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We investigate the problem of bounding the quantum process fidelity given bounds on the fidelities
between target states and the action of a process on a set of pure input states. We formulate the
problem as a semidefinite program and prove convexity of the minimum process fidelity as a function
of the errors on the output states. We characterize the conditions required to uniquely determine
a process in the case of no errors, and derive a lower bound on its fidelity in the limit of small
errors for any set of input states satisfying these conditions. We then consider sets of input states
whose one-dimensional projectors form a symmetric positive operator-valued measure (POVM). We
prove that for such sets the minimum fidelity is bounded by a linear function of the average output
state error. A symmetric POVM with minimal number of elements contains d + 1 states, where d
is the Hilbert space dimension. Our bounds applied to such states provide an efficient method for
estimating the process fidelity without the use of full process tomography.

I. INTRODUCTION

As the complexity of small scale quantum devices con-
tinues to increase, efficient methods for characterizing the
performance of such devices become ever more impor-
tant. A common problem is to determine how well a pro-
cess implemented by these devices matches a unitary tar-
get process. A general tool for solving this problem is pro-
cess tomography [1]. In a d-dimensional Hilbert space,
full process tomography requires preparing d2 states, ap-
plying the process to each and characterizing the final
states with informationally complete measurements. In
systems with many qubits, the resources required for full
process tomography make it prohibitively expensive. In
practice, however, one is often only concerned with es-
timating the process fidelity with respect to the target
process. These estimates can take the form of rigorous
upper and lower bounds, which raises the question of the
resources required for obtaining such bounds.

A method for bounding the process fidelity due to Hof-
mann involves the use of two mutually unbiased bases [2].
For each basis, one applies the process to the states cor-
responding to the basis elements and computes the aver-
age of the fidelities between the resulting output and the
desired target states. These averages Fi, i = 1, 2, deter-
mine bounds on the process fidelity, where F1 = F2 = 1
only for the target process. This method requires 2d
input states and measurements, a substantial reduction
in resources compared to process tomography. The re-
duction comes at the cost of a gap between the lower
and upper bounds on conventional fidelities. This sug-
gests the problems of characterizing the tradeoff between
number of input states and the gap and of determining
the minimum number of input states that are sufficient
for identifying the process.
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In Ref. [3], conditions required for the action on a set
of input states to uniquely determine a unitary process
were obtained, and a set of d+1 pure states satisfying the
conditions was introduced. The set contains an orthonor-
mal basis plus a state that is an equal superposition of
the basis elements. The authors numerically compared
the process fidelity to a heuristically chosen average be-
tween the arithmetic and geometric means of the state
fidelities. An exact lower bound on the process fidelity
in terms of the output state fidelities for this set of in-
put states in the two-qubit case was subsequently given
in Ref. [4]. Such analytic expressions for the minimum
process fidelity are difficult to find in general, with only
a few examples currently known [5, 6].

In this paper, we develop a general approach for bound-
ing the process fidelity of a quantum process E with re-
spect to a unitary target given the fidelities for pure input
states |ψk〉. We first formulate the problem as a semidef-
inite program [7], which can be solved numerically for
any set of input states. We then consider the case where
the process acts perfectly, that is, without error, on each
input state. We give necessary and sufficient conditions
that the input states must satisfy in order to uniquely
determine the process given that the process has unit fi-
delity for the input states, and show that the minimum
number of required states is d. In the case of errors, we
derive a bound on the process infidelity that is O(

√
ε) in

the errors. The bound is expressed in terms of a weighted
graph constructed from the inner products of pairs of in-
put states. Although this bound holds for any set of
input states satisfying the aforementioned conditions, it
is not tight, and we compare it with numerical solutions
for random sets of input states. Finally, we prove simple
bounds on the process fidelity for particular sets of input
states, namely N pure states with d+ 1 ≤ N ≤ d2 whose
projectors form a symmetric POVM. For the minimal
such set of input states, the bounds we obtain improve
upon the work of Ref. [3] and provide an efficient proto-
col for bounding the process fidelity, which we compare
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to the method of Ref. [2] for various error channels.

II. PRELIMINARIES

Let H = Cd denote a d-dimensional Hilbert space, and
B(H) the space of linear operators on H. For a pure

state |ψ〉, we abbreviate |ψ〉〈ψ| by ψ̂. The identity op-
erator is denoted by I. A quantum process or channel
is a linear map E : B(H) → B(H) that is completely
positive and trace preserving (CPTP) [8]. According
to the Choi-Jamiolkowski isomorphism [9, 10], a CPTP
map E may be represented by a density operator χ on
the tensor product space H⊗H, which is defined as fol-
lows. Let {|x〉} be an orthonormal basis for H and let

|Φ+〉 = 1√
d

∑d−1
x=0 |x〉 |x〉 be a maximally entangled bipar-

tite state. Then the Choi operator is given by

χ = (I ⊗ E)(Φ̂+).

The complete positivity and trace preserving properties
of E result in the requirements that χ ≥ 0 and Tr2(χ) =
I/d, respectively, where Tr2 denotes a partial trace over
the second subsystem. In terms of the Choi operator, the
output of the process on an arbitrary state ρ ∈ B(H) is
given by

E(ρ) = dTr1(χ(ρᵀ ⊗ I)), (1)

where the superscript ᵀ on ρᵀ denotes transposition with
respect to the basis {|x〉}. We also need the useful prop-
erty of |Φ+〉 that

(A⊗ I)
∣∣Φ+

〉
= (I ⊗Aᵀ)

∣∣Φ+
〉
, (2)

for any operator A.
One measure of how close a process E comes to im-

plementing a desired unitary operation U is the average
fidelity, defined as

Favg(E , U) =

∫
dψ 〈ψ|U†E(ψ̂)U |ψ〉 ,

where the integral over pure states is with respect to
the probability distribution invariant under the action
of the unitary group. A closely related quantity is the
entanglement fidelity, which we simply call the process
fidelity. It is defined as

F (E , U) =
〈
Φ+
∣∣ (I⊗U†)χ(I⊗U)

∣∣Φ+
〉

= Tr (χχU ), (3)

where χU is the Choi operator for the unitary U . The
process fidelity measures not only how well quantum in-
formation in a system is preserved, but also how well the
entanglement with other systems is preserved. The av-
erage fidelity is linearly related to the process fidelity by
the formula [11]

Favg =
dF + 1

d+ 1
.

