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Optical communication achieves high fanout and short delay advantageous for information integra-
tion in neural systems. Superconducting detectors enable signaling with single photons for maximal
energy efficiency. We present designs of superconducting optoelectronic neurons based on super-
conducting single-photon detectors, Josephson junctions, semiconductor light sources, and multi-
planar dielectric waveguides. These circuits achieve complex synaptic and neuronal functions with
high energy efficiency, leveraging the strengths of light for communication and superconducting
electronics for computation. The neurons send few-photon signals to synaptic connections. These
signals communicate neuronal firing events as well as update synaptic weights. Spike-timing-depen-
dent plasticity is implemented with a single photon triggering each step of the process. Microscale
light-emitting diodes and waveguide networks enable connectivity from a neuron to thousands of
synaptic connections, and the use of light for communication enables synchronization of neurons
across an area limited only by the distance light can travel within the period of a network oscillation.
Experimentally, each of the requisite circuit elements has been demonstrated; yet, a hardware plat-
form combining them all has not been attempted. Compared to digital logic or quantum computing,
device tolerances are relaxed. For this neural application, optical sources providing incoherent
pulses with 10 000 photons produced with an efficiency of 10�3 operating at 20MHz at 4.2 K are
sufficient to enable a massively scalable neural computing platform with connectivity comparable to
the brain and thirty thousand times higher speed. https://doi.org/10.1063/1.5038031

I. INTRODUCTION

Many motivations exist for developing computational
tools emulating the operation of the brain. One motivation
is to develop hardware with complexity and scalability
approaching biological systems with the aim of under-
standing and harnessing cognition. Artificial systems dem-
onstrating intelligence are likely to employ principles of
differentiated functional specialization combined with
information integration, as observed in cortex.1–4 These prin-
ciples introduce severe demands on hardware for communi-
cation. At the local scale of functional clusters, neurons must
achieve high fan-out to address many synaptic connections.
Neurons with thousands of in-directed and out-directed syn-
aptic connections are necessary for providing efficient infor-
mation integration as well as the ability of each neuron to
recognize many patterns of activity.5–7 At the global scale,
communication must be as fast as possible to avoid delays
and enable a large neuronal pool in transient synchronized
oscillations.6,8,9 The exceptional demands for communication
at both scales in neural systems steer us to use light as a sig-
naling mechanism.10,11

For large-scale cognitive systems, communication must
be accompanied by energy efficiency. Energy efficiency is
necessary at the chip scale so that power density remains low
enough for local cooling to be possible, and it is necessary at
the system scale so that the entire structure can function
within an attainable power budget. Each synaptic event must
use as little energy as possible. If light is utilized for commu-
nication, it is not possible to send messages with less energy

than a single photon. We can envision a neuron with a thou-
sand connections producing a few thousand photons in a
neuronal firing event, and sending a few of these photons to
each synaptic connection. While semiconductor light-
emitting diodes (LEDs) are a strong candidate for the light
sources to produce these pulses of a few thousand photons,
superconducting single-photon detectors (SPDs) appear to be
best equipped to achieve the necessary detection operations
while maintaining energy efficiency and fabrication process
integrability.

This reasoning leads us to pursue neuromorphic hard-
ware combining semiconductor light sources with supercon-
ducting detectors. Superconducting optoelectronic circuits
with SPDs working with Josephson junctions ( JJs) and flux
storage loops combine the strengths of light for communica-
tion and electronics for computation. A schematic overview
of the neuron under consideration is shown in Fig. 1.

Photons from afferent neurons are received by SPDs at
a neuron’s synapses. Using Josephson circuits, these detec-
tion events are converted into an integrated supercurrent that
is stored in a superconducting loop. The amount of current
added to the integration loop during a synaptic photon
detection event is determined by the synaptic weight. The
synaptic weight is dynamically adjusted by another circuit
combining SPDs and JJs. When the integrated current from
all the synapses of a given neuron reaches a threshold, an
amplification cascade begins in the transmitter portion of
the circuit, resulting in the production of light from a
waveguide-integrated LED. The photons thus produced fan
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out through a network of passive dielectric waveguides and
arrive at the synaptic terminals of other neurons where the
process repeats.

Due to the many roles of superconducting loops, we
refer to these devices as loop neurons. In this work, we
present an introduction to the circuit principles of loop
neurons. In other work,11–15 we explore more details of
circuit and system functionality. These theoretical investiga-
tions indicate that superconducting optoelectronic networks
(SOENs) have the potential to achieve complex neural func-
tionality. The principles of cognition1–4 inform us that com-
munication is crucial for information integration in neural
systems. The use of light for communication leads to the
potential for neurons with thousands of connections, compa-
rable to biological neural systems. The use of single-photon
detectors enables communication to be highly efficient,
leading to network operation with power density low enough
to be cooled, even for massively scaled systems. The use of
Josephson circuits provides the complex functionality
required for synaptic processing and memory operations.
While developing these systems requires an investment in
new hardware, the prospect of achieving cognitive systems
with thirty-thousand times the speed of biological systems
and the potential to scale to networks with many more

neurons and synapses than the human brain provides ample
motivation to develop SOENs. In Sec. II, we describe
designs of a synaptic receiver and weight-update circuits
based on single-photon detectors and Josephson junctions. In
Sec. III, we describe the amplifier chain that converts a milli-
volt electrical signal output from the superconducting syn-
apses to a volt input to the LED. Together, the synaptic
circuits and amplifier circuits provide the neuronal function-
ality to build complex, efficient neurons. We discuss unique
opportunities for this technology in Sec. IV.

II. SYNAPTIC CIRCUITS

The primary function we require of a superconducting
optoelectronic synapse is to detect a faint photonic signal
(order one photon) and convert this communication event to
an electrical signal where it can add to the neuron’s inte-
grated signal. A simple circuit that performs this synaptic
operation is shown in Fig. 2(a). An SPD16–19 is shown as a
variable resistor in series with an inductor. In the steady
state, the variable resistor has zero resistance. Upon detection
of one or more photons, the variable resistor temporarily
switches to a high-resistance state (� 5 kΩ) for 200 ps.20 The
SPD is in parallel with a JJ. This JJ is referred to as the

FIG. 1. Schematic and circuit diagram of a loop neuron. In the schematic, excitatory (Se) and inhibitory (Si) synapses are shown, as are the synaptic weight
update circuits (W). The synapses receive signals as faint as a single photon and add supercurrent to an integration loop. Upon reaching the threshold, a signal
is sent to the transmitter circuit (T), which produces a photon pulse. Some photons from the pulse are sent to downstream synaptic connections, while some are
used locally to update synaptic weights via spike-timing-dependent plasticity. In the circuit diagram, SPDs are shown as a variable resistor in series with an
inductor. Photons received by the synapse produce flux in the synaptic integration (SI) loop, which is inductively coupled to the neuronal integration (NI) loop.
Correlated events between pre- and post-synaptic neurons change the state of flux in the synaptic storage (SS) loop and therefore affect the current in the synap-
tic bias (SB) loop. When the current induced in the neuronal integration loop reaches a threshold, the amplification sequence is initiated, resulting in the produc-
tion of light from the semiconductor diode. Amplifier circuit symbols are introduced in Sec. III. These photons are used to communicate to downstream
synaptic connections.
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synaptic firing junction, labeled Jsf . In the steady state, Jsf is
biased slightly below its switching current by Isy, the synaptic
bias current. In general, JJs are current biased to bring them
to the desired operating point relative to their critical current,
Ic.

