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Abstract: The study of rotating machinery ball bearing diagnostics and prognostics is quite 
mature and an abundance of methods/algorithms are available to perform these functions. 
However, extending these algorithms to other ball bearing applications is challenging and may 
not yield usable results. This work used a linear axis testbed to study the ability of an inertial 
measurement unit to measure changes in geometric error motions. Faults were introduced on 
the recirculating ball bearings of one carriage truck with increasing severity. The inertial 
measurement unit data was analyzed using a variety of methods proposed and used in the 
rotating machinery community, including auto-regressive filtering, minimum entropy 
deconvolution, and spectral kurtosis. The results reveal an ineffectiveness of the methods for 
the induced faults, for this one experiment, which have low signal-to-noise ratio and/or weaker 
periodicity than faults in rotating machinery. 
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Introduction: Linear translational axes are important systems in manufacturing, often 
installed as a subsystem of a computer numerical control (CNC) machine. They are used to 
move cutting tools and workpieces to their desired positions for part production [1]. In a typical 
machine, there can be multiple such axes, each of which can degrade, producing inaccuracies 
that affect the quality of the parts produced. A single linear axis is shown in Figure 1(a), with 
each of the main components labeled. Four trucks (also called “linear motion guides”) are used 
to guide the carriage along the axis rails using recirculating ball bearings. 
 
As a linear axis operates over time, abrasion and adhesion between parts causes material 
fatigue, pitting, cracking, and wear. This can result in faults developing in a variety of 
components such as the axis rails, rolling element bearings, and/or ball screw [2, 3]. If not 
properly mitigated, these faults will develop to such an extent as to affect the quality of the 
parts produced and/or precipitate a failure of the machine [4]. As demands for versatility and 
batch volume increase for manufacturing processes, machines are experiencing higher loads, 
and as a result the potential for faults and failures is becoming more common. 
 



 
Figure 1: (a) Linear axis. The carriage travels along the axis of the lead screw and four trucks 
guide the carriage along the two rails (or guideways). (b) Angular and linear error motions of 

a carriage commanded to move along a (nominal) straight-line trajectory parallel to the ܺ-
axis. 

 
The health assessment process consists of measuring the error motions of the linear axis 
machine and comparing those with specifications for allowable errors. In a linear axis, there 
are six degrees of freedom corresponding to six error directions, as shown in Figure 1(b), where 
the second variable in the subscript denotes the direction of travel (in this case, the carriage is 
traveling in the ܺ-direction). In the schematic, ܧଡ଼ଡ଼ denotes the linear positioning error motion 
of the ܺ-axis, ܧଢ଼ଡ଼ denotes the straightness error motion in the ܻ-direction, ܧ୞ଡ଼ denotes the 
straightness error motion in the ܼ-direction, ܧ୅ଡ଼ denotes the angular error motion around the 
ܺ-axis (roll), ܧ୆ଡ଼ denotes the angular error motion around the ܻ-axis (pitch), and ܧେଡ଼ denotes 
the angular error motion around the ܼ-axis (yaw). 
 
Ideally, after a linear axis is installed on a machine tool, all errors are zero, but in practice 
nonzero errors exist resulting in the errors on the workpiece. Hence, the allowable errors are 
dependent upon the tolerance needed for the workpiece. As the machine ages or crashes occur 
as a result of programming mistakes, these errors can increase, leading to the workpieces 
becoming more and more out of tolerance. Instructive machine tool monitoring coupled with 
proper maintenance regimes can be used to mitigate this accumulation of degradation and 
minimize the costs imposed by imperfect production and scrapped parts. 
 
Mature methods for the fault detection and diagnostics of linear axes are manual, time 
consuming, and often cost prohibitive. The state-of-the-art instruments in linear axis error 
measurement (the basis for diagnostics) are explained in the International Organization for 
Standardization (ISO) 230-1 [5]: straightedge and linear displacement sensor, microscope and 
taut wire, alignment telescope, alignment laser, and laser straightness interferometer. These 
time-consuming instruments require the shutdown of the machine and thus cannot provide in-
situ diagnostics [6]. 
 
To ease the burden of implementing the traditional monitoring technologies, manufacturers 
need automated and efficient methods for diagnosing machine tool linear axes without halting 
production. In 2010, Teti et al. [7] identified that new sensors and sensor systems, advanced 
sensor signal data processing, and intelligent sensor monitoring need to be further developed 



to help achieve decreased machine downtime, higher productivity, higher product quality, and 
enhanced knowledge of manufacturing processes. 
  
