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Quantum self-testing addresses the following question: is it possible to verify the existence of a 
multipartite state even when one’s measurement devices are completely untrusted? This problem has 
seen abundant activity in the last few years, particularly with the advent of parallel self-testing (i.e., 
testing several copies of a state at once), which has applications not only to quantum cryptography 
but also quantum computing. In this work we give the frst error-tolerant parallel self-test in a three-
party (rather than two-party) scenario, by showing that an arbitrary number of copies of the GHZ 
state can be self-tested. In order to handle the additional complexity of a three-party setting, we use 
a diagrammatic proof based on categorical quantum mechanics, rather than a typical symbolic proof. 
The diagrammatic approach allows for manipulations of the complicated tensor networks that arise in 
the proof, and gives a demonstration of the importance of picture-languages in quantum information. 

1 Introduction 

Quantum rigidity has its origins in quantum key distribution, which is one of the original problems in 
quantum cryptography. In the 1980’s Bennett and Brassard proposed a protocol for secret key distribution 
across an untrusted public quantum channel [3]. A version of the Bennett-Brassard protocol can be 
expressed as follows: Alice prepares N EPR pairs, and shares the second half of these pairs with Bob 
through the untrusted public channel. Alice and Bob then perform random measurements on the resulting 
state, and check the result to verify that indeed their shared state approximates N EPR pairs. If these tests 
succeed, Alice and Bob then use other coordinated measurement results as the basis for their shared key. 
Underlying the proof of security for the Bennett-Brassard protocol is the idea that if a shared 2-qubit 
state approximates the behavior of a Bell state under certain measurements, then the state itself must 
itself approximate a Bell state. 

If we wish to deepen the security, we can ask: what if Alice’s and Bob’s measurement devices are 
also not trusted? Can we prove security at a level that guards against possible exploitation of defects 
in their measurement devices? This leads the question of quantum rigidity: is it possible to completely 
verify the behavior of n untrusted quantum measurement devices, based only on statistical observation 
of their measurement outputs, and without any prior knowledge of the state they contain? 

We say that a n-player cooperative game is rigid if an optimal score at that game guarantees that the 
players must have used a particular state and particular measurements. We say that a state is self-testing 
if its existence can be guaranteed by such a game. Early results on this topic focused on self-testing 
the 2-qubit Bell state [31, 19, 24]. Since then a plethora of results on other games and other states have 
appeared. The majority of works have focused on the bipartite case, and there are a smaller number of 
works that address n-partite states for n ≥ 3 [25, 21, 38, 37, 29, 14]. 

More recently, it has been observed that rigid games exist that self-test not only one copy of a bipar-
tite state, but several copies at once. Such games are a resource not only for cryptography, but also for 
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quantum computation: these games can be manipulated to force untrusted devices to perform measure-
ments on copies of the Bell state which carry out complex circuits. This idea originated in [32] and has 
seen variants and improvements since then [21, 26, 11]. For such applications, it is important that the 
result include an error term which is (at most) bounded by some polynomial function of the number of 
copies of the state.1 

It is noteworthy that all results proved so far for error-tolerant self-testing of several copies of a state at 
once (that is, parallel self-testing) apply to bipartite states only [22, 23, 13, 26, 27, 28, 5, 32, 12, 8, 10, 9]. 
There is a general multipartite self-testing result in [36] which can be applied to the parallel case, but 
it is not error-tolerant and no explicit game is given. Complexity of proofs is a factor in establishing 
new results in this direction: while it would be natural to extrapolate existing parallelization techniques 
to prove self-tests for n-partite states, the proofs for the bipartite case are already diffcult, and we can 
expect that the same proofs for n ≥ 3 are more so. Yet, if this is an obstacle it is one worth overcoming, 
since multi-partite states are an important resource in cryptography. For example, a much-cited paper 
in 1999 [15] proved that secret sharing is possible using several copies of the GHZ state |GHZi = 

1√ (|000i + |111i), in analogy to the use of Bell states in the original QKD protocol [3]. 
2

In this work, we give the frst proof of an error-tolerant parallel tripartite self-test. Specifcally, we 
prove that a certain class of 3-player games self-test N copies of the GHZ state, for any N ≥ 1, with an er-
ror term that grows polynomially with N. To accomplish this we introduce, for the frst time, the graphical 
language of categorical quantum mechanics into the topic of rigidity. As we will discuss below, the use 
of graphical languages is a critical feature of the proof — games involving more than 2 players involve 
complicated tensor networks, which are not easily expressed symbolically. Our result thus demonstrates 
the power and importance of visual formal reasoning in quantum information processing. 

1.1 Categorical quantum mechanics 

Category theory is a branch of abstract mathematics which studies systems of interacting processes. In 
Categorical Quantum Mechanics (CQM), categories (specifcally symmetric monoidal categories) are 
used to represent and analyze the interaction of quantum states and processes. 

Inspired by methods from computer science, CQM introduces a explicit distinction between tradi-
tional quantum semantics in Hilbert spaces and the syntax of quantum protocols and algorithms. In 
particular, symmetric monoidal categories support a diagrammatic formal syntax called string diagrams, 
which provide an intuitive yet rigorous means for defning and analyzing quantum processes, in place 
of the more traditional bra-ket notation. This expressive notation helps to clarify defnitions and proofs, 
making them easier to read and understand, and encourages the use of equational (rather than calcula-
tional) reasoning. 