For the remainder of this paper, fidelities of processes will
be taken with respect to the identity: F (E) ≡ F (E , I).
This is done without loss of generality by replacing E
with U† ◦ E , where U†(ρ) = U†ρU .

III. STATEMENT OF PROBLEM

Let {|ψk〉}Nk=1 be an indexed family of pure states in
H, fix ε = (ε1, . . . , εN ) with εk ≥ 0, and let C(ε) be the
convex set of CPTP maps E such that for all k,

〈ψk| E(ψ̂k) |ψk〉 ≥ 1− εk. (4)

We refer to {|ψk〉} as the set of input states. We wish to
find

Fmin(ε) = min
E∈C(ε)

F (E).

Note that the minimum is achieved by compactness of
the feasible set. The εk are upper bounds on the state
infidelities, which we assume have been determined ex-
perimentally. For instance, if a set of measurements
(POVMs) can be implemented such that the projectors

ψ̂k each decompose as linear combinations of the POVM

elements, then the output state fidelities 〈ψk| E(ψ̂k) |ψk〉
can be obtained directly. Otherwise the state fidelities
can be obtained via direct fidelity estimation [12], which
for qubit systems requires only one-qubit gates and Pauli
basis measurements, and a number of experimental trials
that grows linearly in d.

We also consider the situation where upper bounds on
the state fidelities are known. In this case, the problem
is to find

Fmax(ε) = max
E∈K(ε)

F (E),

where K(ε) is the convex set of CPTP maps E that satisfy

〈ψk| E(ψ̂k) |ψk〉 ≤ 1− εk

for all k.
The bounds Fmin or Fmax can be found numerically

by solving a semidefinite program (SDP) [13]. To for-
mulate our problem as an SDP, we use the Choi matrix
representation and Eq. 1. Our task is then to solve

Minimize: Tr(χΦ̂+)
Subject to: Tr2(χ) = I/d,

Tr(χ (ψ̂ᵀ
k ⊗ ψ̂k)) ≥ 1

d (1− εk),
χ ≥ 0. (5)

A number of software packages are available for efficiently
solving SDP’s; for this work we used cvx [14, 15]. We thus
have a numerical solution to our posed problem: once the
experimenter has determined the εk, they can then solve
the above SDP to obtain Fmin as a lower bound for the
process fidelity. However, the experimenter may wish to
know which set of input states to prepare in order to get
a good lower bound. We therefore investigate properties
of the solution to the SDP given by Eq. 5, both in gen-
eral and for special cases with particular errors or input
states.
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IV. CONVEXITY

Our first observation is that the minimum process fi-
delity is a convex function of the error bounds εk.

Proposition 1. Fmin(ε) is convex, that is, Fmin(tε1 +
(1− t)ε2) ≤ tFmin(ε1) + (1− t)Fmin(ε2) for all t ∈ [0, 1].

Proof. Let E1 ∈ C(ε1) and E2 ∈ C(ε2) satisfy F (E1) =
Fmin(ε1) and F (E2) = Fmin(ε2), and consider E = t E1 +
(1− t) E2. By linearity of the process fidelity,

F (E) = tFmin(ε1) + (1− t)Fmin(ε2).

But for all k,

〈ψk| E(ψ̂k) |ψk〉 = 〈ψk| (t E1(ψ̂k) + (1− t) E2(ψ̂k)) |ψk〉
≥ t (1− (ε1)k) + (1− t) (1− (ε2)k)

= 1− t(ε1)k − (1− t)(ε2)k,

where the second line follows from Ei ∈ C(εi). Conse-
quently E ∈ C(tε1 + (1− t)ε2), and therefore

Fmin(tε1 + (1− t)ε2) ≤ F (E)

= tFmin(ε1) + (1− t)Fmin(ε2).

The convexity of the minimum process fidelity is illus-
trated in Fig. 2, which shows a plot of Fmin(ε) versus ε
for two sets of input states to be defined in Sec. VI, where
we use an unbold ε in Fmin(ε) to denote constant εk. A
useful consequence of the convexity property is that a
lower bound on the process fidelity can be obtained from
a tangent line of Fmin(ε) at ε = 0.

For the function Fmax we have:

Proposition 2. Fmax(ε) is concave, that is, Fmax(tε1 +
(1− t)ε2) ≥ tFmax(ε1) + (1− t)Fmax(ε2) ∀t ∈ [0, 1].

The proof can be obtained by following the proof of
convexity of Fmin, replacing min by max and reversing
inequalities as necessary.

V. FIDELITY LOWER BOUND

In this section we obtain a lower bound for Fmin(ε)
to lowest order in the εk. In order for the bound to be
applicable, the set of input states must have the property

that the only process E with E(ψ̂k) = ψ̂k for all k is the
identity process, or equivalently, Fmin(0) = 1. If a set of
input states has this property, we say the set identifies
unitaries. We first characterize sets of input states that
identify unitaries, and then state our lower bound for the
process fidelity.

A. Sets of input states that identify unitaries

Define the graph G = (V,E) by assigning vertex set
V = {k} and edge set E = {(k, k′) : 〈ψk|ψk′〉 6= 0}.

Theorem 1. The set of input states identifies unitaries
iff the input states span H and the graph G is connected.

