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4 Collective dynamics in model biological
membranes measured by neutron spin echo
spectroscopy

Thermal fluctuations and mechanical properties in lipid bilayers

Abstract: Cell membranes are extraordinarily heterogeneous environments composed of
many thousands of chemically distinct lipids, sterols, and proteins. It is this very com-
plexity and diversity in membrane composition that allows for its many varied and
critical biological functions. These membranes are rather thin, only 3 to 5nm thick,
and present both structural and dynamic features on a wide variety of length and
timescales. Within the hierarchy of length and timescales, the membrane’s mechanical
properties control many of the key functions such as bilayer shape transformations,
protein binding, budding, and molecular transport which in turn are related to such
things as apoptosis, endocytosis, protein signaling, and drug delivery. In this chapter, we
will review how the elastic properties of membranes control the membranes’ dynamics
by presenting experimental results obtained by means of neutron spin echo spectro-
scopy. Toward the end of the chapter, we will consider another interesting property,
membrane viscosity, and discuss some future aspects and challenges.

Keywords: lipid, membrane, dynamics, neutron scattering, neutron spin echo, bend-
ing modulus, area compressibility modulus, membrane viscosity

4.1 Introduction

The biological functions of lipid membranes require that they be highly dynamic. The
hydrophobic tails rapidly flex and kink while the individual lipid molecules rotate,
protrude, and diffuse on picosecond to nanosecond timescales [1, 2]. Biomembranes
are also strikingly fluid with lipid diffusion coefficients on the order of 10~8 cm?/s,
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meaning a lipid molecule can diffuse across a typical cell length in less than 10 s [3
4]. The fast local dynamics of the molecules allow the cell to easily manipulate thé
lateral membrane organization necessary for protein—protein interactions and celj
signaling [5-7]. At the same time, the membrane must bend, bud, and fuse on much
larger length scales as cells take in nutrients, send chemical signals, and even grow
and divide [8, 9]. There is a large gap in length scale and timescale between the
molecular and macroscopic processes that is bridged by the collective membrane
dynamics shown in Figure 4.1. These mesoscale fluctuations involve tens to hun.

dreds of lipids on the length scale of nm to um and have their own role to play in the
membrane’s biological functions.
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Figure 4.1: The length (d) and timescales (f), and corresponding momentum (Q) and energy (E)

transfers, covering the hierarchy of membrane dynamics. The dynamic ranges of the spectroscopic
techniques available to measure the different dynamics are also shown, with neutron techniques as
gray squares, X-ray in red, light in green, and fluorescence and optical imaging techniques in blue.
Spectroscopic techniques such as dielectric spectroscopy, nuclear magnetic resonance (NMR), and

electron paramagnetic resonance (EPR) access a broad range of timescales without any specific
associated length scales.

Stochastic membrane fluctuations, such as collective bending and thickness fluctua-
tions, lead to small local changes in the membrane shape. These fluctuations were
first observed in red blood cell plasma membranes as early as 1890 [10], and more
than 125 years of research has revealed that the membrane shape changes are the
result of both active and equilibrium processes [11]. At high frequencies, the
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fluctuations are dominated by thermal excitations and are thought to play a role in
preventing cell-cell adhesion and facilitate the diffusion of membrane-embedded
proteins [12-17]. These same fluctuations affect membrane protein folding, channel
formation, and function within the membrane [18-23], and play a significant role in
cell adhesion [24-28], facilitating vesicle budding and trafficking {8, 29}, and influ-
encing cell spreading and motility [30-32]. Moreover, changes in membrane fluctua-
tions have been directly linked to cell function and disease. Studies of macrophages
show that the membranes are softer and have a greater fluctuation amplitude when
the cells are activated, which likely aides in phagocytosis as the cells engulf foreign
bodies [33, 34]. Changes in the fluctuation spectrum of red blood cell membranes also
are seen after malaria and parasite infections [35, 36], as well as in sickle cell diseases
[37-39], and studies suggest that cancer cells are softer than nonmalignant cells,
which may contribute to the blebbing and migration of cancerous cells {40-42]. As
such, measuring and quantifying the membrane fluctuations have important impli-
cations for understanding both biomembranes and cell functions.

This chapter focuses on measuring the equilibrium undulations in model lipid
membranes, namely the mesoscale collective bending and thickness fluctuations,
and how the measurements can be used to quantify the membrane elastic and
viscous properties. Both of these dynamic processes are a direct consequence of the
membrane being soft. As illustrated in Figure 4.1, the bending fluctuations are
undulations normal to the membrane plane at a constant membrane thickness
(often referred to as height fluctuations) [12, 43-45], while thickness fluctuations
are undulations of the two membrane leaflets in opposite directions (sometimes
referred to as peristaltic or breathing modes) [46-50]. The fluctuation length scales
are dictated by the membrane elastic properties, or how resistant the membrane is to
bending or compressing in solvent [51-53], the same properties that determine the
energy required for the large-scale membrane deformations that occur in cell proc-
esses with macroscopic membrane remodeling. Meanwhile, the thickness fluctuation
timescale will be determined by the membrane compressibility and how long it takes
the lipids to flow as the membrane relaxes — or the membrane viscosity [53] — the
same viscosity that dictates the timescales of molecular lipid and protein diffusion in
the membrane that we talked about at the beginning of this chapter [54-57]. In other
words, the collective fluctuations are governed by the same properties that influence
the microscopic and macroscopic membrane functions, and measuring these dynam-
ics gives us a way to quantify both the elastic and viscous properties that are essential
to biological membrane functions.

While the mesoscale dynamics are an important bridge between the microscopic
and macroscopic scales, accessing the length and timescales necessary to study the
collective fluctuations can be experimentally challenging. Biological membranes are
on the order of 5 nm thick, meaning we need to be able to resolve bending fluctuations
on sub-nanometer scales. Similarly, theory and experiment suggest that thickness
fluctuation amplitudes are on the order of 20% of the membrane thickness {47, 52,
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58, 59] - or ~ 1 nm - and estimates from the membrane viscosity tell us that these
fluctuations should relax on nanosecond timescales [53]. These dynamics are tog
slow for traditional spectroscopic techniques such as NMR [2, 60-62], Raman [63-65],
infrared [64, 66], dielectric [67], and EPR [68-70] that are sensitive to the motions of
fatty acyl tails and the individual lipid molecules. On the other hand, the dynamics
are too small and too fast for most light scattering and microscopy methods that are
used to study large-scale dynamics and shape changes [34, 71-74]. As illustrated in
Figure 4.1, neutron spectroscopy techniques cover a range of length scales and
timescales that are hard to access with other characterization techniques and are
therefore uniquely suited for characterizing the collective membrane fluctuations,
This chapter will focus on neutron spin echo (NSE) spectroscopy and how this
technique can be used to measure the collective bending and thickness fluctuations
to determine the membrane elastic and viscous properties.

The remainder of this chapter is structured as follows: Section 4.2 presents the
basics of neutron scattering and how NSE works. Section 4.3 covers the theoretical
background necessary to correlate membrane dynamics with experimental NSE data.
In Section 4.4, example NSE measurements of collective bending and thickness
fluctuations are presented. A summary and current and future challenges close out
the chapter in Section 4.5.

4.2 The NSE Technique

Neutrons are noncharged particles (neutron mass my, =1.67 x10-% kg) [75] that have
both particle and wavelike properties. A free neutron has momentum Dn=hq, where G is
the wavevector of the associated wave function and h = h/2n with h as Planck’s
constant. g describes the propagation direction and speed of the wave with a magni-
tude |g| = g=my,vy,/h=21/A, where v, is the velocity of the neutron and A is its wave-
length. Typical neutron wavelengths range from 0.1 to 2 nm, which allows neutron
scattering techniques to provide detailed structural information on the nanometer
scale. Several neutron scattering methods covered in other chapters illustrate the
capability of neutron scattering to provide important information about the lipid
bilayer thickness, composition, and asymmetry as well as protein binding and
orientation in the membrane.

Neutron scattering also is an important tool for understanding nanoscale dynamics.
P
2mp

The neutron energy is given by E, = and is on the order of the thermal energy,

ksT ~ 10 meV (1 meV = 1.6 x 10~ 2] = 2.42 x 10" Hz). Neutron backscattering and time
of flight instruments are capable of resolving 103 meV changes in neutron energy,
providing dynamic information on picosecond to nanosecond timescales {76, 77].
These techniques mostly measure the incoherent or “self” dynamics - the correlations
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i jti iven atom at different times — and are very useful
betv;e(::nt:;irﬁlgatt:ee giof:::i):: Zi ?15(11‘1’:21tlion water, lipids, and other small molecules
for e . e e 8"'84 .

g m hp;gliigl‘:a;?;n[;rane ]dynamics on the tens or hundreds of nano-

Meas}mngcales requires an instrument capable of measuring even smaller
o tfmeseutron energy, also referred to as having a higher energy resolutio'n.
changef N elaxation time on the order of 100 ns requires resolving a change in
e arr of ~ 10 neV (10 ~8 eV!), which is currently only achievable using NSE,
nquf) I111entee§§::rgy resolution neutron spectroscopy technique {85]. NSE is capable of
- 'eS these really small energy changes because it operates using fundamep-
measggzegrent principles from other spectrometers as we discuss in more detail' in
tallStli n 4.2.3. Another important difference is that NSE is most suited to measun‘ng
. Oher;er.lt dynamics — dynamics that originate from correlations between re;latlve
t;:)esict(i)ons of different atoms at different times - or the exact collective dynamics we

are interested in measuring in lipid membranes.

