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ABSTRACT 

Recent technological advancements in computing, sensing and communication have led to the 

development of cyber-physical manufacturing processes, where a computing subsystem monitors 

the manufacturing process performance in real-time by analyzing sensor data and implements the 

necessary control to improve the product quality. This paper develops a predictive control 

framework where control actions are implemented after predicting the state of the manufacturing 

process or product quality at a future time using process models. In a cyber-physical manufacturing 

process, the product quality predictions may be affected by uncertainty sources from the 

computing subsystem (resource and communication uncertainty), manufacturing process (input 

uncertainty, process variability and modeling errors), and sensors (measurement uncertainty). In 

addition, due to the continuous interactions between the computing subsystem and the 

manufacturing process, these uncertainty sources may aggregate and compound over time.  In 

some cases, some process parameters needed for model predictions may not be precisely known 

and may need to be derived from real time sensor data. This paper develops a dynamic Bayesian 

network approach, which enables the aggregation of multiple uncertainty sources, parameter 

estimation and robust prediction for online control. As the number of process parameters increase, 

their estimation using sensor data in real-time can be computationally expensive. To facilitate real-

time analysis, variance-based global sensitivity analysis is used for dimension reduction. The 

proposed methodology of online monitoring and control under uncertainty, and dimension 

reduction, are illustrated for a cyber-physical turning process. 

Keywords: Cyber-manufacturing; cyber-physical; monitoring; control; uncertainty; Bayesian 

network 
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1. Introduction 

 Cyber-physical manufacturing systems (CPMS) refer to the integration of manufacturing 

processes and computing subsystems to perform several types of data analytics such as process 

monitoring and control to achieve resilient performance (Lee et al., 2016). A CPMS is a dynamic 

system, where the computing subsystem continuously monitors the manufacturing process and 

provides the appropriate actuation to reduce the part quality losses and increase its performance. 

Following our previous work (S. Nannapaneni et al., 2017), we consider a CPMS as being a 

composition of four subsystems – manufacturing process, sensors, computing, and actuation 

(control); these subsystems continuously influence each other in a coupled manner as shown in 

Figure 1. The performance of each subsystem is affected by different types of uncertainty sources, 

which affect the overall CPMS performance. The uncertainty sources affecting a manufacturing 

process include the inherent process variability and the mathematical models used to analyze the 

process. Sensors are often associated with noise and performance uncertainty. Similar to the 

manufacturing process, actuation systems, which are typically mechanical systems such as a 

hydraulic or pneumatic pump, are also associated with inherent variability and uncertainty in the 

mathematical models used to describe them. 

--------------------------------------------------------------------------- 

Place Figure 1 here 

--------------------------------------------------------------------------- 

 The computing nodes perform analytics on the sensor data and provide necessary actuation. 

To perform analytics, a computing node should have required hardware resources such as battery 

power and memory (data storage). When networks of computing nodes are utilized, it is possible 

that the network bandwidth can become clogged due to high data traffic resulting in unsuccessful 
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data transmission. Also, communication uncertainty may also exist between several computing 

nodes if the computing subsystem has multiple nodes, and between the computing nodes and the 

actuation system and the sensors. The additional uncertainty sources associated with the computing 

nodes in a CPMS are the availability of hardware resources, sensor-to-node communication, node-

to-node communication, and node-to-actuation communication. Quantification and incorporation 

of various uncertainty sources can enable a reliable design and an effective operation of CPMS. 

 Precision machining is a manufacturing strategy that is implemented to produce parts with high 

precision and low tolerances, and ultra-precision machining, an advancement to precision 

machining followed when even greater precision and lower tolerances are desired when compared 

to those in precision machining (Hatefi and Abou-El-Hossein, 2020; Lee et al., 2006). In-process 

sensor-based monitoring and control strategies are often implemented in precision and ultra-

precision machining to ensure the produces parts are within the desired requirements. Deep drilling 

is one machining operation whose performance can be improved by implementing monitoring and 

control strategies. Deep drilling is a drilling process where the depth of the hole is at least five 

times the drill diameter (Khan et al., 2017). Drills are subjected to severe machining conditions in 

terms of high thrust force, poor heat evacuation and chip jamming. To improve the process 

performance, Kavaratzis and Maiden monitored the drilling thrust and torque, and controlled the 

machining parameters such as feed rate, spindle speed and tool position to ensure safety of the tool 

and work piece under high penetration rates (Kavaratzis and Maiden, 1990). Kim et al used peck 

drilling and thrust force monitoring during deep-micro-hole drilling of steel to improve the tool 

life by changing the one-step feed-length (OSPL) (Kim et al., 2009). In reality, there exists several 

uncertainty sources that impact the sensor data collection, process models used to calculate the 

control actions, and uncertainty in the implementation of control actions. A monitoring and control 
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system should consider all these uncertainty sources and their interactions for reliable precision 

and ultra-precision machining. 

 We review below some uncertainty quantification (UQ) methods that were used in the 

manufacturing domain. Mehta et al  used Bayesian inference for calibration of the machining force 

model and estimation of cutting force with limited experimental tests (Mehta et al., 2017). Adnan 

et al used fuzzy logic to predict the surface roughness and estimation of cutting force in machining 

processes (Mohd Adnan et al., 2015). Bhinge et al used a Gaussian process model to quantify the 

uncertainty in the energy prediction of milling process (Bhinge et al., 2017). Reza et al used a 

fuzzy set approach to characterize the uncertainty in energy synthesis and demonstrated the 

approach for a paved road system (Reza et al., 2013). Pehlken et al estimated energy efficiency in 

the processing of raw materials under various uncertainty sources such as weather and soil 

conditions using Monte Carlo simulations (Pehlken et al., 2015). Bayesian network approaches 

were developed for parameter estimation and uncertainty quantification in energy prediction of 

manufacturing processes (Nannapaneni et al., 2016; Nannapaneni and Mahadevan, 2016). 

Karandikar et al used a Markov Chain Monte Carlo (MCMC) approach to estimate parameters of 

a turning model under uncertainty for tool life prediction (Karandikar et al., 2014).  Dynamic 

Bayesian network approaches were used for diagnosis, prognostics, and optimization in 

maintenance strategies in (Tobon-Mejia et al., 2012; Weber and Jouffe, 2006). UQ methods for 

prediction, parameter estimation, diagnosis and prognosis have been developed for traditional 

manufacturing process; however, such methods for CPMS are unavailable. 

 Process monitoring allows us to obtain the process performance in real time and enables us to 

change any process parameters to improve the part quality. Wu et al used a fog computing 

framework for process monitoring and prognosis, and demonstrated the methods for monitoring 
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vibrations of pumps in a power plant and energy consumption of CNC machines (Wu et al., 2017). 