Previous work has shown that a possible advance in sensor technology lies in the use of an 
inertial measurement unit (IMU) consisting of a 3 degree-of-freedom (DOF) accelerometer 
and a 3 DOF rate gyroscope [8-10] as shown in Figure 2. The bandwidths and noise properties 
of the sensors used in the IMU are shown in Table 1. Data from the IMU can be used to detect 
changes in the positioning, straightness, and angular error motions. IMU measurements can be 
made quickly and with little intrusion into the operation of the machine, resulting in data that 
provides insight into the condition of the linear axis. It has been shown to be effective at 
detecting rail degradation to similar levels of accuracy delivered by a laser interferometer [8]. 
However, a challenge remains in verifying the IMU’s capabilities for detecting degradation in 
the truck bearings of a linear axis. 
 

 
Figure 2: (a) Isometric view of industrial IMU and (b) top view of industrial IMU without its 

cover. 
 

Table 1: Specified properties of sensors used in the IMU 
   

Sensor Bandwidth* Noise 
Accelerometer 0 Hz to 400 Hz 69 ሺμm sଶ⁄ ሻ √Hz⁄  
Rate Gyroscope 0 Hz to 200 Hz 35 ሺμrad sଶ⁄ ሻ √Hz⁄  

*frequencies correspond to half-power points, also known as 3 dB points 
 
One complication that presents itself in this task is the multiplicity in the rolling element 
bearings within the bearing system, which causes a low signal-to-noise ratio (that can be less 
than 1) in the health monitoring data. In the linear axis shown in Figure 1(a), there are four 
trucks, each with two loops of ball bearings, and each loop has 32 ball bearings. The ball 
bearings rotate in and out of contact with the rail, with about 13 ball bearings per loop 
contacting the rail at any given instance. The two loops interact with different raceways (or 
grooves) in the rails, one inner and one outer. Hence, at any given instance, there are about 104 
bearings (13 bearings per loop × 2 loops per truck × 4 trucks) in contact with the rails. The 
convolution of so many bearing ball signatures into the sensed effects on the carriage make it 
difficult to isolate small indications of damage from a single bearing ball. This interaction 



between the bearings and rails is illustrated in Figure 3(a) and Figure 3(b). It was with this in 
mind that an experiment was designed to examine the sensitivity of the IMU-based error 
motions to artificially-induced damage on the bearings. 
 

 
Figure 3: (a) Schematic of rails and carriage assembly of one-axis testbed; (b) underside view 

of one truck with loops of ball bearings exposed, where the “inner loop” contacts the inner 
raceway and the “outer loop” contacts the outer raceway; and (c) view of rail, carriage, lead 

screw, and trucks assembly showing the attachment of the trucks to the rails. 
 
In this study, ball bearings from a single truck were removed sequentially, one-at-a-time, 
intentionally degraded, then replaced in their original position within the truck. The balls were 
degraded one at a time to progressively alter the error motions of the carriage. IMU data was 
collected after each ball bearing was damaged and the data was analyzed to develop diagnostic 
features. The data analysis procedure progressed from less to more complex culminating in a 
series of algorithms recommended by Randall and Antoni in their 2011 bearing diagnostics 
tutorial [11]. 
 
Experimental Setup: Truck 2 was modified to allow the removal of one ball at a time. This 
permitted the opportunity to inflict damage on to a single ball and then replace it into the truck, 
while leaving the carriage/truck/rail/lead screw system effectively unchanged. This was 
necessary because if the trucks were removed and then reassembled at each stage of 
degradation, then the load placed upon each of the trucks would have changed from one 
assembly procedure to the next, which would have changed the error motions as well. Hence, 
to eliminate the need for disassembly and reassembly of the trucks during the experiment and 
thus ensure that changes in error motions are due only to bearing ball damage in truck 2, the 



truck was modified with an access hole and slot, as shown in Figure 4(a). The set screw covered 
the access hole from which balls were removed to introduce damage. Bearing balls were 
removed one-at-a-time and a “flat” was introduced by dragging the ball across sandpaper. The 
flat damage for one bearing is shown in Figure 4(b). After damaging the bearing, it was 
replaced in Truck 2 at its original position within the outer ring. 
 

 
Figure 4: (a) Truck 2 as modified for this experiment with a slot for viewing the bearing 
movement and an access hole covered by a set screw, which allowed for the removal of 

single bearing ball; and (b) diagram showing the damage introduced to the balls in Truck 2. 
 
