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Abstract. One application in post-quantum cryptography that appears 
especially difficult is security for low-power or no-power devices. One of 
the early champions in this arena was SFLASH, which was recommended 
by NESSIE for implementation in smart cards due to its extreme speed, 
low power requirements, and the ease of resistance to side-channel at-
tacks. This heroship swiftly ended with the attack on SFLASH by Dubois 
et al. in 2007. Shortly thereafter, an old suggestion re-emerged: fixing 
the values of some of the input variables. The resulting scheme known 
as PFLASH is nearly as fast as the original SFLASH and retains many 
of its desirable properties but without the differential weakness, at least 
for some parameters. 
PFLASH can naturally be considered a form of high degree HFE− scheme, 
and as such, is subject to any attack exploiting the low rank of the central 
map in HFE− . Recently, a new attack has been presented that affects 
HFE− for many practical parameters. This development invites the in-
vestigation of the security of PFLASH against these techniques. 
In this vein, we expand and update the security analysis of PFLASH 
by proving that the entropy of the key space is not greatly reduced by 
choosing parameters that are provably secure against differential adver-
saries. We further compute the complexity of the new HFE− attack on 
instances of PFLASH and conclude that PFLASH is secure against this 
avenue of attack as well. Thus PFLASH remains a secure and attractive 
option for implementation in low power environments. 

Key words: Multivariate Cryptography, HFE, PFLASH, Discrete Dif-
ferential, MinRank 

1 Introduction 

In December of 2016, the National Institute of Standards and Technology (NIST) 
published an open call for proposals for new post-quantum standards for some of 
the most critical security applications in digital communication infrastructure, 
see [1]. The post-quantum technologies this project aspires to vet and standardize 
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are designed to be secure against adversaries with access to quantum comput-
ing devices— machines capable of acheiving exponential speed-up over classical 
computers on certain problems, see [2]. 

Many avenues to post-quantum security are developing, including techniques 
from lattice theory, coding theory and algebraic geometry. Each of these areas 
enjoy hard computational problems that have been studied extensively and have 
histories going back many decades. They also share the common trait that the 
fundamental computational problems in these fields have no known significant 
speed-up in the quantum paradigm. 

One of the hard computational problems on which the security of many post-
quantum cryptosystems is based is the problem of solving systems of multivariate 
equations. Generically, solving systems of multivariate quadratic equations is 
hard, so a valid technique for constructing a cryptosystem is to find a class of 
quadratic vector-valued functions on a vector space that is easy to invert, and 
transform it into a system that appears random. 

Both of these tasks present challenges. The standard technique for the sec-
ond task is computing a morphism of the system in an attempt to remove the 
properties allowing the system to be inverted. Techniques for the prior task are 
more varied, and in this work our focus is on a particular big field scheme. 

1.1 Prior Work 

The progenitor of all “big field” schemes is commonly known as C∗ , or the 
Matsumoto-Imai scheme, see [3]. This scheme exploits the vector space structure 
of extension fields to provide two versions of a function— a vector-valued version 
which is quadratic over the base field, and a monomial function whose input and 
output lie in the extension field. The cryptanalysis of this scheme by Patarin in 
[4] inspired many big field constructions. 

In [5], Patarin introduced the Hidden Field Equations (HFE) cryptosystem, 
a natural generalization of the monomial based C∗ in which the monomial map 
is replaced with a low degree polynomial. Also described in the above work is 
the minus modifier— the removal of public equations— which can be applied to 
both HFE, producing HFE−, and to C∗, creating C∗− . 

A popular iteration of C∗− was SFLASH, see [6], which was very efficient, 
but unfortunately insecure. An attack by Dubois et al. in [7] broke SFLASH by 
way of a symmetric differential relation present in the central monomial map. 

In [8], a way to resist the attack on SFLASH is presented. The augmentation 
of the scheme, known as projection, fixes the value of d of the input variables 
producing a scheme we now call PFLASH. PFLASH is still a very fast signature 
scheme and is amenable to low-power environments without sacrificing side-
channel resistance. This projected C∗− system is shown to resist differential 
cryptanalysis for restricted parameters, that is, when the degree is bounded by 
qn/2−d, in [9] and is fully specified with paractical parameters in [10]. 