21,22 The current bias Ispd flows through the SPD until a
photon is detected, at which point Ispd is diverted across rspd
(shown with red arrow) to Jsf , returning to the SPD with the
τspd ¼ Lspd=rspd time constant. When Ispd is diverted across
Jsf , the net current to Jsf exceeds the junction critical current,
and Jsf produces a series of fluxons.23 These fluxons are
trapped in a superconducting loop, referred to as the synaptic
integration (SI) loop. This process is referred to as a synaptic
firing event. An example synaptic firing event is shown in
Fig. 3(a), as simulated with WRSpice.24 The red trace shows
the current diverted from the SPD to Jsf . The blue trace
shows the voltage pulses (Vsi) across Jsf as fluxons are pro-
duced. The green trace shows the current added to the SI
loop (Isi). The three traces have been independently normal-
ized. The colors of the traces in this plot correspond to the
labeled node and current paths in the circuit diagram of
Fig. 2(a).

The energy of a synaptic firing event ranges from 6 aJ to
45 aJ. This energy is determined by the SPD current and
inductance through the contribution LspdI2spd=2 and by the
energy required to produce a fluxon, EJ ¼ IcΦ0, where Φ0 is
a quantum of magnetic flux. For the circuit parameters con-
sidered here (see the Appendix), the SPD contribution is 4 aJ
per synaptic firing event. The JJ contribution is 2 aJ in the
case of weak synaptic weight and 41 aJ in the case of strong
synaptic weight, because more fluxons are produced. As we
will see in Sec. III, generation of photons requires far more
energy than generation of fluxons. This is one reason why it
is advantageous to trigger a synaptic firing event with one or
a few photons while setting the synaptic weight in the elec-
tronic domain through the number of generated fluxons.

The synaptic receiver circuit shown in Fig. 2(a) is a
photon-to-fluxon transducer, and more details can be found
in Ref. 12. During a synaptic firing event, fluxons are added
to the SI loop. We require the signals from many synapses to
contribute to an integrated neuronal signal. One means of

accomplishing this integration is depicted in Fig. 2(b). The
flux of many SI loops is inductively coupled to a larger
superconducting loop, referred to as the neuronal integration
(NI) loop. The NI loop stores a signal proportional to the
stored flux in all the SI loops. The current in the NI loop
flows through Jth, referred to as the thresholding junction.
The current through Jth is analogous to the membrane poten-
tial of a neuron,25,26 and when this current equals the Ic of
Jth, threshold has been reached, and a neuronal firing event
occurs. This neuronal firing event and the associated produc-
tion of light are described in Sec. III.

The use of mutual inductors to couple SI loops to the NI
loop ensures that as more synapses are added, current
leakage pathways are not introduced. Mutual inductors also
provide synaptic independence in that the signals from syn-
aptic firing events on two or more synapses connected to the
same neuron add linearly even if the synaptic firing events
overlap in time. Additionally, mutual inductors introduce a
straightforward means of achieving an inhibitory synaptic
connection27 by coupling an SI loop to the NI loop with the
sign of mutual inductance countering the bias current to Jth.

During a synaptic firing event, the number of fluxons
added to the integrated signal in the SI loop is determined by
the synaptic current bias, Isy. When Isy ¼ 1 μA, 33 fluxons
are added to the SI loop [Fig. 3(a)]. If Isy ¼ 3 μA, 497
fluxons are added to the SI loop. Therefore, we can control
the synaptic weight with the current bias Isy. In Fig. 3(b), we
show the current in the NI loop as a function of time as both
excitatory and inhibitory synaptic firing events occur with
both weak and strong synaptic weights.

FIG. 2. Synaptic circuit diagrams. (a) Simple implementation of a synaptic
receiver wherein an SPD in parallel with a JJ serves to transduce single-
photon detection events to flux stored in the SI loop. The DC bias, Isy, deter-
mines the synaptic weight by changing the amount of flux added to the SI
loop during a synaptic firing event. Parameters for all circuits presented in
this work are given in the Appendix. (b) Multiple SI loops coupled to the NI
loop. The flux from all the SI loops adds current to the NI loop, and when
that current reaches Ic of the thresholding junction, Jth, a neuronal firing
event occurs.

FIG. 3. Operation of synaptic circuits. (a) Activity during a synaptic firing
event. The colors are in reference to the current paths and voltage node
labeled in Fig. 2(a). The three traces are independently normalized. (b) The
integrated current in the NI loop as three excitatory and two inhibitory synap-
tic firing events occur. The green traces represent synaptic firing events on
excitatory synapses, and the red traces represent synaptic firing events on
inhibitory synapses (left y-axis). The blue trace shows the integrated current
in the NI loop (right y-axis). The colors here do not reference Fig. 2.
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While the synaptic weight can be controlled dynamically
through Isy, it is also affected by the total inductance of the
SI loop and the mutual inductance between the SI and NI
loops. A fluxon entering the SI loop adds current equal to
Φ0=Lsi, where Lsi represents the total inductance of the SI
loop. The amount of current induced in the NI loop is deter-
mined by Msy and the total inductance of the NI loop.

In general, the current from many synaptic firing events
will be stored in the SI loops. One can control the storage
capacity and storage duration of the loops with inductance
and resistance. The choice of Lsi determines the storage
capacity through the factor βL=2π ¼ LIc=Φ0, which quanti-
fies the number of fluxons that can be stored in a loop.21 The
inductance of the SI loop, in conjunction with the dynamic
synaptic weight set with Isy, determines the number of synap-
tic firing events that can be received before the loop saturates.
When a resistance is included in an SI loop, the trapped flux
will leak from the loop, so it is not necessary to implement a
separate means of purging the SI loops of flux. The loop
current will decay with time constant τsi ¼ Lsi=rsi. Lsi and rsi
are entirely independent, so a wide variety of storage capaci-
ties and time constants can be achieved.