Over the course of the experiment, 26 of the 32 bearing balls in the outer loop of Truck 2 were 
damaged. Figure 5 shows the pattern of twenty-six metal balls with six (black) silicon nitride 
balls. The pattern was chosen so that at any time, visual inspection of the balls through the slot, 
as seen in Figure 4(a), yields a unique pattern of black and silver (metallic) balls for 
identification. The twenty-six metal balls were made of chromium steel with a nominal 
diameter of 3.962 mm, while the six ceramic balls had a nominal diameter of 3.969 mm. The 
average depth of material removed for the chromium steel balls was 30 µm with a standard 
deviation of 2 µm. The maximum depth was 35 µm and the minimum depth was 26 µm. The 
Truck 2 outer loop balls were degraded in a specific order, as shown in Figure 5, that attempts 
to increase general frequency content of defect-induced impulses. 
 

 
Figure 5: Truck 2 outer loop bearing degradation arrangement. The filled in circles represent 
ceramic bearing balls that were not degraded, while the numbers in the open circles denote 

the order in which the remaining metal balls were damaged. 
 
After a single bearing was degraded and placed back into Truck 2, 50 runs of IMU data was 
gathered and processed to yield the estimated error motions for the carriage. Each run consists 
of moving the carriage over the linear axis, forward and backward, at three different speeds: 
0.02 m/s, 0.1 m/s, and 0.5 m/s. These three speeds are meant to capture different ranges in the 
spatial frequency spectrum, with the slowest speed capturing the highest spatial frequencies 
and the highest speed capturing the lowest spatial frequencies. With the rate gyroscope and 
accelerometer used, the available spatial frequency range is between 0 and 2 cycles/mm (this 
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can also be written as 2000 m-1). (For more information on how the rate gyroscope and 
accelerometer data was processed to achieve the error motion data, see [8, 9].) Hence, for each 
of 27 degradation “stages”, there are fifty (50) data runs to be analyzed. Stage 1 is collected 
prior to any balls being degraded, and data collection ended at stage 27 with 26 of the balls 
having been damaged. The first sample for stages 1, 9, 18, and 27 are shown in Figure 6 for all 
six degrees of freedom. 
 

 
Figure 6: Unfiltered error motions of the carriage at four stages of bearing degradation. The 

error components are noted in the bottom left corner of each sub-figure. 
 
Analysis Methods: The simplest analysis methods use only statistical and frequency domain 
features to analyze each instance of data. The statistical time-domain features used in the 
analysis of this experiment are given in Table 2, where  ݕത denotes the signal average and ܰ 
denotes the number of data points in the signal. For the current implementation, each ‘signal’ 
of Table 2 is an error motion or some transformation of the sampled error motion, e.g., via 
filtering. Each of the values provided was computed for every instance of error motion data 
generated at the incrementally increasing stages of degradation. 
 



Table 2: Description of statistical time-domain features used in bearing 
diagnostic analysis [12-15] 

 
Feature name Brief description Formula 
Peak value The peak value measures the amplitude 

of the signal, ݕ. As bearing faults 
develop, there are more impacts 
producing higher average amplitude, 
hence the peak value is expected to 
increase. 

ܸܲሺݕሻ ൌ
1
2
൫maxሺݕሻ െ minሺݕሻ൯ 

RMS The root mean square (RMS) of a signal 
is measure of the energy of the signal. ݏ݉ݎሺݕሻ ൌ ඩ

1
ܰ
෍ݕ௜

ଶ

ே

௜ୀଵ

 

Standard 
deviation 

The standard deviation measures the 
dispersion of the signal around the mean 
value, which is another measure of the 
amplitude and energy in the signal. 

ሻݕሺߪ ൌ ඩ
1

ܰ െ 1
෍ሺݕ௜ െ തሻଶݕ
ே

௜ୀଵ

 

Skewness Skewness quantifies the asymmetry of 
the signal with respect to its probability 
density function. 

ሻݕଵሺߛ ൌ

1
ܰ∑ ሺݕ௜ െ തሻଷேݕ

௜ୀଵ

ଷߪ
 

Kurtosis Kurtosis quantifies the “tailedness” of a 
signal. As a bearing degrades, more 
impacts are expected. This leads to a 
signal having more frequent and 
extreme deviations than a signal from a 
healthy bearing. 

ሻݕଶሺߛ ൌ

1
ܰ∑ ሺݕ௜ െ തሻସேݕ

௜ୀଵ

ସߪ
 

Crest factor Crest factor is a ratio of the peak value 
to the RMS. If there are impacts from a 
degraded bearing, then this value will be 
high, due to the discrepancy between the 
high peak produced from the impacts 
and the nominal amplitude of the 
waveform. 