Since the design of PFLASH there have been a number of cryptanalytic 
developments in the big field venue. The development of differential invariant 
attacks in [11] and their further application in [12] are examples of advancement 
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in this active area. Furthermore, the improved efficiency of the Kipnis-Shamir 
(KS) attack of [13] presented in [14] is directly impactful to PFLASH, as one can 
consider PFLASH as a possibly high degree but still low rank version of HFE− . 

1.2 Our Contribution 

We expand and update the analysis in [9] and [10] proving resistance to differen-
tial and rank techniques for the vast majority of parameters, and verifying that 
the provably secure key spaces are not as severely limited as the previous works 
suggest. This improvement is directly impactful, providing further assurance that 
attacks based on equivalent keys cannot weaken PFLASH. 

The degree bound restriction in [9] reduces the dimension of possible private 
keys by a factor of more than two. Our updated differential analysis verifies the 
security of the scheme when the central map has no degree bound, and thus 
assures us that very little entropy is lost in the key space when restricting to 
parameters that are provably secure against differential adversaries. 

In [10], an argument for the resistance of PFLASH to the technique of 
[14, Section 8.2] when PFLASH is considered as a low degree projected HFE− 

scheme is provided. We make this assessment more robust by also considering 
the possibility of an adversary attempting to remove the projection modifier 
from PFLASH considering it to be a higher rank HFE− scheme. Whereas in the 
former case, the attack is impossible, in the latter case, the algebraic structure 
allows the possibility that the attack can succeed; however, the complexity of 
the attack is directly computed and shown to be infeasible. 

1.3 Organization 

The paper is organized as follows. The next section introduces the notion of 
big field schemes and provides the description of those schemes relevant to this 
work, namely, C∗ , P F LASH and HFE. In the following section, we review the 
cryptanalytic techniques that have proven most successful in attacking big field 
schemes. The subsequent two sections provide a new proof of security against 
differential attacks for PFLASH, first by analyzing the projected C∗ primitive 
and then by extending these results to the full scheme. We then conclude, noting 
parameter choices for PFLASH and discussing applications of the scheme. 

2 Big Field Schemes 

Many multivariate cryptosystems utilize the structure of a degree n extension K 
of a finite field Fq as an Fq -algebra. Such cryptosystems are collectively known 
as “big field” schemes. To emphasize a choice of basis, one chooses an Fq -vector 
space isomorphism φ : Fn → K. There is then an equivalence between systems q 
F of n quadratic polynomials in n variables over F and univariate polynomials 
of the form X 

f(x) = αij x
q i+qj 

0≤i≤j<n 
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over K given by F = φ−1 ◦ f ◦ φ. 
To hide the structure of an easily invertible map, the standard technique is 

to apply an isomorphism of polynomials to mask the choice of basis for the input 
and output of f . 

Definition 1 A polynomial morphism between two systems of polynomials is a 
pair of affine maps (T,U) such that G = T ◦F ◦U . If both T and U are invertible, 
then the morphism is said to be an isomorphism and F and G are said to be 
isomorphic. 

Thus, for big field schemes, the construction of a public key can be summarized 
with the following diagram. 

f 
K K 

φ−1φ 

U F TFn Fn Fn Fn 
q q q q 

2.1 C ∗ 

Matsumoto and Imai discovered massively multivariate cryptography, introduc-
ing the scheme now known as C∗ at Eurocrypt ‘88. The C∗(q, n) scheme is a 
big field construction in which the vector-valued representation of a quadratic 

qmonomial map f(x) = x
θ +1 is hidden by an isomorphism. Thus the public key 

is given by P = T ◦ φ−1 ◦ f ◦ φ ◦ U . 
The C∗ scheme was originally envisioned for encryption, but could quite 

apparently be applied in either encryption or digital signatures. To encrypt (or 
to verify a signature), one simply computes the output of the public function P . 
To decrypt (or to sign), the preimage must be determined successively for each 
of the components of the private key, all of which can be computed efficiently. 
The interesting step, the inversion of f can be accomplished by noticing that if 

q +1)bb(qθ + 1) = 1 (mod qn − 1), then (x
θ 

= x. 

