietrich, Langmuir 24, 1425 (2008).
51V. D. Nguyen, S. Faber, Z. Hu, G. H. Wegdam, and P. Schall, Nat. Commun.

4, 1584 (2013).
52D. Gazzillo, J. Chem. Phys. 134, 124504 (2011).
53F. Platten, N. E. Valadez-Pérez, R. Castañeda-Priego, and S. U. Egelhaaf,

J. Chem. Phys. 142, 174905 (2015).

https://doi.org/10.1103/physreve.51.5916
https://doi.org/10.1103/physrevlett.78.1379
https://doi.org/10.1103/physrevlett.110.238301
https://doi.org/10.1088/0953-8984/13/21/303
https://doi.org/10.1103/physreva.46.2012
https://doi.org/10.1103/physreve.48.1989
https://doi.org/10.1039/c7sm01971h
https://doi.org/10.1103/physreve.47.3768
https://doi.org/10.1103/physrevlett.90.188301
https://doi.org/10.1103/physrevlett.90.188301
https://doi.org/10.1002/ange.201310465
https://doi.org/10.1103/physrevlett.100.188303
https://doi.org/10.1103/physrevlett.100.188303
https://doi.org/10.1039/c6sm02855a
https://doi.org/10.1016/s0079-6816(00)00025-3
https://doi.org/10.1103/physreve.57.5782
https://doi.org/10.1063/1.4929347
https://doi.org/10.1103/physreva.40.7202
https://doi.org/10.1103/physrevlett.75.1977
https://doi.org/10.1103/physrevlett.75.1977
https://doi.org/10.1103/physreve.80.061143
https://doi.org/10.1038/nature06443
https://doi.org/10.1103/physrevlett.74.3189
https://doi.org/10.1039/c0sm00152j
https://doi.org/10.1039/c0sm00152j
https://doi.org/10.1103/physrevlett.107.208303
https://doi.org/10.1209/0295-5075/18/5/011
https://doi.org/10.1103/physreve.64.056137
https://doi.org/10.1063/1.3693331
https://doi.org/10.1103/physreve.88.022309
https://doi.org/10.1103/physreva.41.960
https://doi.org/10.1016/j.fluid.2015.06.030
https://doi.org/10.1063/1.1677168
https://doi.org/10.1063/1.1677169
https://doi.org/10.1103/physrevlett.72.2207
https://doi.org/10.1103/physrevlett.72.2207
https://doi.org/10.1103/physreve.53.2968
https://doi.org/10.1063/1.3590364
https://doi.org/10.1103/physrevlett.115.228302
https://doi.org/10.1103/physreve.84.051401
https://doi.org/10.1016/j.partic.2010.01.003
https://doi.org/10.1021/ar200113c
https://doi.org/10.1016/j.ijpharm.2003.09.010
https://doi.org/10.1063/1.453496
https://doi.org/10.1002/bip.360270703
https://doi.org/10.1063/1.1830433
https://doi.org/10.1063/1.460526
https://doi.org/10.1063/1.432528
https://doi.org/10.1063/1.446055
https://doi.org/10.1021/la2035054
https://doi.org/10.1063/1.4819896
https://doi.org/10.1016/s0001-8686(99)00016-0
https://doi.org/10.1021/la702794d
https://doi.org/10.1038/ncomms2597
https://doi.org/10.1063/1.3569113
https://doi.org/10.1063/1.4919127