Proof. Suppose that the input states span H and the
graph G is connected. By dilation, any CPTP map can
be expressed in the form

E(ρ) = Tr2(U(ρ⊗ |0〉 〈0|)U†),

for some ancillary state |0〉 and unitary U on the joint

input-ancilla system. Suppose that E(ψ̂k) = ψ̂k for all k.

Since Tr2(U(ψ̂k⊗ 0̂)U†) = E(ψ̂k) = ψ̂k is pure, U |ψk〉 |0〉
is a product state: U |ψk〉 |0〉 = |ψk〉 |ek〉, where |ek〉 is an
ancilla state which may depend on k. We prove that |ek〉
is independent of k. From the identity

〈ψk′ |ψk〉 = 〈0| 〈ψk′ |U†U |ψk〉 |0〉 = 〈ψk′ |ψk〉 〈ek′ |ek〉 ,

it follows that if k and k′ are adjacent inG then 〈ek′ |ek〉 =
1. Since G is connected, we conclude that all the |ek〉 are
equal, and with |e〉 = |ek〉, we have U |ψk〉 |0〉 = |ψk〉 |e〉
for all k. By linearity of U and since the |ψk〉 span H, it

follows that U |ψ〉 |0〉 = |ψ〉 |e〉 and E(ψ̂) = ψ̂ for all pure
states |ψ〉. By linearity of quantum processes, E(ρ) = ρ
for all density matrices ρ, and E is the identity process.

For the reverse implication, we prove the contrapos-
itive. Suppose first that the input states do not span
H. Let S be the span of {|ψk〉}, and S⊥ the orthogonal
complement of S. Then U = IS ⊕ iIS⊥ has fidelity 1 on
all input states, but is not the identity process. Next,
suppose that G is disconnected. Let S be the span of the
states |ψk〉 in a connected component of G. Then S 6= 0
and S⊥ 6= 0, and again U = IS ⊕ iIS⊥ has fidelity one on
the input states but is not the identity process.

Sets of input states that identify unitaries are also char-
acterized by having trivial commutant, meaning K =

{U ∈ SU(d) : [U, ψ̂k] = 0 for all k} = {I}. Indeed, we
show in the appendix, Prop. 3, that K = {I} iff the input
states span H and G is connected. Our characterization
is related to an observation made in Ref. [3]: if a set
of states {ρk}k has trivial commutant, then every uni-
tary U is uniquely determined by its action on the states
UρkU

†. A set of states with this property is called unitar-
ily informationally complete (UIC) [16]. For pure input
states and unitary processes, the UIC property is equiv-

alent to the property that if E(ψ̂k) = ψ̂k for all k, then
U = I. Our Thm. 1 together with Prop. 3 is therefore a
strengthening of the observation from Ref. [3] above. In
particular, for any process E , not just unitary processes,
if the input states have trivial commutant, then having

E(ψ̂k) = ψ̂k for all k is sufficient for E = I. We remark
that compared to checking for a trivial commutant, it is
simpler to check the properties that the input states are
spanning and G is connected.
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The authors of Ref. [3] also provided an example of a
set of d+ 1 pure states with the UIC property. This set
contains the d computational basis states |0〉 , ..., |d− 1〉,
as well as the “totally rotated state”, defined as |ψtr〉 =
1√
d

∑
x |x〉. The authors claimed that this set contains

the minimum number of pure states required to uniquely
determine a unitary process. However, Thm. 1 implies
that d states suffice. The simplest example has d = 2
and consists of any two non-orthogonal pure states.

B. Lower bound for small εk

We have shown that the minimum number of input
states sufficient to ensure that the process fidelity equals
unity in the limit of no errors is equal to the dimension
d. We now consider the case of small non-zero errors
εk. Suppose that the input states are spanning and G
is connected. We obtain a lower bound for Fmin(ε) to
lowest order in the εk. To describe the lower bound, or-
der the input states so that the first d input states are
spanning. Let M be the Gram matrix for the states
{|ψk〉}dk=1, defined as the d-by-d matrix with entries
Mkk′ = 〈ψk|ψk′〉. For the lower bound, we also need
to introduce a minimum-weight path quantity Wkk′ de-
fined as follows: Let Pkk′ denote the set of paths in G
from vertex k to k′. Then

Wkk′ = min
P∈Pkk′

∑
(i,j)∈P

|Mij |−1/2. (6)

With these definitions we can establish the following:

Theorem 2. Let ε = maxk εk. For all E ∈ C(ε),

F (E) ≥ 1− C
√
ε+O(ε),

C =
2

d

(2

d

∑
d≥k>k′≥1

W 2
kk′ +

d∑
k=1

√
(M−1)kk

)
.

The proof of the theorem is in the appendix Sec. B,
where it is established by proceeding along the same lines
as the proof of Thm. 1 while explicitly keeping track of
error terms to lowest order. A refinement of the bound
taking into account non-constant εk is described at the
end of the proof.

The quantity Wkk′ can be found in O(N2) time with
algorithms for minimum weighted paths [17]. Note that
Wkk′ is large if two adjacent states on the minimal path
are nearly orthogonal. The matrix M is invertible if,
as we assume, the states |ψk〉 span H, and the diagonal
entries ofM−1 are large if any two states are nearly equal.
The lower bound given by Thm. 2 can thus be understood
as quantitatively enforcing the conditions of Thm. 1.