The origins of CQM’s graphical methods can be found in Penrose’s tensor diagrams [30], although 
earlier graphical languages from physics (Feynman diagrams) and computer science (process charts) can 
be interpreted in these terms. Later, Joyal and Street [16] used category theory and topology to formalize 
these intuitive structures. More recently, the works of Selinger [33, 34] and Coecke, et al. [1, 7] have 
substantially tightened the connection between categorical methods and quantum information, in partic-
ular developing diagrammatic approaches positive maps and quantum-classical interaction, respectively. 
A thorough and self-contained introduction to this line of research can be found in the recent textbook 
[6]. 

1This condition allows the computations to be performed in polynomial time. The works [26, 11] go further, and prove an 
error term that is independent of the number of copies of the state. 
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For a brief review of categorical quantum mechanics and the syntax of string diagrams used in our 
proofs, see Appendix A. 

1.2 Statement of main result 

In the three-player GHZ game, a referee chooses a random bit string xyz ∈ {0,1}3 such that x⊕ y⊕ z=0, 
and distributes x,y,z to the three players (Alice, Bob, Charlie) respectively, who return numbers a,b,c ∈ 
{−1,1} respectively. The game is won if 

(−1) ¬(x∨y∨z)abc = . (1) 

(In other words, the game is won if the parity of the outputs is even and xyz 6= 000, or the parity of the 
outputs is odd and xyz = 000.) It is easy to prove that this game has no classical winning strategy. On 
the other hand, if Alice, Bob, and Charlie share the 3-qubit state ! 

1 |Gi = √ |rsti− |rsti , (2)
2 2 ∑ ∑ 

r+s+t≤1 r+s+t≥2

and obtain their outputs by either performing an X-measurement {|+ih+| , |−ih−|} on input 0 or the 
Z-measurement {|0ih0| , |1ih1|} on input 1, they win perfectly. This is known to be the only optimal 
strategy (up to local changes of basis) and therefore the GHZ game is rigid [20]. (An equivalent strategy, 

1which is more conventional, is to use the state |GHZi = √ (|000i + |111i) and X- and Y -measurements
2

to win the GHZ game. We will use the state |Gi instead for compatibility with previous work on rigidity. 
Note that |Gi is equivalent under local unitary transformations to |GHZi.) 

To extend this game to a self-test for the |Gi⊗N state, we use a game modeled after [5]. The game 
requires the players to simulate playing the GHZ game N times. We give input to the rth player in the 

frform of a pair (Ur, fr) where {1,2, . . . ,N} ⊇ Ur −→ {0,1} is a partial function assigning an “input” 
value for some subset of the game’s “rounds” 1, . . . ,N. The output given by such a player is a function 
gr : Ur → {0,1} assigning a bit-valued “output” to each round. The game is won if the GHZ condition 
(1) is satisfed on all the rounds in U1∩U2∩U3 for which the input string was even-parity. 

Fortunately, it is not necessary to query the players on all possible subsets Ur ⊆ {0,1, . . . ,N} (which 
would involve an exponential number of inputs) — it is only necessary to query them on one- and two-
element subsets. This yields the game GHZN , which is formally defned in Figure 1 below. Our main 
result is the following. (See Proposition 10 below for a formal statement.) 

√
Theorem 1. The game GHZN is a self-test for the state |Gi⊗N, with error term O(N4 ε). 

In other words, if three devices succeed at the game GHZN with probability 1 − ε , then the devices √
must contain a state that approximates the state |Gi⊗N up to an error term of O(N4 ε). The proof 
proceeds by assuming that the players have such a high-performing strategy, and then using the mea-
surements from that strategy to map their state isometrically to a state that is approximately of the form 
|Gi⊗ L0, where L0 is some arbitrary tripartite “junk” state. This approach is a graphical translation of the 
method of many previous works on rigidity (in particular, [21] and our previous paper [17]). 

1.3 Related works and further directions 

In previous works on quantum rigidity, pictures are often used as an aid to a proof, but not as a proof 
itself. The only other rigidity paper that we know of which used rigorous graphical methods is the recent 
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Participants: Player 1 (Alice), Player 2 (Bob), Player 3 (Charlie), and a Referee 
Parameter: N ≥ 1 (the number of rounds) 

1. The referee chooses a number r ∈ {0,1,2,3} and a two distinct elements i, j ∈ 
{1,2, . . . ,N} uniformly at random. 

2. If r = 0, then the referee sets U1 = U2 = U3 = {i}. Otherwise, he sets Ur = {i, j} and 
sets each the other variables Uk (for k 6= r) to be equal to {i}. 

3. The referee chooses values for f1(i), f2(i), f3(i) ∈ {0,1} uniformly at random under 
the constraint that f1(i)⊕ f2(i)⊕ f3(i) = 0. Also, if r > 0, the referee chooses fr( j) ∈ 
{0,1} at random. 

4. The referee sends each pair (Ui, fi) to the ith player, respectively, who returns a func-
tion gi : Ui → {−1,1}. 

5. The game is won if 

(−1) ¬( f1(i)∨ f2(i)∨ f3(i))g1(i)g2(i)g3(i) = . (3) 

Figure 1: The augmented GHZ game (GHZN). 

paper [12] which successfully used the concept of a group picture to prove rigidity for a new class of 
2-player games. Group pictures are visual proofs of equations between elements of a fnitely presented 
group. In the context of rigidity, group pictures construct approximate relations between products of 
sequences of operators, and as such they are a useful general tool for proving rigidity of 2-player games. 
An interesting further direction is to try to merge the formalism of [12] with the one given here in order 
to address general n-player games. 

A natural next step is to explore cryptographic applications. Since GHZ states form the basis for the 
secret-sharing scheme of [15], it may be useful to see if the game GHZN can be used to create a new 
protocol for 3-party secret sharing using untrusted quantum devices. 