4.2.1 Basics of neutron scattering

A basic scheme of a scattering experiment is sPown in.F.ig.ure 4.2, _C.o.nmder ta
neutron beam characterized by its wavevector g. If the 1n%t1al wave §; mterati S
with a nucleus and scatters, then the final wave will have a different wavevector g.
Here, we can define the momentum transfer as

hQ=h(gi- ) @1

where Q=4 - gy is the scattering vector, often also referred to as the momer.ltum
transfer vector, while the corresponding energy transfer, w, is defined as the differ-
ence between the initial, E;, and final, Ef, waves

Q=4q-3 . Q
f
M=EI-Ef Ef

Figure 4.2: Schematic of the geometry of a scattering exp.eriment..The initial .neutron t\:{av: |:‘ dis
characterized by its wavevector §; and energy ;. The initial wa\./e mtera}cts with the o _!ec Z
scattered into scattering angle 6. The final neutron is characterized by its wavevec.tor qf—an i_nergy
E;. The scattering vector Q is expressed as Q=4;- Gz, and the energy exchanged is hw =E; - E;.
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h2
hw=FE; - Ef = 2—mn(q,?—qf) (4.2)

Equations (4.1) and (4.2) express the momentum and energy conservation of the
scattering process, respectively. Here, we consider the magnitude of Q by defining the
angle between §; and gy as the scattering angle, 6, and applying g; ~ g; (hw =~ O i.e,,

small energy transfer) as
= . (0N 4m . (8
3= 0=2sin (5) = (5) “3)

In the case of a perfectly ordered system, Bragg’s law states that constructive
interference will occur when 2dsin () = nA, where d is the spacing between scatter-
ing planes and n is an integer. For such systems, Q is simply given as Q=2n/d,
demonstrating the inverse relationship between the length scales in the sample and
the Q at which those length scales significantly impact the scattering. In other words,
large length scales are associated with small Q values and vice versa. The primary
aim of neutron scattering is to determine the probability of neutrons being scattered
in Q with energy transfer w, known as the dynamic structure factor S(Q, w). The

Fourier transform of S(é, w) with respect to w is called the intermediate scattering
function (ISF), I(Q, t), which can be written as

(3, w) =FT{I(6, t)} (4.4)

1G,6)= <exp{ -1Q - [f()-7(0)] }> (4.5)

where (- - -) indicates an ensemble average over all pairs of atoms, ¢ is the time, and 7
and 7 are position vectors for the atoms, respectively.
In a static elastic scattering experiment such as small-angle neutron scattering

(SANS), we ignore the energy exchange between the neutrons and our samples and
integrate the scattering over all neutron energies,

S(@) = JS(Q w)dw (4.6)

which corresponds to the Fourier transform of the instantaneous spatial atomic
correlations in the system, that is, the structure of our sample. For the rest of the
chapter, we only consider isotropic scattering cases for simplicity and treat the vector

Q as a scalar Q. Measuring the membrane structure requires counting the number of
neutrons scattered at angle 8 or corresponding Q.
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4.2.2 Inelastic/ quasi-elastic scattering techniques

i factor, S(Q, w), requires keeping track of the energy
e e dy;ar:n:}i:t;t(:;f;s and tIEe saanle (w) as these are scattered at a
i be?gor corresponding Q). This type of measurement is called inelastic or
deﬁngd angle eutron scattering. Information on the dynamic length scales is given
quasrela'Stlc'nfonnation on the energy scales is given by w. Most spectromet'ers
- “{hﬂehmenergy exchanged by analyzing the initial and final neutron energies.
e t 3 rder to achieve higher energy resolution, narrow AA/A (or Avn/ vp) of 'f_he
'.I‘h.e'r g lttrlc; beam is required. The need for a narrow wavelength distributlf)n
mltla} niu l'cr’nits the number of useful neutrons, and a scattering experiment with
drastl.cill ymlargy resolution needed to measure relaxation processes on the or.der of
t}(;E(!) }r‘llsgwcfuld be impossible because of poor counting statistics. F'ere:nc' M?zelf who
? nted the NSE principle in 1972 [85], illustrates the seventY of this limitation in Fhe
e book on NSE [86]. According to his estimates, achieving an energy resolution
i textV0 n an ideal hypothetical time of flight instrument would not count more
- nr(:e xfeutron a day in the detector, which means it would take literally yt?ars to
tgt:nazy useful information on the sample dyna::nics. As e:xp%ained be.low, hlsdptrlc;
posed NSE technique broke through this limitation and mgmfican;ly improve!
energy resolution by eliminating the requirement for a narrow AA/A

4.2.3 Characteristics of the NSE technique

Currently, the best NSE instrument in the world (IN15' in Grenoble, Frag?e) '};as; .21111
energy resolution of a few neV (or a few ps) while using a wavelength 15;1:1 u 1th ’
AA/A on the order of 10% [87], ensuring sufficiefnt neutron f.lux to pfer orm y
scattering experiments. There are a handful of NSE instruments in operation arourf
the world [86-95], with more under construction [96]. There are two spectrometers su];
North America: the SNS-NSE at Oak Ridge National Laboratory [95] and the NGA-I:Irh
(formerly NG5-NSE) at the National Institute of Standards a}nd Technology [91]. The
NGA-NSE is a reactor-based instrument while the SNS-NSE is at a spal.latlon neutron
source. The instrument design and operation for reactor versus spallation sour?es are
slightly different due to the differences in the neutron source; however, both mstru:
ments operate on the same basic principles outlined below: We note that the quan
tum mechanical description and details of NSE instrumentation are beyond the scope
of this Chapter, and we instead refer the interested reader toa tex.tbook on-NSE [92] as
well as publications on specific spectrometers {97, 98] for more information. '
NSE measures dynamics by taking advantage of the fact that neutrons have a sp.ml'.l
Although a neutron has no net charge, it has a spin degree of freedom. of 1/2, whic
gives the neutron a magnetic moment. The NSE technique uses- p.o'lanzed neutrons,
meaning only one state of the neutron spin is selected from the initial neutron beam.
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That polarized beam then passes through a variety of magnetic fields as it traverses
the instrument, through the sample and onto the detector. The trick to NSE’s high
energy resolution is to make use of the Larmor precession of the neutron spin in a
magnetic field to provide each neutron with an “internal” clock with which to track
any change in neutron velocity (or equivalently energy, E; =myvi/2) [85, 86, 92
When the neutron spin direction is parallel to a magnetic field, the polarization of the.
spin state is maintained. On the other hand, when the neutron spin is perpendicular
to the magnetic field, the spin starts to rotate around the magnetic field (called
Larmor precession), shown schematically in Figure 4.3b. The neutron spins will
precess with a frequency, w;, = - y, B in which y, is the Larmor constant for a neutron
and B is the average field strength, and the precession angle is proportional to the
time the neutron spends in the magnetic field: ¢, = wit=wil/v o< BA where [ is the
length of the field. Larmor precession is the same process that is key to NMR (for
nuclear spin of various kinds of nuclei) and EPR (for electron spin) spectroscopic
techniques that are also used to measure membrane dynamics [61, 70].

(a) NVS P 1-1/2 1-PC 2-PC 2-nf2A D

—m=—1[] ]| [IE[]
t

—

0o e
S SUNBSIING &

(3] B
v N

1 Sn

I

»

(=]
4(-9.

n 2n

Figure 4.3: (a) Aschematic illustration of a reactor-based NSE instrument, which consists of a neutron
velocity selector (NVS), a neutron polarizer (P), the first and second /2 flippers (1-n/2 and 2-11/2)
precession fields (1-PC and 2-P() before and after the sample (S), a r flipper, a neutron spin analyze'r
(A), and a_.neutron detector (D). Also the instrumental magnetic field direction & and neutron spin
direction S, for elastic and quasi-elastic scattering cases are shown. (b) A neutron spin 5, is subject
to the Larmor precession irla magnetic field 8. (c) The spin analyzer allows neutrons to pass through
with cosine probability of 5, along B, namely /, = (1+ cos ¢)/2.
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In NSE, information about the initial velocity is encoded within the neutron itself
through Larmor precession, and the initial velocity can be compared with the final
velocity for the same neutron. Figure 4.3a shows a layout of a NSE instrument. The
pasic idea is the following: The incident neutron wavelength and wavelength dis-
tribution are defined using a neutron velocity selector (NVS). The beam is then
polarized by passing the neutrons through a polarizer (P) to select one state of
neutron spins. The polarized neutrons are then flipped perpendicular to the magnetic
field by a so called 71/2-flipper (1-1/ 2). The precession frequency is controlled by a
magnetic field in the main precession coil along the flight path from the nr/ 2-flipper to
the sample (1-PC). After the sample, a n-flipper reverses the precession angle and the
neutrons pass through a second precession field (2-PC). A second 7/2-flipper (2-71/2)
stops the precession and the beam passes through a spin analyzer (A) and hits the
detector (D). The spin analyzer only allows the cosine probability of the neutron spin
direction parallel to the magnetic field to pass through to the detector. Figure 4.3c
shows the neutron intensity I, transmitted through the analyzer with the angle
petween the magnetic field and the neutron spin defined as ¢, the net change in
precession angle after passing through the two precession fields. In this case, I4 can
be written as I4 = (1+ cos ¢)/2. If the sample scatters elastically, that is, hw =0, then
there is no net change in neutron spin after passing through both precession fields
and the initial polarization is recovered, therefore ¢=0and I, =1 (Figure 4.3a). The
precession angles in the primary (1-PC) and secondary (2-PC) paths are only different
when the symmetry is distorted because of a change in the neutron velocity after
interacting with the sample, that is, the neutrons scatter quasi-elastically, and both
¢ =0 and hw # 0. In this case, the final spin polarization is rotated by an angle ¢ from
the initial polarization leading to a decrease in the measured intensity, I4, at the
detector. Using this set-up unique to NSE, it is possible to make extremely accurate
measurements of the energy change during the scattering process, and therefore to
design a spectrometer with high resolution.

