
DRAFT

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 1

Design and Implementation of pyPRISM: A Polymer
Liquid-State Theory Framework

Tyler B. Martin‡∗, Thomas E. Gartner III§, Ronald L. Jones‡, Chad R. Snyder‡, Arthi Jayaraman§¶

F

Abstract—In this work, we describe the code structure, implementation, and
usage of a Python-based, open-source framework, pyPRISM, for conducting
polymer liquid-state theory calculations. Polymer Reference Interaction Site
Model (PRISM) theory describes the equilibrium spatial-correlations, thermo-
dynamics, and structure of liquid-like polymer systems and macromolecular ma-
terials. pyPRISM provides data structures, functions, and classes that stream-
line predictive PRISM calculations and can be extended for other tasks such
as the coarse-graining of atomistic simulation force-fields or the modeling of
experimental scattering data. The goal of providing this framework is to reduce
the barrier to correctly and appropriately using PRISM theory and to provide a
platform for rapid calculations of the structure and thermodynamics of polymeric
fluids and polymer nanocomposites.

Index Terms—polymer, materials science, modeling, theory

Introduction

Free and open-source (FOSS) scientific software lowers the bar-
riers to applying theoretical techniques by codifying complex
approaches into usable tools that can be leveraged by non-experts.
Here, we describe the implementation and structure of pyPRISM,
a Python tool which implements Polymer Reference Interaction
Site Model (PRISM) theory. [MGIJ+18], [dis] PRISM theory
is an integral equation formalism that describes the structure
and thermodynamics of polymer liquids. [SC87] Despite the
successful application of PRISM theory to study a variety of
complex soft-matter systems, [SC94] its use has been limited
compared to other theory and simulation methods that have
available open-source tools, such as Self-Consistent Field Theory
(SCFT), [psc], [AQM+16] Molecular Dynamics (MD), [hoo],
[GNA+15], [ALT08], [lam], [Pli95] or Monte Carlo (MC), [sim],
[cas], [RM11]. Some important factors contributing to this reduced
usage are the complexities associated with implementing PRISM
theory and the lack of an available open-source codebase. Our
previous publication, [MGIJ+18], focused primarily on the theo-
retical aspects of the method and presented several case studies
to illustrate the utility of PRISM theory. In this work, we focus
more specifically on the practical implementation and usage of
PRISM theory within the pyPRISM framework. In the following
sections, we will briefly discuss the basics of PRISM theory,

* Corresponding author: tyler.martin@nist.gov
‡ National Institute of Standards and Technology
§ Chemical and Biomolecular Engineering, University of Delaware
¶ Materials Science and Engineering, University of Delaware

Copyright © 2018 Tyler B. Martin et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Polymer Nanoparticle Nanocomposite

Polymer
Site (M)

Nanoparticle
Site (P)

!""($)
&"" $ 	
(""($)

Intra and Inter-Molecular
Spatial Correlations

Fig. 1: A schematic representation of the components of a coarse
grained polymer nanocomposite made up of polymer chains and large
spherical nanoparticles. This system is the focus of reference [HS05].
In this example, there are two site-types: a monomer site-type (M)
in green and a nanoparticle site-type (P) in yellow. Also labeled are
the polymer-polymer intra-molecular (ΩM,M(r)) and inter-molecular
correlation functions (HM,M(r) and CM,M(r)).

our implementation of the theory in pyPRISM, our approach
toward educating the scientific community about PRISM theory
and pyPRISM, and finally our view for the future of the tool.

PRISM Theory

For a detailed discussion of PRISM theory, as well as a review
of key applications of the theory, we direct the reader to our
previous publication. [MGIJ+18] Here, we briefly highlight the
salient points of PRISM theory in order to help motivate the design
of our class structure.

PRISM theory describes the spatial correlations in a liquid-
like polymer system made up of spherical interacting "sites."
The category of liquid-like polymers includes melts, blends,
solutions, and nanocomposites of both homopolymers and copoly-
mers. Within these systems, PRISM is able to handle varying
chain chemistry, monomer sequence, and topology. The traditional
PRISM formalism is spherically symmetric, which in general
prevents the use of PRISM to study glassy, crystalline, phase-
separated or otherwise non-isotropic materials. While there is a
modified PRISM formalism for oriented (liquid-crystalline) mate-
rials, [OS05a], [OS05b], [PS00], [PS99] those modifications are
outside the scope of the current work. Figure 1 shows a schematic
of a polymer nanocomposite that could be studied with PRISM
theory using a two-site model.

mailto:tyler.martin@nist.gov

DRAFT

2 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

In general, PRISM sites represent a segment of a molecule
or polymer chain, similar to the atoms or coarse-grained beads
that comprise an MD or MC simulation. Unlike these simulation
methods, PRISM treats all of the sites of a given type as indistin-
guishable and does not track the individual positions of each site
in space. Instead, the structure of the system is described through
average spatial correlation functions. The fundamental PRISM
equation for multi-component systems is represented in Fourier-
space as a matrix equation of the site-site spatial correlation
functions.

Ĥ(k) = Ω̂(k)Ĉ(k)
[
Ω̂(k)+ Ĥ(k)

]
(1)

In this expression, Ĥ(k) is the inter-molecular total correlation
function matrix, Ĉ(k) is the inter-molecular direct correlation
function matrix, and Ω̂(k) is the intra-molecular correlation
function matrix. Ω̂(k) describes the how the monomers within
a molecule are connected and placed, Ĥ(k) and Ĉ(k) describe
how the molecules are placed in space relative to one another.
The key difference between Ĥ(k) and Ĉ(k) is that the former
includes many-body effects, while the latter does not. Knowledge
of Ĥ(k), Ĉ(k), and Ω̂(k) for a given system allows one to calculate
a range of important structural and thermodynamic parameters,
e.g., structure factors, radial distribution functions, second virial
coefficients, Flory-Huggins χ parameters, bulk isothermal com-
pressibilities, and spinodal decomposition temperatures.