2.2 PFLASH 

The PFLASH scheme is a particular parametrization of a projected C∗− scheme. 
The projection and minus modifiers were both originally suggested in reference to 
C∗ in [15]. The idea of projection is to fix the value of d input variables to change 
the simplicity of the central map. Thus the composition of the projection and 
the affine map U form a projection onto a codimension d hyperplane. The minus 
modification removes r equations from the public key. Thus the composition of 
this projection with T has corank r. The public key of PFLASH(q, n, r, d) is 
given by P = πr ◦ T ◦ φ−1 ◦ f ◦ φ ◦ U ◦ πd. 



5 An Updated Security Analysis of PFLASH 

We note that the public key is no longer isomorphic to the private monomial 
function. Instead there is merely a polynomial morphism between the central 
map and the public key. Since it is well-known that the morphism of polynomials 
problem is NP-hard, see [16], there is some hope that the information lost to the 
public key may secure the scheme. 

Mechanically, the scheme works as a digital signature primitive as follows. 
Verification is accomplished by evaluating the public polynomials at the signa-
ture. Signing is done by finding preimages of each of the private maps. To find 
a preimage of πr ◦ Tφ−1, randomly append r values to the message, then apply 
T −1 and φ. Once f is inverted, an element in the preimage of φ ◦ U and in the 
image of πd is selected as the signature. 

2.3 HFE 

Hidden Field Equation (HFE) scheme of [5] is a generalization of the C∗ con-
struction, in which the monomial map is replaced by a more general polynomial 
with a degree bound D. Given the degree n extension F ⊆ K we choose a 
quadratic polynomial f : K → K of degree bound D. Thus f has the form: X Xi j ii≤j q +q qf(x) = 

q j ≤D
αi,j x + βix + γ, i+q

i 
q i≤D 

where αi,j , βi, γ ∈ K. The public key is then constructed via the isomorphism: 

P = T ◦ φ−1 ◦ f ◦ φ ◦ U. 

Inversion is accomplished by first taking a ciphertext y = P (x), computing 
v = T −1(y), solving v = f(u) for u via the Berlekamp algorithm, see [17], and 
then recovering x = U−1(u). 

3 Cryptanalyses of Big Field Schemes 

The big field multivariate cryptosystems have an extensive history in cryptanaly-
sis. Several techniques have been developed that illustrate that it is very difficult 
to hide efficient inversion of a system. These techniques can largely be grouped 
into two categories: those based on differential propertys and those based on 
rank properties. 

3.1 Differential Techniques 

By breaking “big field” schemes and also inspiring modifiers, differential attacks 
have been instrumental in the development and analysis of multivariate public 
key cryptography. Given a field map f , the discrete differential is defined by 
Df(a, x) = f(a + x) − f(a) − f(x) + f(0). As an operator on K, D is K-linear 
and reduces the complexity while increasing the dimension of a function. For 
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example, the differential of an affine map is zero, the differential of a quadratic 
map is bilinear, the differential of a cubic map is bi-quadratic, etc. 

Patarin’s linearization equations attack of [4] can be viewed as a differential 
qattack as follows. The differential of the C∗ monomial f(x) = x
θ +1 is symmetric 

in characteristic two; hence, it is zero on the diagonal, Df(x, x) = 0. Therefore 
setting v = f(u) we have 

2θ θ θ θ q +q q q +10 = Df(v, f(u)) = vu + v u
θ 2θ θ q q q= u (vu + uv ), 

and whether or not u = 0, the right factor must be zero; thus, we obtain a bilin-
ear relation between u and v. Setting u = Ux and v = T −1y, we obtain a bilinear 
relation between plaintext and ciphertext pairs: the linearization equations. In-
deed even the higher order linearization equations (HOLEs) attacks pioneered 
in [18] can similarly be derived via differentials. 

Another notable application of symmetric differential techniques in crypt-
analysis is the attack on SFLASH of [7]. This attack exploits the fact that C∗ 

θ q +1polynomials are multiplicative. Specifically, f(x) = x exhibits a differential 
symmetry. 

Definition 2 A function f : K → K has a differential symmetry if there exists 
a pair of F-linear maps L, ΛL : K → K such that 

Df(La, x) + Df(a, Lx) = ΛLDf(a, x). 

The attack uses the fact that left-multiplication maps of elements in K satisfy 
the above relation. This equality provides a criterion for the derivation of such 
maps, and via a linear algebra distillation technique, such a map can be efficiently 
recovered, and a full rank key derived. 