A few comments are in order. First, note that the
lowest order term in the lower bound is of order

√
ε. This

scaling behavior matches our empirical observations from
numerically solving the SDP given by Eq. 5. However, we

lim
ǫ→0

1− Fmin(ǫ)
√
ǫ
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40

C
d = 4
d = 8

FIG. 1. Scatter plot of the
√
ε coefficient in the expansion of

Fmin(ε) inferred via SDP against the quantity C in Thm. 2,
which is an upper bound on the

√
ε coefficient. Each data

point corresponds to a set of d Haar random input states. A
line with slope m = 1 is included to aid the comparison.

find that for many sets of input states containing more
than d states, the O(

√
ε) term vanishes and the process

infidelity becomes linear in ε for small error. Examples
include the basis states plus the totally rotated state,
as well as the symmetric POVM states defined in the
next section. The transition from sub-linear to linear
scaling is not explained by the proof of Thm. 2 and thus
remains an open question. Second, the bound in Thm. 2
is not tight. Fig. 1 compares the upper bound for the
O(
√
ε) term with its true value obtained via SDP, for

100 random sets of N = d input states of dimensions
d = 4, 8. The O(

√
ε) terms were obtained by computing

Fmin(ε) for ε varying between 10−5 and 10−4 in steps
of 10−5, and performing a linear least squares best fit.
The plot shows that the bound tends to overestimate
the process infidelity by a factor of approximately two
for these dimensions, and that the fractional discrepancy
decreases as the O(

√
ε) term increases. Improving the

lower bound Thm. 2 remains an open problem.

VI. SYMMETRIC POVM INPUT STATES

In this section, we prove lower and upper bounds on
the process fidelity for a set of N input states whose
one-dimensional projectors form a symmetric positive
operator-valued measure (POVM). Such sets are also re-
ferred to as equiangular tight frames [18]. We show that
for such sets of input states, Fmin is bounded by a linear
function of the errors εk. Our motivation for studying
symmetric POVM input states is that they are in a sense
maximally spread out in the Hilbert space H, and are
therefore good candidates for yielding the tightest possi-
ble bounds for a given N .
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A. Symmetric POVMs

The set of input states forms a symmetric POVM if its
states have constant pairwise overlap and the sum of the
input projectors is proportional to the identity. That is,
the input states satisfy that for some constant c ≥ 0 and
for all k 6= k′

|〈ψk|ψk′〉|2 = c, (7)

d

N

∑
k

|ψk〉 〈ψk| = I, (8)

where the factor d
N is determined by matching the traces

of the two sides of the identity. By squaring Eq. 8 and
taking the trace, the constant in Eq. 7 is found to be

c =
N − d
d(N − 1)

. (9)

Conventionally, a POVM consists of a family of pos-
itive semidefinite hermitian operators summing to the
identity. We slightly abused the terminology in referring
to the set of input states as a POVM. The conventional
POVM formed from the input states satisfying Eqs. 7

and 8 consists of the operators d
N ψ̂k. If the set of input

states forms a symmetric POVM, then the input states
are spanning. If N > d, the graph G defined at the be-
ginning of Sec. V A is a complete graph. When N = d2,

the input projectors ψ̂k span B(H) and therefore form a
symmetric informationally complete (SIC) POVM [19].
At the other extreme, the smallest non-trivial symmetric
POVM occurs when N = d + 1, because for N = d we
have c = 0 and G is not connected. In the literature on
tight frames, a set of d+ 1 states satisfying Eqs. 7 and 8
is commonly called a simplex [18].

Whereas SIC POVMs are conjectured but not proven
to exist in all dimensions [20], we give an explicit con-
struction of a simplex. Let ω = exp(2πi/(d+ 1)) be a
(d+ 1)th root of unity. For k ∈ {0, 1, .., d}, define

|ψk〉 =
1√
d

d−1∑
x=0

ωkx |x〉 . (10)

By direct calculation one can confirm that Eqs. 7 and 8
are satisfied. We also note that when d = 2n, correspond-
ing to n qubits, the simplex input states factor according
to

|ψk〉 =

n⊗
j=1

1√
2

(|0〉+ eiπk
2n+1−j

d+1 |1〉),

and can therefore be prepared with one-qubit Hadamard
gates and rotations about the z-axis.

Symmetric POVM input states have the nice property
that Fmin(ε) is linear for constant εk = ε. An exam-
ple is shown in Fig. 2, which shows Fmin(ε) when the
set of input states is a simplex. The figure also shows

ǫ

0 0.02 0.04 0.06 0.08 0.1

0

0.2

0.4

0.6

0.8

1

Fmin

Simplex

Basis, tot. rot.

FIG. 2. Plot of Fmin(ε) for two sets of input states in d = 8
dimensions. The solid curve is for the simplex, the dashed
for the standard basis together with the totally rotated state
defined in the text. Note that Fmin is convex.

Fmin(ε) for the set of input states {|0〉 , ..., |d− 1〉 , |ψtr〉}
from Ref. [3], which is not linear and has a more negative
slope as ε goes to zero. This demonstrates that the sim-
plex is a better choice of d+ 1 input states for obtaining
lower bounds on the process fidelity. We conjecture that
symmetric POVM states are optimal among all sets of N
input states in this regard.

B. Fidelity bounds for symmetric POVM input
states

Our main result on the performance of symmetric
POVMs is a general, linear bound on F (E). After the
proof we show that the lower bound is tight for εk = ε
constant.

Theorem 3. Suppose that the set of input states with
N > d forms a symmetric POVM and let E be a CPTP

map such that 1 − uk ≥ 〈ψk| E(ψ̂k) |ψk〉 ≥ 1 − εk for all
k. Then

1− ū ≥ F (E) ≥ 1−
(
N − 1

N − d

)
ε̄,

where ε̄ and ū are the means of the εk and uk.

Proof. We first prove that F (E) ≥ 1− (N−1N−d ) ε̄ = 1− 1
dc ε̄,

where c is defined in Eq. 9. We apply the assumed bounds
and Eq. 1 to obtain

(1− εk) ≤ 〈ψk| E(ψ̂k) |ψk〉

= d Tr
(
ψ̂k Tr1

(
χ
(
ψ̂ᵀ
k ⊗ I

)))
= d Tr

(
χ
(
ψ̂ᵀ
k ⊗ ψ̂k

))
.