Together, Lsi and rsi determine the temporal filtering
properties of the synapse. With small βL and large τsi, a
sequence of synaptic firing events in rapid succession will
cause the SI loop to saturate, and high-pass filtering will be
achieved. With large βL, long sequences of synaptic firing
events can continue to increase the current in the NI loop so
that no temporal filtering is implemented. Low-pass filtering
can also be achieved with slightly more circuit complexity.13

These types of temporal filtering are analogous to short-term
plasticity mechanisms in biological neural systems.

It is advantageous for a neuron to have access to as
much information as possible about the activity of the other
neurons from which it receives synaptic input. We therefore
suspect it will be advantageous for each neuron in the
network to have a diversity of synapses with a broad statisti-
cal spread of SI loop storage capacities and temporal filtering
properties, as well as different integration times to store infor-
mation occurring at different times in the past.

If we wish to use superconducting optoelectronic circuits
to implement machine learning, we can manipulate the syn-
aptic weights with Isy and the neuronal threshold with Ith. A
circuit which switches Isy between weak and strong states is
shown in Fig. 4(a). A standard flux-quantum memory
cell21,22 is inductively coupled to a loop which supplies Isy to
the synapse. If the state of flux in the memory cell loop,
referred to as the synaptic storage (SS) loop, is zero, Isy ¼ 1 μ
A, and the synaptic weight is weak. If the SS loop contains a
fluxon, Isy ¼ 3 μA, and the synaptic weight is strong.
Figure 4(b) shows the synapse repeatedly switching between
weak and strong states on a sub-nanosecond time scale in
response to a pair of supervised learning drive signals, Iþ

and I�. The energy required to switch the synapse is less
than an attojoule, as only a single fluxon must be generated.
Because switching of the synapse only requires changing the
superconducting phase across a JJ, this plasticity mechanism
is not susceptible to material fatigue. Here, we show the syn-
aptic weight switching between states simply to demonstrate

the range of capability. In practice, the synapse would switch
between states only as needed based on the training protocol
or learning environment, and it would hold its state indefi-
nitely between update events.

Temporal zoom of strengthening and weakening is
shown in Fig. 4(c), with added traces showing the voltage
pulses as fluxons enter the SS loop. The synapse can switch
in a few tens of picoseconds, and it can hold its value as
long as superconductivity is maintained. Neuronal inter-spike
intervals25 are likely to be on the order of tens of nanosec-
onds in loop neurons, due to the resetting dynamics of the
light-generation circuits.14 The fact that the synaptic weight
update circuits can be reconfigured orders of magnitude
faster than the inter-spike interval opens the possibility that

FIG. 4. Supervised binary synapse. (a) Circuit diagram. The synaptic storage
(SS) loop can store zero or one fluxon. The state of flux in the SS loop
affects the current in the synaptic bias (SB) loop, thereby determining the
synaptic weight via the synaptic current, Isy. (b) Temporal analysis of the
binary synapse as it is periodically switched between the potentiated and
depressed states. The square drive pulses are shown in green and red, refer-
enced to the left y-axis, while the synaptic bias current is shown in blue, ref-
erenced to the right y-axis. (c) Temporal zoom of a single switching cycle.
In addition to the drive pulses and Isy, the voltages at the nodes shown by
green and red dots in (a) are shown, referenced to the left y-axis. The fluxons
entering the SS loop during switching events are observed as voltage pulses
of few-picosecond duration.
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synaptic weights may be extended to the frequency domain.
The same synapse may be strong in some Fourier compo-
nents and weak in others. Operation in this manner may
enable the same structural network to achieve different func-
tional connectivities on time scales as fast as network oscilla-
tions, effectively multiplexing the number of computations
the network can perform. However, training a given network
to have a static set of synaptic weights is difficult enough, so
training each synapse to have a frequency dependence may
be prohibitively difficult. Weighting synapses in the fre-
quency domain is highly speculative.

Synapses with many stable levels are useful for machine
learning28 and memory retention.29 The circuit of Fig. 4(a)
can be extended to enable storage of a large number of
fluxons and therefore a large number of intermediate synaptic
weights between maximum and minimum values. The
number of values the synaptic weight can take is determined
by the inductance of the SS loop, Lss, and synapses with
many hundreds of synaptic weights can be achieved.13

Extending the supervised synaptic weighting circuits to
adjust the value of Isy based on neuronal firing activity is
desirable to achieve unsupervised learning.25,26,30 A circuit
which accomplishes this behavior is shown in Fig. 5(a). This
circuit performs spike-timing-dependent plasticity (STDP)31

based on temporal correlations between photons from the
pre-synaptic and post-synaptic neurons. If a photon from the
pre-synaptic neuron is detected by SPD1 just before a photon
from the post-synaptic neuron is detected by SPD2, the pre-
synaptic neuron is inferred to have contributed to the firing
of the post-synaptic neuron, and the synaptic weight is
strengthed. This two-photon sequence detection adds flux to
the SS loop, thereby strengthening the synaptic weight in a
timing-dependent Hebbian manner.31 A typical Hebbian
update rule can be modeled by Δw � exp(� Δt=τ), where
Δw is the change in synaptic weight, and Δt is the difference
in arrival times between the pre-synaptic and post-synaptic
events. Due to the nonlinearities of Josephson junctions, the
temporal response of the circuit in Fig. 5 is closer to linear
decay as a function of Δt,13 and the temporal scale over
which the circuit is sensitive to timing correlations is set by
the L=r time constant, which can be engineered for the
desired learning behavior.

The asymmetric bias of SPD1 and SPD2 ensures that if
the photons are incident in the opposite order, the state of
the SS loop remains unchanged. The lower portion of the
circuit of Fig. 5(a) (SPD3 and SPD4) is responsible for
weakening the synaptic weight if an anti-Hebbian sequence
is detected. In this case, if a photon from the post-synaptic
neuron is detected by SPD4 just before a photon from the
pre-synaptic neuron is detected by SPD3, counter-
propagating flux is added to the SS loop, and the synaptic
weight is weakened. The Hebbian and anti-Hebbian opera-
tions taken together achieve STDP. The photons which
induce these synaptic update operations are produced during
the neuronal firing events of the pre- and post-synaptic
neurons. In the simplest manifestation, the photons used for
the synaptic update are simply tapped off the waveguide
exiting the LED and directed to the synaptic update circuit
during a neuronal firing event.