It is important to note that once such a symmetry inducing linear map is 
discovered, there is no need to recover a full rank private key; an attack can 
be mounted directly with the recovered representation of the extension field 
multiplicative structure. Thus, even if a central map does not have a differential 
symmetry, it is possible that a minus-modified version of the scheme might; thus, 
an attack may be mounted directly on the choice of representation of the big 
field. This fact is the basis for the direct analysis of minus-modified schemes of 
[19] and [20]. 

It was shown in [21] that a quadratic map can only have the symmetry of 
Definition 2 with L a representation of left-multiplication by a field element when 
f is multiplicative; that is, when f has only one quadratic monomial. Later it 
was shown in [9] that the only linear maps L satisfying the above relation for 
C∗ are the multiplication maps. 

This famous cryptanalysis incited a more careful analysis of a technique 
originally proposed at ASIACRYPT 1998 in [15] and further suggested after 
the attack in [8]. The idea is to use projection, that is, to fix some of the input 
values, to make U singular. PFLASH, whose parameters are defined in [10], is 
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a particular parametrization of this structure. This change nullifies the basis of 
the differential symmetric attack as proven in [9] for a certain parameter set. 
In the resulting scheme, a pC∗− scheme, the central map can be made to no 
longer admit any symmetry. The parameter set which is provably secure against 
a differential adversary appears quite small, however, and considering the fact 
that such a scheme can be considered a special case of HFE− with perhaps a 
larger degree bound but an even smaller rank, it is necessary to review the rank 
structure of such schemes as well. 

3.2 Rank Techniques 

The first significant cryptanalysis of HFE was the Kipnis-Shamir (KS) attack of 
[13]. The attack is based on the fact that as a quadratic form over the extension 
field, the public key has low rank. This attack was significantly improved in [14], 
where minors modeling, instead of the original modeling of the rank property 
by Kipnis and Shamir, and Gröbner basis techniques are employed. The result 
is that the security of HFE is polynomial in the degree of the extension K over 
Fq. 

PFLASH can easily be characterized as an HFE− scheme with a more efficient 
inversion process. This characterization is possible by absorbing the projection 
into the central monomial map to make a more general polynomial. As an HFE− 

scheme, the rank of the central map is still 2, thus the central map has a very 
strong property. The minus modifier, however, provably increases the rank of 
the public key. 

One may even consider PFLASH to be an HFE instance if we append zero 
polynomials to the public key. In this case, one should suspect that the rank 
of the central map would be quite high, rendering attacks such as [13] and 
[14] infeasible. Still, a theoretical verification of this intuition is absent in the 
literature. 

4 Updated Differential Analysis of Projected Primitive 

As discussed in [9], we may assume that the projection mapping is tied to f 
and consider differential symmetries of f ◦ π where π is chosen in a basis such 
that deg(π) = qd. Clearly, if f ◦ π has a differential symmetry then the equation 
Df(Ma, πx) + Df(πa, Mx) = ΛM Df(πa, πx) is satisfied for some M . We can 
express this relation with matrix multiplication, namely 

a >(Π>DfM)x + a >(M>DfΠ)x = ΛM [a >(Π>DfΠ)x], 

where Df is the matrix representing Df as a bilinear form over K, having one 
iPd qin the (0, θ) and (θ, 0) coordinates and zero elsewhere, where Πx = βixi=0P i qand where Mx = n−1 

mixi=0 
Examining this equation, we see that a>(Π>DfM )x + a>(M>DfΠ)x will 

have nonzero entries restricted to certain coordinates depending only on d and 
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θ, see Figure 1. Similarly, the right hand side of the equation, Π>DfΠ, has a 
structure dependent upon d and θ, see Figure 2. Notice, the graphs may look 
different depending on the choice of θ and d. 

d 

d θ + d 

θ + d 

θ 

θ 

d 

d θ + d 

θ + d 

θ 

θ 

Fig. 1. The shape of the matrix rep- Fig. 2. The shape of the matrix rep-
resentation over K of Df(Ma, πx) + resentation of ΛM Df(πa, πx) over K. 
Df(πa, Mx). Shaded regions corre- Shaded regions correspond to possibly 
spond to possibly nonzero values. nonzero values. 

The strategy for finding conditions on π, M and ΛM for the existence of such 
a symmetry is then to find coordinates in which one side of this matrix equation 
is zero while the other side involves only a single unknown coefficient of M or 
ΛM . While this system of equations is nonlinear in the coefficients of π, it is 
linear in both the unknown coefficients of M and those of ΛM . 