Each of the variables in Equation 1 represents a function
of wavenumber k which returns an n× n matrix, with n being
the number of site-types in the calculation. Each element of a
correlation function matrix (e.g., Ĥα,β (k)) represents the value
of that correlation function between site types α and β at a
given wavenumber k. These correlation function matrices are
symmetric, therefore there are n(n+1)

2 independent site-type pairs
and correlation function values in each correlation function matrix.
The nanocomposite in Figure 1 is modeled using n = 2 site-types
which yields three independent site-type pairs: polymer-polymer,
polymer-particle, and particle-particle.

Equation 1, as written, has one unspecified degree of freedom
for each site-type pair, therefore additional mathematical relation-
ships must be supplied to obtain a solution. These relationships are
called closures and are derived in various ways from fundamental
liquid-state theory. Closures are also how the chemistry of a
system is specified via pairwise interaction potentials Uα,β (r). For
example, one widely-used closure is the Percus-Yevick closure
shown below

Cα,β (r) =
(

e−Uα,β (r)−1.0
)(

1.0+Γα,β (r)
)
, (2)

where Γ(r) is defined in real-space as

Γα,β (r) = Hα,β (r)−Cα,β (r). (3)

While the PRISM equation can be solved analytically [SC94] in
select cases, we focus on a more generalizable numerical approach
here. Figure 2 shows a schematic of our approach. For all site-
types or site-type pairs, the user provides input values for Ω̂α,β (k),
site-site pair potentials Uα,β (r), site-type densities ρα , and an
initial guess for all Γα,β (r). After the user supplies all necessary
parameters and input correlation functions, pyPRISM applies a
numerical optimization routine, such as a Newton-Krylov method,
[new] to minimize a self-consistent cost function. The details of
this cost function were discussed in our previous work. [MGIJ+18]
After the cost function is minimized, the PRISM equation is

Molecular Structure !"($)

Pair Potentials &(')

Composition ()

Initial Guess *(')

Closure Expressions

Total Correlations +(')

Direct Correlations ,(')

INPUTS

OUTPUTS

PRISM Cost
Function

Kernel

Fig. 2: Schematic of PRISM theory numerical solution process.

considered "solved" and the resultant correlation functions can
be used for calculations.

pyPRISM Overview

pyPRISM defines a scripting API (application programming inter-
face) that allows users to conduct calculations and numerically
solve the PRISM equation for a range of liquid-like polymer
systems. All of the theoretical details of PRISM theory are
encapsulated in classes and methods which allow users to spec-
ify parameters and input correlation functions by name e.g.,
PercusYevick for Equation 2. Furthermore, the structure of
these classes was kept as simple as possible so that novice scien-
tific programmers could easily extend pyPRISM by implementing
new closures, potentials, or intra-molecular correlation functions.
These code structure of pyPRISM is shown in schematically in
Figure 3 and is discussed in the Implementation Section.

Providing a scripting API rather than an "input file"-based
scheme gives users the ability to use the full power of Python
for complex PRISM-based calculations. For example, one could
use parallelized loops to fill a database with PRISM results using
Python’s built-in support for thread or process pools. Alternatively,
pyPRISM could easily be coupled to a simulation engine by
calling the engine via a subprocess, processing the engine output,
and then feeding that output to to a pyPRISM calculation. The
pyPRISM API is demonstrated in the Example pyPRISM Script
section by modeling the system shown in Figure 1.

While experts in PRISM theory likely will need little guidance
on how to appropriately apply pyPRISM, we also would like to
make pyPRISM accessible to the widest possible audience. To
this end, we have created comprehensive documentation [pyPa]
and tutorial [pyPb] materials. Users can also try pyPRISM in
their web-browser by visiting [pyPc]. See the Pedagogy section
for more information on our philosophy in educating the scientific
community about pyPRISM.

Installation

pyPRISM is a Python library that has been tested on Linux, OS
X, and Windows with the CPython 2.7, 3.5 and 3.6 interpreters
and only depends on Numpy [num], [WCV11] and Scipy [sci],
[Oli07] for core functionality. Optionally, pyPRISM provides a
unit conversion utility if the Pint [pin] library is available and a
simulation trajectory analysis tool if pyPRISM is compiled with
Cython [cyt]. pyPRISM is available on GitHub, [pyPd], conda-
forge [pyPe] and the Python Package Index (PyPI) [pyPf] for
download. It can be installed from the command line via
$ conda install -c conda-forge pyPRISM

or alternatively

DRAFT

DESIGN AND IMPLEMENTATION OF PYPRISM: A POLYMER LIQUID-STATE THEORY FRAMEWORK 3

CALCULATORSTHEORY REPRESENTATIONSCORE DATA STRUCTURES

Inherits: Potential

HardSphere
LennardJones
WeeksChandlerAndersen
HardCoreLennardJones
Exponential

Inherits: Table

ValueTable
PairTable

Inherits: Object

Table
MatrixArray
Density
Diameter
Domain
Space
System
PRISM

Inherits:

Closure/AtomicClosure

PercusYevick
HyperNettedChain
MeanSphericalApproximation
MartynovSarkisov Functions of Solved PRISM Objects

pair_correlation

structure_factor

second_virial

solvation_potential

chi

pmf

spinodal_condition

Inherits: Object

Debyer (Cython Extension)
UnitConverter (uses Pint)

Inherits: Omega

Gaussian
GaussianRing
FreelyJointedChain
DiscreteKoyama
SingleSite
InterMolecular
FromArray
FromFile

Inherits: Object

Omega
Closure
Potential

Fig. 3: Overview of codebase and class organization. A full description of the codebase classes and methods can be found in the online
documentation. [pyPa].