2 Preliminaries 

2.1 The augmented GHZ game 

The game GHZN that we will use to self-test the state |Gi⊗N from equation (2) is given in Figure 1. In 
this game, each player is requested to give outputs for either one or two round numbers (chosen from 
the set {1,2, . . . ,N}) given inputs for each round number. Both the inputs and the players’ outputs are 
expressed as partial functions on the set {1,2, . . . ,N}. This game is modeled after [5]. 

The variable r determines the type of input given to each player. Note that in the case r = 0, there 
are 4N possible input combinations that the referee could give to the players (since there are N possible 
values for i, and 4 possible values for ( f1(i), f2(i), f3(i))) and for each of the values, r = 1,2,3, there are 
8N(N− 1) possible input combinations. Each valid input combination occurs with probability Ω(1/N2). 

We wish to describe the set of all possible quantum behaviors by the players Alice, Bob, and Charlie 
in GHZN . In the defnition that follows, we use the term refection to mean an observable with values in 
{±1} (in other words, a Hermitian operator whose square is the identity). A quantum strategy for the 
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game GHZN game consists of the following data. 

1. A unit vector L ∈ A⊗ B⊗C, where A,B,C are fnite-dimensional Hilbert spaces. 

2. For each i ∈ {1,2, . . . ,N}, b ∈ {0,1}, and W ∈ {A,B,C}, a refection 

RW (4)i→b 

on W . 

3. For each i, j ∈ {1,2, . . . ,N}, b,c ∈ {0,1}, and W ∈ {A,B,C}, two commuting refections 

RW and RW (5)i→b| j→c j→c|i→b 

on W . 

The spaces A,B,C denote the registers possessed by Alice, Bob, and Charlie, respectively. The vector 
L denotes the initial state that they share before the game begins. The refections RW 

i→b describe their 
behavior on singleton rounds (specifcally, on a singleton round the player measures his or her register W 
along the eigenspaces of RW or −1 for round i, appropriately). The refections i→b, and reports either +1
RW ,RW

j→c|i→b describe their behavior on non-singleton rounds (specifcally, if the input to a player i→b| j→c

is the function [i→ b, j→ c], then they measure along the eigenspaces of RW to obtain their output i→b| j→c 

for round i and measure along the eigenspaces of RW to determine their output for round j). Note j→c|i→b 
that since the refections in (5) represent measurements that are carried out simultaneously by one of the 
players, we assume that these two refections commute. (This assumption will be critical in our proof). 

For any refection Z and unit vector ψ on a fnite-dimensional Hilbert space Q, if we measure ψ with 
Z then the probability of obtaining an output of −1 is precisely 

[1− Tr(Zψψ
∗ )]/2 = kZψ − ψk2 /4 (6) 

We can use this fact to express the losing probabilities achieved by the players in terms of their strategy. 
If r = 0 and the players are queried for round i with inputs x,y,z, then their losing probability is precisely 

RA

i→xR
B
i→yR

C
i→zL+(−1)x∨y∨zL 



2 
/4. (7) 

If Alice is queried for round i with input x and round j with input x0, and Bob and Charlie are queried for 
round i with inputs y,z respectively, then the losing probability is 


RA

i→x| j→x0 R
B
i→yR

C
i→zL+(−1)x∨y∨zL 




 2 
/4. (8) 

Similar expressions hold for the case where Bob or Charlie is the party that receives two queries. n��Note that the game GHZN is entirely symmetric between the three players Alice, Bob and Charlie. o� 
This means that, given any strategy L, RW RW 

i→b , for GHZN , we can produce fve additional i→b| j→c 

strategies by choosing a nontrivial permutation σ : {1,2,3} → {1,2,3} and giving the pth players’ sub-
system and measurement strategy to the σ(p)th player, for each p ∈ {1,2,3}. We will make use of this 
symmetry in the proof that follows. 
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2.2 Approximation chains 

We make the following defnition (see similar notation in [18, 4]). If F,G : A→ B are linear maps, then 

F = G (9)
δ 

denotes the inequality kF− Gk2 ≤ O(δ ), where k·k2 denotes the Frobenius norm and O denotes asymp-
totic big-O notation. (If F and G are vectors, then kF− Gk2 is simply the Euclidean distance kF− Gk.) 

We will use this notation especially in the case where F and G are processes represented by diagrams. 
Note that this relation is transitive: if F = G and G = H, then F = H. Note also that if J : B→ C is a 

δ δ δ 
linear map whose operator norm satisfes kJk

∞ ≤ α , then F = G =⇒ J ◦ F = J ◦ G. 
δ δα 

3 Rigidity of the augmented GHZ game 

Throughout this section, suppose that n���� o� o non 
RA

i→a RB 
i→b , RC RA RB RC , , ,i→c i→a| j→a0 i→b| j→b0 i→c| j→c0L, (10), 

is a quantum strategy for the GHZN game which wins with probability 1− ε . It is helpful to introduce 
some redundant notation for this strategy: for any W ∈ {A,B,C} and i ∈ {1,2, . . . ,N} let 

X 0 = RW (11)W,i i7→0, 

Z0 = RW (12)W,i i7→1, 

The reason for this notation is that we intend to show that the operators RW 
i7→1 approximate the i7→1,R
W 

behavior of the X and Z measurements in the optimal GHZ strategy (see the beginning of subsection 1.2). 
Similarly, let X 0 = RW and Z0 = RW 

W,i| j→1 i→0| j→1 W, j|i→0 j→1|i→0. 
We will drop the subscript W from this notation when it is clear from the context. 

3.1 Initial steps 

Our frst goal is to prove approximate commutativity and anticommutativity relations for the operators 
XW
0 
,i,ZW

0 
,i. 