The reason NSE can use a relatively broad wavelength distribution and still
provide a high energy resolution is because the energy resolution of the neutrons
(determined by the distribution of velocity v, or wavelength A) is decoupled from the
resolution of the energy transfer with the sample (determined by measuring the
change in each neutron’s polarization). This characteristic allows NSE to be the
highest energy resolution technique among neutron spectroscopies with good count-
ing statistics within a realistic experimental time. Furthermore, the measured neu-
tron intensity can be written as I oc [S(Q, w) cos(wt)dw because the spin analyzer
only allows the cosine probability of the neutron spin direction (I 4) to pass through to
the detector. This equation is a cosine Fourier transformation of S(Q, w), equivalent
to I(Q, t), meaning NSE automatically provides results in the time domain, while all
the other neutron spectrometers work in the energy domain (see egs. (4.4) and (4.5)).
Because NSE works in the time domain, it is best suited to measuring relaxation
processes (quasi-elastic scattering) rather than excitation processes (inelastic
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scattering). In NSE, we define the Fourier time as t=2my, ('—"hﬂ)Z/P], where ] is the
magnetic field (B) integral along the neutron trajectory, J = JBdl.

Figure 4.4 shows a schematic image of I(Q, t) measured in a scattering experi-
ment. Figure 4.4a shows the correlation function (scattering intensity I(Q, t)) with
respect to space (Q) and time (). NSE measures the normalized ISF I (Q.0)/1(q, 0),

which is used to describe the Q-dependent time correlation function as shown in
Figure 4.4b.
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Figure 4.4: A typical example of /(Q, t) in (a) three-dimensional representation as Q and ¢
dependence of In[/(Q, t)] and (b) representation of the normalized intermediate scattering function
1(Q, t)/1{Q, 0) against t. I(Q, t=0) in (a) corresponds to the Fourier transform of the instantaneous
spatial atomic correlations, that is, structure, and the time decaying /(Q, t) corresponds to how fast
the structural correlation is lost with t due to the motions at the corresponding length scale Q.

4.3 Membrane dynamics theory

Membranes in solutions have very large interfacial area. When 0.01 mol of surfactant
are dispersed in a liter of water (corresponding to a mole fraction of 10 mmol/L), the
total interfacial area of the self-assembled bilayers is on the order of 103 m?, or
roughly the size of a football pitch, in just 1L of water. (A typical head area per
molecule is ~ 0.7 nm? while the bilayer thickness is on the order of nm). Therefore,
interfacial energy plays a decisive role in determining the shape of the membranes.

The framework for understanding the curvature elasticity of lipid bilayers was
established in a seminal paper by Helfrich in 1973 [12]. Because the bilayer is thin
and governed by the interfacial energy, he assumed that the bilayer was infinitely

thin and wrote the bending energy as what has become known as the Helfrich
Hamiltonian
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F= jdA [g (Cr+ Ca- G +RC:Co) %)

and C;, are the two principal curvatures of a mcin‘lbrane, C; is the sponta-
urvature, x is the bilayer bending modulus, and k is the saddle-splay mod-
b ctively, and the integration is over the area A. The Gauss—Bonnet theorem
i lied t(; the second term of eq. (4.7) as | C,C,dA=4m. The saddlt?-splay
. ap‘pis sensitive to topological changes of the membrane. However, in NSE
modu} b Kt the membrane topology does not change and this term is almost
expenmel;uss’o if the lipid membrane is fluid and there are no long-range interactions
constaltlt-a Spe,cial surface within the bilayer can be defined such that k=0 (43, 45],
ar;is:l? f’urther supports that the second term in the Helfrich Hamiltonian can be
negl;ﬁfiizgrg;;l:n:;;;so contains a contribution from the elastic energy required to
stretch the membrane (which originate from the membrane tension) and is \./vrittenl asa
function of the relative area change AA /A. However, an arc:ea c-hange requires a ?rge
compression energy, particularly for short wavelengths, which 1.mphes that the sur :;1lcet
tension is zero for free unstressed membranes [44, 99]. Further, in order to assume t ad
the interfacial tension is finite, the area change in the membran‘e must be compensa;e
for by either adding or removing lipids from the bilayer, r'neamng there would m?e tof
be a reservoir of lipid molecules [100]. Technically, there is a very lf)v.v concentrauon. fh
free lipids present in the solution and the bilayer can exchange lipid mo!ecules wi
the solvent; however, the timescales for lipid exchange are ordefs _Of magnitude slower
than the timescales of the membrane fluctuations and the 1.1p1d exchange cannot
compensate for the area changes due to the membrane bendl.ng [12]. Early work by
Faucon et al. included a stretching contribution when analyzing the thermal undu-
lations of giant unilamellar vesicles (GUV, typical sizes on the order of.pm) that were
measured using an imaging technique [71]. From their analysis, the estimated surface
tension was on the order 10~° N/m. However, later work by Yeung ar.xd Evans sE1g-
gested that the dynamics measured by Faucon et al. could also be explam-ed by taklr'lg
an internal membrane friction into account [101], which will be explained later in
i 3.2, .
SeCt'lI(';i 4dgc‘escript:ion of the membrane interfacial energy according to tt.le Helfrich
Hamiltonian is an essential starting point to understanding membrane bending dynam-
ics, but the model neglects any change in membrane thickness or internal mer.nbrane
structure. As we have learned more about the structure and dynamics of lipid bxlay.ers,
the models for the membrane deformation energy have also evolved to take into
consideration many other contributions. As suggested above, Yeung and Evans and
several others have proposed that lipid membrane undulations are affected by an
internal membrane friction - a result of the membrane being composed of two mono-
layers as will be discussed more in Section 4.3.2 [53, 101-103]. In some membranes, th.e
lipid molecules also are tilted with respect to the membrane normal [104, 105]. This

where Ci
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molecular tilt is neglected in Helfrich’s original free energy expression [12], but more
recent studies have shown that the membrane internal structure does contribute to the
membrane energy through a molecular tilt modulus [106-112].

In the following subsections, we describe the theory for the membrane dynamics
as it applies to NSE measurements. The models for NSE data build in complexity with
each subsequent subsection as the theory evolves and more details of the membrane
structure are considered.

4.3.1 Single membrane fluctuation dynamics and intermediate
scattering function

Because this chapter is about studying lipid bilayer dynamics with NSE, we start with
a model for the I(Q,t) (which we directly measure with NSE, see Section 4.2.3)
based on the Helfrich bending Hamiltonian that was derived by Zilman and Granek
(ZG) [99, 113]. At short time, ¢, and length, , scales (¢ <1 us and I<L with L a long
length scale cutoff), most membranes can be treated as an assembly of independent
and nearly flat membrane sheets. The length scale L depends on the experimental
system studied and is defined as the plaquette linear size, which is considered as the
pore size in a sponge phase, the Helfrich-Servuss patch size (corresponding to the
intermembrane collision length) in a lamellar phase, or the vesicle radius.

4.3.1.1 Single membrane fluctuation dynamics - Zilman and Granek approach

When a nearly flat thin elastic sheet is thermally undulating at a height, h(7), from a
mean surface as illustrated in Figure 4.5, the Helfrich bending Hamiltonian is propor-
tional to the square of the curvature and takes the following form [99, 113]

-5 J Pr{vh@] = 555" g 4.8)
k

Here, 7 is a two-dimensional vector (x, y) on the planar surface and h(F) is the local
height of the surface (by definition (h(7)) = 0). As discussed earlier, the spontaneous
curvature of the bilayer is assumed to be zero. The second equality expresses
the Hamiltonian in terms of Fourier modes, where h; = d*rh(r)e*? is the two-
dimensional Fourier transform of h(F). We note here that different communities
have different notations. In this chapter, we are using k rather than g to denote the
Fourier component of the membrane fluctuations and use § and @ to denote the
wavevector and the scattering (or momentum transfer) vector, respectively, as
defined in the previous section on scattering. L is the membrane patch size, where
we consider the dynamics of a membrane plaquette. The membrane is suspended in
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Figure 4.5: A schematic representation of undulating thin sheet around a flat reference surface
(shown in light gray) in a plaquette size L x L. The coordination axes are shown in the left corner.
The undulations occur with height h(7) about a nearly flat referen_t':e surface in the x, y plane where
7=(x,y). Also defined are the membrane fluctuation wavevector k and the initiil and final neutron
wavevectors G; and gy. The scattering vector is defined as Q = Gi - Gr. The vector Q in the coordination
axes is represented to define the angles for the orientational average (see eq. (4.19)).

aqueous solvent with solvent viscosity, 7, and performs thermal undulations that are
coupled to the hydrodynamic flow of the solvent. Applying the equipartition theorem
to eq. (4.8) leads to the following expression for the equilibrium spectrum of undu-
lations [114]

ksTL?
(heh )= =~ (4.9)

The time-dependent correlation function of hg(t) thus follows an exponential decay
from its equilibrium value [114]
kBT.L2 - (k)t
(hg(Oh_(0)) = —7—e™® (4.10)
The relaxation frequency w(k) can be determined from a standard hydrodynamic
mode analysis [113-116]
xk3
== 4.11
W)= 7 (510
In order to calculate I{Q, t), it is important to first calculate the two-point correlation
function ((h(7,t) - h(¥, 0))2). The two-point correlation function can be determined
using either a Langevin equation for the undulating bilayers in viscous solvent [99, 113]
or the stochastic field approach [114]. Both approaches give the correlation function as

n/dgy )
(16,0 -hr 0= o | T (1-e) @12
a/L

where d, represents the size of a lipid molecule (molecular length). At t < nd3/x
(very short timescales), the calculation yields the simple diffusion of the monomers.
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For t > nL?/x (long times), the integral saturates to a constant and the correlation has
decayed. In the intermediate time range nd3/x < t < nL3/x, the lower and upper

limits of the integration are replaced by zero and infinity, and the integration
evaluates to [99, 113, 114]

2/3
((h(F, &) - h(7, 0))*) =~ 0.17 [\/kL?k—fIIt} (4.13)

The above equation indicates that the membrane plaquette dynamics exhibit an

anomalous t?/3 time dependence and that the mean square displacement (h(®?
follows x~1/3,