The STDP circuit is simulated in operation, again with
WRSpice, and the results are shown in Figs. 5(b) and 5(c).
Figure 5(b) shows the currents Iþ and I� [labeled in
Fig. 5(a)] due to sequence detection events with various tem-
poral delay, Δt, between arrival times of pre- and post-
synaptic neurons. The vertical dashed lines indicate the
arrival times of the photons. The synaptic bias current, Isy, is
shown in Fig. 5(c) as a function of time as one Hebbian
sequence occurs, followed by two anti-Hebbian sequences
and a final Hebbian sequence. The difference in arrival times
between the two photons is different for each sequence.
Implementing STDP with a single photon for each step of

FIG. 5. Spike-timing-dependent plasticity. (a) Diagram of the circuit com-
bining SPDs and JJs to update the flux in the SS loop based on temporal cor-
relation between neuronal firing events at the pre-synaptic and post-synaptic
neurons. (b) The currents diverted from the SPDs to the JJs (Iþ and I�) as a
function of time as two-photon correlation events occur with various time
delays. (c) The synaptic bias current, Isy, as a function of time as the
Hebbian and anti-Hebbian events occur. In (b) and (c), the arrival times of
the photons are indicated by vertical dashed lines.
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the update process maintains the energy efficiency of the
superconducting optoelectronic platform. Superconducting
optoelectronic circuits which achieve metaplasticity,32,33

short-term plasticity,34 and homeostatic plasticity35 are dis-
cussed in Ref. 13.

We have shown synaptic firing circuits transducing
single-photon detection events to stored supercurrent, and we
have shown synaptic weighting circuits which control how
much current is added during a synaptic firing event. We
have discussed approaches to both supervised learning, with
50 ps update time, and unsupervised learning, with STDP
performed with a single photon for each step of the update
process. We now turn our attention to the circuits that
produce light during a neuronal firing event.

III. PRODUCTION OF LIGHT AND POWER
CONSUMPTION

While the semiconductor bandgap of silicon is near one
volt, the superconducting gap of typical low-temperature
superconductors is near one millivolt. This voltage mismatch
makes it difficult for superconducting devices to change the
state of semiconducting devices, particularly at the high
speed and low power that superconducting electronics aspire
to operate.36–39

The situation is more accommodating in the neural
domain. As described in Sec. II, the synaptic circuits uti-
lized in superconducting optoelectronic hardware are
likely to make use of very fast and efficient Josephson cir-
cuits. The high switching speed of JJs enables the circuit
to add a different number of fluxons for low versus high
synaptic weights. The energy efficiency of synaptic cir-
cuits is necessary, because a neuron will receive many syn-
aptic firing events in order to reach threshold and produce
a neuronal firing event. But because neuronal firing events
are rare compared to synaptic firing events, it is acceptable
that they use more energy and occur with lower speed.
Therefore, devices and circuits which are not acceptable
for synaptic functions (or digital logic) may be acceptable
to achieve neuronal firing.

The circuit we consider for neuronal firing is shown in
Fig. 6(a). The device which produces the voltage neces-
sary to drive the LED (1 V) is referred to as the hTron.40 It
consists of a meandering length of wire and a heating
element. In the steady state, current flows from source to
drain through the meander, and no current flows through
the heating element, which comprises the gate. During a
switching event, current is injected into the gate heating
element, raising the temperature of the meander above the
superconductor-to-normal-metal phase transition, Tc. The
meander becomes resistive, and the current bias across the
resistor results in a voltage. The LED is in parallel with
the hTron, so this voltage is present across the emitter and
results in the production of light.

The extreme nonlinearity of material resistance during the
superconductor/metal phase transition enables the hTron to
achieve the voltage necessary to produce light during a neuro-
nal firing event. This phase transition is achieved thermally in
this circuit. Thermal devices are generally antithetical to high

speed or efficiency, but three features of the hTron enable it
to perform well in this context. First, the total volume of
material that must be heated is very small. Second, the spe-
cific heat of all materials involved drops as T3, so the
values of specific heat at 4.2 K are orders of magnitude
smaller than at room temperature. Third, the device only
requires a shift of � 2 K to switch. Taken together, these
properties enable the hTron to switch in roughly 1 ns with
as little as 20 fJ. Because the device only needs to switch
once per neuronal firing event, this time scale is suitable,
and because a single neuronal firing event will produce
thousands of photons to communicate with hundreds or
thousands of synapses, the energy of the firing event is dis-
persed across many synapse events. The power density of
the network in operation remains low.15

During a neuronal firing event, Jth is driven above its
critical current, leading that junction to produce a fluxon. The
current associated with this fluxon is insufficient to heat the
hTron and cause it to switch. An intermediate current ampli-
fier is required. In the circuit under consideration, this current
amplification is achieved in two stages. The first stage of
current amplification occurs when the fluxon from Jth causes
a subsequent junction, Jro, to switch. Jro is a relaxation oscil-
lator junction, meaning upon switching it temporarily enters a
latched state, during which time it is resistive, and diverts its
bias current to a load. A relaxation oscillator junction can be
physically implemented by utilizing only the internal shunt-
ing of a superconductor-insulator-superconductor junction,

FIG. 6. Transmitter circuit. (a) Diagram of amplifier chain converting a
fluxon generated by Jth during a threshold event to voltage across a light-
emitting diode. (b) Base 10 logarithm of the total efficiency of the amplifier
chain as a function of the number of photons produced during a neuronal
firing event, Nph, for three values of LED capacitance and four values of
LED quantum efficiency. In this study, ILED is fixed at 10 μA.
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resulting in a hysteretic current-voltage relationship. The load
to which Jro diverts its bias current is a current amplifier
referred to as the nTron.41 The nTron is similar to the hTron
in that the channel from source to drain switches from a
superconducting state to a resistive state when sufficient
current is driven into its gate. The difference is that the nTron
can be switched with less current, and it produces less resis-
tance. When 60 μA is input into the gate, the nTron produces
� 1 kΩ, whereas 1.2 mA into the gate of the hTron produces
� 800 kΩ. The second stage of current amplification occurs
when Jro switches the gate of the nTron. This switching event
diverts the 1.2 mA channel current of the nTron to the hTron,
leading to the large voltage amplification which drives the
LED. We therefore use Jro in conjunction with the nTron and
hTron to drive the LED. Jro provides sufficient current to
switch the nTron. The nTron provides sufficient current to
switch the hTron. The hTron provides sufficient voltage
to produce light from the diode. More detail regarding the
operation of the circuit in Fig. 6(a) is given in Ref. 14.

