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Abstract. Many problems in time-dependent metrology can be phrased mathematically as a
deconvolution problem. In such a problem, measured data is modeled as the convolution of a
known system response function with an unknown source signal. The goal of deconvolution is
to estimate the unknown source signal given knowledge about the system response function. A
well-studied method for calculating this estimate is Tikhonov regularized deconvolution which
attempts to balance the average difference between the estimated solution and true source
signal with the variance in the estimated solution. In this article we study this so-called bias-
variance tradeoff in the context of estimating a source measured by a high speed oscilloscope.
By assuming we have bounds on the true source’s Fourier coefficients and a structural model
for the uncertainties in the system response function, we derive pointwise-in-time confidence
intervals on the true signal based on the estimated signal. We demonstrate the new technique
with simulations relevant to the high speed measurement context.

1. Introduction
Time-dependent measurands are becoming increasingly important in metrology as practitioners
move away from parameter-dependent descriptions of measurands and towards a characterization
of the functional form of the time-varying signal. Such models are useful in a number of
measurement applications such as pressure, force, and torque metrology, and measurement
of high speed waveforms used for communication systems [2]. In this article, we discuss the
measurement of time-dependent objects using linear time invariant systems. Ideally, this process
is modeled as

y∗(t) =

∫ ∞
−∞

a∗(t− τ)x∗(τ) dτ, (1)

where y∗(t) indicates noise-free output, a∗(t) is the system response, and x∗(t) is the input
signal. Equation (1) is unreasonable in practice as measurements contain noise and the system
response is itself also subject to uncertainty. A more complete continuous model is

y(t) =

∫ ∞
−∞

a(t− τ)x(τ) dτ = y∗(t) + n(t), (2)

where a(t) ≈ a∗(t) represents uncertainty on the system response and n(t) represents additive
noise. In practice it is natural to work with discrete samples in time. We write the discrete
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problem as a matrix system
y = Ax = A∗x∗ + δ + n, (3)

where δ represents discretization error, and y = [y(t0), y(t1), . . . , y(tN )]T is a vector composed
of measured data (and similarly for x and n). For simplicity we set δ = 0.

The deconvolution problem we treat below is to estimate x∗(t) given measurements of y(t)
and a(t). Deconvolution is notoriously unstable, and some form of regularization is needed to
stabilize the inversion in the presence of noise. The Tikhonov formalism used henceforth defines
a one-parameter family of estimates x̂λ given by

x̂λ =
(
ATA + λ2LTL

)−1
ATy = A†λy (4)

in which an auxiliary penalty operator L is used to impose prior assumptions on x. Here λ > 0
is a scalar parameter. We assume λ has been determined by auxiliary considerations and is
held fixed for purposes of the statistical analysis. In our calculations below L is a periodized,
second-difference matrix which corresponds to a standard smoothness condition. There are
many interpretations of x̂λ and we refer to the literature for discussion [7, 6].

To better understand uncertainties in x̂λ, we take into account uncertainties in both measured
data and the system response function. As the measurement noise is modeled by a random
variable, this randomness is propagated into x̂λ and it is natural to partition the uncertainty
into contributions arising from variance and bias. Our uncertainty analysis then follows subject
to assumptions on: noise statistics, a spectral bound on the true source x∗(t), and a perturbation
bound on the true convolution kernel a∗(t). For noise statistics we assume discrete white noise
and the analysis is classical. The spectral assumption on x∗(t) has been used previously to
derive a bias bound for regularized deconvolution in metrology contexts [5, 4]. Although not
noted in those papers, this type of assumption has a history in regularization analysis and is
referred to as a source condition [1]. The novelty of the present work consists of representing the
uncertainty on the deconvolution kernel as a controlled perturbation, and thereby generalizing
source condition analysis to encompass contributions from uncertainties in the system response.

2. Uncertainty Analysis
Since we treat the true source as a deterministic function, we can define the bias-variance
decomposition of the expected mean square error (MSE) of our estimator by1

E
[
(x̂λ − x∗)

2
]

= (E[x̂λ]− x∗)
2 + E

[
(x̂λ − E[x̂λ])2

]
= bias (x̂λ)2 + Var(x̂λ) .

Recalling the measurement model (3) and the Tikhonov inversion (4), and assuming E[n] = 0
and Var(n) = Σ, we have the explicit expressions

bias (x̂λ) =
(
A†λA∗ − I

)
x∗ and Var(x̂λ) = (A†λ)TΣA†λ. (5)

2.1. Variance
While the statistical analysis shown above is valid for any random model for n, we refine this
further by assuming that n is distributed as discrete white-noise with mean zero and constant
variance, n ∼ N (0, σ2I). In this case x̂λ is also multivariate Gaussian fully described by its
mean and covariance

E[x̂λ] = x∗ + bias (x̂λ) and Var(x̂λ) = σ2(A†λ)TA†λ.