4.3.1.2 Intermediate scattering function

Now that we have a theoretical expression for the equilibrium height fluctuations - or
correlations between the membrane heights as a function of time — that we can
measure with NSE, we need to incorporate eq. (4.13) into I(Q, t) to be able to fit
experimental data. Considering a system containing a membrane plaquette, D, witha
bilayer size of L x L, the I(Q, t) of the system is given by [99]

1(6, £) = ﬂ‘; Z(eié-(ﬁp(t) -Rp(0)) >Ip(6, t) (4.14)
14

where R, is the center of mass position of the plaquette p, N, is the number of

molecules in a single plaquette, and V is the macroscopic system volume. The single
plaquette ISF is [99, 113]

Ip(a, t) - Nip <Z eia'(ﬁi(t) _RI(O))> (4'15)
ij

where R; is the position vector of the ith lipid molecule in the center of mass
coordinate frame and the sum runs over all molecules in a single plaquette.
The plaquette can also undergo simple diffusion, and in that case, the normal-

ized ISF decays by contributions from both the diffusion and the membrane undu-
lations as [117]

1Q,0) _ _pxe (@)

1Q0) (I,(3,0))q w1

where D is the center of mass diffusion constant of the patch, and the bracket
indicates the average over all scattering angles (orientational average). For vesicles
with =~ 50 nm radius, the diffusion constant from the Stokes-Einstein equation is on
the order of 10 2 m?/s. Therefore, for t « nL3/k, translational diffusion has a
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ligible effect (e'DQZ‘ ~ 1) and I(é, t) will be determined solely by individual
- lliane undulations. For the rest of this section, we will focus our attention on
" laquette undulations, neglecting contributions from translational diffusion.
tI—I[l(‘:w{:,ver, it is important to note that this simplification is not always possible.
pepending on the vesicle size and concentration in the sample as well as Q' and the
Fourier times accessed in a particular experiment, the translational diffusion con-
tribution to I (6, t) may need to bg taken into account. o

The internal position vector R;(t) is now expressed in terms of the longitudinal
two-dimensional vector 7and the transverse component h(7, t), and therefore, we can
rewrite eq. (4.15) using a double integral as follows [99, 113]

= 1 7 i00-(F=7 i A "',
L, t)= mjdzrjdzr <er” F r)elo_,_[h(r t) - h(F o)]> (4.17)

where the scattering vector Q is decomposed into two component vectors: a longi-
tudinal in-plane component, 6|| , and a perpendicular component Q, . TEe membrane
undulations are implicitly assumed to be small. Since h(7,t) and 7 are weakly
correlated, we assume that their averages can be decoupled. In the present treatment,
the white noise appearing in the linear Langevin equation follows Gaussian statistics
[99, 113, 114], which supports that we can assume that the statistics of h(7,t) are also
Gaussian [118]. This assumption relates the height fluctuations with the two-point
correlation function, eq. (4.13), as follows [99, 117]

Qz - - 2
(el 0]} - o2 { (10 -1, 0))?) (4.18)

Note this equation is for a defined orientation while most lipid membrane samples
are randomly orientated in solution. In order to apply the equation to isotropic
structures, such as sponge, nonoriented lamellar, and vesicle structures, one needs
to take the orientational average over all values of the angle between Q and the
membrane normal, as [117]

2n n

10,0 = (3, )4 = 4‘17: j de Jsin adal,(@, ¢) 4.19)
o 0

The angles a and ¢ are defined in Figure 4.5. This average is assumed to be dominated

by the region at ¢ ~ 0 (Q; ~ 0 and Q, ~ Q) [113, 117]. At the limit of x > kgT, the

solution to the integral is approximated as a pure stretched exponential decay

{99, 113, 117, 119}

QY P ek (4.20)
1(Q,0)

where the decay rate 'z is
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ksTkgT
[26=0.025,/2-28_ 3 .
2 Xz 1 (4.21)

We now have a series of equations that relates the membrane bending modulus to the
collective height fluctuations that are experimentally measured with I (@, 0/1(Q, 0) -
meaning we can quantify a membrane elastic property from our NSE measurement,
In the original work, eq. (4.21) contained the intrinsic bending modulus, x. Here, we
replace x with xz; because, as we will see in Section 4.3.2, eq. (4.21) will only describe
the intrinsic bending modulus in certain cases. Nevertheless, eq. (4.21) establishes
that the measured decay rate is inversely related to the bending modulus and the
expression gives the trends that you may intuitively expect — a stiff membrane with a
large x will have a lower decay rate and the measured correlations in I(Q, t) will decay
slower than a softer membrane with a lower «.

It is noted here that both the transverse and longitudinal contributions to the
scattering have been calculated by Zilman and Granek [99]. These calculations
support that the longitudinal contribution is weak and the above description for
only the transverse component is a good approximation for isotropically distributed
bilayers as long as x >> kgT. For works that consider the longitudinal, in-plane
contribution to the dynamics in aligned lipid bilayers, we refer the reader to works
by Rheinstéddter and colleagues [81, 120].

4.3.2 Internal membrane dissipation - two coupled monolayers

We just saw how the Helfrich model of the membrane as a thin, structureless sheet
can be applied to NSE data analysis. However, we know that the lipid membrane is
not structureless, but is in fact composed of two lipid monolayers. If there were no
interactions between the monolayers, then they would be free to slide past each
other. However, for the bilayer to be stable, the monolayers need to interact with each
other through van der Waals interactions between the lipid tails. Yeung and Evans
suggest that this interaction could lead to “hidden” degrees of freedom in the bilayer
bending dynamics due to an internal viscous contribution [101].

A similar idea was also proposed by Seifert and Langer (SL), where by incorpo-
rating the effects of potential density variations in each leaflet due to the bending
deformations, they suggested that a viscous mode contributed to the membrane
fluctuations [102, 103]. For long wavelengths, as represented schematically in
Figure 4.6a, bending fluctuations do not significantly perturb the lipid monolayer
densities and the standard hydrodynamic theory holds. On the other hand, short
fluctuation wavelengths, as depicted in Figure 4.6b, create defects due to the fact that
the molecular redistribution required by the perturbation cannot happen quickly
enough. As a result, the short wavelength fluctuations are governed by an effective
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4.6: Schematic representation of a slightly bent membrane formed by multiple rectanglef; f-or
g ;Na.welength undulation and (b) short wavelength undulation relative to the size of the lipid

Figure

» :Z:ules The bending imposes a radius of curvature that spreads the outer part of the rectangles
mo .

¢ while compressing the inner portion. This requires the rectangular elements to distort to try to fill
k. Woids and release the compression. For short time short wavelength modes the rectangles cannot
e pe change fast enough, leading to an increase in the bending modulus of the

accommodate the sha
membrane [102].

pending rigidity that is higher than the intrinsic bending modulu? that con.trols the
long wavelength fluctuations (i.e., the short wavelength ﬂuctuatlons.requlre more
energy than the long wavelength fluctuations). In order .to n.lathematlcally express
these physical effects, Seifert and Langer included a contribution from density modes
in each monolayer to the free energy as [102, 103]

F= JdA [g (H)? + I-gi {(p;, +2d.H)+ (o], - za,.H)Z}] 4.22)

where the mean curvature H has the relation 2H = C; + C;, K4 denotes the mo.nolayer
area compressibility modulus, p7 is the scaled deviation of the proiec.ted density from
its equilibrium value for a flat membrane, and dp, is defined as the distance between
the mid-plane of the bilayer and the neutral surface of a monolayer. The DEI:ltIal
surface in eq. (4.22) is a special dividing surface where the monolayer neither
stretches nor compresses as it is bent [45]. This mathematical definition greatly
simplifies the expressions for the bilayer free energy; however, it cannot be n.leasul:efi
experimentally making it difficult to assign a numerical value for d, as we will revisit

later in Section 4.4. .
The relaxation frequencies for this free energy model are given as follows (102, 103]

%’é, k<

k)~ { 2ER, ki <k<k “.23)
K
ﬁ%, k2 <k
K r<iy
wky={ ® (4.24)

%k{ <k

where k =x+2d2K, is a renormalized bending rigidity including the effect of the
elastic stretching and compression, b denotes a friction coefficient for a phenomeno-
logical internal dissipation, and 7, is the monolayer surface viscosity. X now
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accounts for the extra energy required to bend the membrane at short wavelengths, (he(Oh_¢(0)) = keT (Al(k)e—m{k}t +A2(k)e'w2[k]t) (4.25)
The crossover wavevectors k; = 2nK, /bk and k, = v/2b/n,, separate the range of the S X
f:har.actenstlc dynamics into three regimes, shown in the plot of dispersion relationg where A; (K) + A,(k)=1and
in Figure 4.7. 3
Al(k) _ wz(k) -xk /471 (426)
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Figure 4.7: Comparison of the dispersion relations from the theories explained in this Section 4.3.
The result for Helfrich is the solution of a standard hydrodynamic mode analysis (eq. (4.11)) shown
as w(k), and the modification of Watson and Brown (WB) gives Wn (k). The theory by Seifert and
Langer (SL) has two eigenvalues, wy and w, (eqgs. (4.23) and (4.24)). The model by Bingham, Smye,
and Olmsted (BSO) gives three independent eigenvalues, w,, wy and ws which are expressed in egs.
(4.34) to (4.36). ws(k) Is not shown at high k values where the Stokes approximation breaks down,
k 2 k; (k,=2n/1,) [53]. The arrows at the bottom of the graph show the relevant length scales for
the different theories. The parameters used in the calculation are given in the main text (see
Section 4.3.4).