$ pip install pyPRISM

Full installation instructions can be found in the documentation.
[pyPa]

Implementation

Figure 3 shows an overview of the available classes and functions
in pyPRISM and how they relate categorically. To begin, we con-
sider the core data structures listed in the left column of the figure.
Parameters and data in PRISM theory fall into two categories:
those that define the properties of a single site-type (e.g., density,
diameter) and those that define properties for a site-type pair
(e.g., closure, potential, intra-molecular correlation functions).
pyPRISM defines two base container classes based on this con-
cept, both of which inherit from a parent pyPRISM.Table class:
pyPRISM.ValueTable and pyPRISM.PairTable. These
classes store numerical and non-numerical data, support complex
iteration, and provide a .check() method that is used to ensure
that all parameters are fully specified. Both pyPRISM.Table
subclasses also support setting multiple pair-data at once, thereby
making scripts easier to maintain via reduced visual noise and
repetition. Additionally, pyPRISM.ValueTable automatically
invokes matrix symmetry when a user sets an off-diagonal pair,
assigning the α,β and β ,α pairs automatically.
1 '''
2 Example of pyPRISM.ValueTable usage
3 '''
4

5 import pyPRISM
6

7 PT = pyPRISM.PairTable(types=['A','B','C'],
8 name='potential')
9

10 # Set the A-A pair
11 PT['A','A'] = 'Lennard-Jones'
12

13 # Set the B-A, A-B, B-B, B-C, and C-B pairs
14 PT['B',['A','B','C']] = 'Weeks-Chandler-Andersen'
15

16 try:
17 # Raises ValueError b/c not all pairs are set
18 PT.check()
19 except ValueError:
20 print('Not all pairs are set in ValueTable!')
21

22 # Set the C-A, A-C, C-C pairs

23 PT['C',['A','C']] = 'Exponential'
24

25 # No-op as all pairs are set
26 PT.check()
27

28 for i,t,v in PT.iterpairs():
29 print('{} {}-{} is {}'.format(i,t[0],t[1],v))
30

31 # The above loop prints the following:
32 # (0, 0) A-A is Lennard-Jones
33 # (0, 1) A-B is Weeks-Chandler-Andersen
34 # (0, 2) A-C is Exponential
35 # (1, 1) B-B is Weeks-Chandler-Andersen
36 # (1, 2) B-C is Weeks-Chandler-Andersen
37 # (2, 2) C-C is Exponential
38

39 for i,t,v in PT.iterpairs(full=True):
40 print('{} {}-{} is {}'.format(i,t[0],t[1],v))
41

42 # The above loop prints the following:
43 # (0, 0) A-A is Lennard-Jones
44 # (0, 1) A-B is Weeks-Chandler-Andersen
45 # (0, 2) A-C is Exponential
46 # (1, 0) B-A is Weeks-Chandler-Andersen
47 # (1, 1) B-B is Weeks-Chandler-Andersen
48 # (1, 2) B-C is Weeks-Chandler-Andersen
49 # (2, 0) C-A is Exponential
50 # (2, 1) C-B is Weeks-Chandler-Andersen
51 # (2, 2) C-C is Exponential

In some cases where additional logic or error checking is needed,
we have created more specialized container classes. For example,
both the site volumes and the site-site contact distances are func-
tions of the individual site diameters. The pyPRISM.Diameter
class contains multiple pyPRISM.Table objects which are dy-
namically updated as the user defines site-type diameters. The
pyPRISM.Density class was created for analogous reasons so
that the pair-density matrix,

ρ
pair
α,β = ρα ρβ

the site-density matrix,

ρ
site
α,β =

{
ρα if i = j
ρα +ρβ if i 6= j

and the total site density,

ρ
total = ∑

α

ρ
site
α,α

DRAFT

4 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

can all be calculated dynamically as the user specifies or modifies
the individual site-type densities ρα .

An additional specialized container is pyPRISM.Domain.
This class specifies the discretized real- and Fourier-space grids
over which the PRISM equation is solved and is instantiated by
specifying the length (i.e., number of gridpoints) and grid spacing
in real- or Fourier space (i.e., dr or dk). An important detail
of the PRISM cost function mentioned above is that correlation
functions need to be transformed to and from Fourier space during
the cost function evaluation. pyPRISM.Domain also contains
the Fast Fourier Transform (FFT) methods needed to efficiently
carry out these transforms. The mathematics behind these FFT
methods, which are implemented as Type II and III Discrete Sine
Transforms (DST-II and DST-III), are discussed in our previous
work. [MGIJ+18]

The pyPRISM.System class contains multiple
pyPRISM.ValueTable and pyPRISM.PairTable objects
in addition to the specialized container classes described above.
The goal of the pyPRISM.System class is to be a super-
container that can validate that a system is fully and correctly
specified before allowing the user to attempt to solve the PRISM
equation.

While pyPRISM.System primarily houses input property
tables, pyPRISM.PRISM represents a fully specified PRISM
calculation and contains the cost function to be numerically min-
imized. The correlation functions shown in Equation 1 are stored
in the pyPRISM.PRISM object as pyPRISM.MatrixArray
objects, which are similar to pyPRISM.ValueTable ob-
jects but with a focus on mathematics rather than storage.
pyPRISM.MatrixArray objects can only contain numerical
data and provide many operators and methods which simplify
PRISM theory mathematics. In particular, they satisfy the need
for easy access to both the matrix and pair-function repre-
sentations of the correlation functions, shown schematically in
Figure 4 . The former is necessary for carrying out the math-
ematics of the PRISM equation (Equation 1) and the latter
for performing Fourier transformations of the individual pair-
functions. The pyPRISM.MatrixArray objects also carry out
a number of run-time error checks including ensuring that both
MatrixArray objects involved in a binary operations (such as
addition) are in the same space (real or Fourier). The core data
structure underlying the pyPRISM.MatrixArray is a three-
dimensional Numpy ndarray of m n× n matrices, where m is the
length of the pyPRISM.Domain.