Define Γ =
∑
k ψ̂

ᵀ
k ⊗ ψ̂k. Summing the inequality just

obtained over k and dividing by N gives 1−ε̄ ≤ d
NTr(χΓ),
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which is equivalent to

1− 1

dc
ε̄ ≤ 1− 1

dc
+

1

Nc
Tr(χΓ). (11)

The inequality to be proven follows once we show that
F (E) is bounded below by the right-hand-side. Since

F (E) = Tr(χΦ̂+), this is implied by

Tr(χΦ̂+) ≥ 1− 1

dc
+

1

Nc
Tr(χΓ).

After moving everything to the left-hand-side and defin-
ing

A = Φ̂+ +

(
1

dc
− 1

)
I − 1

Nc
Γ,

we can see that the desired inequality is equivalent to
Tr(χA) ≥ 0, and it suffices to prove that A is positive
semidefinite. For this purpose, we determine the spectral
decomposition of Γ. We can write Γ = BB† with B given
by

B =

N∑
k=1

(|ψ∗k〉 ⊗ |ψk〉) 〈k| ,

where |ψ∗k〉 is the complex conjugate of |ψk〉 relative to

the standard basis, and we used ψ̂∗k = ψ̂ᵀ
k . B is a matrix

of dimension d2×N and the spectrum of BB† is the same
as that of B†B, which is the N × N matrix whose k, k′

entry is given by

|〈ψk|ψk′〉|2 = ((1− c)δkk′ + c).

With respect to the basis consisting of the |k〉, this is
a matrix whose diagonal entries are ones and whose off-
diagonal entries are c. Such a matrix has two eigenvalues:
the first is (N − 1)c+ 1 = N

d corresponding to the eigen-
vector with constant entries, and the second is (1 − c)
with multiplicity N − 1. Accordingly, we can write

Γ = BB† =
N

d
Π1 + (1− c)Π2, (12)

where Π1 is a rank-one projector and Π2 is a rank N − 1
projector orthogonal to Π1. We determine that Π1 = Φ̂+

by verifying that |Φ+〉 is an eigenstate of Γ with eigen-
value N/d: From Eqs. 2 and 8,

Γ
∣∣Φ+

〉
=
∑
k

(ψ̂ᵀ
k ⊗ ψ̂k)

∣∣Φ+
〉

=
∑
k

(I ⊗ ψ̂k)
∣∣Φ+

〉
=
N

d

∣∣Φ+
〉
.

Let Π⊥ = I−Φ̂+−Π2 be the projector onto the nullspace

of Γ. We can now write A as

A = Φ̂+ +

(
1

dc
− 1

)
(Φ̂+ + Π2 + Π⊥)

−
(

1

dc
Φ̂+ +

1− c
Nc

Π2

)
=

d− 1

N − d
Π⊥,

since 1
dc − 1 = 1−c

Nc = d−1
N−d . Thus A is positive semidefi-

nite as claimed.

The proof that F (E) ≤ 1− ū follows the same strategy.
Instead of Eq. 11, from the upper bound on the input
state fidelities we derive 1−ū ≥ d

NTr(χΓ). The inequality

to be proven now is implied by Tr(χΦ̂+) ≤ d
NTr(χΓ), so

it suffices to show that Tr(χA′) ≤ 0 with A′ = Φ̂+ −
d
N Γ. Applying Eq. 12 gives A′ = − d

N (1− c)Π2, which is
negative semidefinite since c < 1.

Our numerical solutions to the SDP Eq. 5 indicate that
the lower bound F (E) ≥ 1−(N−1N−d )ε̄ of Thm. 3 is not tight.

Finding an expression for Fmin(ε) for symmetric POVM
input states and general εk remains an open problem.
However, if εk = ε for all k, then the lower bound is tight
and achieved by the quantum channel

E(ρ) = (1− p) ρ+ p
d

N

∑
k

ψ̂kρ ψ̂k, (13)

where p = d(N−1)
(d−1)(N−d)ε. The Kraus operators for E are

√
1− p I and

√
p dN ψ̂k for k = 1, . . . , N . We verify that

E satisfies 〈ψk| E(ψ̂k) |ψk〉 = 1 − ε for all k and F (E) =
1− (N−1N−d )ε:

〈ψk| E(ψ̂k) |ψk〉 = (1− p) + p
d

N

∑
k′

|〈ψk|ψk′〉|4

= (1− p) + p
d

N

(
1 + (N − 1)c2

)
= 1− p

(
N − d
N

− d(N − 1)

N
c2
)

= 1− p 1

N

(
N − d− (N − d)2

d(N − 1)

)
= 1− p N − d

dN(N − 1)
(d(N − 1)− (N − d))

= 1− p (N − d)(d− 1)

d(N − 1)

= 1− ε,
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and

F (E) =
〈
Φ+
∣∣ (I ⊗ E)(Φ̂+)

∣∣Φ+
〉

= (1− p) + p
d

N

∑
k

∣∣∣〈Φ+
∣∣ (I ⊗ ψ̂k)

∣∣Φ+
〉∣∣∣2

= (1− p) + p
d

N

∑
k

1

d2

= 1− pd− 1

d

= 1− N − 1

N − d
ε.