For long wavelength undulations (small k), w; (k) corresponds to the usual hydro-
dynamically damped bending mode and thus overlaps with the w(k) predicted by the
Helfrich theory. w;(k) is the damping rate of the slipping mode (density difference
fluctuations between the monolayers that is damped by the inter-monolayer friction).
For k; < k (short wavelength undulations), w,(k) becomes the damping rate of the
bending mode which is affected by the density mode because the lipid densities
cannot respond quickly enough to changes in the membrane shape. Thus, an effec-
tively larger bending rigidity ¥ dominates the fluctuations. In this regime, the rate
wi(k) is determined by the slipping mode. At the second crossover k,, the main
dissipative mechanism changes from inter-monolayer friction (k < ky; slipping) to
monolayer surface viscosity (k; < k; membrane hydrodynamics).

The dynamic undulation correlation function can be expressed as the sum of two
decaying components as [101, 121-123]

w (k) - wn (k)

A molecular dynamics simulation of a coarse-grained bilayer rrfodel ha.s shown fo;‘)ld
agreement with this theory [123], and] NSE data have provided evidence of the
inDi in lipid bilayers {124, 125].

Shpl');}r:g %otfe?;lféigg:zn Stgction 4.3.1.2 {99, 113] does not include these internal
dissipaiion mechanisms, and as suggested earlier,.eq. (4.21) w111 work for fnea(s;;fg-
ments of long wavelength fluctuations measured with dyI}amlc light scattennfg. ; )
at small scattering vector Q) that are not affected by tpe internal membrane n}f ion
[126]. NSE measures the short wavelength fluctuations (l.arge Q), where t eor;r
predicts that the inter-monolayer friction affects the dynamics. Early .NSE meas;re

ments of lipid membrane bending fluctuations reported a much higher benc1 ing
modulus than measured with other techniques [127-130]. These works 1.15e 'an
effectively larger solvent viscosity (three to four times the actual solvent wscos;ilty)
as an additional dissipation mechanism to get x values that w.ere com}?arable to other
experimental techniques [127-130]; however, from the theories described above, we
now know that the additional dissipation mechanism comes not from the solvent, but
from the inter-monolayer friction within the bilayer itself. . .

There are two ways to include the contribution from the density mode into NSE
data analyses; one proposed by Watson and Brown (WB) [117, 119] a.nd the othe‘r by
the group of Monroy [124, 125]. We note here that, as alluded to in the previous
section, the ZG theory has another limitation in that it does not properly account fc?r
the orientational averaging in the case when x > kpT does not hold. However, this
point is beyond the scope of this chapter and we encourage interested readers to refer
i [113; t1113e4V]A.IB theory, they proposed a modification of the ZG theory to include co?tri-
butions from the internal membrane friction into the NSE data analysis [117, 1.19]. S.mc.e
the NSE timescale is relatively short, the energy dissipation from the surface viscosity is
too slow to observe (w;(k) from the SL theory). Therefore, one can assume. that the
decay in the NSE time window is solely due to the bending modes and dominated by
w,(k) [117], and eq. (4.25) becomes

kT (K- _3
rtong0) ~ 2 (S ) 427

We see that this correlation function is almost the same as the one presented in
Section 4.3.1 for the ZG theory (egs. (4.10) and (4.12)) except that we need to replace x
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with k. Therefore, all the derivations described in Section 4.3.1 still hold, and the
decay follows the stretched exponential function derived by Zilman and Granek. The
only modification is to the expression for the relaxation rate, which now includes the
effective bending modulus and becomes

ksT ksT '
Iz6,,4=0.025 BT—;— @ (4.28)

again with i = x + 2d2K, (117, 119]. This modification by Watson and Brown [117, 119,
to include the internal membrane friction due to the inter-monolayer coupling, thus
describes short wavelength membrane dynamics more accurately. This model was
first applied to NSE data by Choi and colleagues [135], and gave a realistic number for
x, which supports the validity of the theory to explain short wavelength bending
fluctuations without needing to use an effective solvent viscosity.

On the other hand, Arriaga et al. observed a deviation from the predicted Q3
behavior of the relaxation rates measured by NSE (see e.g., eq. (4.28)). Instead, their
data suggested a diffusive type Q? behavior for palmitoyl-oleoyl-phosphocholine
(POPC) large unilamellar vesicles [124]. They ascribed the origin of this deviation to
hybrid curvature-compression modes, equivalent to the models of inter-monolayer
friction discussed in this section. They observed a crossover of I' from Q® to Q? at
Q =~ 0.4 nm~!, where at low Q the usual bending type @3 relation is seen, while at
high Q the dynamics scale with Q% Their observation yielded K, ~ 80 mN/m,
b~ 2x10° Pa's/m, and k ~ 15ksT. Interestingly, the inter-monolayer friction con-
stant b increased upon addition of cholesterol [124]. Mell and colleagues developed
an expression for the ISF that includes the hybrid mode as [125]

kg T

where R is the radius of the vesicles. They showed that both the bending and hybrid
modes contribute to the measured NSE data, while theory predicts that the hybrid
mode dominates at high Q. As I, (Q, t) goes as exp (°), the hybrid mode is a non-
decaying contribution seen at longer times. These examples suggest that NSE is
sensitive to the internal membrane dynamical contributions and a careful evaluation
of the theoretical underpinnings is essential to correctly interpret the data.

4.3.3 Dynamics of “thick” membranes

The original theory by Helfrich ignored any energetic contribution from the mem-
brane structure [12]. While Yeung and Evans [101, 136} and Seifert and Langer [102,
103] successfully included inter-monolayer coupling as an additional dissipation
mechanism in membranes, the models still neglect potential changes in the bilayer
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thickness, even though thickness fluctuations in lipid bilayers have been theoret-
jcally predicted since the 1980s [19, 20, 46-48]. Computer simulations also have
captured membrane thickness fluctuations [52, 108, 137-141]. Experimentally, the
first direct observation of thickness fluctuations in surfactant membranes was made
by Farago and colleagues in a stacked lamellar membrane [142, 143}, and later more
detailed experiments and analyses were performed by Nagao et al. (141, 144, 145]
Thickness fluctuations in single component lipid bilayers were measured by Woodka
and colleagues using NSE [58], and the method was then extended to a homoge-
neously mixed lipid membranes [59]. The experimental thickness fluctuation obser-
vations were also reproduced in recent computer simulations [141, 146]. Despite the
growing experimental and computational data on the thickness fluctuations, a
theoretical model that explicitly accounts for the dynamic contributions from the
membrane thickness in the dispersion relation has only recently been developed by
Bingham, Smye and Olmsted (BSO) [53].

The membrane geometry considered in the BSO model is schematically repre-
sented in Figure 4.8. The upper (+) and lower (-) monolayer surfaces are described
by the height functions h. (7) and h_(7) from a planar reference plane (dashed
straight line in Figure 4.8) as

h+(?)=d+ (?) +S(?) (430)
h_(7)=-d-(7)+s() (4.31)

Flgure 4.8: The membrane geometry considered in the Bingham, Smye and Olmsted model [53]. The
monolayer height h, () is the surface height from the reference surface (shown as a dashed line).
The monolayer thickness d, (F) is defined as the distance between the outer surface and the
undulating mid-surface, s(F).

where d, (7) is the monolayer thickness for each leaflet, and s(7) is the height of the
inter-monolayer surface from the reference plane. The free energy of each monolayer
has been calculated in the framework of the Helfrich Hamiltonian [53]

d: _dOz

1
F*=‘JdA["'"*<v2h*)2+ys,<vm>2+KA*( &
t

2
5 —do,vzs) ] (4.32)
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where k. is the monolayer bending modulus for each leaflet, Vs« iS the surface
tension which restricts variations in the monolayer/water interfacial area, and do, is
the unperturbed monolayer thickness, respectively. The total free energy was set as

F=F, +F_ +Faume (4.33)

where Fpgpe = -yzﬁ {V(h. +h_)}*is the contribution from a tension that restricts changes
in the total membrane area with the frame tension, Vg~ In this framework, Bingham et
al. found three types of relaxation frequencies in a “thick” membrane [53].

The first mode is equivalent to the ripple type dynamic (bending) mode of
Brochard and Lennon [116]. This mode appears in the model as a coupled bilayer
and internal surface mode. The internal surface undulates in phase with the bilayer
surface in order to preserve the thickness of each monolayer, and the relaxation is
driven by the membrane bending rigidity and tension and damped to the surround-
ing viscous medium. The relaxation frequency is written as

(ys+ 2y, + Kmk?)ke ~*do
2n

When we ignore the contribution from the tension and the correction term of e,
wy(k) is equivalent to the standard hydrodynamic model of a thin elastic sheet
(eq. (4.11)), which is plotted in Figure 4.7.

The second mode is a pure peristaltic dynamic mode describing undulations in
the bilayer where the thickness of the monolayers undulates in phase (thickness
fluctuations). The relaxation frequency is calculated as

_ kKa  KKa
T Nk+2n  n(lspk+2) (4.35)

wp(k) =

(4.34)

wy(k)

The thickness fluctuation mode is driven by the area compressibility, K,, and
damped by the solvent and membrane monolayer viscosity, n and 7, respectively.
The mode is split into two regimes based on the Saffman—Delbriick length Isp=n,,/n
[55]. The dissipation of the long wavelength modes, klsp < 1, is dominated by the
solvent viscosity, while the short wavelength modes, kisp > 1, dissipate through the
membrane viscosity. The relaxation frequency for the short wavelength modes can be
written as wy =~ Ky /n,,. This expression suggests that the peristaltic mode can be
seen as a local mode in the short wavelength limit, which is similar to the short
wavelength behavior of the slipping mode w, (k) in the case where it is damped by the
monolayer surface viscosity (see Figure 4.7) [102].