1 '''
2 Example of MatrixArray usage.
3 '''
4 ## Setup ##
5 length = 1024 # number of gridpoints
6 dr = 0.1 # real-space grid spacing
7 rank = 2 # number of site-types
8 types = ['A', 'B'] # name of site-types
9

10 domain = pyPRISM.Domain(length,dr)
11 rho = pyPRISM.Density(types)
12

13 # Total and intra-molecular correlation functions
14 # dataH and dataW are size (length,rank,rank)
15 # numpy ndarrays that are assumed to be in memory
16 kwargs = dict(length=length,rank=rank,types=types)
17 H = pyPRISM.MatrixArray(data=dataH,**kwargs)
18 W = pyPRISM.MatrixArray(data=dataW,**kwargs)
19

20 ## Example Calculation of Structure Factor ##
21 S = (W + H)/rho.site

Fig. 4: Schematic of the pair-function and MatrixArray representa-
tions of the total correlation function for the polymer nanocomposite
system shown in Figure 1. The r1,r2,rN variables represent specific
distances in the real-space solution grid.

22 S_AB = S['A','B'] # extract S_AB from MatrixArray
23

24 ## MatrixArray by Scalar Operations ##
25 # All matrices in W are modified by the scalar x
26 x = 1 # arbitrary scalar
27 W+x; W-x; W*x; W/x; # elementwise ops
28

29 ## MatrixArray by Matrix Operations ##
30 # All matrices in W are modified by the matrix rho
31 W+rho; W-rho; W*rho; W/rho; # elementwise ops
32 W.dot(rho) # matrix mult.
33

34 ## MatrixArray by MatrixArray Operations ##
35 # Operations are matrix to corresponding matrix
36 W+H; W-H; W*H; W/H; # elementwise ops
37 W.dot(H) # matrix mult.
38

39 ## Fourier Transformations ##
40 # Transform a single array versus all functions
41 # in a MatrixArray
42 W_AA = domain.to_real(W['A','A']) # one function
43 domain.MatrixArray_to_fourier(H) # all functions
44

45 ## Other Operations ##
46 W.invert() # invert each matrix in W
47 W['A','B'] # set or get function for pair A-B
48 W.getMatrix(i) # get matrix i in MatrixArray
49 W.iterpairs() # iterate over all 1-D functions

The pyPRISM.PRISM object is solved by calling the .solve()
method which invokes a numerical algorithm to minimize the
output of the .cost() method by varying the input Γα,β (r).
Once a pyPRISM.PRISM object is numerically solved, it can
be passed to a calculator that processes the optimized correlation
functions and returns various structural and thermodynamic data.
The current list of available calculators is shown in the rightmost
column of Figure 3 and is fully described in the documentation.
[pyPa]

Beyond the core data structures, pyPRISM defines classes
which are meant to represent various theoretical equations
or ideas. Classes which inherit from pyPRISM.Potential,
pyPRISM.Closure, or pyPRISM.Omega represent interac-
tion potentials, theoretical closures, or intra-molecular correla-

DRAFT

DESIGN AND IMPLEMENTATION OF PYPRISM: A POLYMER LIQUID-STATE THEORY FRAMEWORK 5

Fig. 5: All pair-correlation functions from the pyPRISM example for
the polymer nanocomposite system depicted in Figure 1.

tion functions Ω̂α,β (k), respectively. These properties must be
specified for all site-type pairs before a pyPRISM.PRISM ob-
ject can be created. To ensure that users can easily add new
potentials, closures, and Ω̂α,β (k) to the codebase, we have kept
the programming interface contract of these classes as simple as
possible: Subclasses must inherit from the proper parent class and
implement a .calculate() method.

Example pyPRISM Script

1 '''
2 pyPRISM script calculating the pair correlation
3 functions and chi parameters of a polymer
4 nanocomposite.
5 '''
6

7 import pyPRISM
8

9 sys = pyPRISM.System(['particle','polymer'],kT=1.0)
10 sys.domain = pyPRISM.Domain(dr=0.01,length=4096)
11

12 sys.diameter['polymer'] = 1.0
13 sys.diameter['particle'] = 5.0
14

15 sys.density['polymer'] = 0.75
16 sys.density['particle'] = 6e-6
17

18 sys.omega['polymer','polymer'] = \
19 pyPRISM.omega.FreelyJointedChain(length=100,l=4/3)
20 sys.omega['polymer','particle'] = \
21 pyPRISM.omega.InterMolecular()
22 sys.omega['particle','particle'] = \
23 pyPRISM.omega.SingleSite()
24

25 sys.potential['polymer','polymer'] = \
26 pyPRISM.potential.HardSphere()
27 sys.potential['polymer','particle'] = \
28 pyPRISM.potential.Exponential(alpha=0.5,epsilon=1.0)
29 sys.potential['particle','particle'] = \
30 pyPRISM.potential.HardSphere()
31

32 sys.closure['polymer',['polymer','particle']] = \
33 pyPRISM.closure.PercusYevick()
34 sys.closure['particle','particle'] = \
35 pyPRISM.closure.HyperNettedChain()
36

37 PRISM = sys.solve()
38

39 pcf = pyPRISM.calculate.pair_correlation(PRISM)

40 pcf_11 = pcf['particle','particle']
41

42 chi = pyPRISM.calculate.chi(PRISM)
43 chi_12 = pcf['particle','polymer']

Example Discussion

The code above shows how to use pyPRISM to calculate the prop-
erties of a polymer nanocomposite made of linear polymer chains
and spherical nanoparticles. This system is shown schematically
in Figure 1 and is fully described in reference [HS05]. The results
of this calculation are plotted in Figure 5. In this section, we will
discuss the details of this example in a line by line fashion as we
specify all inputs shown in Figure 2 and then solve the PRISM
equation.
6 import pyPRISM
7

8 sys = pyPRISM.System(['particle','polymer'],kT=1.0)
9 sys.domain = pyPRISM.Domain(length=4096, dr=0.01)

All pyPRISM calculations begin by first importing the pyPRISM
library, and then creating a pyPRISM.System object. The first
argument to the pyPRISM.System constructor is the names of
the site-types for the calculation. In this case, we have two site-
types which we (arbitrarily) call polymer and particle. Option-
ally, the constructor allows that the thermal energy level, kBT ,
be specified. Next a pyPRISM.Domain object is created with
length=4096 grid-points and a grid spacing of dr=0.1.