The system contains many more equations than variables, but certainly gen-
erates a positive dimensional ideal. The reason is that for any fixed π, M = aπ 
for any a ∈ Fq generates a solution. On the other hand, for a fixed π and a 
fixed θ, the above system becomes linear with the number of nonzero equations 
depending on both d and θ. Even in the best case, the number of equations is 
far larger than the number of variables. Since the coefficients of π are the only 
source of randomness for this system of linear equations, the great number of 
equations are not independent in a probabilistic sense. Therefore, probabilistic 
arguments are difficult, though extensive experiments show that the solution 
space is generally one dimensional. 

Luckily, we can do better by bootstrapping the result of [9]. Specifically, we 
nexamine the case when θ > .2 

ρ ρ θ q q +1Lemma 1. f(x ) = f(x)q when f(x) = x
ρρ ρ θ θ ρ � θ �q ρ q q +1 (q +1)q q +1Proof. f(x ) = (x )q = x = x = f(x)q 

Consider the special case of Lemma 1 when ρ = −θ. After applying this 
map to the output of Df, the nonzero terms, originally in the (θ, 0) and (0, θ) 
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coordinates, are transported to the (0, −θ) and (−θ, 0) coordinates, respectively. 
This observation leads to the following theorem, revealing that most parameters 
of PFLASH are provably secure against a differential adversary. 

q Pd qTheorem 1. Let f(x) = x
θ +1 be a C∗ map, and let M and πx := 

i 
be i=0 x

linear. Suppose that f satisfies the symmetric relation: 

Df(Ma, πx) + Df(πa, Mx) = ΛM Df(πa, πx). 

If d < min{ n − θ, |n − 3θ|, θ − 1}, or if d < {θ − n 
2 , |2n − 3θ|, n − θ − 1}, then 2 

M = Mσ ◦ π for some σ ∈ k. 

Proof. Assume Df(Ma, πx) + Df(πa, Mx) = ΛM Df(πa, πx) holds true. Then, 
we have two cases. 

n1.) θ < 2 
By [9, Theorem 3], we are done. 

n2.) θ > 2 � � 
−θ −θ 

Let fe(x) = f(x)q = f xq 

We have, 
Df(Ma, πx) + Df(πa, Mx) = ΛM Df(πa, πx) 

−θ −θ 

[Df(Ma, πx) + Df(πa, Mx)]q = [ΛM Df(πa, πx)]
q 

−θ 

= L−1[Df(Ma, πx) + Df(πa, Mx)]q ΛM Df(πa, πx)θ 

Let Lθ represent the map that raises terms to the θth power. We can use 
the definition of the discrete differential to expand the left hand side of the 
equation. By linearity, we can distribute the exponent q−θ to each term. 
After applying our lemma we get the following, 

f̃(Ma+πx)+f̃(Ma)+f̃(πx)+f̃(πa+Mx)+f̃(πa)+f̃(Mx) = L−1ΛM Df(πa, πx)θ 

By adding 0 = 2f̃(0) to the left and applying I = LθL
−1 to the right we get, θ 

Df̃(Ma, πx) + Df̃(πa, Mx) = L−1ΛM (LθL
−1)Df(πa, πx)θ θ 

And by the lemma we have, 

Df̃(Ma, πx) + Df̃(πa, Mx) = L−1ΛM LθDf̃(πa, πx)θ 

neWe now have a relation on f(x) where −θ + d < . Now we can apply [9, 2 
Theorem 3] to conclude that M = Mσ ◦ π for some σ ∈ k. 

We note that the existence of a differential symmetry on f ◦ π implies a 
solution of the equation in Theorem 1 as well as the commutativity of Mσ and 
π. Since the commutativity of Mσ and π requires that π is L-linear, where 
Fq ⊆ L ⊆ k and σ ∈ L, for any nontrivial differential symmetry to exist, 
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(d, n) > 1. Thus, there is a most desirable value of d from an efficiency and 
security standpoint: d = 1. 

Let us specifically consider this most desired value d = 1. Then the only 
restriction on θ for provable differential security is � � � � � � � � 

n − 1 n + 1 n n 2n − 1 2n + 1 
θ ∈ 2, ∪ , − 1 ∪ + 1, ∪ , n − 2 . 