ሻݕሺܨܥ ൌ
ܸܲሺݕሻ
ሻݕሺݏ݉ݎ

 

Shape factor Shape factor is a ratio between the RMS 
and the average absolute value. Since 
RMS measures the square of the signal, 
then it will be more sensitive to outliers, 
such as impacts. So as bearings get more 
degraded, the shape factor is expected to 
increase. 

ሻݕሺܨܵ ൌ
ሻݕሺݏ݉ݎ
1
ܰ∑ ௜|ேݕ|

௜ୀଵ

 



Table 2: Description of statistical time-domain features used in bearing 
diagnostic analysis [12-15] 

 
Feature name Brief description Formula 
Impulse factor As bearings degrade, they are expected 

to produce more impacts, which will 
greatly affect the peak value, but will 
have a smaller effect on the average 
absolute value. Hence, as bearings 
degrade, the impulse factor is expected 
to increase. 

ሻݕሺܨܫ ൌ
ܸܲሺݕሻ

1
ܰ∑ ௜|ேݕ|

௜ୀଵ

 

Clearance 
factor 

The clearance factor is also a measure 
that relates the peak value to a measure 
of the average amplitude. As the 
bearings degrade and more impulses are 
produced, the numerator should rise 
while the denominator remains almost 
constant. 

ሻݕሺܨܮܥ ൌ
ܸܲሺݕሻ

ቀ1ܰ∑ ඥ|ݕ௜|ே
௜ୀଵ ቁ

ଶ 

 
Beyond computing these statistical features from the error motions, many signal processing 
procedures have been proposed in the bearing community. Most of the proposed techniques 
aim to increase the kurtosis of the signal, in order to isolate changes due to impulses from 
degradation. These techniques include autoregressive (AR) filtering, self-adaptive noise 
cancellation (SANC), minimum entropy deconvolution (MED), and spectral kurtosis (SK). 
The AR filtering and SANC are both methods of separating the deterministic portion of the 
signal from the random portion of the signal [16]. In both cases, a prediction is computed, then 
the residual between the predicted signal and the real signal is considered as the bearing signal. 
In this study, only AR filtering was used. 
 
The AR filter predicts the deterministic pattern of the signal, but is not capable of adapting to 
the sudden impulses caused by bearing faults. Consequently, the fault signal is expected to 
remain in the residual of the AR filter, which is the difference between the measured signal 
and the estimated signal (i.e., the output of the AR filter). An ܴܣሺܮሻ (i.e., an ܮth order AR) 
process is one in which the signal is assumed to be given as a linear combination of ܮ past 
values and some input, ݁௡, as shown in (1): 

 

௡ݔ  ൌ െ෍ܽ௟ݔ௡ି௟

௅

௟ୀଵ

൅ ݁௡ (1) 

 
By assuming the input is unknown, the signal can be approximately predicted from the linear 
summation of past samples. This is computed as shown in (2).  
 

ො௡ݔ  ൌ െ෍ܽ௟ݔ௡ି௟

௅

௟ୀଵ

 (2) 



 
The residual is then computed as ݁௡ ൌ ௡ݔ െ  ො௡. The model coefficients can be computedݔ
through a variety of methods, though perhaps the most used is the Yule-Walker equations, 
which relate the model coefficients to the autocovariance of the signal [16]. The order of the 
AR model (i.e., the number of model coefficients) can be chosen using a variety of criteria, 
such as Akaike information criteria (AIC), Bayesian information criteria (BIC), or cross 
validation. However, in the present study, the AR model order was chosen as the number of 
coefficients that maximized the kurtosis of the residual, in an attempt to isolate the defect-
caused terms from the error motion data. 
 
After separating out the bearing signal via AR (or SANC) filtering, the impulsive fault signal 
can be enhanced using MED, which was originally proposed by Wiggins [17] to extract 
information from seismic recordings. MED operates under the assumption that the original 
excitation was impulsive (with high kurtosis), then designs a filter that attempts to reconstruct 
the original signal. This is a means to overcome the effect of the transmission path through 
which the impulses reach the sensor(s). Since impulsive signals are highly structured (low 
entropy), the desired filter should minimize the signal entropy. Sawalhi et al. [18] applied MED 
to bearing faults, Endo and Randall [19] used it with gear faults, and Randall and Antoni [11] 
recommended its use as part of a “semi-automated bearing diagnostic procedure”. Lee and 
Nandi [20] and McDonald et al. [21] have provided comprehensive methods for computing 
MED. The procedure used herein is shown below. 
 