Rao et al  used a combination of recurrent predictor neural network along with Bayesian parameter 

estimation using a particle filter for real-time identification of surface morphology variations in 

ultra-precision machining process (Rao et al., 2014). Arul et al developed an online process 

monitoring mechanism based on acoustic emissions for quality control in the drilling of polymeric 

composites (Arul et al., 2007). Wang and Yan developed a real-time monitoring framework in 

chemical processes by analyzing the process data for abnormalities using a principal component 

analysis (PCA) model (Wang and Yan, 2019). Rao et al developed an online process control 

framework for additive manufacturing processes through statistical analysis and nonparametric 

Bayesian modeling approaches (Rao et al., 2015). Gonzaga et al used an artificial neural network-

based soft sensor for online estimates of polyethylene terephthalate (PET) viscosity to control of 

industrial polymerization process (Gonzaga et al., 2009). Mosallam et al developed a Bayesian 

data-driven approach for prognostics and remaining useful life (RUL) prediction and demonstrated 

the approach for battery and turbofan degradation (Mosallam et al., 2016). Given the growing 

interest in CPMS, methodologies for UQ and its incorporation in process monitoring and control 

are increasingly becoming necessary and this paper seeks to address this issue.  

 Fuzzy modeling approach is one of the commonly-used mathematical approach implemented 

in advanced machining to predict the process performance metrics given the uncertainty in input 

parameters. Syn et al employed fuzzy expert system for the prediction of surface quality and the 

dross inclusion in a laser cutting process (Syn et al., 2011). Park et al employed a fuzzy pattern 

recognition-based system for monitoring weld quality in a laser welding process (Park et al., 2001). 

Maji et al used adaptive network-based fuzzy inference system to model input-output relationships 

if an electrical discharge machining process (Maji and Pratihar, 2010). Vundavilli et al used a 
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fuzzy logic-based expert system for prediction of depth of cut in an abrasive water jet machining 

process (Vundavilli et al., 2012). Kovac et al used a combination of fuzzy logic and regression 

analysis for modeling surface roughness in a face milling process (Kovac et al., 2013). In this 

paper, we employed the Bayesian approach as it facilitates both performance prediction 

considering various uncertainty sources and inference for updating process parameters using real-

time sensor data. 

 The interactions between subsystems in a CPMS (Figure 1) occur in a time sequence with 

small (but finite) time lags between them. This paper analyzes the coupled interactions between 

individual subsystems in a sequential manner using a two-level dynamic Bayesian network (DBN) 

approach. When process parameters are unknown, real-time sensor data can be used to estimate 

them using Bayesian calibration, and are later used for process control. As the number of uncertain 

parameters increases, their estimation in real time can become computationally expensive. To 

reduce the computational complexity, we employ variance-based sensitivity analysis to identify 

critical parameters and reduce the number of uncertain parameters. 

 Technological advancements in cloud computing and cloud services have led to a new 

manufacturing paradigm called cloud manufacturing, which is a new service-oriented 

manufacturing paradigm that facilitates on-demand access for customers, ranging from individual 

users to large OEMs, to diversified and distributed manufacturing resources to enhance production 

efficiency, reduce product life-cycle costs, and allow for optimal resource loading in response to 

variable customer demands (Wu et al., 2013; Xu, 2012; Zhang et al., 2019). Cloud manufacturing 

may or may not necessarily provide direct interactions to the machine tools and physical devices. 

Cyber-physical manufacturing systems enable direct interactions between computing, 

manufacturing, actuation, and sensor systems, and enable online control of the manufacturing 
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processes using real-time sensor data. Recently, Liu et al proposed a paradigm combining the cloud 

manufacturing and cyber-physical systems called Cyber-Physical Manufacturing Cloud (CPMC) 

that combines the principles of cloud manufacturing and cyber-physical systems (Liu et al., 2017). 

The CPMC paradigm is a service-oriented manufacturing paradigm where various manufacturing 

processes can be monitored and controlled from the cloud. In this paper, we focus on developing 

online monitoring and control algorithms considering various uncertainty sources that arise from 

the manufacturing, sensor, computing, and actuation systems. The proposed methodology is 

general, and can be applied with different computing environments (edge, mainframe or cloud). 

 The overall contributions made through this paper are: (1) Quantification of multiple 

uncertainty sources (including the computing uncertainty) through a Bayesian probabilistic 

framework; (2) Development of a multi-level DBN for uncertainty propagation; (3) Real-time 

control of CPMS using the DBN; (4) Dimension reduction to enable real-time analysis; and (5) 

Illustration of the proposed quality control framework for a cyber-physical turning process.  

 The rest of the paper is organized as follows. Section 2 provides a brief background to dynamic 

Bayesian networks and sensitivity analysis, which are later used in the proposed methodology 

described in Section 3. Section 4 illustrates the proposed control framework and dimension 

reduction for a cyber-physical turning process, followed by concluding remarks in Section 5. 

 

2. Background 

2.1. Dynamic Bayesian networks 

 A dynamic Bayesian network is a probabilistic framework used to model time-dependent 

systems (Murphy, 2002). In this framework, the continuous time is discretized into discrete time 
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steps, and dependence between variables is modeled within a single time step and across time 

steps. The DBNs are typically considered with a Markov assumption, i.e., the variables in any time 

step are dependent only on the variables within the current time step and the previous time step 

Figure 2 shows an illustrative DBN. 

--------------------------------------------------------------------------- 

Place Figure 2 here 

--------------------------------------------------------------------------- 

 A DBN model follows a state-space modeling framework, where the behavior of the system at 

any time is represented using a set of variables called state variables. When the state variables are 

unobservable, they are estimated indirectly by observing another set of variables called the 

observation variables. The dependence between various variables can be given as 

 𝑷𝒕+𝟏 = 𝐺(𝑷𝒕, 𝒗𝒕+𝟏) + 𝝐𝑷 (1) 

 𝑸𝒕 = 𝐻(𝑷𝒕) + 𝝐𝑸 (2) 

where 𝑷𝒕  and 𝑷𝒕+𝟏  represent the state variables in two time steps. 𝑸𝒕 represents the observation 

variable at the current time step 𝑡. The estimation of 𝑷𝒕+𝟏 from 𝑷𝒕 is through Eq. (1). 𝒗𝒕+𝟏 refer 

to system inputs at time 𝑡 + 1. Eq. (2) represents the relationship connecting observation variables 

𝑸𝒕 to the state variables 𝑷𝒕. 𝐺 and 𝐻 represent the models, either physics-based or data-driven, 

connecting the state variables at consecutive time steps, and connecting the state and observation 

variables at any given time step respectively. 𝝐𝑷 and 𝝐𝑸 represent the noise (error) terms associated 

with the prediction of 𝑷𝒕+𝟏 and  𝑸𝒕. 

 A DBN is typically constructed in two steps; the static BN is constructed in the first step and 

the transitional BN is learnt in the second step (Murphy, 2002). The static BN is constructed using 
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physics-based models, domain expert knowledge, data, or hybrid approaches, i.e., using a 

combination of physics, expert knowledge, and data. In a hybrid approach, segments of the static 

BN, i.e., a partial BN can be obtained using physics models and domain knowledge, while the 

remaining dependencies are learnt using data (S Nannapaneni et al., 2017). Similar to the static 

BN, the learning of the transitional BN can be carried out using available physics models, expert 

knowledge, data, or either combination.  In data-driven analysis, learning becomes a variable 

selection analysis, i.e., the variables at time step 𝑡 that affect the variables at time 𝑡 + 1 are 

identified using several variable and feature selection techniques (Saeys et al., 2007).  