WhenN = d2, symmetric POVM input states form a SIC
POVM and therefore also a 2-design [19]. An argument
similar to that in Ref. [11] shows that the fidelity min-
imizing channel E defined in Eq. 13 is the depolarizing
channel

E(ρ) = (1− q)ρ+
q

d
I,

with q = d
d−1ε. For the simplex, when N = d + 1, the

fidelity minimizing channel is in general more difficult to
interpret. For the case of d = 2 and with the explicit
simplex states given in Eq. 10,

E(ρ) = (1− 2ε)ρ+ ε(σxρσx + σyρσy),

where the σu are the standard Pauli matrices. As can
be seen, E is a sum of the x and y dephasing channels.
In a Bloch-sphere-deformation picture, the effect is to
maximize contraction parallel to the z-axis while keep-
ing contraction parallel to the other axes fixed. The z-
axis contraction is limited by the “no pancake theorem”
[21], which states that there is no quantum channel that
projects the Bloch sphere onto the x− y plane.

C. Comparison to Hofmann bounds

In this section we compare the process fidelity bounds
from Thm. 3 to those given by Hofmann [2], which require
as input states the members of two mutually unbiased
bases (MUBs). A particular pair of such bases consists of
the computational basis {|x〉} and its Fourier transform
{|fx〉} given by

|fx〉 =
1√
d

∑
y

e2πixy/d |y〉 .

The Hofmann bounds are determined by the two classical
fidelities

F1 =
1

d

∑
x

〈x| E(x̂) |x〉 ,

F2 =
1

d

∑
x

〈fx| E(f̂x) |fx〉 ,

in terms of which they are given by

F1 + F2 − 1 ≤ F (E) ≤ min{F1, F2}. (14)

Suppose that the fidelities for the input states used to
apply the Hofmann bounds are 1 − εk. Then F1 + F2 −
1 = 1 − 2ε̄ and if εk = ε is constant, min{F1, F2} =
1− ε̄. For comparison, according to Thm. 3, a symmetric
POVM with N = 2d yields lower and upper bounds of
1− ( 2d−1

d )ε̄ and 1− ε̄. Assuming identical average errors,
this lower bound is slightly tighter than the Hofmann
bounds, but the two bounds become equal in the limit of
large dimension.

The Hofmann bounds require 2d input states, a
quadratic improvement over full process tomography
in the number of states needed to probe the fidelity
of a process. The set of simplex input states consist
of d + 1 states, further reducing the number of input
states by a factor approaching two. For the set of sim-
plex input states, if the measured state fidelities satisfy

〈ψk| E(ψ̂k) |ψk〉 = 1 − εk, then according to Thm. 3 the
process fidelity is bounded by

1− d ε̄ ≤ F (E) ≤ 1− ε̄. (15)

Because fewer input states are used, the bounds obtained
with the simplex are looser than the Hofmann bounds.
However, the improvement obtained from the Hofmann
bounds depends on the particular process E . For in-
stance, if the system is subject to an error channel that
is a depolarizing channel D(ρ) = (1 − p)ρ + p

dI, with

〈ψk| D(ψ̂k) |ψk〉 = 1−ε, then for the simplex input states
one finds that F1 = F2 = 1 − ε and so the Hofmann
bounds are

1− 2ε ≤ F (D) ≤ 1− ε.

The width of the interval between the lower and upper
Hofmann bounds is smaller than that of Eq. 15 by a
factor of d− 1, so the advantage gained from using more
input states grows linearly with the dimension. However,
if the system encounters errors described by the process
in Eq. 13, the classical fidelities are F1 = 1 − dε and
F2 = 1− d+1

3 ε (see appendix), giving the bounds

1−
(4d+ 1

3

)
ε ≤ F (E) ≤ 1− d ε. (16)

In this case the Hofmann bounds are tighter than the
bounds in Eq. 15 by a factor approaching three for large
dimensions. Interestingly, for the process given by Eq. 13,
the upper bound obtained from Eq. 14 and the lower
bound from Eq. 15 coincide. So for this particular chan-
nel, the classical fidelities for the Hoffman input states
together with the average fidelity for the simplex input
states determine the process fidelity exactly.

VII. CONCLUSION

We have characterized sets of pure input states that
identify unitary processes, and determined that the min-



8

imum number of states required is equal to the Hilbert
space dimension d. We obtained a lower bound on F (E)
of the form 1 − C

√
ε − O(ε) for small ε (Thm. 2). We

have also proven bounds on F (E) for symmetric POVM
input states and shown that the lower bound is achieved
for constant εk = ε. When N = 2d, these bounds are
slightly tighter than the Hofmann bounds obtained from
a set of input states consisting of two MUBs. The small-
est set of symmetric POVM input states which identifies
unitaries is the simplex, with N = d + 1. For qubit sys-
tems where d = 2n, simplex input states can be prepared
with a circuit containing only Hadamard gates and in-
dividual z-axis rotations. However, the bounds obtained
are in general much looser than the Hofmann bounds.

There are a number of open problems to be investi-
gated. As noted, the bound given by Thm. 2 is not tight.
Is there a tight bound expressed analytically in terms
of the input states? What property of the input states
determines the vanishing of the O(

√
ε) term? Another

open question is to find Fmin(ε) and the fidelity mini-
mizing channel for symmetric POVM input states and
arbitrary ε. A general problem is to determine, given N
and ε̄ or maxk εk, the maximum of Fmin over all sets of
input states of size N . Instead of the maximum Fmin one
can seek the minimum Fmax or Fmax −Fmin. We conjec-
ture that symmetric POVM states are optimal among all
sets of N input states, but numerical evidence suggests
that symmetric POVMs do not exist for many N with
d + 1 < N < d2 [18, 22, 23]. Finally, we observed that
a set of input states containing both two MUBs and the
simplex states determined F (E) for the channel Eq. 13.
This suggests the question of characterizing sets of input
states and ε that together determine the process fidelity
exactly.
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Appendix A: Equivalence of UIC and graph
connectivity

Proposition 3. For a set of pure states {|ψk〉}, let
G = (V,E) be the graph with V = {1, . . . , k} and
E = {(k, k′) : 〈ψk|ψk′〉 6= 0}. The following two
conditions are equivalent:

1. If U ∈ U(d) and [U, ψ̂k] = 0 for all k, then U ∝ I

2. The |ψk〉 span H and the graph G is connected.

Proof. (1 =⇒ 2) This direction is essentially the same as
the only-if part of Thm. 1. We prove the contrapositive.
Suppose first that the states |ψk〉 do not spanH. Let S be
the span of {|ψk〉}, and S⊥ the orthogonal complement

of S. Then U = IS ⊕ iIS⊥ commutes with all ψ̂k but is
not proportional to the identity. Next, suppose that G
is disconnected. Let S be the span of the states |ψk〉 in
a connected component of G. Then S 6= 0 and S⊥ 6= 0,

and again U = IS ⊕ iIS⊥ commutes with all ψ̂k but is
not proportional to the identity.