Finally, a dispersion relation for the movement of the internal membrane surface
(s(7) in Figure 4.8) gives the relaxation frequency

_ KAkz(kzd% ~1)
a)s(k) = n(zk"‘kzlSD +213D/l'2.) (436)
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:nternal surface mode also is driven by the area compressibility; however, it
T¥1e 'm through the inter-monolayer friction as well as through the solvent
dlssmatesbrane viscosities. The new length scale I, = 1/n,,/b represents the di.mfen-
a.nd menlllich the forces from the membrane viscosity and the inter-monolayer friction
]S::ll;‘z:’ This length scale was estimated to be /,~10 nm [53], which is much shorter
e i i i Bingham, Smye, and Olmsted have

While the dispersion relations developed by Bing , ; rave

t vet been incorporated into the expressions for I(Q, t), they neve-rthe e§s pro .
flo 4 t insights into the dynamics measured with NSE. As we will see in Section
unport;zese theories have begun to help link the phenomenologically mea.sured
;?éi}less fluctuation timescale back to the inherent membrane elastic and viscous

propetties.

4.3.4 Comparing the dynamics predicted by different membrane
models

In the past three subsections, the description of a biomembrane has ew{olved3f;<))1trl a
thin, structureless sheet (Section 4.3.1) to two couplt?d mcfnolayers (Section 4i3 . ) .o a
«thick” membrane that can undergo fluctuations in tl.ucknes§ as well as e-n u:g
undulations (Section 4.3.3). With each section, both the ﬂlust-ratlons and equations to
describe the membrane dynamics have become more co.mphcate.d as more ter‘ms are
needed to describe the added contributions. To summarize the dlffere.nt theones,tvi(;
compare the predicted dispersion relations in Figure 4.7. Tl_l;:ofollowmg paragn; e
were used to calculate the dispersion relations: x=8.5x10"" ], n= 8.7x10 a-_sg,
Nn=1x107%Pa:sm, b=1x 107 Pa-s/m, Ka = 12k /d3, k= 2'x,,,, di=2dy, di = ?.42x 10 ;
n:: and p=24, where d; and B are the hydrocarbon t?uckne.ss of @e bllayerdarf
intermonolayer coupling constant, respectively, which will be introduced in
zsiglznnfél:t.lll;mne fluctuations: The solid gray line plots w(k) versnfs the undulatlo.n
mode wavenumber predicted from the standard hydrodynamic mode ane.nlysm
based on the Helfrich bending Hamiltonian (eq. (4.11)). This model predicts a
single dispersion relation across the entire fluctuation s.pectrum. »
Two coupled monolayers: Incorporating the effects of mter-n.lonolayer frfctlon
introduces a second dissipation mechanism. The modification of the lemz%n
and Granek (ZG) theory by Watson and Brown (WB) considered the change in
the dispersion relation given by eq. (4.11) to incorpo.rate the.effects ?f u;tir-
monolayer friction by replacing x with x. The dispersion relatlori ;;redlcte y
WB is shown as the green dash-dotted line marked as wm(k)‘=xk /'4n.~w,,. (k)
relaxes faster than w(k) because the membrane is effectively stiffer with k>x.
WB applied the model developed by Seifert and Lang.er (SL) tci the sllrlort
wavelength fluctuations measured by NSE. The SL model gives two eigenvalues
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for the dynamic modes of coupled monolayers, which are shown in red-dashed
(w1) and dashed-solid (w,) lines. The main dissipation mechanism changes from
wi(k) at long wavelengths (k < ki) to w,(k) at short wavelengths (ki < k). At
short wavelengths, w,(k) corresponds to the bending modes that are affected by
the inter-monolayer friction and the fluctuations are governed by the effective

4.4 Dynamics measurements

Having covered the theory on membrane dynamics and how NSE works, we now turn
our attention to the design of an appropriate experimental system to which these
methods and theories can be applied. While there are many model systems for lipid

bending modulus k also used by WB, so w,(k) = wn(k). Meanwhile at long wave- pilayers, most NSE experiments use large unilamellar vesicles (LUVs). Multilamellar
lengths, wy(k) corresponds to the hydrodynamically damped bending modes vesicles (MLVs) have a strong correlation peak at Q ~ 1nm~! from the inter-layer
also predicted by Helfrich and w, (k) = w(k) at k < k. spacing [147, 148]. The width of the Bragg peak measured in an elastic scattering
Between the crossover wavenumbers, k; <k <kz, wy(k) is determined by the technique such as small angle X-ray or neutron scattering (SAXS or SANS) can be
slipping mode and then plateaus at high k >> k, where the mode dissipates used to determine the so-called Caillé parameter that is related to the membrane
through the surface viscosity and is independent of wavenumber. However, for bending rigidity [149, 150]. However, in a quasi-elastic scattering technique like NSE,
the chosen parameters, k; <k <k; range is quite narrow and the slipping mode Bragg peaks result in a phenomenon known as de Gennes narrowing, in which the
does not contribute significantly despite its predicted importance by SL. The measured dynamics markedly slow down at the peak position {151]. Indeed, while
minor contribution of the slipping mode is due to the choice of 7, as well as b Seto et al. were able to obtain an estimate of the bending modulus of multilameliar
values used to calculate the dispersion relations in Figure 4.7. The experiments vesicles using NSE, the data deviated from the predicted Q* scaling due to the close
by Arriaga and colleagues found a b value that is much larger than the typical proximity of the Bragg reflection [129]. It is therefore best to use unilamellar vesicles
value used here (b~10° Pa-s/m) [124], suggesting more thorough studies, to measure membrane fluctuations and determine the membrane’s mechanical prop-
combining experiment, simulation and theory, are needed to better under- erties. While MLVs are not ideal for NSE experiments, measurements can be made
stand inter-monolayer friction and how it affects the membrane dispersion using aligned multilayers [81, 120, 152]. Note that these experiments will probe the
relations. dynamics parallel to the membrane plane in eq. (4.17), which we explicitly do not
“Thick” bilayers: The dispersion relation predicted by the model for “thick” mem- cover in this chapter.
branes by Bingham, Smye, and Olmsted (BSO) are summarized by the blue- Giant unilamellar vesicles (GUVs) are widely used as model systems to determine
dashed (wy and w;) and dash-dotted (w,) lines. In the calculation, we neglected the membrane elastic properties by other methods, either through fluctuation anal-
the contributions from the membrane tension (ys=yf,=0) and plot only the ysis or micro-manipulation techniques [153, 154]. GUVs are microns in diameter,
contribution from the height fluctuation as wy(k). As such wy(k) completely making them ideal for studying by light microscopy methods, but it also means
overlaps with w(k) from the Helfrich description. The thickness fluctuations they are quite dilute in solution. If we assume a GUV diameter of roughly 10 um
(wy(k)) are the fastest mode at low k, but plateau to an almost constant value and the highest achievable packing fraction in solution to be 74% (assuming face-
above kgp = 211/lsp, the same behavior seen in the slipping mode of the SL model centered cubic, FCC, packing), the lipid concentration in solution would only be
w1 (k). The internal surface mode w;(k) also converges to the w, (k) in the high k 0.17% by volume or about 2 mg/mL lipid in solution. Unfortunately this concentra-
range. tion range is much too small for neutron scattering experiments (especially for
measuring dynamics) and we need to increase the amount of lipid in the sample to
Now that we have covered the theory needed to describe the membrane undulations, gain sufficient scattering intensities. Using LUVs with a diameter of =~ 100 nm, the
we will see in the next section how it is applied to actual NSE data. As discussed in lipid concentration can be as high as 17%, assuming an FCC packing of vesicle in
Section 4.2, NSE measures the spatial and time correlation function as I{(Q, f) on the solution (about 200 mg/mL lipid in the solution), which gives enough scattering
nanometer and nanosecond scales and is thus uniquely suited to probing the small intensities for our purposes. Therefore, most NSE experiments use LUVs with diam-
wavelength dynamics predicted to occur from 0.1nm~! to ~10 nm ™' in Q and from 1 eters ranging from 30 to 200 nm. These vesicles are usually obtained by the extrusion
pstosubysint (10 m™'<Q<10°® m~'and 10~ s <t<107¢ s). As we move into the method [153], where aqueous lipid solutions are pushed through a polycarbonate
next section, we remind the reader that NSE measures the scatterer’s Q, which filter yielding relatively monodisperse vesicles whose diameter are determined by the
corresponds to the scattering vector and not the dynamic mode number which we filter pore size.

call k here, though the experimentally measured length scales should be weighted in
the corresponding k ranges.
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4.4.1 Bending fluctuations

Now that we have an experimental system, we will cover actual NSE data,
Figure 4.9 shows a typical I1(Q, t)/I(Q, 0) measured using NSE. The solid lines in
Figure 4.9 are fits to a single membrane fluctuation model proposed by Zilman and
Granek: eq. (4.20) [99, 113]. The first application of ZG theory to NSE data appeared
in Takeda’s paper in which they studied dipalmitoyl-phosphocholine (DPPC) lipid
dispersed in D,0 with CaCl, [127]. While this lipid/salt mixture is multilamellar,
no strong correlation peak was seen in the NSE data and the relaxation rate
followed the @ scaling predicted by Zilman and Granek [127]. Subsequent NSE
studies on the same system were used to probe the bending dynamics in the

fluid and gel phases to estimate the steric interactions between the bilayers in the
unbound state [156].

b
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Figure 4.9: Normalized intermediate scattering function /(Q, t)//(Q, 0) measured by NSE for protiated
DMPC in D,0 at 7=35°C. Inset indicates the Q-dependence of the relaxation rate I' (o< Q3). Error
bars represent +1 standard deviation throughout the chapter.