 Several exact and approximate inference techniques are available to estimate the state variables 

in real-time depending the complexity of the relationships between state and observation variables. 

In this paper, we use particle filtering methods for inference as they can be used in the presence of 

complex non-linear relationships between variables. Some commonly used particle filtering 

algorithms include Sequential Importance Sampling (SIS), Sequential Importance Resampling 

(SIR) and Rao-Blackwellized Particle Filter (Arulampalam et al., 2002). In this paper, we use the 

SIR algorithm (Wang et al., 2019); the steps of the algorithm are given below. 

 1. Generate 𝑁 samples of the state variables at the current time step, 𝑃𝑘
𝑡, 𝑘 = 1,2. . 𝑁  

 2. Compute the likelihood of each of the 𝑁 particles by propagating them through the static 

BN and by using the observation data.  

 3. Compute weights for each particle as being proportional to their likelihood measures 

 4. Resample the generated 𝑁 values of the state variables according to their weights and obtain 

𝑁 values, which are used to obtain their posterior distributions.  
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 5. These posterior samples are then used to obtain the prior distributions of the state variables 

in the next time step by propagating them through the transitional BN.  

 After a background to DBN, we now review variance-based sensitivity analysis, which can be 

used to perform dimension reduction in the presence of a high-dimensional state space in a DBN 

to enable real-time analysis for process control.  

 

2.2. Variance-based sensitivity analysis 

       Consider a model 𝐺 with 𝑛 input variables 𝑋1  , 𝑋2 , . . . , 𝑋𝑛 given by  

 𝑌 =  𝐺(𝑋1 , 𝑋2 , 𝑋3 , . . . , 𝑋𝑛 ) (3) 

 Two types of indices are computed for each variable in variance-based sensitivity analysis – 

main effect (or first-order effect), and total effect. The first-order effect index (𝑆𝑖
𝐼) quantifies the 

individual contribution from a variable 𝑋𝑖, without considering its interaction with other variables, 

to the uncertainty in the output whereas the total effect index quantifies the contribution from 𝑋𝑖 

including its interactions with all the other variables 𝑋~𝑖.  The first-order effect is given as 

 

𝑆𝑖
𝐼  =

𝑉𝑎𝑟𝑋𝑖
(𝐸𝑋~𝑖

(𝑌|𝑋𝑖))

𝑉𝑎𝑟(𝑌)
 (4) 

where 𝐸𝑋~𝑖
(𝑌|𝑋𝑖) represents the expected value of output 𝑌 when 𝑋𝑖 is fixed at a specific value, 

and 𝑉𝑎𝑟𝑋𝑖
 computes the variance of this expected value when the uncertainty in 𝑋𝑖 is included. 

The total effects index is given as 
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𝑆𝑖
𝑇 = 1 −

𝐸𝑋~𝑖
(𝑉𝑎𝑟𝑋𝑖

(𝑌|𝑋~𝑖))

𝑉𝑎𝑟(𝑌)
 (5) 

where 𝑉𝑎𝑟𝑋𝑖
(𝑌|𝑋~𝑖) represents the variance of 𝑌 when all variables other than 𝑋𝑖 are fixed at 

specific values, and 𝐸𝑋~𝑖
 calculates the expected value of this variance considering the randomness 

in 𝑋~𝑖.  Some techniques to compute these sensitivity indices are the Sobol’s scheme (Sobol′, 

2001), Fourier amplitude sensitivity test (FAST) (Saltelli et al., 1999), improved FAST (Tarantola 

et al., 2006), importance sampling and kernel regression (Sparkman et al., 2016), and the stratified 

sample-based approach for sensitivity analysis (Li and Mahadevan, 2016). Here, we use the 

stratified sample-based approach for its computational efficiency. Next, we use the concepts of 

DBN and sensitivity analysis for UQ, dimension reduction, and process control in a CPMS.  

 

3. Online monitoring and control under uncertainty 

 In this section, we detail the construction of a two-level DBN for modeling a CPMS and then 

use it for process monitoring and control under uncertainty.  

3.1. Multi-level DBN 

  As discussed in Section 1, the coupled interactions between various subsystems in a CPMS 

occur with a time lag. We define a time step (denoted as 𝑡) as the time taken for one analysis of 

various CPMS subsystems (manufacturing process, sensing, computing, and actuation) as shown 

in Figure 3. We discuss below the construction of the multi-level DBN in a CPMS.  

--------------------------------------------------------------------------- 

Place Figure 3 here 

--------------------------------------------------------------------------- 
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 Since manufacturing processes and actuation systems are physical systems, their associated 

BNs can be constructed from available physics models, expert knowledge, data or their 

combination. There has been extensive literature on the construction of BNs for physical systems 

(Nannapaneni and Mahadevan, 2016; Scutari, 2010). However, the BN corresponding to a 

computing subsystem is not straightforward, as it does not have an associated physics-based 

model. Moreover, the dependence between various computing nodes and associated uncertainty in 

the computing subsystem depend on the number of computing nodes and the type of interactions 

between them. Therefore, this paper particularly deals with the uncertainty sources related to the 

computing subsystem, and their aggregation with the uncertainty sources from the manufacturing 

process, actuation subsystem, and the sensors.  

 The interactions (communication) can be between computing nodes, sensors and computing 

nodes, and computing nodes and the actuation system. There are two types of interactions – (1) 

one-way or asynchronous interaction, and (2) request-reply or request-response or synchronous 

interaction (Dubey et al., 2011). A brief introduction to these interactions is given below. Assume 

a one-way interaction from 𝐶1 to 𝐶2, where 𝐶1 and 𝐶2 can represent computing nodes, sensors or 

the actuation subsystem. The data transmission does not occur in a single instance but occurs over 

a time interval during which the data is transmitted in several data packets in a sequential manner. 

Since data transmission is a dynamic process, we model it using another DBN. Let us define a time 

step 𝑛 in the lower level DBN as the time required for the transmission of one data packet. Let 𝐸12
𝑛  

represent the event of transmitting one data packet. 𝐸12
𝑛  is a binary outcome event where 0/1 

represent successful/unsuccessful transmission.  

 A Markov assumption is made for the outcome of the transmission event at time 𝑛 + 1, i.e., 

the outcome of 𝐸12
𝑛+1 is dependent on the outcome of 𝐸12

𝑛 . A practical rationale for this assumption 
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is that if a data packet transmission is successful at time step 𝑛, then it is likely to be successful at 

time 𝑛 + 1. On the contrary, if the transmission is unsuccessful at time step 𝑛, which could be due 

to high data traffic, then a successful transmission is unlikely at time 𝑛 + 1. The DBN for the 

asynchronous interaction is shown in Figure 4. 