(2 =⇒ 1) Suppose that U commutes with all ψ̂k.
From U |ψk〉 〈ψk| = |ψk〉 〈ψk|U it follows that U |ψk〉 =
ωk |ψk〉 with ωk = 〈ψk|U |ψk〉. Therefore, 〈ψk′ |ψk〉 =
〈ψk′ |U†U |ψk〉 = ω∗k′ωk 〈ψk′ |ψk〉. If k and k′ are adjacent
in G, we can divide both sides by 〈ψk′ |ψk〉 and conclude
that ωk = ωk′ . Since G is connected, all ωk are equal,
and since the states |ψk〉 span H, it follows that U is
proportional to the identity .

Appendix B: Proof of Thm. 2

Proof. Suppose that the family of input states {|ψk〉}Nk=1
spans H, the graph G = (V,E) defined by V = {1, . . . , k}
and E = {(k, k′) : 〈ψk|ψk′〉 6= 0} is connected, and for all
k the process E satisfies

〈ψk| E(ψ̂k) |ψk〉 ≥ 1− ε. (B1)

By dilation we can express E as

E(ψ̂k) = TrB(U(ψ̂k ⊗ |0〉 〈0|)U†),

where U is unitary and we introduced an ancillary system
with initial state |0〉. We label the original input system
by A, the ancillary system by B and disambiguate kets
and operators with label subscripts and bras with label
presuperscripts, when necessary. The state U |ψk〉 |0〉 can
be written as

U |ψk〉 |0〉 = ak |ψk〉A |ek〉B + bk |sk〉AB , (B2)

where |ek〉 is a normalized ancilla state, and |sk〉AB sat-
isfies A〈ψk| |sk〉AB = 0, and ak and bk are non-negative.
The coefficients and states can be determined from the
identity ak |ek〉B = A〈ψk|U |ψk〉A |0〉B . Eq. B1 implies

that ak ≥
√

1− ε and therefore bk ≤
√
ε. Applying

Eq. B2 for indices k and k′ gives

〈ψk′ |ψk〉 = 〈0| 〈ψk′ |U†U |ψk〉 |0〉
= ak′ak 〈ψk′ |ψk〉 〈ek′ |ek〉

+ bk′ak 〈sk′ | |ψk〉 |ek〉+ ak′bk 〈ψk′ | 〈ek′ | |sk〉
+O(ε).



9

Let αk′k = bk′ak 〈sk′ | |ψk〉 |ek〉 + ak′bk 〈ψk′ | 〈ek′ | |sk〉.
Then |αk′k| ≤ 2

√
ε, and since ak′ak = 1−O(ε), we have

〈ψk′ |ψk〉 = 〈ψk′ |ψk〉 〈ek′ |ek〉+ αk′k +O(ε). (B3)

If k and k′ are adjacent in G we can divide both sides of
Eq. B3 by 〈ψk′ |ψk〉, and obtain

〈ek′ |ek〉 = 1− αk′k
〈ψk′ |ψk〉

+O(ε).

If k and k′ are not adjacent, there is a path P from k
to k′, and the above equation applies for each edge along
the path. We make repeated use of the following fact: if
〈b|a〉 = 1 − β1 and 〈c|b〉 = 1 − β2, for β1,β2 ∈ C, then

〈c|a〉 = 1 − β, with |β| ≤ (
√
|β1| +

√
|β2|)2, to lead-

ing order in |β1|,|β2|. This can be verified by expanding
〈c|a〉 = 〈c| (|b〉 〈b|+ Π) |a〉 with Π the projector onto the
orthogonal complement of |b〉. We conclude that

〈ek′ |ek〉 = 1− γkk′ +O(ε), (B4)

for complex γkk′ satisfying

|γkk′ | ≤ 2
√
ε

( ∑
(i,j)∈P

|〈ψi|ψj〉|−1/2
)2

.

Because this is true for any path from k to k′, we can
choose the path such that the above sum is minimized.
Therefore,

|γkk′ | ≤ 2
√
εW 2

kk′ (B5)

where Wkk′ is defined by Eq. 6.
To compute the process fidelity we add an additional

system C and start with AC in the maximally entangled
state |Φ+〉AC = 1√

d

∑
x |x〉A |x〉C . The process fidelity is

then given by

F (E) = TrB
〈
Φ+
∣∣
AC

UAB
∣∣Φ+

〉
AC
|0〉B 〈0|B

〈
Φ+
∣∣
AC

U†AB
∣∣Φ+

〉
AC

.

(B6)
By reordering if necessary, we can assume that {|ψk〉}dk=1
is a basis. There exists a (non-orthogonal and un-

normalized) dual basis {|ψ̃k〉}dk=1, satisfying 〈ψ̃k|ψk′〉 =
δkk′ for 1 ≤ k, k′ ≤ d. For the remainder of this proof,
indices k, k′ are in {1, . . . , d} by default. The computa-
tional basis states can be expanded as

|x〉 =
∑
k

〈ψ̃k|x〉 |ψk〉 .