3 3 2 2 3 3 

nFurthermore, since θ = always produces a many-to-one map in any charac-2 
teristic, the restriction to provably secure parameters for PFLASH eliminates at 
most four possible values for θ for all extension degrees n. 

5 Extension to PFLASH 

We now generalize the analysis of the previous section in application to PFLASH. 
First we derive a heuristic argument for bootstrapping the provable security of 
the composition f ◦ π to statistical security for the projected primitive. We then 
clarify the resistance of PFLASH to analysis as an HFE− scheme. Finally, we 
derive security bounds for various PFLASH parameters. 

5.1 Differential Analysis 

As mentioned in Section 3, proof that differential symmetries do not exist for the 
central map of a scheme verifies that a differential adversary cannot recover a 
full rank key. Such a proof does not, however, verify that a differential adversary 
cannot find a symmetry revealing the extension field multiplicative structure and 
directly attack the scheme. 

To illustrate this principal, imagine a high degree variant of HFE in which 
θ q +1the central map has the form f(x) = x + π2(Q(x)) over an extension of 

degree 2n, where π2 is a rank n projection onto the complement of the subfield 
nof size q and Q is an arbitrary quadratic. Then any minus variant in which the 

image of π2 is the kernel of T is a C∗− public key, but one with multiplicative 
symmetry. In particular, any map L representing muliplication by an element in 
the intermediate extension of degree n would satisfy 

D(T ◦ f ◦ U)(U−1La, x)+ D(T ◦ f ◦ U)(a, U−1Lx) = (Lq θ 

+ L)D(T ◦ f ◦ U)(a, x). 

Thus the minus scheme has a multiplicative symmetry even though the original 
scheme provably does not. In fact, even more strongly, we have computed func-
tions of the form of f above over a degree 6 extension of GF (2) for which no 
linear differential symmetry of any form exists, but under projection onto the 
degree 3 subfield, the multiplicative symmetry is exhibited. 

In the case of PFLASH, we may attempt the strategy of the previous section 
for proving security. We may always model the removal of r equations as the P ir qapplication of a polynomial π(x) = to the central map. If only a few i=0 aix
equations are removed, then the analysis proceeds just like in [19], because f ◦ π 
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is a low rank albeit high degree polynomial. Since no parameters suggested for 
PSFLASH are near this range, however, this analysis does not apply. When we 

nperform this analysis with r ≈ and f ◦π, however, the methods of the previous 3 
section fail to generate a provably secure class of private keys. 

Fortunately, there is an easy heuristic argument revealing a simple relation-
ship between symmetries of the central map and symmetries of a map with the 
minus modifier that shows that symmetry should be statistically no more likely 
for any minus modified scheme than for the original. Let T 0 be the minus pro-
jection composed with the inclusion mapping with domain Fn−r and codomain q 
K. Suppose that T 0 ◦ f ◦ π has a differential symmetry. Then 

D(T 0 ◦ f)(πa, Mx) + D(T 0 ◦ f)(Ma, πx) = ΛM D(T 0 ◦ f)(πa, πx) 
T 0 [Df(πa, Mx) + Df(Ma, πx)] = ΛM T 0Df(πa, πx). 

Since the left is clearly in T 0K, the right must be as well. Thus, with high 
probability, that is, when Spana,x(Df(πa, πx)) = K, we have that ΛM T 0K = 
T 0K. We know from linear algebra that in this case there exists at least one 
invertible transformation Λ0 such that ΛM T 0 = T 0Λ0 Therefore, we obtain M .M 
the relation 

Df(πa, Mx) + Df(Ma, πx) = Λ0 (1)M Df(πa, πx) (mod ker(T 0)). 

Clearly, this argument is not reversible for any Λ0 satisfying (1); therefore, M 
we cannot in general conclude that the scheme with the minus modifier inherits 
any differential symmetry from the central map. On the other hand, satisfying 
(1) imposes n − r constraints on ΛM , while the “commuting” of ΛM with T 0 

imposes another r constraints. Thus, the existence of a symmetry in the minus 
case imposes the same number of constraints on ΛM as for the central map and 
so we expect the probability of the existence of a differential symmetry to be no 
higher than for the central map. 