Since the losing probability for our chosen strategy is ε , and each input string occurs with probability 
Ω(N2), we can conclude that the probability of losing on any particular input combination is O(N2ε). By 
the discussion of expressions (7) and (8) above, we therefore have the following for any i∈ {1,2, . . . ,N}: 


 


 2 

≤ O(N2
ε),(I+ XA

0 
,iXB

0 
,iXC

0 
,i)|Li 


 


 2 

≤ O(N2
ε),(I− ZA

0 
,iZB
0 
,iXC

0 
,i)|Li 










 2 
≤ O(N2

ε),(I− XA
0 
,iZB
0 
,iZC
0 
,i)|Li 


 2 

≤ O(N2
ε),(I− ZA

0 
,iXB

0 
,iZC
0 
,i)|Li (13) 
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Additionally, if we take any of the four inequalities above, and replace any one of the operators XW
0 
,i with 

X 0 , where j 6 W,i withW,i| j→t = i and t ∈ {0,1}, the inequality remains true, and likewise if we replace any Z0 

Z0 , the inequality remains true. W,i| j→t

We can translate the inequalities above into graphical form. 

Proposition 2. The following inequalities hold. 

A B C 

X 0 i X 0 X 0 i i 

A B C 

== √
L 

N ε −L 

(14) 

A B C 

X 0 i Z0 Z0 i i 

A B C 

== √
L 

N ε L 

(15) 

And, inequality (15) also holds for any permutation of the letters A,B,C. 

We will use Proposition 2 to prove the following assertion. 

Proposition 3 (Approximate anti-commutativity). For any i, the following inequality holds: 

A B C A B C 

Z0 i 

X 0 i 

L 

X 0 i 

== √
Z0 i 

N ε 
−L 

(16) 
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Proof. Repeatedly applying Proposition 2, 

A B C A B C 

Z0 i 

X 0 i 

L 

A B C 

== 
N 
√

ε 
== 
N 
√

ε 

A B C 

Z0 i X 0 X 0 i i 

−L 

X 0 i 

== √
N ε Z0 i 

−L 

X 0 i X 0 i 

X 0 i Z0 i 

−L 

(17) 
(Here we have used the fact that all of the unitary maps in these diagrams are self-inverse.) Applying the 
same steps symmetrically across the wires A,B,C, 

A B C A B C A B C 

X 0 i 

== 
N 
√

ε 

as desired. 

Z0 i 

−L 

Z0 i 

X 0 i 

L 

X 0 j 

== 
Z0 i 

(18)√
N ε 

−L 

Proposition 4 (Approximate commutativity). The following equation holds for any distinct i, j∈{1,2, . . . ,N}
and any bits b,c ∈ {0,1}: 

A B C A B C 

R j→c Ri→b 

Ri→b 
== √
N ε 

Rj→c 

L L 

The proof of Proposition 4 is given in appendix C, and is based on the fact that the related refections 
Ri→b| j→c and Rj→c|i→b commute. 
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3.2 Isometries 

Next we defne the local isometries which will relate the state L to the ideal state |GHZi⊗N . Roughly 
speaking, for each k ∈ {1,2, . . . ,N} and W ∈ {A,B,C}, we will construct an isometry ΨW,k which ap-
proximately “locates” a qubit with the ith players’ system, and swaps it out onto a qubit register Q∼ .= C2 

We then apply these isometries in order, for 1,2, . . . ,N, the system W . We will use approximate commu-
tativity to show that the different isometries ΨW,k do not interfere much with one another when applied 
in sequence. Our approach borrows from previous works on rigidity and uses similar notation to that of 
the non-graphical rigidity proof in our previous paper [17]. 

In the following, we use controlled unitary gates, C(U), which are defned and discussed in Appendix 
B. Let H : C2 → C2 denote the Hadamard gate [|0i 7→ |+i , |1i 7→ |−i]. We defne isometries ΨA,k on 
the system A which involve preparing a Bell state (denoted by a gray node) and then performing an 
approximate “swap” procedure between one half of the Bell state and A. (This is based on [21].) Then 
we defne an isometry ΘA,k on A which chains together the swapping maps ΨA,1, . . . ,ΨA,k. 

Defnition 5 (Swapping maps). For each k ∈ {1,2, . . . ,N}, let Qk and Qk denote qubit registers, and 
defne an isometry ΨA,k as follows (suppressing the label A when it is not necessary): 

Qk Qk A 

A 

Qk Qk A 

Ψk := 

A 

C(Z0 k) 

H 

C(X 0 k) 

H 

C(X 0 k) 

(19) 

Let Qk = Qk⊗ Qk and Q1...k = Q1⊗·· ·⊗ Qk. Defne an isometry Θk,A by 

Q1 Q2 · · · Qk A 

Q1...k A 
. 

Θk := 

Ψ1 

Ψ2 

Ψk

.

. 
(20) 

A 

A 

http:systemW.We
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Let QN+1, . . . ,Q3N ,QN+1, . . . ,Q3N be qubit registers, and defne ΨB,k analogously as an isometry from 
B to B⊗ QN+k⊗ QN+k. Defne ΨC,k analogously as an isometry from C to C ⊗ Q2N+k⊗ Q2N+k. Defne 
composite maps ΘB,k and ΘC,k similarly in terms of ΨB,k and ΨC,k. 

3.3 Commutativity properties 

We now investigate some approximate (anti-)commutativity relationships between the Pauli operators on 
Q, the refection strategies for A, B and C, and the isometries defned in the last section. 