Expanding |Φ+〉AB in terms of the computational basis
and invoking Eq. B2 gives

UAB
∣∣Φ+

〉
AC
|0〉B =

1√
d

∑
x

∑
k

〈ψ̃k|x〉UAB |ψk〉A |0〉B |x〉C

=
1√
d

∑
x

∑
k

〈ψ̃k|x〉
(
ak |ψk〉A |ek〉B + bk |sk〉AB

)
|x〉C .

Applying 〈Φ+|AC on the left gives

1

d

∑
x

∑
k

〈ψ̃k|x〉
(
ak 〈x|ψk〉 |ek〉B + bk

A〈x||sk〉AB
)

=
1

d

∑
k

(
ak |ek〉B + bk

A〈ψ̃k||sk〉AB
)
.

Substituting in Eq. B6 yields

F (E) =
1

d2

∑
kk′

{
〈ek′ |ek〉+ bk

A〈ψ̃k|B〈ek′ ||sk〉AB +

b∗k
AB〈sk′ ||ψ̃k′〉A |ek〉B

}
+O(ε). (B7)

To bound the magnitude of the sum involving 〈ek′ |ek〉,
we apply Eqs. B4 and B5 to obtain∣∣∣∣∣ 1

d2

∑
kk′

〈ek′ |ek〉

∣∣∣∣∣ =

∣∣∣∣∣∣1d +
1

d2

∑
k 6=k′

(1− γkk′)

∣∣∣∣∣∣
=

∣∣∣∣∣∣1− 1

d2

∑
k 6=k′

γkk′

∣∣∣∣∣∣
≥ 1− 4

√
ε

d2

∑
k>k′

W 2
kk′

The terms A〈ψ̃k|B〈ek′ ||sk〉AB and AB〈sk′ ||ψk′〉A |ek〉B are

each bounded in magnitude by ‖ |ψ̃k〉 ‖. To express this
quantity in terms of the |ψk〉, define C =

∑
k |ψk〉 〈k|.

Since 〈k|C−1 |ψk′〉 = 〈k|C−1C |k′〉 = δkk′ for all k, k′, we

have 〈ψ̃k| = 〈k|C−1 and ‖ |ψ̃k〉 ‖2 = 〈k|C−1(C−1)† |k〉 =
〈k| (C†C)−1 |k〉. The matrix M = C†C can be recognized
as the Gram matrix for the states |ψk〉, in terms of which
we can write

‖ |ψ̃k〉 ‖ =
√

(M−1)kk .

Substituting these bounds into the expression for the
process fidelity in Eq. B7 gives

F (E) ≥ 1− 2

d

(2

d

∑
k>k′

W 2
kk′ +

∑
k

√
(M−1)kk

)√
ε+O(ε),

matching Thm. 2 in the main text. This lower bound can
be generalized to the case of state dependent errors εk.
Working back through the derivation, it suffices to apply
the following replacements to the expression for the lower
bound:

W 2
kk′
√
ε 7→ min

P∈Pkk′

( ∑
(i,j)∈P

√√
εi +
√
εj

|〈ψi|ψj〉|

)2

,

and ∑
k

√
(M−1)kk

√
ε 7→

∑
k

√
(M−1)kk

√
εk.
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Appendix C: Derivation of Eq. 16

We set N = d+ 1. Given the channel

E(ρ) = (1− p)ρ+ p
d

d+ 1

d∑
k=0

ψ̂kρ ψ̂k,

p =
d2

d− 1
ε,

and the expression for |ψk〉 in Eq. 10, we compute

〈x| E(x̂) |x〉 = 1− p+ p
d

d+ 1

d∑
k=0

|〈x|ψk〉|4

= 1− d ε.

Therefore,

F1 =
1

d

∑
x

〈x| E(x̂) |x〉 = 1− d ε.

For the Fourier basis,

〈fx| E(f̂x) |fx〉 = 1− p+ p
d

d+ 1

d∑
k=0

|〈fx|ψk〉|4,

where

〈fx|ψk〉 =
1

d

d−1∑
y=0

e2πiy(
k

d+1−
x
d ).

We compute

d∑
k=0

|〈fx|ψk〉|4 =
d+ 1

d4

∑
(y1,y2,y3,y4)∈J

e−2πi(y1−y2+y3−y4)x/d,

where J consists of the tuples (y1, . . . , y4) satisfying y1−
y2 + y3 − y4 = 0 mod (d + 1) and yi ∈ {0, . . . , d − 1}.
For m = 0, d + 1,−(d + 1), let Jm be the set of tuples
(yi)

4
i=1 ∈ J such that y1 − y2 + y3 − y4 = m. Define

Sm(x) =
∑

(y1,y2,y3,y4)∈Jm e−2πi(y1−y2+y3−y4)x/d. Then∑
x S±(d+1)(x) = 0 and

∑
x S0(x) = d|J0|. For |J0| we

get

|J0| =
2(d−1)∑
l=0

∣∣∣{(y1, y3) :

y1 + y3 = l and y1, y3 ∈ {0, . . . , d− 1}
}∣∣∣2

=

d−1∑
l=0

(l + 1)2 +

2(d−1)∑
l=d

(2(d− 1)− l + 1)2

= d2 + 2

d−1∑
l=1

l2

= d2 + 2
1

6
(d− 1)(d)(2d− 1).

We can now evaluate F2.

F2 =
1

d

∑
x

〈fx| E(f̂x) |fx〉

= 1−
(

d2

d− 1
− d3

(d− 1)(d+ 1)

d+ 1

d4
|J0|
)
ε

= 1−
(

d2

d− 1
− 1

d(d− 1)
|J0|
)
ε

= 1−
(

d2

d− 1
− d

d− 1
− 2d− 1

3

)
ε

= 1− d+ 1

3
ε.
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