--------------------------------------------------------------------------- 

Place Figure 4 here 

--------------------------------------------------------------------------- 

 Let 𝑝 data packets are transmitted from nodes 𝐶1 to 𝐶2, and if 𝑟 packets get successfully 

transmitted, then all the data can be reconstructed at 𝐶2. Since we assumed that one data packet is 

transmitted per time step 𝑛 in the lower-level DBN, the value of 𝑛 goes from 𝑛 = 1 to 𝑛 = 𝑝, i.e., 

there are 𝑝 time steps. The joint probability of all the events corresponding to the transmission of 

𝑝 data packets is equal to 𝑃(𝐸12
1 , 𝐸12

2 … 𝐸12
𝑝 ). This joint probability can be decomposed into a 

product of marginal and conditional probabilities as 

𝑃(𝐸12
1 , 𝐸12

2 … 𝐸12
𝑝 ) = 𝑃(𝐸12

1 ) × 𝑃(𝐸12
2 |𝐸12

1 ) × … . 𝑃(𝐸12
𝑝 |𝐸12

1 , 𝐸12
2 … 𝐸12

𝑝−1) (6) 

Using the Markov assumption, Eq. (6) can be simplified as 

𝑃(𝐸12
1 , 𝐸12

2 … 𝐸12
𝑝 ) = 𝑃(𝐸12

1 ) × 𝑃(𝐸12
2 |𝐸12

1 ) × … . 𝑃(𝐸12
𝑝 |𝐸12

𝑝−1) (7) 

 Let 𝑅1 represent the probability of a successful data packet transfer at 𝑛 = 1. The conditional 

dependence for data transmission is given in Table 1, where 𝑅𝑖𝑗 is the probability of data 

transmission event in the current time step 𝑗 conditioned on the data transmission event in the 

previous time step 𝑖 (𝑖, 𝑗 = 0,1). These probabilities can be estimated through an aggregation of 

historical data, and simulations regarding the communication network. 

--------------------------------------------------------------------------- 
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Place Table 1 here 

--------------------------------------------------------------------------- 

--------------------------------------------------------------------------- 

Place Figure 5 here 

--------------------------------------------------------------------------- 

 A request-reply interaction is associated with a sequence of request and reply messages, i.e., 

𝐶2 requests for information and 𝐶1 replies, as shown in Figure 5. Here, we define a time step as 

the time required for one request and one reply message transmission. Let 𝐸12
𝑛  and 𝐸21

𝑛  represent 

the reply and request events accordingly at a lower level time step 𝑛. As the request and reply 

messages occur in a sequential manner, the success of a message (reply/request) is dependent on 

the previous message (reply/request). The lower-level DBN for the 2-node synchronous 

interaction is given in Figure 6, where if 𝐸21
𝑛  is successful, 𝐸21

𝑛+1is dependent on 𝐸12
𝑛  and if 𝐸21

𝑛  is 

not successful (failed request message and this implies no reply message), then 𝐸21
𝑛+1 is assumed 

to be dependent on 𝐸21
𝑛 . As opposed to the one-way interaction system, we assume we require 𝑟 

successful request-reply pairs in the request-reply interaction system since a reply does not occur 

unless there is a request and reply does not always occur for every request. The joint probability 

of 𝑝 request-reply interactions, assuming that one occurs at each lower-level time step can be 

computed using Eqs. (6) and (7). 

--------------------------------------------------------------------------- 

Place Figure 6 here 

--------------------------------------------------------------------------- 

  Let 𝑅2 represent the probability of a successful request message at lower-level time step 

𝑛 = 1. Let 𝑅12 represent the probability of successful reply message when the request message is 

successful. Therefore, 𝑅2 ×  𝑅12 refers to the reliability of a request-reply pair at 𝑛 = 1. For 

illustration, we assume the same conditional relationships between two requests across two 
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successive time steps as provided in Table 1. Given the dependence relationships across time steps, 

the probability of 𝑟 successful pairs out of 𝑝 can be computed. The same procedure can be extended 

to the interactions of the computing nodes with the sensors and actuation system. For illustration, 

this paper considered a Markov model to estimate the success/failure of a data packet transmission. 

In future, we shall consider other sophisticated performance models of network communication 

based on queuing theory and Poisson distribution (Ray et al., 2005).  

 It should be noted that we have two types of discretization of the continuous time in the two-

level DBN. The higher-level discretization, which corresponds to the time step at which sensor 

data are available is denoted using 𝑡 and the lower-level discretization, which discretizes the time 

between two higher-level time steps 𝑡 and 𝑡 + 1 is denoted using 𝑛. The lower-level time step 

corresponds to the time step at which data packets are transmitted between computing nodes, and 

with the sensors and the actuation subsystem. The reliability of communication between the 

computing nodes, and between the sensors and actuation subsystem are not impacted by the higher-

level time step 𝑡, and only dependent on the lower-level time step 𝑛 as detailed in Eqs. (6-9). 

 To perform the required analysis, the computing nodes should have the necessary hardware 

resources such as power and computing memory.  In some cases, power may be available to 

computing nodes through battery power; this is typically observed in mobile computing nodes, 

which are computing nodes that can be transported while they are in operation (Hoang et al., 2012).  

If there are 𝑁 computing nodes and 𝐸𝑖,𝑡, 𝑖 = 1,2,3. . . 𝑁 represent the events corresponding to their 

resource availability at any time step 𝑡. The joint probability of resource availability is given as 

𝑃(𝐸1,𝑡, 𝐸2,𝑡 … . 𝐸𝑁,𝑡) = 𝑃(𝐸1,𝑡) × 𝑃(𝐸2,𝑡|𝐸1,𝑡) × … . . 𝑃(𝐸𝑁,𝑡|𝐸1,𝑡, 𝐸2,𝑡 … 𝐸𝑁−1,𝑡) (8) 
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 Under the assumption that each node has its own hardware resources, the resource availability 

of one node is independent to that of another node.  Thus, Eq. (8) can be simplified as 

𝑃(𝐸1,𝑡, 𝐸2,𝑡 … . 𝐸𝑁,𝑡) = 𝑃(𝐸1,𝑡) × 𝑃(𝐸2,𝑡) × … 𝑃(𝐸𝑁,𝑡) (9) 

 Let 𝑆𝑟,𝑖,𝑡 refer to the probability of resource availability of node 𝑖 at time step 𝑡.  The probability 

that all the events, 𝐸𝑖,𝑡, 𝑖 = 1,2,3. . . 𝑁, are successful is equal to Π𝑖
𝑁 𝑆𝑟,𝑖,𝑡. The resulting overall 

two-level DBN for a CPMS is shown in Figure 7, and the description of variables is given in Table 

2. The two-level DBN begins with the variables 𝑷𝒕 and 𝑸𝒕 associated with the manufacturing 

process. We then have the sensor subsystem that collects real-time data on 𝑸𝒕, denoted as 𝑸𝒔
𝒕 , 

which is transmitted to the computing subsystem. The sensor data is used to estimate the posterior 

distributions of the state variables, and calculate the control action in the next time step. In some 

cases, the process performance depends on the environmental inputs (𝑬𝑰𝒕) such as temperature or 

humidity. The data on the environmental inputs (𝑬𝑰𝒔
𝒕) are also transmitted to the computing 

subsystem. As discussed earlier in this section, the performance of the computing subsystem 

depends in the availability of computing resources; this is denoted as 𝑹𝑨𝒕 in Figure 7. The output 

of the computing subsystem is denoted as 𝑺𝑶𝒕; this is transmitted to the actuation subsystem, 

which implements the control action. It should be noted that the implemented control action may 

not be the same as the software output due to the communication uncertainty between the 

computing and actuation subsystems.  