Following the early studies of large unilamellar vesicles by Yi et al. [130], NSE has
been used to study a wide range of lipid systems including the effects of fatty acyl tail
structure [130, 157, 158], inclusion of small molecules such as cholesterol [159, 160],
peptides [135, 161], drugs [83, 162-164], and nanoparticles [165], as well as the
internal membrane fluctuations [58, 59, 166, 167]. Recently, NSE has also been used
to measure more complex systems such as membrane domains [168] and more bio-
logically relevant systems [169, 170].
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The inset in Figure 4.9 shows I following a @° dependenf:e as expef:ted fron} the
ssion for Iz, given in eq. (4.28) with a slope that is proportloflal to 'x. In
expr'e 4.3.2, the e’fnf:ective bending modulus is given by k = x + 2d2K,. Again, K, is the
o .a,rea compressibility modulus and can be calculated as Ka =12Kn/ a2,
monola}'e"is the monolayer bending modulus and d. is the monolayer hydrocarbon
w}}ere Ks': [171]. The monolayer bending modulus is half the bilayer bending modulus,
ﬂm.:-k:/ez whici'l means we can rewrite the expression for k in terms of the bilayef
K':o—perti,es as & = { 1+ 48(dn/2d.)? } x. The remaining unknown in the expression .for.x
ips dy/2d., the ratio of the neutral surface to the thickness of the hydrocarbon tails in
the ’ll)ilayer. Remember from Section 4.3.2, the neutral surface is defined as the surface
at which the monolayer bending and stretching energies are .decoupled and cannot
be measured experimentally [45]. Generally, d, is assumed to lie somewhere betwgen
half and the full monolayer thickness with corresponding values of d,/2d, ranging
from 0.25 to 0.6 [108, 135, 172-175]. The first NSE studies to use the Watson and
Brown’s equations to analyze NSE data used a value of d,/2d, ~ 0.6; Whl'Ch puts the
neutral surface within the headgroup region of the bilayer [58, 59, 135]. d, is general.ly
thought to be closer to the interface between the lipid headg}'oups arid Fall,
with d,/2d.=0.5 [176-183]. Putting this value into the expression for x gives
& =13k, which shows how much more energy is required to bend the membrane at
the NSE scales. .
Having an expression for k in terms of the intrinsic bending modulus, Iz, in

eq. (4.28) can now be rewritten as (184]

I‘ZGmod kB T ’_‘ﬂ

= 2 4.37)
g = 0:00694/ == (

Therefore, we can determine the bilayer bending modulus x from a plot of I'z,,,
versus Q measured in an NSE experiment. Note that changing the value of d,
only changes the numerical prefactor in eq. (4.37) and scales the value of x by a
constant.

Table 4.1 compares values of the bending modulus for DMPC bilayers at a
temperature of about 30 °C measured with different experimental techniques. A
similar comparison for POPC bilayers is presented in [73] and several other lipids in
[185). All values are on the order of 10 kgT, but can vary significantly depending on
the experimental technique. The NSE result is comparable to values determined from
fluctuation analysis by Méléard et al. [186] and some computer simulations [175, 185},
but differs by almost a factor of 3 with results obtained from other methods such as
micropipette aspiration. Nagle and coworkers discussed the discrepancy between x
values measured by different techniques in detail in their recent work [187]. One
important difference is that the different techniques measure the bending modulus
on different length and timescales, so it is possible that there are other contributions
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Table 4.1: Comparison of the bending modulus x of DMPC bilayers at 7 =2 30 °C
for various experimental and simulation techniques in literature.

Technique T (°0) K (kgT)
Neutron spin echo 30 35.6 £2.0 [184]
Fluctuation analysis 30 31.1£1.9 {186]
Micropipette aspiration 29 13.411.4 [153]

Diffuse x-ray scattering
with tilt 30 24.6+1[112)
without tilt 15.6 0.6 [112]
Computer Simulation 30 34.7 £1.2 [185]
29.3 [175]

to the intrinsic membrane rigidity that are not captured by current theories described
in Section 4.3.

As the bilayer bends, one leaflet must stretch while the other compresses. This
physical relationship is expressed mathematicaily in a model for thin elastic sheets as
Ky, =Bx/ (ZdC)2 in which K, is the bilayer area compressibility modulus [171]. The
constant 8 depends on the degree of coupling between the two leaflets: =12 when
the two monolayers are fully coupled and the bilayer behaves as a single slab, while
B =48 when the monolayers are completely uncoupled. Rawicz et al. proposed an
intermediate value for lipid bilayers of =24 based on a polymer brush model [188].
Their model assumes that K, is related to the bilayer surface pressure, II, through a
constant factor, Ky, = 6I1, and that the surface pressure is dominated by the entropic
contributions from the hydrocarbon tails which are modeled as idealized freely
jointed polymer chains (hence the name polymer-brush model) [188]. Any contribu-
tions from interactions between the hydrocarbon tails and/or lipid headgroups are
neglected, yet despite its simplicity, this model has been shown to hold true for a
number of different lipid systems [189]. Because of its success in describing fluid lipid
membranes, the polymer brush model is used regularly to relate a measured K4, to x
and vice versa.

Combining the x values measured with NSE and d, values that are measured with
an elastic scattering technique such as SANS, we can now use the polymer brush
model to calculate values for Ky, . Figure 4.10 shows the resulting values for three
phospholipids with different tail lengths and the same headgroup, dimyristoyl-,
dipalmitoyl-, and distearoyl-phosphocholine (DMPC, DPPC, and DSPC) [184]. The
values of K4, are independent of the lipid tail length as expected [188] and decrease
with increasing temperature.

Here, we should note that the value of 8 from the polymer brush model may
have some connection with the inter-monolayer friction constant b that appeared
in the SL and BSO models. However, b did not contribute significantly to the
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Chemical Society.

pending mode in these theories. Instead, b appeared in the. slx;;q;)slggan?ogz
(wy(k)) at small k. These small k values an? flot easy to accef,s u.sfmgc1 R
Jikely too fast to observe for DLS. Therefore, it is hard to determine if and ho penc?
are related. But, if we can independently measure x anc.l Ka,, then, vtv;le C;l:l o
calculate the value of B and improve our understanding of both the dispe:

relation and b.

4.4.2 Thickness fluctuations

We saw in the BSO model that, in addition to the bend.ing ﬂuctuations? we
measured in Section 4.4.1, membranes can also undergo thickness fluctuau‘ons.
To measure the thickness fluctuations with NSE, we take 'advanta\-ge of a umqt;e
feature of neutron scattering that the scattering povs./er of dl.fferent isotopes ca? 11e
vastly different. In particular, by judiciously replacing H with D, we can care;1 u y
control or even eliminate contrast, a technique known as contrast matc u.lg,
without significantly modifying the properties of the samgle. Thus bz exch;ndg:rig
H for D in the lipid tails, the scattering contrast of the tails can be “matche X (o]
the surrounding solvent, making the tails “invisible” to .the n.eutrons and t ;s
highlighting the scattering from the lipid headgroups. With this contr'flst clortl. i
tion, we now emphasize the dynamics from the headgroups and their relative
monlgzcsz;lling the discussion in the previous section, we note that egs. (4.21? anld
(4.28) indicate that the undulation fluctuations of a membrane follow a simple




160 — Elizabeth G. Kelley, Paul D. Butler, Michihiro Nagao

scaling law. Thus, plotting the natural logarithm of the normalized ISF,

In[I(Q,t)/1(Q, 0)] against (Q3t)2/ 3, as done in Figure 4.11, should collapse all the
23

data onto a single master curve whose slope is given by P=( 0.0069 51,3‘15%1

Figure 4.11 shows such a plot of NSE data for tail-deuterated DPPC vesicles in which
the hydrocarbon tails are contrast-matched to the D,0 solvent [58]. While most of the
data do follow the expected scaling, the data at Q ~ 1.0 nm ™! do not, suggesting that
there is another, faster relaxation process contributing at this Q.

In(l(Q,H/1Q,0)

15 0 Q=0.40nm™ D Q=059 nm™ % ]

| 4 Q=081nm™ ®Q=1.02nm™"
| ¥ Q=139 nm~ 4 Q=167 nm!

|
0 5 10 15 20 25
(@303 (nm~2ns?/3)

Figure 4.11: A single membrane undulation scaling plot of In[/(Q, £)//(Q, 0)] vs (Q3t)2‘J3 for tail
deuterated DPPC at T =50 °C suggested by eq. (4.28) [113]. All the data, except that for @=1.02 nm~?,
collapse onto a single line. Deviation of the data at Q=1.02 nm~! from the undulation fluctuation
scaling behavior supports the idea of an additional dynamic contribution at this specific Q.

As suggested by eq. (4.37), the enhanced dynamics can also be emphasized by
plotting the data as I'/Q? versus Q which, following the same scaling arguments
above for pure undulation dynamics, leads to a horizontal line whose intercept is
related to the bending modulus. The data for DMPC, DPPC, and DSPC bilayers
plotted in this fashion in Figure 4.12 all show a distinct peak [58]. The deviation
for all of the bilayers is very localized at Q around 1nm™! (length scales of ~ 3 nm)
which we assign to the membrane thickness fluctuations. The Q-value of the peak
corresponds to the minimum in the scattered intensity of the membrane form factor
measured in SANS, supporting the idea that the excess dynamics are occurring at
the length scale of the membrane thickness. The same signature of membrane
thickness fluctuations was also seen in NSE data for oil-swollen surfactant bilayers
[141, 144, 145, 190]. The peak shift to lower Q from DMPC to DPPC to DSPC in Figure
4.12 then reflects the increase in bilayer thickness with increasing tail length. Note
that these thickness fluctuations are only seen in the fluid phase of the membrane
[58]. The peak in the data disappears at low temperatures below T, (see Figure 4.12)
when the lipids are in the gel phase and the membrane is more rigid and less
dynamic.
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Figure 4.12: The relaxation rate measured by NSE is plotted in3 t'erms of r'/('23 against Q. If the
dynamics are solely undulation fluctuations, the value of I/Q is flat as it is o.bserved below th.e
transition temperature T for each lipid. On the othgr h.and, at T> Ty, a peak like en|:|ancement is
observed indicative of thickness fluctuations. The solid lines are the fit results accor.dmg to eq. (4.38).
d full symbols indicate the data collected on the NG5-NSE and IN15, respectively. The data are

en an ! : :
E with permission from [58]. Copyright 2012 The American Physical Society.

adapted

In order to further characterize the excess dynamics at the mem.b.rane thickness
length scale, we assume that they can be captured by a simple additive term to the
bending fluctuation decay rate given by eq. (4.37) and can be expressed by the

following equation [144]

T T T 1 (4.38)
@ @  @1+Q-Q)¢

in which the first term describes the underlying bending dynamic.s, quantified us¥ng
protiated lipid bilayers, and the second term empirically fits the thickness .ﬂuctuatlon
peak. The two important parameters extracted from the Lorentz furfctlon anf: the
relaxation time given by the decay constant Tzr = 1/Trr and th‘e fluctuation amphtfxde
Ad, =2d.(Qo¢) ', which is given by the half width at half maximum of the Lorentzian,
il 1.