Step 1: Assume a centered impulse filter, ࢌ ൌ ሾ0 ⋯ 0 1 0 ⋯ 0ሿ், of length 
 ܮ

Step 2: Compute the ܮ ൈ  ௫; a Toeplitz matrix with the firstࡾ autocorrelation matrix ܮ
row as the first ܮ terms of the autocorrelation of ࢞ 

Step 3: Compute filter output, ࢟ ൌ ଴ࢄ
 ࢌ்

Step 4: Compute new filter: ࢌ ൌ
∑ ௬೔

మಿ
೔సభ

∑ ௬೔
రಿ

೔సభ
 ଴࢟ଷࢄ௫ିଵࡾ

Step 5: Repeat steps 3-4 until stopping criterion are satisfied 
 

Here,	࢟ଷ is an element-wise cubing of the filtered signal, and ࢄ଴ is an ܮ ൈ ܰ matrix of the 
delayed input signal: 
 

଴ࢄ  ൌ

ۏ
ێ
ێ
ێ
ۍ
ଵݔ ଶݔ ଷݔ ⋯ ேݔ
0 ଵݔ ଶݔ ⋯ ேିଵݔ
0 0 ଵݔ ⋯ ேିଶݔ
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ ےேି௅ାଵݔ

ۑ
ۑ
ۑ
ې

  

 
The stopping criterion can be based upon the change in the filtered signal kurtosis (i.e., once 
the change in filtered signal kurtosis reaches a sufficiently small value) as proposed by 
McDonald et al. [21]. Or the stopping criterion can be based upon changes in the filter as 
proposed by Lee and Nandi [20], stating that when ܧሾࣕሿ gets below a certain threshold, the 
routine is complete. 
 



 

ࣕ ൌ ൫ࢌሺ௜ሻ െ  ሺ௜ିଵሻࢌߤ/ሺ௜ିଵሻ൯ࢌߤ
 

ߤ ൌ ඨ
ሺ௜ିଵሻሻଶሿࢌሾሺܧ

ሺ௜ሻሻଶሿࢌሾሺܧ
 

(3) 
 
 
 
 
 

 

In (3), the expressions are shown for the ݅th iteration, ൫ࢌሺ௜ሻ൯
ଶ
 is an element-wise squaring of 

the vector ࢌሺ௜ሻ, and ܧሾ⋅ሿ denotes the expected value. In this study, the criterion proposed by 
Lee and Nandi was used with the threshold for ܧሾࣕሿ set to 5ሺ10ିସሻ. 
 

 
Figure 7: Frequency and decomposition levels for construction of kurtogram. 

 
The last step in the process is to use spectral kurtosis and the kurtogram to locate the frequency 
band and frequency resolution that maximizes the signal kurtosis. The kurtogram is a method 
that uses a finite impulse response (FIR) filter bank to decompose the signal into a set of 
subsignals with different frequency bands [22]. This decomposition consists of taking the 
signal, then low-pass- and high-pass-filtering to the frequency bands ሾ0, 1 4⁄ ሿ and ሾ1 4⁄ , 1 2⁄ ሿ, 
respectively (in normalized frequency). This is considered as Level 1 decomposition. The 
original signal is also decomposed into the frequency bands ሾ0, 1 6⁄ ሿ, ሾ1 6⁄ , 1 3⁄ ሿ, and 
ሾ1 3⁄ , 1 2⁄ ሿ. This is considered as Level 1.6 decomposition. Then the resulting signals are sent 
through further replicate filter banks, producing the tree-like structure shown in Figure 7, 
where ܵ௞,௝ represents the signal decomposed at level ݇ in the ݆th frequency band, and ௦݂ is the 
sampling frequency. After the signals are decomposed, the kurtosis of each ܵ௞,௝ can be 
computed, and the level and frequency band that maximizes kurtosis chosen. 
 