 The type of interactions within the computing subsystem and with the sensors and actuation 

subsystem depend on the computing architecture available in the CPMS. For illustration, we 

represented the communication between the computing subsystem and the sensors, and with the 
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actuation subsystem using an asynchronous interaction, and the communication within the 

computing subsystem using a synchronous interaction.  

--------------------------------------------------------------------------- 

Place Figure 7 here 

--------------------------------------------------------------------------- 

--------------------------------------------------------------------------- 

Place Table 2 here 

--------------------------------------------------------------------------- 

 

The steps for the construction of the multi-level DBN are summarized below.  

(1) Obtain the conditional probability relationships between the manufacturing process 

variables (𝑷𝒕 and 𝑸𝒕) using physics-based or data-driven models.  

(2) Model the conditional probability relationships between the observation variables (𝑸𝒕) and 

the sensor measurements (𝑸𝒔
𝒕 ), and between the environmental inputs (𝑬𝑰𝒕) and their sensor 

measurements (𝑬𝑰𝒔
𝒕) using sensor uncertainty. 

(3) Identify the required resources for the computing nodes and estimate the probability of 

their availability of each computing node at each time step 𝑡.  

(4) Identify the type of interaction (asynchronous or synchronous) between the sensors and 

computing nodes, between the computing nodes, and between the computing nodes and 

the actuation subsystem; this depends on the computing architecture in the CPMS. 

(5) Identify the number of lower-level time steps in the communication between computing 

nodes, and with sensors and actuation subsystem.  

(6) Depending on the types of interaction, construct the lower-level DBN as shown in Figures 

4 and 6. 
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(7) Obtain the conditional probability relationships of the state variables at time 𝑡 + 1 

dependent on the state variables at time 𝑡 and the implemented control action at time 𝑡. 

After discussing the construction of the multi-level DBN, we now discuss it application for online 

process monitoring and control in a CPMS.  

3.2. Process monitoring and control in a CPMS 

 The monitoring and control follows a ‘measure-update-optimize’ procedure. The sensor data 

regarding several variables such as 𝑸𝒕 in Figure 7 are obtained and communicated to the computing 

subsystem. The computing subsystem then updates the uncertain model variables 𝑷𝒕 through 

Bayesian calibration. The updated distributions are used to estimate the control action that 

minimizes the quality losses and applied through the actuation system in the next time step. All 

the above analyses are performed by the computing subsystem, and the result is communicated to 

the actuation subsystem.  

 The computational effort of Bayesian calibration is dependent on the number of uncertain 

parameters. As the number of parameters increases, the number of particles required in the SIR 

algorithm (used for Bayesian calibration and discussed in Section 2.1) increases. Since process 

monitoring and control need to be performed in real time, high computing time is not affordable. 

In such cases, we use the variance-based sensitivity analysis for dimension reduction, i.e., obtain 

a subset of uncertain parameters that have a major influence on the observation variable. At the 

start of the process monitoring, we have the prior distributions of the all uncertain parameters. 

These distributions are later updated to obtain the posterior distributions using the sensor data. For 

dimension reduction, we perform sensitivity analysis using the prior distributions, and if the 

sensitivity of a parameter is less than a pre-defined threshold, then that parameter is assumed to be 
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deterministic at its nominal value, such as the mean or mode. The remaining parameters after 

dimension reduction analysis are updated using the sensor data. The steps in the process 

monitoring and control are summarized below. 

(1) Perform variance-based sensitivity analysis for dimension reduction of state variables (𝑃𝑡) 

using their prior distributions.  

(2) Given the computing and communication architecture (asynchronous and/or synchronous), 

compute the reliability (success probability) values of (i) data transmission between the 

sensors and computing nodes, (ii) data transmission between the computing nodes to carry 

out required analysis, and (iii) data transmission between the computing nodes and the 

actuation subsystem. 

(3) Compute the probability of all the computing nodes to have the necessary resources using 

Eq. (9). 

(4) Obtain a binomial random sample (using success probability from step 2(i)) to simulate the 

data transmission between the sensors and the computing nodes.  

(5) If the data transmission in step 4 is successful, then obtain two binomial random samples 

using the success probabilities from steps 2(ii) and 4, to simulate the data transmission 

between the computing nodes, and resource availability. 

(6) If the data transmission and resource availability in step 5 are successful, then the posterior 

distributions of the state variables and the required control action for the next time step are 

computed and stored in the computing subsystem.  The posterior distributions are 

computed using the SIR algorithm in Section 2.1. The control action is calculated to 

minimize a loss function defined over the system quantity of interest (QoI) 
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(7) Obtain a binomial random sample (using the success probability from step 2(iii)) to 

simulate the data transmission between the computing nodes and the actuation subsystem. 

(8) If the data transmission is successful, then the computed control action is implemented on 

the manufacturing process else the control action implemented in the previous time step is 

implemented in the current time step.  

(9) Steps 3-8 are repeated until a part is manufactured 

We demonstrate below the construction of the multi-level DBN and online process monitoring and 

control for a cyber-physical turning process.  

 

4. Illustrative example: Turning process 

 In this section, we provide a brief introduction to a turning process, discuss a cyber-physical 

version of the turning process, and use it to demonstrate the proposed process monitoring and 

control framework.  

4.1. Turning process 

 Turning is a machining operation, where the material of a rotating cylindrical part is removed 

when it moves linearly against a cutting tool, and along the axis of rotation. Let 𝐷𝑜 and 𝐷𝑓 represent 

the initial and final (target) diameters of the cylindrical part. Given 𝐷𝑜 and 𝐷𝑓, the depth of the cut 

(𝑑) is calculated as  

 
𝑑 =

𝐷𝑜 − 𝐷𝑓

2
 (10) 
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The inputs to the turning operation are feed rate (𝑓) and cutting speed (𝑣). Feed rate is the speed 

at which the cutting tool is fed on to the part, and cutting speed is the relative speed measured 

along the axis between the part and the cutting tool. Over time, the tip of the cutting tool wears 

out, which is known as flank wear (𝑤), and this affects the dimensional accuracy of the part.  