We begin with the following defnition and lemma, which are crucial. 
Defnition 6. Let R,S be registers and let Z ∈ R⊗ S be a unit vector. If a unitary map U : R→ R is such 
that there exists another unitary map V : S→ S satisfying 

R S R S 

== U V (21)
δ 

Z Z 

the we say that U can be pushed through Z with error term δ . 
Lemma 7 (Push Lemma). Suppose that R,S are registers, Z ∈ R⊗S is a unit vector, and V,W,U1,U2, . . . ,Uk 
are unitary operators on R such that 

1. Each map Ui can be pushed through Z with error term ε , and 

2. The approximate equality (V ⊗ IS)L = (W ⊗ IS)L holds. 
δ 

Then, 
R S R S 

Z 

Uk 

U1 

. . . 

V 

== 
kε+δ 

Z 

Uk 

U1 

. . . 

W 

(22) 

The Push Lemma follows from an easy inductive argument, and is given in the appendix. Note that 
by Proposition 2, for any k we have 

XA
0 
,kL =√= (−XB

0 
,k⊗ XC

0 
,k)L (23)

N ε 

ZA
0 
,kL =√= (ZB

0 
,k⊗ XC

0 
,k)L, (24)

N ε 

√
and so all of the maps X·

0 
,k and Z·

0 
k can be pushed through L with error term N ε . This fact underlies the 

proofs of the next two results, which are proved in the appendix using a combination of the Push Lemma, 
and the approximate commutativity and anti-commutativity properties of maps X·

0 
k and Z·

0 
k. 
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Proposition 8. For k ∈ {1,2, . . . ,N}, let XA,k and ZA,k denote the Pauli operators on Qk. Then, 

Qk A B C Qk A B C 

Xk Ψk 

== 
X 0 k 

(25)√
N εΨk 

L L 

and similarly for Zk
0 . Likewise, defne {XB,k,ZB,k} to be the Pauli operators on QN+k and defne {XC,k,ZC,k}

to be the Pauli operators on Q2N+k. Analogous statements hold for Ψk,B and Ψk,C. 

Proposition 9. For any k ∈ {1,2, . . . ,N}, 

Q1...N A B C Q1...N A B C 

Xk ΘN 

== 
X 0 k 

(26)√
N3 εΘN 

L L 

and similarly for Zk
0 . Analogous statements hold for ΘB,k and ΘC,k. 

3.4 Rigidity 

We are now ready to state and prove our main result. 

Proposition 10 (Rigidity). Let ΘA,N ,ΘB,N ,ΘC,N be the isometries from Defnition 5. Then, there is some 
state L0 on A ⊗ B⊗C⊗ Q1...3N such that 

Q1...N Q2N+1...3NQ1...N QN+1...2N Q2N+1...3N 

A B C 

ΘN ΘN ΘN 

L 

== 
N4√ε 

QN+1...2N A B C Q1...3N 

G⊗N L0 

(27) 

Proof. In the following, we write Q1 := Q1...N , Q2 := Q(N+1)...2N and Q3 := Q(2N+1)...3N in order to 
conserve space. By application of Props. 2 and 9 we have, 

http:space.By
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Q1 Q2 Q3 A B C Q1 Q2 Q3 A B C 

Xi Xi Xi 

ΘN ΘN ΘN 

L 

== 
N3√ε 

ΘN ΘN ΘN 

X 0 i X 0 i X 0 i 

L 

== 
N 
√

ε 

Q1 Q2 Q3 A B C 

ΘN ΘN ΘN 

−L 

(28) 

(Here, Xi is used to denote the X-Pauli operator on either Qi, QN+i, or Q2N+i depending on which 
wire it is applied to.) Similarly we obtain that 

Q1 Q2 Q3 A B C 

Xi Zi Zi 

ΘN ΘN ΘN 

L 

== 
N3√ε 

Q1 Q2 Q3 A B C 

ΘN ΘN ΘN 

L 

(29) 

where the last relation also holds for any permutation of the labels (Xi,Zi,Zi) on the left side of the 
equation. 

The commuting refection operators X ⊗ Z⊗ Z, Z⊗ X ⊗ Z, and Z⊗ Z⊗ X on C2⊗ C2⊗ C2 have 
a common orthonormal eigenbasis G = G0,G1, . . . ,G7, in which G0 is the only eigenvector that has 
eigenvalue (+1) for all three operators. We can express ΘN

A ⊗ ΘN
B ⊗ ΘN |Li using this basis as c 

Θ
N
A ⊗ ΘN

B ⊗ ΘN
c |Li = ∑ |v1i⊗ · · ·⊗ |vNi⊗ |Lv

0 i. (30) 
v1,··· ,vN∈{G0,...,G7} 

where L0 ∈ A⊗ B⊗C⊗ Q1...3N . For every term in the sum on the right except the one indexed by G⊗0 
N ,v 

there is an operator of the form XA,i⊗ ZB,i⊗ ZC,i, ZA,i⊗ XB,i⊗ ZC,i, or ZA,i⊗ ZB,i⊗ XC,i which negates 
it. By equation (29) above, the total length of all the terms negated by any one particular gate of this √ √
form is O(N3 ε), and so the total length of all terms in (30) other than the G⊗N term is O(N4 ε), as 0 
desired. 

We note that our proofs generalize in a straightforward manner to a proof of self-testing for an 
arbitrary number of copies of a k-GHZ state, for any integer k > 3. The graphical method seems generally 

http:operators.We
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well-suited to proving parallel self-testing for stabilizer states, including graph states [21]. We leave 
possible generalizations to future work. 
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[16] André Joyal & Ross Street (1991): The geometry of tensor calculus, I. Advances in mathematics 88(1), pp. 
55–112. 