Experimental Analysis Results: The error motions were first high-pass filtered to frequencies 
above 500 samples/m, which was done to eliminate any data that simply captured the shape of 
the rails. Bearing fault signatures are assumed to occur with wavelengths less than about 12.4 
mm (circumference of a single ball), therefore sampling between 0.5 samples/mm and 2 
samples/mm is sufficient to capture any impacts from bearing faults. Most of the statistical 
metrics yielded no indications of the increasing number of faults being introduced to the balls 
of truck 2. As an example, the kurtosis of each sample is shown in Figure 8. There are 27 total 
stages, and at each stage, there are 50 runs, translating to 50 values of kurtosis. At each stage, 
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the gray box represents the middle 50% of these 50 values, and the whiskers extend to the 
largest value that falls below ݍଷ ൅ 1.5ሺݍଷ െ ଶݍ ଶሻ, or the smallest value that falls aboveݍ െ
1.5ሺݍଷ െ  ଷ are the 25th and 75th percentile respectively. Any value that fallsݍ ଶ andݍ ଶሻ, whereݍ
outside this range is classified as an outlier, and the outliers are plotted as red circles. The black 
circle in the center of each box is the median value for all 50 runs in a given degradation stage. 
 

 
Figure 8: Boxplots showing how the filtered signal kurtosis changed as additional 

degradations were introduced into Truck 2 outer ring. 
 
The statistical features can be evaluated using the Pearson correlation coefficient between the 
median of each distribution of 50 samples and the degradation stages (1-27). Because Pearson 
correlation measures the strength of a linear relationship between two variables, it is expected 
that as a feature is more responsive to bearing degradation, it will register a higher Pearson 
correlation coefficient magnitude. The sign of the Pearson correlation coefficient indicates the 
direction of the line, where ൅1 indicates the line is increasing and െ1 indicates the line is 
decreasing. The Pearson correlation coefficient for each feature and DOF is shown in Figure 
9. 
 
From Figure 8 and Figure 9, it is apparent that ܧଢ଼ଡ଼ trends the most as the bearings of Truck 2 
outer loop are degraded, since most of its statistical features have Pearson correlation 
coefficients with magnitudes significantly above 0.5. Furthermore, ܧଡ଼ଡ଼ has a moderate trend 
in kurtosis and ܧ୞ଡ଼ has a moderate trend in skewness, each with Pearson correlation coefficient 
magnitudes around 0.5. Moreover, in the case of ܧଢ଼ଡ଼, the kurtosis starts as lower than that of 
the normal distribution (which has a kurtosis of 3) and ends with most runs still below a 



kurtosis of 3, but having a higher kurtosis than at Stage 1. Generally, when bearings are faulty, 
the impacts that the bearings have with the runways produce kurtosis values much higher than 
that of normal distribution (see e.g., [18, 23]). This physical trend should be further examined 
for further understanding. Also, it must be noted that the error motion data under examination 
are high-pass filtered and not unprocessed. 
 

 
Figure 9: Pearson correlation coefficient for each statistical feature computed. 

 
After performing the procedure recommended by Randall and Antoni, the results for one 
response are shown in Figure 10. The data was first high-pass-filtered to above 500 m-1, then 
an ܴܣሺ26ሻ filter was used to eliminate the deterministic portion of the signal. The length of 
the AR filter was found by exhaustively searching all error directions. Each signal was filtered 
using filter lengths between 2 and 400, and the kurtosis was measured for each filtered signal. 
For all error directions, the optimal length that maximized filtered signal kurtosis was between 
25 and 28, with an average of 26. After AR filtering, the MED filter of length 10 was used. 
The length of the MED filter was also chosen according to the length that maximized signal 
kurtosis. Finally, the kurtogram was used on the MED filtered signal. 
 
After processing all six DOF error motion data in the manner shown in Figure 10, the kurtosis 
values are shown using boxplots in Figure 11, à la Figure 8. In most cases, the kurtosis achieved 
using the MED filter was very close to the kurtosis achieved using the kurtogram. More 
importantly, like the simple statistical analysis results shown in Figure 8, the straightness errors 
in the ܻ-direction exhibit the most movement in Figure 11 as the ball bearings were degraded. 
Also, as shown in comparison of Figure 11 to Figure 8, this signal kurtosis was increased by 
decomposing the MED filtered signal to Level 1 with center frequency of ௦݂/8 ൌ 2500 m-1. 
However, it appears that the kurtogram may have decreased the robustness for monitoring 
changes in degradation, because the kurtogram increased the variance of the kurtosis of ܧଢ଼ଡ଼, 
as evidenced by the significantly longer gray boxes for ܧଢ଼ଡ଼ in Figure 11 compared with those 
for ܧଢ଼ଡ଼ in Figure 8. 
 