1 The squared vector operation is to be interpreted as an outer-product x̂2
λ = x̂λx̂

T
λ for the expectation

computations, and element-wise for the bias terms. Hence, bias (x̂λ)2 is a vector which may be interpreted
as a diagonal matrix depending on context, and Var(x̂λ) is the complete covariance matrix.
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The Gaussian assumption allows for a precise statement of coverage intervals. Introducing a

vector for the matrix diagonal vλ = diag
(

(A†λ)TA†λ

)
, using the fact that the marginal variances

of a multivariate Gaussian are given by this diagonal, for each tj we have a 100(1−α)% confidence
interval of the form (interpreting the vector probability equation as marginals on each element)

1− α = P
(
|x̂λ − x∗ − bias (x̂λ)| ≤ zα/2σ

√
vλ
)
≥ P

(
|x̂λ − x∗| ≤ |bias (x̂λ) |+ zα/2σ

√
vλ
)

(6)

Thus, a confidence band of size |bias (x̂λ) | + zα/2σ
√

vλ centered on the inversion x̂λ will
necessarily contain the true solution with specified probability. Since x∗ is unknown, so is
bias (x̂λ). In the next section we discuss how to bound the bias contribution to this confidence
interval.

2.2. Generalized source conditions
An estimate of the bias term is needed to make the confidence bands (6) useful. For simplicity
we assume numerical error is negligible and cast our analysis for the continuous system. While
details of the true solution x∗(t) and kernel a∗(t) are unknown in practice, we can reasonably
introduce controlled assumptions on this lack of knowledge and propagate these uncertainties
through the estimation process. Recall that convolution in time is given by a product in the
Fourier domain. Since we make assumptions on the Fourier coefficients of x∗(t), we consider our
approach to be a generalization of source condition analysis that has been discussed elsewhere
in regularization contexts.

There are many cases in which one may assume decay properties of X∗(f). For example,
existence of some number of continuous derivatives of x∗(t) implies corresponding orders of
algebraic decay of |X∗(f)| ≤ C|f |−n as |f | → ∞. More generally, we assume that we have a
function B(f) such that |X∗(f)| ≤ B(f). This type of assumption has been used in metrology
previously, for example in [4, 5].

Concerning the convolution kernel, we assume that its uncertainty may be modeled as a
convolutional perturbation of true system,

a(t) = a∗(t) + ε

∫ ∞
−∞

r(t− τ)a∗(τ) dτ and A(f) = (1 + εR(f))A∗(f) (7)

for some r(t) with
∫
|r(t)|dt = 1 and 0 ≤ ε � 1. This type of perturbation is reasonable, for

example, in situations for which a(t) contains reflections of small magnitude in which case r(t) is
a sequence of time-delayed echoes.Since the L1 norm of r(t) controls the sup-norm of its Fourier
transform, |R(f)| ≤ 1.

Transforming the equation for the bias (5) to the Fourier domain, using the source conditions
(7), and performing algebra we arrive at

|bias (xλ(tj)) | =
∣∣∣∣∫ ∞
−∞

(
A†λ(f)A∗(f)− 1

)
X(f)e2πiftj df

∣∣∣∣
≤
∫ ∞
−∞

∣∣∣∣∣ A(f)A∗(f)

|A(f)|2 + λ2|L(f)|2
− 1

∣∣∣∣∣ |X(f)|df ≤ bx,λ + ba,λ

where

bx,λ = λ2
∫ ∞
−∞

|L(f)|2B(f)

|A(f)|2 + λ2|L(f)|2
df and ba,λ =

ε

1− ε

∫ ∞
−∞

|A(f)|2B(f)

|A(f)|2 + λ2|L(f)|2
df.

Substituting the sum of these two bounds into the expression (6) completes the uncertainty
analysis for the regularized estimate x̂λ ≈ x∗. A short calculation demonstrates that ba,λ → 0
as ε→ 0. We note that the expression for bx,λ is basically the same as that derived at separate
times [5, 4, 3]. To the best of our knowledge, the expression for ba,λ is new.
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Figure 1. Reconstructions for SNR=10 (left) and SNR=100 (right). Horizontal axis is unitless
time and vertical axis is unitless amplitude.

3. Simulated Examples
A simulated example demonstrates the above uncertainty analysis. We simulate the
measurement of a waveform generated by a 3rd order Butterworth filter with a measurement
device whose system response function is a 5th order Butterworth filter. Figure 1 shows both
estimated and exact solutions along with the estimated 95% confidence interval. We select λ by
minimizing estimated MSE. For simplicity, we set B(f) = |X(f)|. We show the deconvolution
for both SNR = 10 and SNR = 100, which are reasonable in high speed waveform metrology.
In both cases, the exact solution falls within the confidence intervals and that the uncertainty
decreases as SNR increases.

4. Conclusions
We have demonstrated that by imposing a condition on the decay of Fourier coefficients of our
unknown source and making assumptions on the uncertainties in the system response function,
we are able to quantify the uncertainty in our unknown x as a function of known values. While
the idea of bounding Fourier coefficients to better understand uncertainty in Tikhonov estimates
has appeared previously, we additionally quantify the MSE of the estimate with these bounds,
include an analysis of system uncertainty, and apply a frequentist-style statistical analysis of the
results.
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