The most important consideration of the amplification
chain in Fig. 6(a) is the efficiency of light production.
Multiple sources of inefficiency are present in the light
emitter. The internal quantum efficiency may be less than
unity, meaning only a fraction of the injected electron-hole
pairs will produce a photon. Further, only a fraction of the
generated photons will be coupled to the guided mode of the
axonal waveguide. We refer to these loss mechanisms
together as the LED quantum efficiency, ηqe. Additionally,
energy will be dissipated to Joule heating in the nTron and
hTron. We define the total efficiency of the amplifier chain,
ηamp, by the relation Eamp ¼ Nphhν=ηamp. Here, Nph is the
number of photons produced in a neuronal firing event, h is
Planck’s constant, and ν is the frequency of light (250 THz
in these calculations42). By analyzing each component of the
circuit in Fig. 6(a) (as presented in Ref. 14), we can arrive at
a relationship between ηamp and Nph. This relationship
depends on the LED capacitance and quantum efficiency.
The results are plotted in Fig. 6(b) for three values of LED
capacitance and four values of ηqe. We see that for low
values of Nph, the total efficiency is limited by capacitance,
while for high values the total efficiency is limited by ηqe.
Due to losses in the nTron and hTron, the efficiency is
roughly a factor of ten less than the LED quantum efficiency.
System efficiency can be gained with improved drive circuits,
low-capacitance light sources, and high efficiency light
sources. Low-temperature-operation is extremely beneficial
for increasing LED internal quantum efficiency.43 We
assume that LEDs with 10 fF capacitance and 10�3 quantum
efficiency can be achieved, and even better performance is
likely attainable.43 In Fig. 6(b), we see that these numbers
result in a total amplifier efficiency of 10�4 if more than a
few hundred photons are generated.

The number of photons which must be generated is
related to the number of synaptic connections formed by the
neuron. We assume that a neuronal firing event produces 10
photons per synaptic connection to accommodate for loss
and to trigger synaptic firing as well as synaptic update oper-
ations. In design of small-scale networks,15 we assume that
the smallest neurons will have roughly 20 out-directed

synapses, and the largest will have one thousand. Assuming
neurons in a network will produce between 200 and 10 000
photons per neuronal pulse with a total efficiency of 10�4,
and assuming the neurons will fire with a 1=f power spectral
density from 100 Hz to 20MHz,15 typical of systems demon-
strating self-organized criticality,44 we can calculate the
power consumed during network operation. The analysis of
Fig. 6(b) considers only the power dissipated by the amplifier
circuit, but in Refs. 12 and 15, we consider the power dissi-
pated by the receiver circuit of Fig. 2(a) as well. For the
capacitance and efficiency of the LED considered here, the
transmitter circuit dissipates orders of magnitude more power
than the receiver circuit. The synaptic update circuit of
Fig. 5(a) draws even less power than the receiver circuit
because it is in operation far less frequently, as synaptic
update events need not occur nearly as often as synaptic
firing events. Taking all these power dissipation mechanisms
into account, we find that a network with 8100 neurons occu-
pying a 1 cm�1 cm die will dissipate 1 mW of device
power.15 One application of a network of this scale would be
as a faint-light artificial vision system.45 Similarly, a network
with one million neurons and 200 million synapses spanning
a 300 mm wafer will dissipate one watt, which is the cooling
power of a standard 4He cryocooler. Such cryogenic systems
typically require on the order of a kilowatt for cooling when
there is no power being dissipated by the device, and an
additional kilowatt of cooling power per watt of device
power. The power density of this network of 200 million syn-
apses would be 10W/m2, which can be easily cooled by sub-
mersion in liquid helium.46 Models for device and system
scaling show that the area of the network will grow slightly
more quickly than the power consumption, indicating large-
scale networks will not be limited by heat removal15 in
liquid helium.

It is unclear which light sources are best for this neural
application. We would like the emitters to have carrier
recombination times shorter than 50 ns so that photon emis-
sion does not limit the maximum speed of neuronal firing.
The ability to produce light at multiple frequencies may also
be advantageous to enable different colors to be routed on
the same waveguides to perform different synaptic operations
(i.e., firing versus update). Compound semiconductors have
these spectral and temporal properties, and they can be inte-
grated with silicon waveguides43 with high efficiency, partic-
ularly at cryogenic temperature. Yet cryogenic operation
enables several types of silicon light sources,42,47,48 which
bring the advantage of simpler process integration. Sources
providing incoherent pulses with 10 000 photons produced
with an efficiency of 10�3 operating at 20MHz at 4.2 K are
sufficient to enable a massively scalable neural computing
platform with connectivity comparable to the brain and thirty
thousand times faster speed.6,9

IV. DISCUSSION

We have introduced basic synaptic and neuronal circuits
which receive and send communication signals in SOENs.
The synaptic circuits of Sec. II can be combined with the
neuronal light-production circuit of Sec. III to form a loop

152130-7 Shainline et al. J. Appl. Phys. 124, 152130 (2018)



neuron, as shown in Fig. 1. The synaptic firing circuit is an
analog photon-to-fluxon transducer which receives single-
photon signals from the pre-synaptic neuron and converts the
signals to a supercurrent. The amount of supercurrent gener-
ated during a synaptic firing event is determined by the syn-
aptic weight. This synaptic weight can be updated in less
than 50 ps to implement machine learning algorithms. For
unsupervised learning, a variety of plasticity mechanisms can
be implemented, including STDP wherein timing correlation
between a photon from the pre-synaptic neuron and a photon
from post-synaptic neuron strengthen or weaken the synapse.
When the stored current from many synaptic firing events
exceeds the critical current of a JJ in the threshold loop, a
fluxon is produced which starts an amplification sequence.
The result of this amplification sequence is the production of
light from an LED. We have analyzed the energy consumed
during the production of light from a neuronal firing event.
When using this energy in calculations of network activity,
we find that a die-level network will consume roughly 1 mW,
and a wafer-level network will consume 1W (see Sec. III
and Ref. 15). For cryogenic operation, the system power con-
sumption is dominated by the cryostat, which will consume
roughly a kilowatt. Yet, for many computing systems, it is
not the total power but the power density that limits scaling.
The power density of these cryogenic networks is low
enough to be cooled by 4He, even for massively scaled
systems interconnected by optical fibers and free-space links.

The use of superconducting electronics in neural systems
has been proposed49–51 and demonstrated52,53 previously. We
anticipate future neural hardware leveraging both purely elec-
trical neurons and optoelectronic neurons. Purely electrical
neurons with local connectivity, extreme speed, and extreme
energy efficiency can be combined with optoelectronic
neurons capable of supporting more local synaptic connec-
tions as well as distant synaptic connections necessary for
information integration across large networks. The use of
light for communication in neural systems brings advantages
at local and global scales. At the small scale of neuronal
clusters, photonic communication enables the fan-out neces-
sary to achieve neurons with thousands of direct connections
without the need for time-multiplexing and arbitration which
leads to communication bottlenecks.54 At the large scale of
cognitive neural systems, communication at the speed of
light enables integration of information across the largest
systems possible given the constraints of special relativity.