Note that all parameters in pyPRISM are specified in a reduced
unit system commonly called Lennard-Jones units. In this scheme,
a characteristic length dc, mass mc, and energy ec are specified. All
other units are then specified in terms of these characteristic units.
For example, if dc = 1 nm, the grid spacing in the above code
would be dr = 0.1dc = 0.1 nm. See [FB02] for more information
on the Lennard-Jones reduced unit scheme.

11 sys.diameter['polymer'] = 1.0
12 sys.diameter['particle'] = 5.0
13

14 sys.density['polymer'] = 0.75
15 sys.density['particle'] = 6e-6

Next, site-type diameters and number densities are specified for
both site-types in units of dc and beads per d3

c , respectively.
Qualitatively, these specifications imply that we are considering a
dilute concentration of nanoparticles dissolved in a polymer matrix
made up of polymer sites of significantly smaller diameter.

17 sys.omega['polymer','polymer'] = \
18 pyPRISM.omega.FreelyJointedChain(length=100,l=4/3)
19 sys.omega['polymer','particle'] = \
20 pyPRISM.omega.InterMolecular()
21 sys.omega['particle','particle'] = \
22 pyPRISM.omega.SingleSite()

The intra-molecular correlation function Ω̂polymer,polymer(k) is
specified as a freely jointed chain, a well-known physi-
cal model for a polymer chain. [RC03] Since the poly-
mer chains and particles are not connected, Ω̂polymer,particle(k)
is specified as inter-molecular. The particles are modeled
as spherical sites so Ω̂particle,particle(k) is modeled as a
pyPRISM.omega.SingleSite.

24 sys.potential['polymer','polymer'] = \
25 pyPRISM.potential.HardSphere()
26 sys.potential['polymer','particle'] = \
27 pyPRISM.potential.Exponential(alpha=0.5,epsilon=1.0)
28 sys.potential['particle','particle'] = \
29 pyPRISM.potential.HardSphere()

DRAFT

6 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Upolymer,polymer(r) and Uparticle,particle(r) pair potentials are
specified as athermal hard sphere interactions, while the
Upolymer,particle(r) potential is an exponential attractive interaction.
This configuration describes a dense melt-like polymer nanocom-
posite where the polymer chains are attracted to and adhere to
(wet) the nanoparticle surface. The α and ε parameters in the
pyPRISM.potential.Expontential constructor control
the range and strength of the exponential attraction.

31 sys.closure['polymer',['polymer','particle']] = \
32 pyPRISM.closure.PercusYevick()
33 sys.closure['particle','particle'] = \
34 pyPRISM.closure.HyperNettedChain()

To demonstrate one utility of the pyPRISM.PairTable data
structure, here we have specified both the polymer-polymer and
polymer-particle closure in a single line. Both pair-data are spec-
ified to the Percus-Yevick closure, while the particle-particle clo-
sure is set to be the hypernetted chain closure. In this code-block
and those above, note how the subclasses of pyPRISM.Omega,
pyPRISM.Potential and pyPRISM.Closure are used to
easily specify complex theoretical constructs.

36 PRISM = sys.solve()

When all properties are defined, the user calls the
pyPRISM.System.solve() method which first conducts a
number of sanity checks and issues any relevant exceptions or
warnings if issues are found. If no issues are found, a PRISM
object is created and minimization is attempted. The .solve()
method accepts arguments which allow the user to tune the details
of the minimization.

38 pcf = pyPRISM.calculate.pair_correlation(PRISM)
39 pcf_11 = pcf['particle','particle']
40

41 chi = pyPRISM.calculate.chi(PRISM)
42 chi_12 = pcf['particle','polymer']

Once the minimization completes, a pyPRISM.PRISM
object is returned which contains the final solutions
for H(r) and C(r) along with all input parameters
and data. The pyPRISM.PRISM object is then passed
through the pyPRISM.calculate.pair_correlation
and pyPRISM.calculate.chi calculators. Both of these
methods return pyPRISM.ValueTables, which can be sub-
scripted to access the individual pair-functions. In the exam-
ple, we extract the particle-particle pair correlation function,
gparticle,particle(r) and the particle-polymer χparticle,polymer parame-
ter.

While it would be feasible to study this polymer nanocom-
posite system via simulation methods such as MD or MC, the
use of PRISM theory offers some distinct advantages. PRISM
theory does not suffer from finite-size or equilibration effects,
both of which limit simulation methods. Furthermore, a simulation
of sufficient size to study the large nanoparticles and relatively
long polymer chains in this example would require many hours to
days of CPU or GPU time from a supercomputing resource. This
is due to the computational expense of evaluating the pairwise
interactions at each simulated configuration and the many millions
of configurations that must be generated in order to properly
equilibrate and sample such a nanocomposite. In contrast, PRISM
theory can be numerically solved in seconds even on modest
hardware such as a laptop computer. This is because, unlike
MD or MC, solving PRISM theory does not involve generating
molecular configurations, but rather is a set of integral equations
which are numerically solved for the spatial correlation functions,

NB0.Introduction
NB1.PythonBasics
NB2.Theory.General
NB3.Theory.PRISM
NB4.pyPRISM.Overview
NB5.CaseStudies.PolymerMelts
NB6.CaseStudies.Nanocomposites
NB7.CaseStudies.Copolymers
NB8.pyPRISM.Internals
NB9.pyPRISM.Advanced

No Programming Background
Simulation Background

PRISM Background
Advanced pyPRISM

Fig. 6: Depiction of the tutorial tracks we provide for users of different
backgrounds and trainings. See the Tutorial page [pyPb] for more
information.