These results show that certain metrics lack no significant trends with increasing degradation, 
which could result from several possibilities. First, the faulty bearings occurred in only one of 



two bearing loops in one of four trucks on the linear axis, so it is possible that the degradation 
in one bearing ball loop does not significantly affect certain error motions due to the influence 
of seven healthy bearing ball loops and the geometry of the raceways. Second, the signal 
processing techniques used were designed for temporal measurements (i.e., vibration as a 
function of time) that typically have many cycles for each dataset due to the rotary nature of 
the applications (e.g., spindles and motors). On the other hand, each run collected by the IMU 
has on the order of only one cycle of ball motion, in which the balls move in and out of contact 
between the truck and rail. Furthermore, because of the approximately one cycle of ball motion 
and recirculation of balls, the spatial locations of the defect-caused impulses along the rail are 
constantly moving, sometimes to outside of the spatial measurement range. Third, the ceramic 
balls were nominally 7 µm larger in diameter than the metal balls, which means that as more 
metal balls were degraded, the ceramic balls were bearing more of the load, which could 
account for apparent approaching of relative equilibria in Figure 8. 
 

 
Figure 10: Semi-automated bearing diagnostic procedure for degradation stage 16, run 6, in 
 axis translation, with the respective kurtosis values noted in the upper right corner of each-ݕ
plot. (a) Error response filtered to spatial frequencies above 500 m-1. (b) Residual of signal 
after ܴܣሺ26ሻ filtering of the signal from (a). (c) Signal after MED (filter length of 10) of 

signal from (b). (d) Magnitude of complex envelope of the signal from (c) which maximized 
the kurtogram (level 1 decomposition) and its 0.1% significance threshold (shown in red). 

 



 
Figure 11: Kurtosis values resulting from the bearing diagnostics procedure. 

 
Finally, the results raise many questions for future work:  
 

1. What is the lowest amount of damage that can be detected with the IMU via the 
methods explored or any other? 

2. Why is the ܻ-direction most sensitive to changes in the bearings? 
3. What signal processing techniques could be used to increase the signal to noise ratio 

for earlier detection of degraded linear axis bearings? 
4. How can signal processing techniques be adapted to dealing with spatial measurements, 

rather than temporal measurements? 
 
Conclusion: The linear axis is used in a variety of machining processes and their bearings are 
subject to wear. This paper presented an experiment wherein an inertial measurement unit 
(IMU) was employed to detect degraded bearings in a linear axis. The six DOF error motions 
for the carriage were first analyzed for statistical features and then signal processing techniques 
were used to amplify the signal of degraded bearings. The results showed the error motions, 
determined from processing IMU data, experienced some evolution over time, particularly in 
the ܻ-direction (error motion described as ܧଢ଼ଡ଼). Pearson correlation coefficients showed 
additional trends detected by kurtosis for the translation in the X-direction (ܧଡ଼ଡ଼) and skewness 
for translation in the Z-direction (ܧ୞ଡ଼). However, certain metrics lacked no significant trends 
with increasing degradation, which could have resulted from the experimental setup (lack of 
cycles per run), physical phenomena (effects of degradation, recirculation of balls), and the 
analytical techniques themselves. The results motivate further research into fault detection and 



diagnostics for linear axes, with an emphasis on identifying the optimal techniques suited to 
the unique problem of linear translation. 
 
NIST Disclaimer: Certain commercial equipment, instruments, or materials are identified in 
this paper to foster understanding. Such identification does not imply recommendation or 
endorsement by the National Institute of Standards and Technology, nor does it imply that 
the materials or equipment identified are necessarily the best available for the purpose. 
 
References: 
 
[1] Y. Altintas, A. Verl, C. Brecher, L. Uriarte, and G. Pritschow, "Machine tool feed 

drives," CIRP Annals - Manufacturing Technology, vol. 60, no. 2, pp. 779-796, // 2011. 
[2] Y. Li, X. Wang, J. Lin, and S. Shi, "A Wavelet Bicoherence-Based Quadratic 

Nonlinearity Feature for Translational Axis Condition Monitoring," Sensors, vol. 14, 
no. 2, pp. 2071-2088, 2014. 

[3] Y. Zhou, X. Mei, Y. Zhang, G. Jiang, and N. Sun, "Current-based feed axis condition 
monitoring and fault diagnosis," in 4th IEEE Conference on Industrial Electronics and 
Applications, ICIEA 2009, Xi'an, China, 2009, pp. 1191-1195: IEEE Computer 
Society. 

[4] E. Uhlmann, C. Geisert, and E. Hohwieler, "Monitoring of slowly progressing 
deterioration of computer numerical control machine axes," Proceedings of the 
Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 
222, no. 10, pp. 1213-1219, 2008. 

[5] ISO 230-1 - Test code for machine tools − Part 1: Geometric accuracy of machines 
operating under no-load or quasi-static conditions, 2012. 