The arguments put forth for using light in neural com-
puting are general and also apply to systems based on CMOS
operating at room temperature. We envision future hybrid
systems wherein network activity in a SOEN at low tempera-
ture is communicated to a CMOS neural system by optical
signals over fiber. Such systems would utilize the rich synap-
tic functionality, energy efficiency, and high speed of
SOENs, but also leverage the maturity and convenience of
room-temperature silicon systems for readout, control, and
interfacing with the cryogenic system. SOENs are also
well-suited to operate in conjunction with other cryogenic
technologies. Many of the most advanced imaging systems
used for medical applications, astronomical observation, and
particle detectors use cryogenic sensors.55–62 Integrated

image processing and data communication in and out of the
cryostat are central challenges for such technologies. A
vision system leveraging superconducting sensors in conjunc-
tion with a SOEN for real-time image processing and analy-
sis would serve to reduce the data sent out of the cryostat by
identifying salient features of the visual scene before data
transmission. The use of a SOEN in this context also has the
advantage that the output signals are photonic and can be
coupled to optical fiber for low-loss, high-bandwidth trans-
mission with minimal heat load.

Several domains of advanced computing are presently
evolving, and the future landscape of information processing
remains elusive. Large-scale digital computing based on
silicon transistors will continue to progress and offer exciting
opportunities. Digital computing based on superconducting
circuits is also developing rapidly.36–38 Quantum annealing is
becoming a useful computing paradigm,63 while systems for
gate-based quantum logic continue to advance.64 These com-
puting paradigms are highly complimentary. Quantum
systems are inherently probabilistic, and neural systems are
ideal statisticians.65–67 It is exciting to envision an advanced
hybrid computing system wherein a neural system learns the
quantum nature of qubit circuits and a digital computer con-
trols the operation of both.68 Superconducting optoelectronic
hardware is a strong candidate to meet the needs of this
multi-modal computational network.

This is a contribution of NIST, an agency of the US gov-
ernment, not subject to copyright.

APPENDIX: CIRCUIT PARAMETERS

The synaptic transducer circuit of Figs. 2 and 3 was sim-
ulated with Lspd ¼ 72 nH, Ispd ¼ 10 μA, rspd ¼ 2Ω,
Lsi ¼ 10 μH, rsi ¼ 0Ω, and Isy ¼ 800 nA-4 μA. The simu-
lated circuit included Jsf as well as a Josephson transmission
line21,22 with one JJ and a third JJ in the SI loop. All JJs in
this circuit were simulated with Ic ¼ 10 μA. The inductors
between the JJs in the Josephson transmission line had
L ¼ 200 pH.

For the binary synapse of Fig. 4, the circuit parameters
are Ib1ss ¼ 38 μA, Ib2ss ¼ 20 μA, Lss ¼ 90 pH. The four induc-
tors comprising the two mutual inductors are labeled L1 � L4
from left to right. Their values are L1 ¼ L2 ¼ 45 pH,
L3 ¼ L4 ¼ 18 pH. The JJs in this circuit were simulated with
Ic ¼ 40 μA.

The circuit parameters relevant to Fig. 5 are as follows.
Inductor values are L1 ¼ 1:25 μH, L2 ¼ 12:5 nH, L3 ¼ 125 nH.
Ispd ¼ 10 μA. The bias to the synaptic update junction is
Ibsu ¼ 38 μA, and the bias to the synaptic storage junction is
the same. The resistors r1 and r2 can be chosen to achieve
the desired correlation time window.

The details of design and simulation of the circuit of
Fig. 6 are presented in Ref. 14.

1G. Tononi and G. M. Edelman, “Consciousness and complexity,” Science
282, 1846 (1998).

2G. Tononi, “An information integration theory of consciousness,” BMC
Neurosci. 5, 42 (2004).

3S. L. Bressler and E. Tognoli, “Operational principles of neurocognitive
networks,” Int. J. Psychophysiol. 60, 139 (2006).

152130-8 Shainline et al. J. Appl. Phys. 124, 152130 (2018)

https://doi.org/10.1126/science.282.5395.1846
https://doi.org/10.1186/1471-2202-5-42
https://doi.org/10.1186/1471-2202-5-42
https://doi.org/10.1016/j.ijpsycho.2005.12.008


4P. Fries, “Rhythms for cognition: Communication through coherence,”
Neuron 88, 220 (2015).
5V. Braitenberg and A. Schuz, Cortex: Statistics and Geometry of Neuronal
Connectivity (Springer, Berlin, 1998).
6G. Buzsaki, Rhythms of the Brain (Oxford University Press, 2006).
7J. Hawkins and S. Ahmad, “Why neurons have thousands of synapses, a
theory of sequence memory in neocortex,” Front. Neural Circuits 10, 23
(2016).
8A. von Stein and J. Sarnthein, “Different frequencies for different scales of
cortical integration: From local gamma to long range alpha/theta synchroni-
zation,” Int. J. Psychophysiol. 38, 301 (2000).
9G. Buzsaki and A. Draguhn, “Neuronal oscillations in cortical networks,”
Science 304, 1926 (2004).

10J. M. Shainline, S. M. Buckley, R. P. Mirin, and S. W. Nam,
“Superconducting optoelectronic circuits for neuromorphic computing,”
Phys. Rev. App. 7, 034013 (2017).

11J. M. Shainline, S. M. Buckley, A. N. McCaughan, J. Chiles, R. P. Mirin,
and S. W. Nam, “Superconducting optoelectronic neurons I: General prin-
ciples,” e-print arXiv:1805.01929 (2018).

12J. M. Shainline, S. M. Buckley, A. N. McCaughan,
M. Castellanos-Beltran, C. A. Donnelly, M. L. Schneider, R. P. Mirin, and
S. W. Nam, “Superconducting optoelectronic neurons II: Receiver cir-
cuits,” e-print arXiv:1805.02599 (2018).

13J. M. Shainline, A. N. McCaughan, S. M. Buckley, C. A. Donnelly,
M. Castellanos-Beltran, M. L. Schneider, R. P. Mirin, and S. W. Nam,
“Superconducting optoelectronic neurons III: Synaptic plasticity,” e-print
arXiv:1805.01937 (2018).

14J. M. Shainline, A. N. McCaughan, A. Jafari-Salim, S. M. Buckley, R. P.
Mirin, and S. W. Nam, “Superconducting optoelectronic neurons IV:
Transmitter circuits,” e-print arXiv:1805.01941 (2018).

15J. M. Shainline, J. Chiles, S. M. Buckley, A. N. McCaughan, R. P. Mirin,
and S. W. Nam, “Superconducting optoelectronic neurons V: Networks
and scaling,” e-print arXiv:1805.01942 (2018).

16G. N. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov,
K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski,
“Picosecond superconducting single-photon optical detector,” Appl. Phys.
Lett. 79, 705 (2001).