 The dimensional accuracy is affected by several parameters in a turning process: cutting speed, 

feed rate, depth of cut, coolant, coating type, chip breaker geometry, nose radius, and shape of 

insert (Yih-Fong, 2006). Of these, cutting speed, feed rate, and depth of cut are process parameters 

while the remaining are equipment parameters. A coolant is typically used in a machining process 

to decrease the cutting temperature, decrease the amount of power consumed in a cutting process, 

and increase tool life (Yildiz and Nalbant, 2008). Tools are often coated to improve their hardness, 

protect against abrasion, and to provide lubrication between them and the parts. There are primarily 

two categories of coating available: Physical Vapor Deposition (PVD) and Chemical Vapor 

Deposition (CVD). Each coating type provides different benefits to the tool such as hardness, 

abrasion protection and lubrication (Nalbant et al., 2009). Chip breakers are often used for chip 

control method in machining processes (Lotfi et al., 2015). Nose radius is the radius of the tip of 

the cutting tool that comes in contact with a part and inserts are replaceable components that are 

attached to the cutting tool. For the sake of illustration, this paper considers only the process 

parameters (cutting speed, feed rate, and depth of cut) when estimating tool wear.  

 To compensate for the tool wear and achieve the target diameter, the position of the cutting 

tool needs to be adjusted; this is referred to as tool wear compensation (𝛿). As the flank wear 

increases with time, the tool wear compensation needs to be increased accordingly. When 𝑘 

finished parts are produced by a turning process and 𝛿𝑖, 𝑖 = 1,2, … 𝑘 represent the tool wear 



23 
 

compensation in each of those operations, the revised depth of cut after considering tool wear is 

given as  

 
𝑑𝑖 =  

𝐷𝑜 − 𝐷𝑓

2
+ 𝛿𝑖 (11) 

where 𝑑𝑖 refers to the depth of the cut of the 𝑖𝑡ℎ part. The tool wear cannot be precisely estimated 

using physics models; however, empirical models are commonly adopted (Abdelmaguid and El-

hossainy, 2012). The tool wear is given as   

 𝑤𝑖 = 𝑘𝑤𝑣𝛼𝑤𝑓𝛽𝑤𝑑𝑖
𝛾𝑤(𝑡𝑤,𝑖 + 𝑡)𝜎𝑤 (12) 

where 𝑘𝑤, 𝛼𝑤, 𝛽𝑤, and 𝜎𝑤 are the model parameters estimated using experimental data. 𝑡 and 𝑤𝑖 

refer to the cutting time spent on part 𝑖 and the tool wear on the 𝑖𝑡ℎ part after spending time 𝑡. 𝑡𝑤,𝑖 

refers to the time that needs to be spent on the 𝑖𝑡ℎ part to achieve the same tool wear that is achieved 

after processing (𝑖 − 1) parts. If 𝑊𝑖−1 refers to the tool wear after processing (𝑖 − 1) parts, then 

𝑡𝑤,𝑖 is obtained as  

 

𝑡𝑤,𝑖 = (
1

𝑘𝑤
𝑣−𝛼𝑤𝑓−𝛽𝑤𝑑𝑖

−𝛾𝑤𝑊𝑖−1)

1
𝑤

 (13) 

If �̅�𝑖 = 𝐷𝑜 − 𝑑𝑖  and 𝐿 represent the diameter of the cylindrical part after the turning operation, 

and length of the part respectively, then the cutting time for the 𝑖𝑡ℎ part is calculated as  

 
𝑡𝑐,𝑖 =

Π(𝐷𝑜 − 𝑑𝑖)𝐿

𝑣𝑓
 

(14) 

Using Eqs. 12-14, the total wear after processing 𝑖 parts is given as  

 𝑊𝑖 =  𝑘𝑤𝑣𝛼𝑤𝑓𝛽𝑤𝑑𝑖
𝛾𝑤(𝑡𝑤,𝑖 + 𝑡𝑐,𝑖)

𝜎𝑤 (15) 
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The continuous wear in the cutting tool causes a drift in the final diameter of a part, which can be 

estimated as  

 Δ𝑖 = 2 × (𝑤𝑖 − 𝑊𝑖−1)tan (𝜃), for 0 ≤ 𝑡 ≤ 𝑡𝑐,𝑖 (16) 

where 𝜃 is the clearance angle associated with the cutting tool. Δ𝑖 is the drift in the 𝑖𝑡ℎ part. The 

clearance angle is the angle made by the cutting tool with the axis of rotation of the cylindrical 

part (Baradie, 1996). The drift calculated using Eq. (16) represents the additional variation in the 

𝑖𝑡ℎ part’s diameter when compared to the (𝑖 − 1)𝑡ℎ part.  To achieve the target diameter, a tool 

wear compensation (𝛿𝑖) is implemented in response to the drift (Δ𝑖). The final diameter after 

considering tool wear compensation and drift can be computed as  

 𝐷𝑖 = 𝐷𝑓 − 2 × 𝛿𝑖 + 𝛥𝑖 (17) 

The quality loss due to the deviation from the target diameter (|𝐷𝑓 − 𝐷𝑖|) can be quantified as  

 
𝑄𝑊 = ∫ (2 × 𝛿𝑖 − Δ𝑖)

2𝑑𝑡
𝑇𝑖

𝑇𝑖−1

 (18) 

where 𝑄𝑊 represents the quality loss and 𝑇𝑖 represents the cumulative machining time over 𝑖 parts. 

4.2. Cyber-Physical Turning Process 

 In a traditional turning process, the diameter of a part is measured after it is produced in an 

offline manner, and any tool wear compensation is implemented to the next part. This 

implementation works for parts of shorter lengths, where the variation in diameters at the head and 

tail ends is not significant, and in longer parts where the acceptable quality tolerance is greater 

than the deviations due to tool wear.  Such offline techniques may not be suitable for ultra-high 

precision parts where the acceptable tolerances are less than the deviations due to tool wear. In a 
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cyber-physical turning process, the part’s diameter is measured while it is being manufactured; 

these measurements are used to appropriate tool wear compensation in real time.  

 Several uncertainty sources are present in the above cyber-physical turning process. A source 

of input uncertainty is the actual clearance angle of the cutting tool, which can be different from 

the intended angle due to the placement of cutting tool. There exists uncertainty in the diameter 

measurements obtained the scanning laser beam method. The control action (input) on the turning 

process is the actual tool wear compensation, which can be different from the calculated tool wear 

compensation due to inherent process variability. The uncertainty in the process performance 

prediction is caused by the uncertainty in the model parameters of the tool wear empirical models. 

Additional uncertainty sources due to the presence of computing subsystem include the 

communication uncertainty and uncertainty in resource availability.  

--------------------------------------------------------------------------- 

Place Table 3 here 

--------------------------------------------------------------------------- 

 

 

4.3. Monitoring and control in a cyber-physical turning process 

 Table 3 provides the desired part specifications and quality bounds. The process parameters 

such as feed rate and cutting speed are assumed at 60 𝑚/𝑚𝑖𝑛 and 0.065 𝑚𝑚/𝑟𝑒𝑣 respectively. 

The initial tool wear compensation is assumed to be 0.009 mm. The values of the model parameters 

in the tool wear empirical model are obtained from (Abdelmaguid and El-hossainy, 2012), and 

provided in Table 4. The clearance angle was assumed at 15 degrees. The uncertainty in the actual 

tool wear compensation, variability in the sensor measurements, and the variability in the clearance 

angle are modeled using Gaussian distributions with zero means and standard deviations of 0.0005 
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mm, 0.0025 mm, and 0.5 degrees respectively.  Gaussian distributions are used to represent 

uncertainties in the paper for illustration purposes only, and can be replaced with the actual 

probability distributions, if available.  