[17] Amir Kalev & Carl A Miller (2017): Rigidity of the magic pentagram game. Quantum Science and Technol-
ogy 3(1), p. 015002. 

[18] Aleks Kissinger, Sean Tull & Bas Westerbaan (2017): Picture-perfect Quantum Key Distribution. 
ArXiv:1704.08668. 

[19] Dominic Mayers & Andrew Yao (1998): Quantum cryptography with imperfect apparatus. In: Foundations 
of Computer Science, 1998. Proceedings. 39th Annual Symposium on, IEEE, pp. 503–509. 

[20] Matthew McKague (2011): Self-testing graph states. In: Conference on Quantum Computation, Communi-
cation, and Cryptography, Springer, pp. 104–120. 

[21] Matthew McKague (2016): Interactive Proofs for BQP via Self-Tested Graph States. Theory of Computing 
12(3), pp. 1–42. 



14 Parallel Self-Testing of the GHZ State with a Proof by Diagrams 

[22] Matthew McKague (2016): Self-testing in parallel. New Journal of Physics 18(4), p. 045013. 
[23] Matthew McKague (2017): Self-testing in parallel with CHSH. Quantum 1, p. 1. 
[24] Matthew McKague, Tzyh Haur Yang & Valerio Scarani (2012): Robust self-testing of the singlet. Journal of 

Physics A: Mathematical and Theoretical 45(45), p. 455304. 
[25] Carl A. Miller & Yaoyun Shi (2013): Optimal Robust Self-Testing by Binary Nonlocal XOR Games. In: 8th 

Conference on the Theory of Quantum Computation, Communication and Cryptography, pp. 264–272. 
[26] Anand Natarajan & Thomas Vidick (2017): A Quantum Linearity Test for Robustly Verifying Entanglement. 

In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, ACM, 
New York, NY, USA, pp. 1003–1015, doi:10.1145/3055399.3055468. Available at http://doi.acm.org/ 
10.1145/3055399.3055468. 

[27] Anand Natarajan & Thomas Vidick (2018): Low-degree testing for quantum states. arXiv preprint 
arXiv:1801.03821. 

[28] Dimiter Ostrev (2016): The structure of nearly-optimal quantum strategies for the CHSH (n) XOR games. 
Quantum Information & Computation 16(13-14), pp. 1191–1211. 

[29] Károly F. Pál, Tamás Vértesi & Miguel Navascués (2014): Device-independent tomography of multipartite 
quantum states. Phys. Rev. A 90, p. 042340, doi:10.1103/PhysRevA.90.042340. Available at https:// 
link.aps.org/doi/10.1103/PhysRevA.90.042340. 

[30] Roger Penrose (1971): Applications of negative dimensional tensors. Combinatorial mathematics and its 
applications 1, pp. 221–244. 

[31] Sandu Popescu & Daniel Rohrlich (1992): Which states violate Bell’s inequality maximally? Physics Letters 
A 169(6), pp. 411–414. 

[32] Ben W Reichardt, Falk Unger & Umesh Vazirani (2013): Classical command of quantum systems. Nature 
496(7446), p. 456. 

[33] Peter Selinger (2004): Towards a quantum programming language. Mathematical Structures in Computer 
Science 14(4), pp. 527–586. 

[34] Peter Selinger (2007): Dagger compact closed categories and completely positive maps. Electronic Notes in 
Theoretical computer science 170, pp. 139–163. 

[35] Peter Selinger (2010): A survey of graphical languages for monoidal categories. In: New structures for 
physics, Springer, pp. 289–355. 

[36] Ivan ˇ c, Andrea Coladangelo, Remigiusz Augusiak & Antonio Ac´Supi´ ın (2017): A simple approach to self-
testing multipartite entangled states. ArXiv:1707.06534. 

[37] Xingyao Wu (2016): Self-Testing: Walking on the Boundary of the Quantum Set. Ph.D. thesis, National 
University of Singapore. 

[38] Xingyao Wu, Yu Cai, Tzyh Haur Yang, Huy Nguyen Le, Jean-Daniel Bancal & Valerio Scarani (2014): 
Robust self-testing of the three-qubit W state. Physical Review A 90(4), p. 042339. 

http://dx.doi.org/10.1145/3055399.3055468
http://doi.acm.org/10.1145/3055399.3055468
http://doi.acm.org/10.1145/3055399.3055468
http://dx.doi.org/10.1103/PhysRevA.90.042340
https://link.aps.org/doi/10.1103/PhysRevA.90.042340
https://link.aps.org/doi/10.1103/PhysRevA.90.042340


15 S. Breiner, A. Kalev, C. A. Miller 

Appendix A Categorical Quantum Mechanics 

In this appendix we will briefy review some of the standard machinery of categorical quantum mechan-
ics. For a thorough introduction to the topic, see [6]. 

A.1 Symmetric Monoidal Categories 

The formal context for categorical quantum mechanics is that of symmetric monoidal categories. We 
develop the terminology in stages. 

A category is a mathematical structure representing a universe of (possible) processes F,G,H, . . .; 
each process has a typed input and output, often indicated by writing F : A → B. The fundamental 
structure in a category is serial composition; whenever the output type of F : A→ B matches the input 
type of G : A→ C, we may form a composite process F ◦ G : A→ C. 