5.2 Rank Analysis 

One can consider PFLASH to be a high degree version of HFE− by absorbing 
the projection of the variables into the central map. Notice that the rank of the 
composition is still only two, thus PFLASH must achieve its security from the 
minus modifier. 

Recently, in [22], a key recovery attack valid for all parameters of HFE− is 
presented. For an HFE− instance with parameters (q, n, D, r), the complexity is � �ω n+dlogq (D)e+1noted as O( ).dlogq (D)e+r+1 

In application to PFLASH, there are two things to note about this attack. 
First, the attack produces an equivalent HFE− key, not a pC∗− key. This fact 
may not limit the attack, because it will still recover a central map of rank two 
of the form f ◦ π which we may then attack as a pC∗ scheme in the manner of 
[23]. Second, the quantity dlogq(D)e in the complexity estimate is derived from 
the rank structure that the degree bound of HFE implies, not directly from the 
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degree bound itself. Thus, the rank of the C∗ monomial, which is two, plays the 
role of dlogq(D)e in the application of the techniques of [22] to PFLASH. 

In fact, instances of PFLASH with quite inappropriate but still large pa-
rameters can be broken with this method. In particular we note that for a 
PFLASH(256, 44, 3, 1) that the complexity of the attack is roughly estimated 
44(3+2+1)ω ∼ 278. For large values of r, however, such as in all parameter sets in 
[10], this attack is infeasible. For example, the smallest parameters suggested in 
[10] still resist this attack to dozens of orders of magnitude beyond brute force. 
Thus, for sensible parameters with r sufficiently large, PFLASH is secure. 

5.3 Security Estimates 

Now with a refined security analysis, we can eliminate differential attacks for a 
larger set of parameters, thus doubling the entropy of the key space for PFLASH. 
In addition, with the complexity estimate of O(n(r+3)ω) and practical values 
of r, PFLASH is quite secure against the new attack on HFE− schemes. In 
conjunction with the invariant analysis of [10], we conclude that the security of 
PFLASH is determined by its resistance to algebraic and brute force attacks. 

Viewing PFLASH as an HFE− scheme, we may use the bound in [24] to 
estimate the degree of regularity of PFLASH. This upper bound can be computed 

(q − 1)(R + r) 
+ 2,

2 

where R is the rank of the central map; in the case of PFLASH, this quantity 
is two. Though this is an upper bound, empirical evidence suggests that it is 
tight for random systems of rank R. Thus the degree of regularity is far too high 
for practical schemes to be weakened. Furthermore, direct algebraic attacks for 
large schemes are impractical even with smaller complexity bounds because the 
space complexity of the best algorithms are too large to be practical. 

Therefore, we corroborate the claims of [10] that brute force collision attacks 
are the greatest threat to PFLASH schemes. The evidence from our increase of 
the entropy of the key space and the verification that PFLASH resists recent 
weaknesses revealed in HFE− suggest the security levels in Table 1 (all of which 
are in agreement with [10]). 

Scheme Public Key (Bytes) Security (bits) 
PFLASH(16, 62, 22, 1) 39,040 80 
PFLASH(16, 74, 22, 1) 72,124 104 
PFLASH(16, 94, 30, 1) 142,848 128 

Table 1. Security levels for standard parameters of PFLASH 
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6 Conclusion 

The history of PFLASH intersects with most of the major advances in design and 
cryptanalysis in asymmetric multivariate cryptography. Interestingly, essentially 
all of the major cryptanalytic techniques that have proven successful in attacking 
multivariate schemes are relevant for PFLASH, and so any security metric for 
the scheme must inherently be complex. In spite of all of the tools available to 
an adversary, PFLASH remains secure. 

Our analysis expands upon and complements previous analysis of PFLASH. 
We verify that the entropy of the key space is not significantly reduced by se-
lecting parameters for which differential security is provable. We further verify 
security against new developments in rank analysis relevant to schemes employ-
ing the minus modifier. We conclude that any attack that fundamentally reduces 
the security of PFLASH below the brute force bound must include techniques 
as of yet undeveloped. 

In venues for which speed, digest size, storage and power are severe limi-
tations PFLASH seems to be one of the most performant options. When one 
considers devices in which no public key needs to be transported, such as some 
applications of smart cards, PFLASH is a leading candidate. In light of the se-
curity assurance this analysis provides, PFLASH appears ready for deployment. 
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