] [1;2111’123 ?;ltgh(]e chapter, we noted that the characteristic length and time.scales
of the thickness fluctuations were related to the membrane’s felas.tic .and viscous
properties, suggesting eq. (4.38) can be rewritten in terms of the intrinsic membrane
properties. .

Statistical mechanics predicts a relationship between the bilayer area compres-
sibility modulus K4, and the fractional change in area 04 = AA/A as [52,192)
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ed analysis method now defines the peak shape in I'/Q? in terms of
uctural and elastic parameters and in the process reduced the number of
s from two (trrand § -1in eq. (4.38)) to one (1,, in eq. (4.41)). Based on
ed to K,,; however, experimentally the data also
= tal Q resolution. The Q resolution smearing can be
into account using the expressions developed for SANS instruments [199], and
- resolution function can be convoluted with eq. (4.41) to fit the NSE data. The fit
is plotted in Figure 4.13 for the temperature variation of '/ in the fluid phase

hich the instrumental Q resolution was expressed as a

» DMPC vesicles in W
- esian function with a full width at half maximum of = 13% [184]. Note that the
eeline at Q> Qo does not capture the experimental data, which suggests that addi-

1 intramembrane dynamics may be present that are not currently considered.
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(4.41)

II)l:otél;: gt}uag(;ni Ky, is calculated from x determined by NSE experiments with
ed lipid bilayers using the polymer brush m
: : odel, Ky, = 24x/(2d,)? and
ing that Ky, is the same for protiated i y e
and tail-deuterated lipids withi i
mental uncertainty. The area ipid is gi e, whered B
. per lipid is given by 4, =V, /(d.+d
represent the lipid volume and the head ickness, 1 "
: group thickness, respectivel
determined from density measure cletaler vonme
ment to find the specific molecular vol
. en ume (194] or
tcl.'ililcc;:rllz;tsesd frOl’tl)l equatlofls for the lipid volume available in literature [195]. '1[‘he iail
nicknes (()::ms A; g;atenndni;d f;lom an elastic small angle scattering experiment (such
» and the headgroup thickness, while not i
X yet well defined, is
ﬁizzl:gy assgmed to b.e on t}*le order of dy =1nm [196-198]. Qo can also be deter-
o om a SANS or diffraction measurement, Thus, all the parameters in eq. (4.41)
are known except for the membrane viscosity n p
m

Reformulating the expression for the bilayer thickness fluctuations in terms of the
embrane properties now allows us to determine the membrane viscosity n,, from
he NSE data. The temperature dependence of 7, determined from NSE measure-
pents is shown in Figure 4.14 for DMPC, DPPC, and DSPC [184]. The estimated values
)f n,, are on the order of 10 nPa-s-m, and increase with increasing tail length and
ecreasing temperature, which qualitatively matches the trends seen in linear alka-
es [200, 201). Interestingly, the measured 7,, values for these three lipids are about
e same (1, ~ 100 nPa-s-m) at T ~ T, and decrease by as much as a factor of 2 with
increasing temperature, which suggests a strong coupling between the bilayer phase
behavior and the lipid motion.
Reported values for the membrane viscosity in literature vary widely. While some of
e discrepancies may be due to differences in studied temperatures, the temperature
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d to external
T T T T T R ] they package cargo, shape organelles and respon
7,,(DMPC) T(DPPC) T, (DSPC) oIl function as aret -
120} | | (DPPC) 'm( N 1t we talked about at the beginning of the chapter [210]. I\fle.a.sunng both t‘he
T e . * B 7 d thickness fluctuations with NSE also opens the pOSS}blllty of determin-
:; sor + f ! + j { ter-monolayer coupling constant 8. While extracting an independent deter-
e | S i‘ o “+ 1 ' :f K, from the thickness fluctuation measurements is currently limited by
0 ® pbmPC . 4 7 3 ) i . ]
< - = orrc O T T of the experimental data, continued improvement in NSE instrumentation
0 . DSIP i ] | J pAS ) T . + a analysis may make these measurements more robust in the future.
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ively,  could be determined by combining NSE with another technique to
N Z’K such as those outlined in other chapters of this book. Gelation [211],
fx sZmr?éon of the lipid tail [212], and mixing lipids with cholesterol [189] are
wn to modulate inter-monolayer coupling and the NSE me.asureme.:n.ts
here can be used to not only gain insights into a wic%e Yanfety of lipid
, but help advance our understanding of the complex dissipation mecha-
stems.
he (;l(:frseel!os:ment of theory and experiment go hand-in-hand, and .extractil.lg
ormation from the NSE measurements requires a solid theoretical basis.
7 y, for example, the thickness fluctuations are treated as an excess to the
ding fluctuations and assumed to be an additive term in the decay consta.nt
sion (eq. (4.41)), and the I(Q, t) data are fit using the stretched exponential
on of the single membrane fluctuation model. In principle though, these two
:ndent modes should be treated as two individual relaxations inI(Q, t). Justas
d colleagues have developed a relaxation function incorporating the hybrid
des (Section 4.3.2) [125], proper data treatment for the thickness fluctuations
Suires the correct relaxation function for I(Q,t) to understand the relaxation
avior and dispersion relation of this dynamic mode.
ecent theory, simulation and experimental works have also begun to incorporate
o5 of freedom, described by a tilt modulus, into the analysis of the nanoscale
ics. The tilt modulus introduces another parameter, in addition to the bending
ckness fluctuation parameters, and these models now have literally too many
ters (see, e.g., Table II in Ref. [108]) to reliably extract from a single exper-
al measurement. Quantifying all of the lipid membrane properties will require
ing multiple experimental techniques with the appropriate theories. For exam-
gcent development of diffuse X-ray scattering allows one to determine both the
and tilt moduli [109, 112, 213, 214], which could be combined with NSE
urements. The length and timescales probed by scattering methods in particular

T(K)

Figure 4.14: The membrane viscosity 7,, calculated from the NSE result. The dashed straight lines ar
guide the eyes. Reprinted with permission from [184]. Copyright 2017 American Chemical Socie ,'

variation seen in Figure 4.14 over a 50K range does not account for the two orders
of magnitude variations seen in literature with different experimental methg
Fluorescent probe measurements, tracking domain motions in phase separated m .
branes, and falling ball viscometry measurements give membrane viscosity values o
the order of (~ 2 to 3) nPa-s-m [183, 202-206] while measurements based on
diffusion of tracer particles give viscosities on the order of ~ 10 nPa-s-m [2071. On
the other hand, membrane viscosities estimated based on red blood cell recoven
times in micropipette aspiration measurements are = 700 nPa-s-m [208, 209]. The ,:
values from NSE fall within the wide range of reported values for lipid membranes,
and perhaps more importantly, were determined without incorporating fluorescen
probes or tracer particles. Instead, the viscosity values from NSE are determined fro
the relaxation timescales of the naturally occurring membrane fluctuations. Simila
NSE experiments were also used to determine the viscosity of oil-swollen surfacta
membranes [190]. In this case, the n,, determined from NSE could be compared witk
the measured bulk viscosity of the oil-surfactant mixtures n; as n,, = dnn, with d,, a
the membrane thickness. Both measurements gave similar values of 1, furthe
supporting the utility of NSE to also determine the viscosity of membrane systems.

4.5 Summary and future perspective

In. this chapter, we presented the observation of collective membrane fluctuations y complementary to ranges accessible by computer simulation, even for
with NSE and the theory needed to relate the measured dynamics to the membrane

. . . . . . ! fluctuations [141, 146], and combining simulation and experiment is a power-
elastic and viscous proper'tles. By measuring the'bendmg'and thickness ﬂuctuatlons lopportunity to probe the complexities of membrane dynamics.

on the nanosczjllt.e,'we can independently determine the bilayer bending modulus, X, e theoretical and experimental framework outlined in this chapter provides a
area compressibility moc!u.lu?, K4,, and monolayer viscosity, ,,. These same proper: tion for understanding the elastic and viscous properties of lipid membranes,
ties that govern tl.le equilibrium thermal fluctuations will also influence the men- e hope the examples provided here inform and inspire ongoing investigations
brane’s viscoelastic response to nonequilibrium deformations that are an essential 0 more complex and biologically relevant systems. All of the example NSE data
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shown in the chapter were for slmple saturated lipid bilayers, yet a single ¢ E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev.

membrane can contain hundreds of chemically distinct lipids. While we
this remarkable complexity is essential to cell function, our understanding
how it fundamentally affects the membrane properties is still developing
example, decades of research have shown that the effects of cholestero] on
membrane properties are highly dependent on the lipid species and our picture ¢
cholesterol-containing membranes is still evolving. Moreover, cell membranes :
not only made of lipids, but can contain upwards of 50% by mass of protej .;-f
Simply altering the thickness of model membranes has been shown to affect
biological activity of several proteins while incorporating peptides into ;':.
membranes also is known to affect the bilayer structural properties. Clear
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there is a synergy in lipid-protein interactions in determining the membran
properties; however, the nature of these interactions are not well understogg
All of these intricacies relate to the synergy among structure, dynamics, 3
functions of biological membranes, and NSE is providing unique insights inte
the interdependence of the membrane collective dynamics and the elastic ang
viscous properties.
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