A monoidal category generalizes the structure of an ordinary category to allows for multi-partite 
processes; here the fundamental object of study is a process F : A1⊗ . . . ⊗ Am → B1⊗ . . . ⊗ Bn, which is 
represented as a black box with m labeled inputs and n labeled outputs. (Either of the numbers m,n may 
be zero.) Diagramatically, we represent these classes as follows: 

B1 B2 . . . Bn A1 A2 . . . Am 

F S M K (31) 

A1 A2 . . . Am B1 B2 . . . Bn 

The categorical structure of serial composition is represented diagrammatically by matching the out-
put wires of one process to the inputs of another, so long as the types match up. So, above, F can be 
pre-composed with S and post-composed with M to yield a scalar M◦F ◦S or, in Dirac notation, hM|F |Si. 

Along with multi-partite states and processes, monoidal structure also introduces an operation of 
parallel composition on processes: given F : A → B and G : A0 → B0, we can produce a parallel pro-
cess F⊗ G : A⊗ A0 → B⊗ B0, depicted graphically by side-by-side juxtaposition. More generally, using 
parallel composition with identity processes (represented by bare wires), we can compose processes in 
which only some inputs and outputs match. Note that we will often suppress wire labels in complicated 
diagrams, as the labels are implicitly determined by the boxes they feed. 

Finally, a symmetric structure on a monoidal category allow for additional fexibility in how wires 
can be manipulated. A symmetry allows us to permute the ordering of strings, and is represented dia-
grammatically by crossing wires (called a twist). Formally, the twist is axiomatized terms of intuitive 
diagrammatic equations: 

A B A B A0 B0 A0 B0 

= 

F G 

= 

G F 

(32) 

A B A B A B A B 
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A.2 Quantum states and processes 

To apply the above approach to quantum mechanics, we work within the category Hilb of fnite-dimensional 
Hilbert spaces over C. In this category, the types are fnite-dimensional Hilbert spaces (i.e., vector 
spaces of C with semi-linear inner product) each equipped with a fxed orthonormal basis, and the pro-
cesses are C-linear maps between such vector spaces. For example, if A1, . . . ,Am,B1, . . . ,Bn are fnite-
dimensional Hilbert spaces, then the diagrams in display box (31) above represent, respectively, a linear 
map F : A1⊗ . . . ⊗ Am → B1⊗ . . . ⊗ Bn, a vector S ∈ A1⊗ . . . ⊗ Am, a linear map M : B1⊗ . . . ⊗ Bn → C, 
and a scalar K ∈ C. Serial composition of diagrams simply represents composition of functions — for 
example, the composition of S,F and M is simply the scalar M(F(S)) ∈ C. It is elementary to show this 
category is a symmetric monoidal category (with the tensor product as its monoidal operation). 

For our purposes, a state is a vector in a Hilbert space (i.e., a process with no inputs) whose norm is 
equal to one. A unitary process F : A→ B is a linear map that satisfes FF∗ = IB and F∗F = IA. (Also, 
a linear map G : A→ B that satisfes the single condition G∗G = IA is called an isometry.) With these 
defnitions, we will be able to express quantum states and processes as diagrams like the ones in (31) and 
(32) above. 

We note that while symmetric monoidal categories are suffcient to handle the book-keeping needed 
in our proofs, it is only a fragment of the full CQM theory. Further development introduces compact 
closed structures (trace, transpose, state-process duality), dagger structures (adjoint, conjugate), Frobe-
nius structures (orthonormal basis, classical-quantum interaction) and Hopf structures (complementary 
bases, ZX-calculus). For our purposes, we need only one additional visual defnition, which is the Bell 
state. In this paper we use a gray node with two wires of the same type R, 

R R 

(33) 

to denote the unit vector � � 
√ 

1 
∑e⊗ e ∈ R⊗ R, (34)

dim R e 

where the sum is taken over the standard basis of R. If R∼ .= C2, we denote this state symbolically by Φ+ 

Appendix B Controlled Unitaries 

Our proof makes substantial uses of controlled unitary operations. This appendix collects key facts about 
controlled operations which will simplify our main proof. 

Defnition 11 (Controlled Unitary). Let Q ∼= C2 denote a qubit register with a fxed computational basis 
{|0i, |1i}, and suppose U : H → H is a unitary operation. The associated controlled unitary C(U) : 
Q⊗ H → Q⊗ H is defned by 

C(U) = |0ih0|⊗ IH + |1ih1|⊗U. (35) 

The next lemma describes some (anti-)commutativity properties between controlled unitaries and 
Pauli operators X and Z. The proofs follow directly from the defnition. 
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Lemma 12. For any refection R : H → H we have the following equations 

Q H Q H 

Z 
Q H 

C(−R) 

C(R) 

= = 
C(R) 

(36) 
Z 

Q H 
Q H Q H 

Q H 
Q H Q H 

C(R)R 
X 

C(R) = = 
C(R) 

(37) 

R
X 

Q H Q H 
Q H 

Appendix C Supporting Proofs 

In this appendix we provide the proofs for propositions from the main text. 

C.1 Proof of Proposition 4 

We give the proof for b = 0,c = 1; the other cases are analogous. Using inequalities (13) and their 
variants, we have 

A B C A B C 

Z0 j 

X 0 i 

L 

A B C 

== 
N 
√

ε 
== 
N 
√

ε 

Z0 j X 0 X 0 i i 

−L 

X 0 i X 0 i 

X 0 j Z0 j 

−L 

(38) 
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CA B 
A B C 

== Z0 j|i→0 i iX 0 X 0 == √ √
N ε N ε 

−L 

Z0 j|i→0 

X 0 i| j→1 

L 

A similar sequence shows that 

A B C A B C 

X 0 i 

Z0 j 

L 

Since XA
0 
,i| j→1 = Ri

A 
→0| j→1 and ZA

0 
, j|i→0 := RA

j→1|i→0 are assumed to commute, the result follows. 