17C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting
nanowire single-photon detectors: Physics and applications,” Supercond.
Sci. Technol. 25, 063001 (2012).

18D. K. Liu, L. X. You, S. J. Chen, X. Y. Yang, Z. Wang, Y. L. Wang,
X. M. Xie, and M. H. Jiang, “Electrical characheristics of superconducting
nanowire single photon detector,” IEEE Trans. Appl. Supercond. 23,
2200804 (2013).

19F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits,
I. Vayshnker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam,
“Detecting single infrared photons with 93% system efficiency,” Nat.
Photon. 7, 210 (2013).

20J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and
K. K. Berggren, “Modeling the electrical and thermal response of super-
conducting nanowire single-photon detectors,” IEEE Trans. Appl.
Supercond. 17, 581 (2007).

21T. VanDuzer and C. W. Turner, Principles of Superconductive Devices and
Circuits, 2nd ed. (Prentice-Hall, Englewood Cliffs, NJ, 1998).

22A. M. Kadin, Introduction to Superconducting Circuits, 1st ed. (John
Wiley and Sons, New York, 1999).

23M. Tinkham, Introduction to Superconductivity, 2nd ed. (Dover,
New York, 1996).

24S. R. Whiteley, “Josephson junctions in SPICE3,” IEEE Trans. Magn. 27,
2902 (1991).

25P. Dayan and L. F. Abbott, Theoretical Neuroscience (The MIT Press,
Cambridge, MA, 2001).

26W. Gerstner and W. Kistler, Spiking Neuron Models, 1st ed. (Cambridge
University Press, Cambridge, 2002).

27L. Roux and G. Buzsaki, “Tasks for inhibitory interneurons in intact brain
circuits,” Neuropharmacology 88, 10 (2015).

28M. A. Nielsen, Neural Networks and Deep Learning (Determination Press,
2015).

29S. Fusi and L. F. Abbott, “Limits on the memory storage capacity of
bounded synapses,” Nat. Neurosci. 10, 485 (2007).

30B. Siri, M. Quoy, B. Delord, B. Cessac, and H. Berry, “Effects of Hebbian
learning on the dynamics and structure of random networks with inhibitory
and excitatory neurons,” J. Physiol. Paris 101, 136 (2007).

31H. Markram, W. Gerstner, and P. J. Sjostrom, “Spike-timing-dependent
plasticity: A comprehensive overview,” Front. Synaptic Neurosci. 4, 2
(2012).

32S. Fusi, P. J. Drew, and L. F. Abbott, “Casdcade models of synaptically
stored memories,” Neuron 45, 599 (2005).

33W. C. Abraham, “Metaplasticity: Tuning synapses and networks for plas-
ticity,” Nat. Neurosci. 9, 387 (2008).

34L. F. Abbott and W. G. Regehr, “Synaptic computation,” Nat. Rev. 431,
796 (2004).

35L. N. Cooper and M. F. Bear, “The BCM theory of synapse modification
at 30: Interaction of theory with experiment,” Nat. Rev. Neurosci. 13, 798
(2012).

36Q. P. Herr, A. Y. Herr, O. T. Oberg, and A. G. Ioannidis, “Ultra-low-power
superconductor logic,” J. Appl. Phys. 109, 103903 (2011).

37K. K. Likharev, “Superconductor digital electronics,” Physica C 482, 6
(2012).

38N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoskikawa, “An adiabatic
quantum flux parametron as an ultra-low-power logic device,” Supercond.
Sci. Technol. 26, 1 (2013).

39D. S. Holmes, “Energy-efficient superconducting computing—power budget
and requirements,” IEEE Trans. Appl. Supercond. 23, 1701610 (2013).

40Q.-Y. Zhao, E. A. Toomey, B. A. Butters, A. N. McCaughan, A. E. Dane,
S. W. Nam, and K. K. Berggren, “A compact superconducting nanowire
memory element operated by nanowire cryotrons,” Supercond. Sci.
Technol. 31, 035009 (2018).

41A. N. McCaughan and K. K. Berggren, “A superconducting-nanowire
three-terminal electrothermal device,” Nano Lett. 14, 5748 (2014).

42S. Buckley, J. Chiles, A. N. McCaughan, G. Moody, K. L. Silverman,
M. J. Stevens, R. P. Mirin, S. W. Nam, and J. M. Shainline, “All-silicon
light-emitting diodes waveguide-integrated with superconducting single-
photon detectors,” Appl. Phys. Lett. 111, 141101 (2017).

43V. Dolores-Calzadilla, B. Romeira, F. Pagliano, S. Birindelli,
A. Higuera-Rodriguez, P. J. van Veldhoven, M. K. Smit, A. Fiore, and
D. Heiss, “Waveguide-coupled nanopillar metal-cavity light-emitting
diodes on silicon,” Nat. Commun. 8, 14323 (2017).

44J. M. Beggs, “The criticality hypothesis: How local cortical networks might
optimize information processing,” Philos. Trans. R. Soc. A 366, 329 (2007).

45J. Hawkins, S. Ahmad, and Y. Cui, “A theory of how columns in the neo-
cortex enable learning the structure of the world,” Front. Neural Circuits
11, 81 (2017).

46J. Ekin, Experimental Techniques for Low-Temperature Measurements, 1st
ed. (Oxford University Press, New York, 2006).

47D. Gordon, “The optical properties of luminescence centres in silicon,”
Phys. Rep. 176, 83–188 (1989).

48J. M. Shainline and J. Xu, “Silicon as an emissive optical medium,” Laser
Photon. Rev. 1, 334 (2007).

49T. Hirose, T. Asai, and Y. Amemiya, “Pulsed neural networks consisting
of single-flux-quantum spiking neurons,” Physica C 463, 1072 (2007).

50P. Crotty, D. Schult, and K. Segall, “Josephson junction simulation of
neurons,” Phys. Rev. E 82, 011914 (2010).

51S. E. Russek, C. Donnelly, M. Schneider, B. Baek, M. Pufall, W. H.
Rippard, P. F. Hopkins, P. D. Dresselhaus, and S. P. Benz, “Stochastic
single flux quantum neuromorphic computing using magnetically tunable
Josephson junctions,” in IEEE International Conference on Rebooting
Computing (IEEE, 2016).

52K. Segall, S. Guo, P. Crotty, D. Schult, and M. Miller, “Phase-flip bifurca-
tion in a coupled Josephson junction neuron system,” Physica B 455, 71
(2014).

53M. L. Schneider, C. A. Donnelly, S. E. Russek, B. Baek, M. R. Pufall,
P. F. Hopkins, P. Dresselhaus, S. P. Benz, and W. H. Rippard, “Ultralow
power artificial synapses using nanotextured magnetic Josephson junc-
tions,” Sci. Adv. 4, 1701329 (2018).