Hα,β (r) and Cα,β (r). This numerical solution process is briefly
described above at the end of the PRISM Theory section and is
described in detail in Section II.E of [MGIJ+18]. In addition to the
computational performance benefits of PRISM theory over MD or
MC, once the full set of pairwise spatial correlation functions is
solved for, a variety of properties can quickly be screened without
having to process large simulation trajectories.

PRISM theory provides a powerful alternative or complement
to traditional simulation approaches, but we should note that it
is not without limitation. There are restrictions on the types of
systems and thermodynamic state points to which PRISM theory
can be applied and the numerical closures are approximations and
therefore sources of error. See Section IV.D of [MGIJ+18] for a
discussion on the known limitations of PRISM theory.

Pedagogy

It is our goal to create a central platform for polymer liquid state
theorists while also lowering the barriers to using PRISM theory
for the greater polymer science community. Towards this effort,
we have identified two primary challenges:

1) The process of understanding and numerically solving
PRISM theory is complex and filled with pitfalls and
opportunities for error.

2) Many of those who would benefit most from PRISM
theory do not have a strong programming background.

Our strategy to address both of these challenges is a strong
focus on providing pedagogical resources to users. To start, we
have put significant effort into our documentation. Every page
of the API documentation [pyPa] contains a written description
of the theory being implemented, all necessary mathematics,
descriptions of all input and output parameters, links to any
relevant journal articles, and a detailed and relevant example.
While including these features in our documentation is not a new
idea, we are focusing on providing these resources immediately
upon release and iterating based on user feedback to improve the
clarity and scope of the information provided.

Moving beyond API documentation, we also have created
knowledgebase materials which provide more nuanced informa-
tion about using and numerically solving PRISM theory. This

DRAFT

DESIGN AND IMPLEMENTATION OF PYPRISM: A POLYMER LIQUID-STATE THEORY FRAMEWORK 7

knowledgebase includes everything from concise lists of systems
and properties that can be studied with pyPRISM to tips and tricks
for reaching convergence of the numerical solver. In reference to
Challenge 2 above, we also recognize that a significant barrier
for non-experts to use these tools is the installation process.
Our installation documentation [pyPa] attempts to be holistic and
provide detailed instructions for the several different ways that
users can install pyPRISM.

We have also created a self-guided tutorial to PRISM theory
and pyPRISM in the form of a series of Jupyter notebooks. [pyPb],
[jup] The tutorial notebooks are designed to target a wide audience
with varied programming and materials science expertise, with
topics ranging from a basic introduction to Python to how to
add new features to pyPRISM. The tutorial also has several case
study-focused notebooks which walk users through the process
of reproducing PRISM results from the literature. Figure 6 shows
our recommendations for how users of different backgrounds and
skill levels might move through the tutorial. In order to ensure the
widest audience possible can take advantage of this tutorial, we
have also set up a binder instance [pyPc], which allows users to
try out pyPRISM and run the tutorial instantly in a web-browser
without installing any software. This feature should also benefit
users who might be hampered by Challenge 2 above.

Future Directions

While pyPRISM is a step forward in providing a central platform
for polymer liquid-state theory calculations, we intend to signifi-
cantly extend the tool beyond its release state. The most obvious
avenue for extension will be to add new potentials, closures, and
intra-molecular correlation functions

(
Ω̂α,β (k)

)
to the codebase.

As described above, we hope that a significant portion of these
classes will be contributed by users. Where analytical expressions
for Ω̂α,β (k) do not exist, they can also be calculated from simu-
lation trajectories. While we do provide a Cython-enhanced tool
to do the calculation, we also plan to add features to more easily
couple pyPRISM to common MD and MC simulation packages.
[hoo], [lam], [sim], [cas] These linkages would also make it easier
for users to carry out the Self-Consistent PRISM (SCPRISM)
method. [MGIJ+18]

PRISM theory also has advanced applications that are not
possible in the current pyPRISM workflow. One example is the
use of PRISM theory to translate a detailed atomistic simulation
model to a less detailed, less computationally expensive coarse-
grained model in a methodology called Integral Equation Coarse
Graining (IECG). [DG17b], [DG17a], [MCLG12], [YSNG04] We
plan to provide utilities in the pyPRISM codebase that aid in
carrying out this method. PRISM theory can also be used to model
or fit neutron and X-ray scattering data. In particular, PRISM
theory can be used to take existing scattering models for single
particles or polymer chains and model the effects of intermolecular
interactions. This approach would greatly extend the applicability
of existing scattering models, which on their own are only valid
in the infinitely dilute concentration limit, but could be combined
with pyPRISM to model higher concentrations.

Summary

pyPRISM is an open-source tool with the goal of facilitating the
usage of PRISM theory, a polymer liquid-state theory. Compared
to more widely-used simulation methods such as MD and MC,
PRISM theory is significantly more computationally efficient,

does not need to be equilibrated, and does not suffer from finite
size effects. pyPRISM lowers the barriers to using PRISM theory
by providing a simple scripting interface for setting up and
numerically solving the theory. Furthermore, in order to ensure
users correctly and appropriately use pyPRISM, we have created
extensive pedagogical materials in the form of API documentation,
knowledgebase materials, and Jupyter-notebook powered tutorials.

Acknowledgements

TBM is supported by a National Research Council (NRC) fel-
lowship at the National Institute of Standards and Technology
(NIST). In addition, this work has been supported by the members
of the NIST nSoft consortium (nist.gov/nsoft). TEG and AJ
thank National Science Foundation Division of Materials Research
Condensed Matter and Materials Theory (NSF DMR-CMMT)
grant number 1609543 for financial support. This research was
supported in part through the use of Information Technologies
(IT) resources at the University of Delaware, specifically the high-
performance computing resources of the Farber supercomputing
cluster. This work used the Extreme Science and Engineering Dis-
covery Environment (XSEDE) Stampede cluster at the University
of Texas through allocation MCB100140 (AJ), which is supported
by National Science Foundation grant number ACI-1548562.