[6] A. W. Khan and W. Chen, "Calibration of CNC milling machine by direct method," in 
2008 International Conference on Optical Instruments and Technology: 
Optoelectronic Measurement Technology and Applications, Beijing, China, 2009, vol. 
7160, p. 716010: SPIE. 

[7] R. Teti, K. Jemielniak, G. O’Donnell, and D. Dornfeld, "Advanced monitoring of 
machining operations," CIRP Annals - Manufacturing Technology, vol. 59, no. 2, pp. 
717-739, 2010. 

[8] G. W. Vogl, M. A. Donmez, and A. Archenti, "Diagnostics for geometric performance 
of machine tool linear axes," CIRP Annals - Manufacturing Technology, vol. 65, no. 1, 
pp. 377-380, 2016. 

[9] G. W. Vogl, M. A. Donmez, A. Archenti, and B. A. Weiss, "Inertial Measurement Unit 
for On-Machine Diagnostics of Machine Tool Linear Axes," presented at the Annual 
Conference of the Prognostics and Health Management Society 2016, Denver, CO, 
October 3 - 6, 2016, 2016.  

[10] G. W. Vogl and M. E. Sharp, "Diagnostics of machine tool linear axes via separation 
of geometric error sources," presented at the Annual Conference of the Prognostics and 
Health Management Society, St. Petersburg, FL, October 2-5, 2017, 2017.  

[11] R. B. Randall and J. Antoni, "Rolling element bearing diagnostics—A tutorial," 
Mechanical systems and signal processing, vol. 25, no. 2, pp. 485-520, 2011. 



[12] W. Caesarendra and T. Tjahjowidodo, "A review of feature extraction methods in 
vibration-based condition monitoring and its application for degradation trend 
estimation of low-speed slew bearing," Machines, vol. 5, no. 4, p. 21, 2017. 

[13] I. Howard, "A Review of Rolling Element Bearing Vibration'Detection, Diagnosis and 
Prognosis'," Defence Science and Technology Organization Canberra (Australia)1994. 

[14] B. Sreejith, A. Verma, and A. Srividya, "Fault diagnosis of rolling element bearing 
using time-domain features and neural networks," in Industrial and Information 
Systems, 2008. ICIIS 2008. IEEE Region 10 and the Third international Conference 
on, 2008, pp. 1-6: IEEE. 

[15] C. T. Yiakopoulos, K. C. Gryllias, and I. A. Antoniadis, "Rolling element bearing fault 
detection in industrial environments based on a K-means clustering approach," Expert 
Systems with Applications, vol. 38, no. 3, pp. 2888-2911, 2011/03/01/ 2011. 

[16] R. Randall, N. Sawalhi, and M. Coats, "A comparison of methods for separation of 
deterministic and random signals," International Journal of Condition Monitoring, vol. 
1, no. 1, pp. 11-19, 2011. 

[17] R. A. Wiggins, "Minimum entropy deconvolution," Geoexploration, vol. 16, no. 1, pp. 
21-35, 1978/04/01/ 1978. 

[18] N. Sawalhi, R. B. Randall, and H. Endo, "The enhancement of fault detection and 
diagnosis in rolling element bearings using minimum entropy deconvolution combined 
with spectral kurtosis," Mechanical Systems and Signal Processing, vol. 21, no. 6, pp. 
2616-2633, 2007. 

[19] H. Endo and R. B. Randall, "Enhancement of autoregressive model based gear tooth 
fault detection technique by the use of minimum entropy deconvolution filter," 
Mechanical Systems and Signal Processing, vol. 21, no. 2, pp. 906-919, 2007. 

[20] J.-Y. Lee and A. Nandi, "Extraction of impacting signals using blind deconvolution," 
Journal of Sound and Vibration, vol. 232, no. 5, pp. 945-962, 2000. 

[21] G. L. McDonald, Q. Zhao, and M. J. Zuo, "Maximum correlated Kurtosis 
deconvolution and application on gear tooth chip fault detection," Mechanical Systems 
and Signal Processing, vol. 33, pp. 237-255, 2012. 

[22] J. Antoni, "Fast computation of the kurtogram for the detection of transient faults," 
Mechanical Systems and Signal Processing, vol. 21, no. 1, pp. 108-124, 2007/01/01/ 
2007. 

[23] J. Antoni and R. Randall, "The spectral kurtosis: application to the vibratory 
surveillance and diagnostics of rotating machines," Mechanical Systems and Signal 
Processing, vol. 20, no. 2, pp. 308-331, 2006. 

 