C.2 Proof of Lemma 7 

Applying the push condition inductively, we have the following for some unitary operators V1, . . . ,Vk: 

R S R S R S R S 

V 

U1 

. . . 

Uk 

X 0 i| j→1 

== 
Z0 j|i→0 

(39)√
N ε 

L 

W 

Vk U1 
==== == 

V 
(40)kε . δ W . kε . . . . . . . 

V1 Uk 

Vk 

V1 

Z Z Z Z 
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C.3 Proof of Proposition 8 

We begin with two observations. First, the approximate anti-commutativity in Proposition 3 implies the 
following approximate anti-commutativity property for the controlled-Xk 

0 gate (by superposition): 

Qk C(X 0 k) 
== Qk 

Z0 k 

√
N ε 

A 

C(−X 0 k) 

Z0 k 
(41) 

A 

L L 

Secondly, the controlled operator C(XA
0 
,k) on Qk⊗ A can be approximately pushed through the state 

Φ+ ⊗ L like so: 

A Qk Qk B C A Qk Qk B C 

L 

C(X 0 k) 

== 
N 
√

ε 

L 

C(Z0 B,k⊗ Z0 C,k) 

(42) 

And similarly for ZA
0 
,k. The Hadamard operator [H⊗ IA] on Qk⊗A can be exactly pushed through Φ+ ⊗L 

(by merely applying H to Qk). This fact allows free application of the Push Lemma (Lemma 7). We have 
the following, in which we exploit approximate anti-commutativity, the Lemma 7, and the rules for 
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controlled unitaries from Appendix B. 

Qk Qk A 

L 

Qk Qk A 

X 

Ψk B C 
== 

L 

X 

C(Z0 k) 

H 

C(X 0 k) 

H 

C(X 0 k) 

B C 

(43) 

Qk Qk A Qk Qk A 

== 

L 

X 

C(Z0 k) 

H 

C(X 0 k) 

H 

C(X 0 k) 

X 0 k 

B C 

== 

L 

Z 

C(−Z0 k) 

H 

C(X 0 k) 

H 

C(X 0 k) 

X 0 k 

B C 

(44)√
N ε 
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Qk Qk A 

C(X 0 k) 

H Qk Qk A 

Ψk 
C(Z0 k) 

== H == 
X 0 k 

(45)
B C 

B C 
C(X 0 k) 

L 
0Xk 

L 

Similarly, 

Qk Qk A 

Z 

C(X 0 k)Qk Qk A 

Z 

Ψk 

H 

C(Z0 k) 
(46)== 

B C 
B C 

H 

C(X 0 k) 
L 

L 
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Qk Qk A Qk Qk A 

== 

L 

Z 

C(Z0 k) 

H 

C(X 0 k) 

H 

C(X 0 k) 

B C 

== 

L 

X 

C(Z0 k) 

H 

C(X 0 k) 

H 

C(X 0 k) 

B C 

(47) 

Qk Qk A Qk Qk A 

== 

L 

X 

C(Z0 k) 

H 

C(X 0 k) 

H 

C(X 0 

Zk 

k) 

0 

B C 

== 

L 

Z 

C(Z0 k) 

H 

C(X 0 k) 

H 

C(X 0 k) 

Z0 k 

B C 

(48) 
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Qk Qk A Qk Qk A 

C(X 0 k) 

H 

C(Z0 k) 

== H Z0 k 
== √
N ε

B C 

L 

C(−X 0 k) 

Qk Qk A 

== 
B 

L 

Z0 k 

Ψk 

as desired. This completes the proof. 

C.4 Proof of Proposition 9 

C(X 0 k) 

H 

C(Z0 k) 

H (49) 

B C 
C(X 0 k) 

Z0 k 

L 

(50)
C 

We begin with the following lemma. It is similar to the Push Lemma (Lemma 7) but it specifcally 
addresses commutativity. 

Lemma 13. Suppose that R,S are registers, Z ∈ R⊗ S is a unit vector, and V,U1,U2, . . . ,Uk are unitary 
operators on R such that 

1. Each map Ui can be pushed through Z with error term ε , and 

2. The approximate equality (VUi⊗ IS)L = (UiV ⊗ IS)L holds for all i. 
ε 
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Then, 

R S R S 

U1 

. . 
== . 

k2ε (51)
Uk 

V 

V 

U1 

. . . 

Uk 

Z Z 

Proof. This follows easily by k applications of Lemma 7. 

By Proposition 4, for any j 6= k, we have 

C(X 0 k) 

000000 

A A 

`,Zk), (Z`,Xk), or (Z`,Zk). Also, as noted at the beginning 

L 

C(X 0 k)
0X` 

Qk Qk (52)== 0X`√
εN 

L 

0 0 
k) replaced by (X

of section C.3, the gates that defne ΨA,k (see diagram (19) can each be pushed through L with error term √

and the same holds with (X`,X

ε . Therefore by Lemma 13, N 

A 

L 

A 

L 

We therefore have the following, in which we frst apply Proposition 8 with Lemma 7, and then apply 

Ψk 

Ψk 
0X` 

Qk Qk (53)== 0X`√
εN 
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Lemma 13. 

Q1...k−1 Qk A B C 
Q1...k A B C 

Xk 

Ψk 

Θk−1 

L 

Xk 

== 
Θk 

(54) 

L 

Q1...k−1 Qk A B C Q1...k−1 Qk A B C 

== X 0 k 

Ψk 

Θk−1 

== √ √
N2 ε N3 ε 

L L 

X 0 k 

Ψk 

Θk−1 

(55) 
An analogous statement holds with X replaced by Z. Applying the isometries Ψk+1, . . . ,ΨN in order now 
completes the proof. 
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