REFERENCES

[ALT08] Joshua A. Anderson, Chris D. Lorenz, and A. Travesset. General
purpose molecular dynamics simulations fully implemented on
graphics processing units. Journal of Computational Physics,
227(10):5342 – 5359, 2008. doi:10.1016/j.jcp.2008.
01.047.

[AQM+16] Akash Arora, Jian Qin, David C. Morse, Kris T. Delaney,
Glenn H. Fredrickson, Frank S. Bates, and Kevin D. Dorfman.
Broadly accessible self-consistent field theory for block polymer
materials discovery. Macromolecules, 49(13):4675–4690, 2016.
doi:10.1021/acs.macromol.6b00107.

[cas] URL: https://www3.nd.edu/~ed/research/cassandra.html.
[cyt] URL: http://cython.org.
[DG17a] M. Dinpajooh and M. G. Guenza. Thermodynamic consistency

in the structure-based integral equation coarse-grained method.
Polymer, 117:282–286, 2017. doi:https://doi.org/10.
1016/j.polymer.2017.04.025.

[DG17b] Mohammadhasan Dinpajooh and Marina G. Guenza. On the
density dependence of the integral equation coarse-graining ef-
fective potential. The Journal of Physical Chemistry B, 2017.
doi:10.1021/acs.jpcb.7b10494.

[dis] Any identification of commerical or open-source software in this
paper is done so purely in order to specify the methodology
adequately. Such identification is not intended to imply recom-
mendation or endorsement by the National Institute of Standards
and Technology, nor is it intended to imply that the softwares
identified are necessarily the best available for the purpose.

[FB02] Daan Frenkel and Smit Berend. Monte Carlo Simulations:
A Basic Monte Carlo Algorithm, book section 3, pages 40–
42. Computational Science Series. Academic Press, San Diego,
California, 2 edition, 2002.

[GNA+15] Jens Glaser, Trung Dac Nguyen, Joshua A. Anderson, Pak Lui,
Filippo Spiga, Jaime A. Millan, David C. Morse, and Sharon C.
Glotzer. Strong scaling of general-purpose molecular dynamics
simulations on gpus. Computer Physics Communications, 192:97
– 107, 2015. doi:10.1016/j.cpc.2015.02.028.

[hoo] URL: http://glotzerlab.engin.umich.edu/hoomd-blue/index.html.
[HS05] Justin B. Hooper and Kenneth S. Schweizer. Contact ag-

gregation, bridging, and steric stabilization in dense polymer-
particle mixtures. Macromolecules, 38(21):8858–8869, 2005.
doi:10.1021/ma051318k.

[jup] URL: https://jupyter.org.
[lam] URL: http://lammps.sandia.gov/.

http://dx.doi.org/10.1016/j.jcp.2008.01.047
http://dx.doi.org/10.1016/j.jcp.2008.01.047
http://dx.doi.org/10.1021/acs.macromol.6b00107
https://www3.nd.edu/~ed/research/cassandra.html
http://cython.org
http://dx.doi.org/https://doi.org/10.1016/j.polymer.2017.04.025
http://dx.doi.org/https://doi.org/10.1016/j.polymer.2017.04.025
http://dx.doi.org/10.1021/acs.jpcb.7b10494
http://dx.doi.org/10.1016/j.cpc.2015.02.028
http://glotzerlab.engin.umich.edu/hoomd-blue/index.html
http://dx.doi.org/10.1021/ma051318k
https://jupyter.org
http://lammps.sandia.gov/

DRAFT

8 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

[MCLG12] J. McCarty, A. J. Clark, I. Y. Lyubimov, and M. G. Guenza.
Thermodynamic consistency between analytic integral equa-
tion theory and coarse-grained molecular dynamics simula-
tions of homopolymer melts. Macromolecules, 45(20):8482–
8493, 2012. URL: <GotoISI>://WOS:000310101600039http://
pubs.acs.org/doi/pdfplus/10.1021/ma301502w, doi:10.1021/
ma301502w.

[MGIJ+18] T. B. Martin, T. E. Gartner III, R. L. Jones, C. R. Snyder, and
A. Jayaraman. pyprism: A computational tool for liquid-state the-
ory calculations of macromolecular materials. Macromolecules,
51(8):2906–2922, 2018. doi:10.1021/acs.macromol.
8b00011.

[new] URL: https://docs.scipy.org/doc/scipy/reference/generated/scipy.
optimize.newton_krylov.html.

[num] URL: http://numpy.org/.
[Oli07] T. E. Oliphant. Python for scientific computing. Com-

puting in Science & Engineering, 9(3):10–20, 2007. URL:
http://ieeexplore.ieee.org/document/4160250/, doi:10.1109/
MCSE.2007.58.

[OS05a] F. T. Oyerokun and K. S. Schweizer. Theory of glassy
dynamics in conformationally anisotropic polymer systems.
Journal of Chemical Physics, 123(22), 2005. URL:
<GotoISI>://WOS:000234120800047http://aip.scitation.org/
doi/pdf/10.1063/1.2135776, doi:10.1063/1.2135776.

[OS05b] F. T. Oyerokun and K. S. Schweizer. Thermodynamics, orien-
tational order and elasticity of strained liquid crystalline melts
and elastomers. Journal of Physical Chemistry B, 109(14):6595–
6603, 2005. URL: <GotoISI>://WOS:000228231200018http:
//pubs.acs.org/doi/pdfplus/10.1021/jp045646i, doi:10.1021/
jp045646i.

[pin] URL: http://pint.readthedocs.io/.
[Pli95] S. Plimpton. False parallel algorithms for short-range molecular-

dynamics. Journal of Computational Physics, 117(1):1–19, 1995.
doi:10.1006/jcph.1995.1039.