54Event-based Neuromorphic Systems, edited by S.-C. Liu, T. Delbruck,
G. Indiveri, A. Whatley, and R. Douglas ( John Wiley and Sons,
New York, 2015).

55M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E.
Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W.
Nam, “A near-infrared 64-pixel superconducting nanowire single photon
detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106,
192601 (2015).

56L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P.
Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluores-
cence with nanosecond time resolution using a superconducting nanowire

152130-9 Shainline et al. J. Appl. Phys. 124, 152130 (2018)

https://doi.org/10.1016/j.neuron.2015.09.034
https://doi.org/10.3389/fncir.2016.00023
https://doi.org/10.1016/S0167-8760(00)00172-0
https://doi.org/10.1126/science.1099745
https://doi.org/10.1103/PhysRevApplied.7.034013
https://doi.org/10.1063/1.1388868
https://doi.org/10.1063/1.1388868
https://doi.org/10.1088/0953-2048/25/6/063001
https://doi.org/10.1088/0953-2048/25/6/063001
https://doi.org/10.1109/TASC.2013.2238280
https://doi.org/10.1038/nphoton.2013.13
https://doi.org/10.1038/nphoton.2013.13
https://doi.org/10.1109/TASC.2007.898660
https://doi.org/10.1109/TASC.2007.898660
https://doi.org/10.1109/20.133816
https://doi.org/10.1016/j.neuropharm.2014.09.011
https://doi.org/10.1038/nn1859
https://doi.org/10.1016/j.jphysparis.2007.10.003
https://doi.org/10.3389/fnsyn.2012.00002
https://doi.org/10.1016/j.neuron.2005.02.001
https://doi.org/10.1038/nrn2356
https://doi.org/10.1038/nature03010
https://doi.org/10.1038/nrn3353
https://doi.org/10.1063/1.3585849
https://doi.org/10.1016/j.physc.2012.05.016
https://doi.org/10.1109/TASC.2013.2244634
https://doi.org/10.1088/1361-6668/aaa820
https://doi.org/10.1088/1361-6668/aaa820
https://doi.org/10.1021/nl502629x
https://doi.org/10.1063/1.4994692
https://doi.org/10.1038/ncomms14323
https://doi.org/10.1098/rsta.2007.2092
https://doi.org/10.3389/fncir.2017.00081
https://doi.org/10.1016/0370-1573(89)90064-1
https://doi.org/10.1002/lpor.200710021
https://doi.org/10.1002/lpor.200710021
https://doi.org/10.1016/j.physc.2007.02.043
https://doi.org/10.1103/PhysRevE.82.011914
https://doi.org/10.1016/j.physb.2014.07.048
https://doi.org/10.1126/sciadv.1701329
https://doi.org/10.1063/1.4921318


single-photon detector: New technology for molecular science,” Acc.
Chem. Res. 50, 1400 (2017).

57M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio,
C. Pal, P.-M. Jodoin, and H. Larochelle, “Brain tumor segmentation with
deep neural networks,” Med. Image Anal. 35, 18 (2016).

58B. J. Rauscher, E. R. Canavan, S. H. Moseley, J. E. Sadleir, and
T. Stevenson, “Detectors and cooling technology for direct spectroscopic
biosignature characterization,” J. Astron. Telescopes Instrum. Syst. 2,
041212 (2016).

59N. E. Booth, R. J. Gaitskell, D. J. Goldie, A. C. Howman, C. patel, and
G. L. Salmon, “Cryogenic detectors for experiments in elementary particle
physics,” Nucl. Instrum. Methods Phys. Res. A 315, 201 (1992).

60D. M. Kipping and C. Lam, “Transit clairvoyance: Enhancing tess
follow-up using artificial neural networks,” Mon. Not. R. Astron. Soc. 465,
3495 (2016).

61J. Ding et al., “Optimization of transition edge sensor arrays for cosmic
microwave background observations with the south pole telescope,” IEEE
Trans. Appl. Supercond. 27, 2100204 (2017).

62P. Lebrun, “Cryogenics for high-energy particle accelerators: Highlights
from the first fifty years,” IOP Conf. Ser.: Mater. Sci. Eng. 171, 012001
(2017).

63A. Das and B. K. Chakrabarti, “Colloquium: Quantum annealing and
analog quantum computation,” Rev. Mod. Phys. 80, 1061 (2008).

64G. Wendin, “Quantum information processing with superconducting cir-
cuits: A review,” Rep. Prog. Phys. 80, 106001 (2017).

65W. J. Ma, J. M. Beck, P. E. Latham, and A. Pouget, “Bayesian inference
with probabilistic population codes,” Nat. Neurosci. 9, 1432 (2006).

66T. Yang and M. N. Shadlen, “Probabilistic reasoning by neurons,” Nature
447, 1075 (2007).

67J. M. Beck, W. J. Ma, R. Kiani, T. Hanks, A. K. Churchland, J. Roitman,
M. N. Shadlen, P. E. Latham, and A. Pouget, “Probabilistic population
codes form bayesian decision making,” Neuron 60, 1142 (2008).

68R. McDermott, M. G. Vavilov, B. L. T. Plourde, F. K. Wilhelm, P. J.
Liebermann, O. A. Mukhanov, and T. A. Ohki, “Quantum-classical inter-
face based on single flux quantum digital logic,” Quantum Sci. Technol. 3,
024004 (2018).

152130-10 Shainline et al. J. Appl. Phys. 124, 152130 (2018)

https://doi.org/10.1021/acs.accounts.7b00071
https://doi.org/10.1021/acs.accounts.7b00071
https://doi.org/10.1016/j.media.2016.05.004
https://doi.org/10.1117/1.JATIS.2.4.041212
https://doi.org/10.1016/0168-9002(92)90705-9
https://doi.org/10.1093/mnras/stw2974
https://doi.org/10.1109/TASC.2016.2639378
https://doi.org/10.1109/TASC.2016.2639378
https://doi.org/10.1088/1757-899X/171/1/012001
https://doi.org/10.1103/RevModPhys.80.1061
https://doi.org/10.1088/1361-6633/aa7e1a
https://doi.org/10.1038/nn1790
https://doi.org/10.1038/nature05852
https://doi.org/10.1016/j.neuron.2008.09.021
https://doi.org/10.1088/2058-9565/aaa3a0

	Circuit designs for superconducting optoelectronic loop neurons
	I. INTRODUCTION
	II. SYNAPTIC CIRCUITS
	III. PRODUCTION OF LIGHT AND POWER CONSUMPTION
	IV. DISCUSSION
	References