       --------------------------------------------------------------------------- 

Place Table 4 here 

--------------------------------------------------------------------------- 

 We assume asynchronous communication interaction between the sensors and the computing 

node, and between the computing node and actuation subsystem. For illustration, we assume that 

the sensor data is sent in three data packets and two packets are required for successful data 

transmission. For successful communication between the computing and actuation subsystems, we 

assume that one of the two data packets is required. The reliability of the first packet is assumed 

to be 0.95, while the reliability of the following data packets is obtained using the conditional 

probability table in Table 5. The reliability values are obtained from (Dulman et al., 2003). The 

probability that the necessary computing resources are available is assumed as 0.95.  

--------------------------------------------------------------------------- 

Place Table 5 here 

--------------------------------------------------------------------------- 

 We assume that the diameter measurements are obtained at 0.25 second intervals. The tool 

wear compensation of calculated using the diameter measurements and by minimizing the loss 

function in Eq. (19). Due to the uncertainty in the model parameters, clearance angle, tool wear 

compensation, and sensor measurements, the loss and the constraint functions become stochastic. 

The optimization formulation for the tool wear compensation is written as 

 
𝑀𝑖𝑛 𝐸 [∫ (𝛿𝑖 −

Δ𝑖

2
)

2

𝑑𝑡
𝑇𝑖

𝑇𝑖−1

] 
(19) 
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such that 

Pr(𝐷 > 𝐷𝑓,𝐿 ∩ 𝐷 < 𝐷𝑓,𝑈) ≥ 0.95 

 

where the objective function refers to the minimization of the expected value of the loss function, 

provided in Eq. (18), which relates to the discrepancy between the predicted and target diameter 

values, as shown in Eq. (17).  

 The measured diameter values (sensor data) are used to calibrate the tool wear model 

parameters (𝑘𝑤, 𝛼𝑤, 𝛽𝑤, 𝛾𝑤, and 𝜎𝑤), clearance angle (𝜃) and tool wear compensation (𝛿). 

Sensitivity analysis is used to reduce the number of parameters using the stratified sample-based 

algorithm (Li and Mahadevan, 2016).  The sensitivity indices of parameters are given in Table 6, 

from which 𝛼𝑤 and 𝛽𝑤 are considered for calibration and the other parameters (𝑘𝑤, 𝛾𝑤, 𝜎𝑤, 𝜃 and 

𝛿) are assumed deterministic at their mean values. However, it should be realized that the true and 

unknown values of these parameters (denoted using a superscript ‘𝑇’ in Table 7) may be different 

than the values at which they are fixed.  

--------------------------------------------------------------------------- 

Place Table 6 here 

--------------------------------------------------------------------------- 

--------------------------------------------------------------------------- 

Place Table 7 here 

--------------------------------------------------------------------------- 

--------------------------------------------------------------------------- 

Place Figure 8 here 

--------------------------------------------------------------------------- 

 The DBN model is shown in Figure 8, where superscript 𝑘 refers to the time step. Parameters 

𝛼𝑤 and 𝛽𝑤 are deterministic and do not vary with time. Therefore, 𝛼𝑤
𝑘 = 𝛼𝑤

𝑘+1 and 𝛽𝑤
𝑘 = 𝛽𝑤

𝑘+1. 
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𝑑𝑘, 𝑤𝑘, Δ𝑘 refer to the depth of cut, tool wear and drift at the 𝑘𝑡ℎ time step. 𝐷𝑘 and 𝐷𝑆
𝑘 are the 

predicted output diameter and its sensor measurement respectively. 𝑅1
𝑘 is the probability of the 

availability of required computing resources at 𝑘𝑡ℎ time step.  The SIR algorithm (Section 2.1) 

with 1000 samples was used for parameter estimation using the sensor data. The prior and posterior 

distributions of 𝛼𝑤 and 𝛽𝑤, along with their true values, for a sample part  are given in Figure 9.  

--------------------------------------------------------------------------- 

Place Figure 9 here 

--------------------------------------------------------------------------- 

 In Figure 10, we compare the diameter profiles in two scenarios: with and without the real-

time control. In the absence of real-time control, the tool wear compensation does the change as 

the part is being produced; however, in real-time control, the tool wear compensation changes at 

each time step with the diameter measurements.  

--------------------------------------------------------------------------- 

Place Figure 10 here 

--------------------------------------------------------------------------- 

--------------------------------------------------------------------------- 

Place Figure 11 here 

--------------------------------------------------------------------------- 

 Figure 11 shows the change in the tool wear compensation with each time step. The computed 

and the actual values of the tool wear compensation are shown in Figure 11. The difference 

between the two plots is due to the presence of uncertainty in implementing the tool wear 

compensation. The calculation of tool wear compensation requires real-time analysis using the 

computing resources. When the computing resources are unavailable, then the tool wear 

compensation implemented in the previous time step is continued in the current time step. This is 



29 
 

shown in the region marked by the red circle in Figure 11.  Figure 12 shows the availability of 

computing resources with time.  

 --------------------------------------------------------------------------- 

Place Figure 12 here 

--------------------------------------------------------------------------- 

 In Figure 12, ‘0’ and ‘1’ represent success and failure of an analysis, which can be parameter 

estimation or tool wear compensation estimation. Parameter estimation requires successful 

communication between the sensors and computing subsystem, and availability of computing 

resources. However, implementation of tool wear compensation requires successful 

communication between the computing and actuation systems in addition to successful calibration. 

In Figure 12, the implementation of tool wear compensation was unsuccessful at one instant, 

whereas calibration was successful at all time steps. The unsuccessful implementation of tool wear 

compensation can be attributed to the loss of communication between the computing and actuation 

systems. To quantify the effect of various uncertainty sources in the turning process, the computing 

subsystem, the actuation subsystem and the sensors, several parts are produced and variations in 

the diameter profiles can be obtained (Figure 13)†.   

--------------------------------------------------------------------------- 

Place Figure 13 here 

--------------------------------------------------------------------------- 

 In this paper, we have illustrated the proposed methods for a closed system; however, the 

proposed methods can be extended to open integration of manufacturing and computing systems. 

For an open integration and interoperability, the computing system requires a predictive model 

associated with the manufacturing process that is being monitored, and real-time process sensor 

 
† All the codes used in this example can be found at https://github.com/Saideep259/JIM20 
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data. With the availability of Predictive Model Markup Language (PMML) technical standard 

(Grossman et al., 1999) and MTConnect (Vijayaraghavan et al., 2008), there exists standardized 

approaches for the representation of predictive models (Nannapaneni et al., 2018; Park et al., 2017) 

and transmission of real-time sensor data from the production floor equipment to the computing 

systems (Lynn et al., 2018). The sensor data will be used to update the process parameters, and the 

predictive model will be used to calculate the optimal control action. Therefore, the proposed 

methodology can be implemented with either closed or open system. 