[PS99] G. T. Pickett and K. S. Schweizer. Liquid-state theory
of anisotropic flexible polymer fluids. Journal of
Chemical Physics, 110(14):6597–6600, 1999. URL:
<GotoISI>://WOS:000079541700002http://aip.scitation.org/
doi/pdf/10.1063/1.478566, doi:10.1063/1.478566.

[PS00] G. T. Pickett and K. S. Schweizer. Liquid crystallinity
in flexible and rigid rod polymers. Journal of
Chemical Physics, 112(10):4881–4892, 2000. URL:
<GotoISI>://WOS:000085563800049http://aip.scitation.org/
doi/pdf/10.1063/1.481039, doi:10.1063/1.481039.

[psc] URL: http://pscf.cems.umn.edu/.
[pyPa] URL: http://pyprism.readthedocs.io/.
[pyPb] URL: http://pyprism.readthedocs.io/en/latest/tutorial/tutorial.

html.
[pyPc] URL: https://mybinder.org/v2/gh/usnistgov/pyprism/master?

filepath=tutorial.
[pyPd] URL: https://github.com/usnistgov/pyPRISM.
[pyPe] URL: https://anaconda.org/conda-forge/pyprism.
[pyPf] URL: https://pypi.org/project/pyPRISM/.
[RC03] M. Rubinstein and R.H. Colby. Polymer Physics. OUP Oxford,

2003.
[RM11] Neeraj Rai and Edward J. Maginn. Vapor–liquid coexistence and

critical behavior of ionic liquids via molecular simulations. The
Journal of Physical Chemistry Letters, 2(12):1439–1443, 2011.
doi:10.1021/jz200526z.

[SC87] K. S. Schweizer and J. G. Curro. Integral-equation theory of the
structure of polymer melts. Physical Review Letters, 58(3):246–
249, 1987. doi:10.1103/PhysRevLett.58.246.

[SC94] K. S. Schweizer and J. G. Curro. PRISM Theory of the Structure,
Thermodynamics, and Phase-Transitions of Polymer Liquids and
Alloys, volume 116 of Advances in Polymer Science, pages 319–
377. 1994. doi:10.1007/BFb0080203.

[sci] URL: http://scipy.org/.
[sim] URL: http://dmorse.github.io/simpatico/index.html.
[WCV11] S. van der Walt, S. C. Colbert, and G. Varoquaux. The numpy

array: A structure for efficient numerical computation. Com-
puting in Science & Engineering, 13(2):22–30, 2011. URL:
http://ieeexplore.ieee.org/document/5725236/, doi:10.1109/
MCSE.2011.37.

[YSNG04] G. Yatsenko, E. J. Sambriski, M. A. Nemirovskaya, and
M. Guenza. Analytical soft-core potentials for macromolecular
fluids and mixtures. Physical Review Letters, 93(25), 2004.
doi:10.1103/PhysRevLett.93.257803.

<Go to ISI>://WOS:000310101600039 http://pubs.acs.org/doi/pdfplus/10.1021/ma301502w
<Go to ISI>://WOS:000310101600039 http://pubs.acs.org/doi/pdfplus/10.1021/ma301502w
http://dx.doi.org/10.1021/ma301502w
http://dx.doi.org/10.1021/ma301502w
http://dx.doi.org/10.1021/acs.macromol.8b00011
http://dx.doi.org/10.1021/acs.macromol.8b00011
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton_krylov.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton_krylov.html
http://numpy.org/
http://ieeexplore.ieee.org/document/4160250/
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1109/MCSE.2007.58
<Go to ISI>://WOS:000234120800047 http://aip.scitation.org/doi/pdf/10.1063/1.2135776
<Go to ISI>://WOS:000234120800047 http://aip.scitation.org/doi/pdf/10.1063/1.2135776
http://dx.doi.org/10.1063/1.2135776
<Go to ISI>://WOS:000228231200018 http://pubs.acs.org/doi/pdfplus/10.1021/jp045646i
<Go to ISI>://WOS:000228231200018 http://pubs.acs.org/doi/pdfplus/10.1021/jp045646i
http://dx.doi.org/10.1021/jp045646i
http://dx.doi.org/10.1021/jp045646i
http://pint.readthedocs.io/
http://dx.doi.org/10.1006/jcph.1995.1039
<Go to ISI>://WOS:000079541700002 http://aip.scitation.org/doi/pdf/10.1063/1.478566
<Go to ISI>://WOS:000079541700002 http://aip.scitation.org/doi/pdf/10.1063/1.478566
http://dx.doi.org/10.1063/1.478566
<Go to ISI>://WOS:000085563800049 http://aip.scitation.org/doi/pdf/10.1063/1.481039
<Go to ISI>://WOS:000085563800049 http://aip.scitation.org/doi/pdf/10.1063/1.481039
http://dx.doi.org/10.1063/1.481039
http://pscf.cems.umn.edu/
http://pyprism.readthedocs.io/
http://pyprism.readthedocs.io/en/latest/tutorial/tutorial.html
http://pyprism.readthedocs.io/en/latest/tutorial/tutorial.html
https://mybinder.org/v2/gh/usnistgov/pyprism/master?filepath=tutorial
https://mybinder.org/v2/gh/usnistgov/pyprism/master?filepath=tutorial
https://github.com/usnistgov/pyPRISM
https://anaconda.org/conda-forge/pyprism
https://pypi.org/project/pyPRISM/
http://dx.doi.org/10.1021/jz200526z
http://dx.doi.org/10.1103/PhysRevLett.58.246
http://dx.doi.org/10.1007/BFb0080203
http://scipy.org/
http://dmorse.github.io/simpatico/index.html
http://ieeexplore.ieee.org/document/5725236/
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1103/PhysRevLett.93.257803

	Introduction
	PRISM Theory
	pyPRISM Overview
	Installation
	Implementation
	Example pyPRISM Script
	Example Discussion
	Pedagogy
	Future Directions
	Summary
	Acknowledgements
	References