 

5. Conclusion 

 This paper proposed a two-level dynamic Bayesian network (DBN) framework for online 

monitoring and control of a cyber-physical manufacturing system (CPMS) under uncertainty. A 

CPMS was assumed to be composed of four interdependent subsystems – manufacturing process, 

computing and actuation systems, and sensors. In the two-level DBN, the higher level captures the 

dependence between the individual subsystems while the lower level DBN captures the 

interactions between various computing nodes in a computing subsystem, and its communication 

with sensors and the actuation subsystem. The uncertainty sources associated with the computing 

subsystem include the communication between several computing nodes, and with the sensors and 

the actuation system, and hardware resource availability. The uncertainty associated with the 

sensors include the sensor measurement uncertainty. The manufacturing process is associated with 

uncertainty in the process models, which can be physics-based or data-driven. The actuation 

system implements the control input, which can be different from the calculated control due to 

machine imperfections.  
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 When the model parameters used to predict the system quantity of interest (QoI) are unknown, 

they are estimated in real-time using the sensor data. As the number of unknown parameters 

increases, the computational complexity of the calibration process increases. In such cases, 

variance-based sensitivity analysis is used for dimension reduction. The proposed methods are 

demonstrated for a cyber-physical turning process, where online monitoring and control are 

performed in real time while a part is being produced. The output diameter measurement is used 

to estimate the tool wear and an appropriate tool wear compensation is provided to reduce the 

deviations of the output part from the desired values.  

 This paper demonstrated the proposed control framework for a single manufacturing process. 

Future work should consider application of the proposed methods to a network of CPMS and the 

Industrial Internet-of-Things (IIoT) systems. Moreover, advanced computing paradigms such as 

fog and edge computing need to be considered for efficient computing, along with machine-to-

machine interactions to minimize the product quality losses. Since human operators are involved 

on the production floor, their interactions with the CPMS, forming a Human-in-the-loop CPMS or 

H-CPMS, also need to be investigated. 
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Table 1. Conditional probabilities of data transfer between two lower-level time steps 

 Successful at time step 𝑛 + 1 Unsuccessful at time step 𝑛 + 1 

Successful at time step 𝑛 𝑅00 𝑅01 

Unsuccessful at time step 𝑛 𝑅10 𝑅11 
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Table 2. Variables in the two-level DBN model 

Parameter Description 

𝑃𝑡 , 𝑃𝑡+1 State variable at time 𝑡 = 𝑡, 𝑡 + 1 

𝑄𝑡, 𝑄𝑡+1 Observation variables at time 𝑡 = 𝑡, 𝑡 + 1 

𝑄𝑠
𝑡, 𝑄𝑠

𝑡+1 Sensor measurements of observation variables at time 𝑡 = 𝑡, 𝑡 = 𝑡 + 1 

𝐸𝐼𝑠
𝑡+1 Sensor measurements of environmental inputs at time 𝑡 = 𝑡 + 1 

𝑅𝐴𝑡+1 Resource availability at time 𝑡 = 𝑡 + 1 

𝑆𝑂𝑡+1 Computing system output at time 𝑡 = 𝑡 + 1 

𝐶𝐴𝑡+1 Control action at time 𝑡 = 𝑡 + 1 
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Table 3. Part specifications from the cyber-physical turning process 

Parameter Value 

Initial diameter (𝐷𝑜) 100 mm 

Final diameter (𝐷𝑓) 98 mm 

Length of part (𝐿) 100 mm 

Lower bound of target diameter (𝐷𝑓,𝐿) 97.98 mm 

Upper bound of target diameter (𝐷𝑓,𝑈) 98.02 mm 
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Table 4. Probability distributions of the parameters in the tool wear empirical model 

Parameter Value 

𝑘𝑤 𝑁(8.2961 × 10−5, 8.2961 × 10−7)  

𝛼𝑤 𝑁(2.747, 0.02747) 

𝛽𝑤 𝑁(1.473,0.01473) 

𝛾𝑤 𝑁(1.261, 0.01261) 

𝜎𝑤 𝑁(0.43, 0.0043) 
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Table 5. Conditional probabilities of data transfer in cyber-physical turning process 

 Successful at time step 𝑛 + 1 Unsuccessful at time step 𝑛 + 1 

Successful at time step 𝑛 0.95 0.05 

Unsuccessful at time step 𝑛 0.9 0.1 
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Table 6. Sensitivity indices of parameters in the tool wear empirical model 

Parameter Sensitivity index 

𝑘𝑤 0.0075 

𝛼𝑤 0.8585 

𝛽𝑤 0.1201 

𝛾𝑤 0.0045 

𝜎𝑤 0.0076 

𝜃 0.0072 

𝛿 0.0022 
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Table 7. Underlying true values of parameters in the tool wear empirical model 

Parameter True value 

𝑘𝑤
𝑇  8.2676 x 10-5 

𝛼𝑤
𝑇  2.7195 

𝛽𝑤
𝑇  1.4899 

𝛾𝑤
𝑇 1.2627 

𝜎𝑤
𝑇  0.4247 

𝜃𝑇 15.0427 

𝛿𝑇(initial) 0.0093 
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Figure 5 Request and reply messages in a 2-node synchronous interaction pattern 

Figure 6 DBN for a 2-node synchronous interaction pattern 

Figure 7 A two-level DBN of a conceptual cyber-physical manufacturing system 

Figure 8 DBN model for the cyber-physical turning process 

Figure 9 Prior and Posterior distributions of calibration parameters, 𝛼𝑤 and 𝛽𝑤 

Figure 10 Comparison of output diameter profiles with and without real-time control 

Figure 11 Comparison of the computed and the actual tool wear compensation 

Figure 12 Completion of tool wear compensation and calibration analyses due to 

availability of computational resources and successful communication 

between sensors, computational and actuation systems 

Figure 13 Diameter profiles of parts considering aleatory and epistemic uncertainty from 

cyber-physical turning analysis 
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Figure 1. Interactions between several subsystems in a cyber-physical manufacturing system  

 

  



48 
 

 

 

Figure 2. DBN between two time steps 
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Figure 3. One time step in the dynamic Bayesian network analysis of a CPMS 
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Figure 4. DBN for a 2-node asynchronous communication 
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Figure 5. Request and reply messages in a 2-node synchronous communication 
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Figure 6. DBN for a 2-node synchronous communication 
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Figure 7. A two-level DBN of a conceptual cyber-physical manufacturing system  
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Figure 8. DBN model for the cyber-physical turning process 
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(a) (b) 

Figure 9. Prior and Posterior distributions of calibration parameters, 𝛼𝑤 and 𝛽𝑤 
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Figure 10. Comparison of output diameter profiles with and without real-time control 

 



57 
 

 

Figure 11. Comparison of the computed and the actual tool wear compensation 
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Figure 12. Completion of tool wear compensation and calibration analyses due to availability of 

computational resources and successful communication between sensors, computational and 

actuation systems 
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Figure 13. Diameter profiles of parts considering aleatory and epistemic uncertainty from cyber-

physical turning analysis 

 

 


