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We investigate the nature of long-range density fluctuations in melts of model “soft” polymers,
specifically stars and bottlebrushes, over a wide temperature range by molecular dynamics sim-
ulation. The cores of the stars and the backbones of bottlebrush polymers are found to have
a hyperuniform distribution, i.e., they exhibit anomalously small density fluctuations over a wide
temperature range above the glass transition temperature. The hyperuniformity of these substituent
polymer subregion is hidden since the fluid as a whole does not exhibit this property. These findings
offer a strategy for the practical design of hyperuniform polymeric materials.

Disordered hyperuniform materials arise from strong
interparticle interactions that lead to particle localiza-
tion and to a suppression of large scale density fluctua-
tions, making these highly “jammed” materials useful in
many applications in which low compressibility and ma-
terial isotropy are required. In particular, hyperuniform
materials have been observed to have enhanced fracture
strength [1] and large isotropic photonic band gaps com-
parable to those of photonic crystals [2, 3]. Recent in-
vestigations have focused on the special mechanical [4],
optical [5], photonic [6, 7], phononic [8], and transport
properties of these materials [9]. However, design rules
for the practical creation of hyperuniform materials have
not yet been determined.

Density fluctuations are nearly completely suppressed
in hyperuniform materials at large length scales, as quan-
tified by the structure factor S(q) approaching zero in
the limit q → 0. Correspondingly, the fluid compress-
ibility becomes small so that such materials are highly
“jammed” and the direct correlation function, defined
via the Ornstein-Zernike relation [10], is long-ranged [11].
Based on this definition, the “degree of hyperuniformity”
h is defined as the ratio of S(0) over the value of S(q)
at the first peak, which represents the average interpar-
ticle distance. Correspondingly, for a perfect hyperuni-
form material, h = 0, but more generally, a material
at equilibrium is considered “effectively hyperuniform”
if h satisfies the inequality h = S(0)/Sp < 10−3 [4, 12].
Classical fluids at their critical point also have a long-
ranged density correlations, but S(q) diverges as q → 0
as the liquid transforms into a gas [13–15]. Character-
istically, a fluid at its critical point becomes turbid in
appearance due to the scattering of light by large scale
density inhomogeneities [16]. Cooling liquids normally
has the opposite effect, the amplitude of the density fluc-
tuations leading to a S(0) decrease, in many cases re-
sulting in optically transparent homogeneous solid ma-
terials in the form of crystals and glasses. While both
perfect crystals and quasi-crystals at zero temperature
are hyperuniform by definition, the degree of hyperuni-
formity h is sensitive to defects in the crystal structure
and non-harmonic large scale thermal motion [12]. More-

over, the propagation of light in crystalline materials is
anisotropic, which is a disadvantage in the use of isotropic
thermal radiation sources [17] and waveguides with an
arbitrary bending angle [18]. Glass-forming liquids are
disordered systems that sometimes have high statistical
isotropy and such materials have a smaller sensitivity to
defects than crystals. However, near hyperuniformity is
only found asymptotically as the temperature approaches
the glass transition temperature, Tg, h & 10−3 [19–21].
The present work is concerned with how to achieve hy-
peruniform polymeric glass-forming materials.

We draw inspiration from already identified natural
and synthetic hyperuniform materials, such as the photo-
receptors of color-sensitive core cells in the eyes of certain
birds [22], emulsified droplets [23], and the glassy minor-
ity blocks of sphere-forming block copolymers [24]. Ad-
ditionally, we have observed [25] that fluids composed of
nanoparticles with grafted polymers (PGNs) also exhibit
a hyperuniform state of the core particles at temperatures
well above Tg. The common feature of these materials is
that they are composed of “soft” particles [26], meaning
that the molecules/particles deform and overcome sur-
face tension effects and/or applied stresses. These ex-
amples lead us to hypothesize that we may create hy-
peruniform configuration of particles by “dressing” the
particle or molecule of interest by a soft layer that may
deform to enhance the packing efficiency of the “compos-
ite” particles. In this Letter, we test this hypothesis by
considering the core particles of star polymers and the
backbone chains of bottlebrush polymers. We find that
these grafted polymer layers can produce hyperuniform
configurations of the star cores and backbone chains of
the bottlebrush polymer as in the case of PGNs. Corre-
lations between parts of the polymer are hidden when the
local density correlations of all the particles are consid-
ered. Despite the hidden nature of the hyperuniformity,
these materials can be harnessed for applications. In such
cases, the core of star polymers and backbone chains of
the bottlebrush polymers must have dielectric or me-
chanical properties that distinguish this part of poly-
mer construct for these correlations to have observable
consequences. We mention, for example, that backbone
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FIG. 1: Total static structure factor S(q) (continuous line) and partial structure factors of star and the bottlebrush polymer
melts. The relation between the S(0) = ρ kBT κT for S(q) and a schematic of the packing for bottlebrush and star polymers
are also presented.

of bottlebrush polymers can be composed of conductive
polymers [27, 28] and in the case of PGNs the core of
the nanoparticles can be metallic, semiconducting, mag-
netic, etc. [29, 30], so that hyperuniform configurations
of the core structures can be expected to be functional
significant. In other words, we establish a general design
rule for the development of hyperuniform materials.

Our polymer melts consist of Np star or bottlebrush
polymers. A bottlebrush polymer has a backbone chain
composed of Nb segments and f side chains each com-
posed of M segments, where one of their free ends is
grafted along the backbone chain in a uniform fashion,
i.e., one side chain per backbone segment. Thus, the
total number of interaction centers per bottlebrush poly-
mer is Mw = fM + Nb. A star polymer is effectively a
bottlebrush having only one segment, i.e., Nb = 1. Thus,
the backbone becomes the core particle at which f -chains
are grafted on its surface. The main focus of our current
study is on the following set of parameters: star poly-
mers having f = 16 arms and M = 5 segments per arm,
bottlebrush polymers having arm lengths of M = 10 seg-
ments, backbone lengths having Nb = 40 segments, and
grafting density, f/Nb = 1. The segmental interactions
are described by the cut-and-shifted Lennard-Jones (LJ)
potential with a cutoff distance rc = 2.5σ, see Supple-
mentary Information for more details. For all interac-
tions, ε and σ define the units of energy and length. The
segments along a chain are connected with their neigh-
bors via a stiff harmonic spring, VH(r) = k(r−l0)2, where
l0 = 0.99σ is the equilibrium length of the spring, and
k = 2500 ε/σ2 is the spring constant.

Simulations were performed in a cubic box with length
L; periodic boundary conditions were applied in all three
directions. We utilized the large-scale atomic/molecular
massively parallel simulator (LAMMPS) [31, 32]. Simu-
lations were performed in the NV T ensemble after equili-

bration in the NPT ensemble at the desired temperature.
Time averaging was conducted for O(108) time steps af-
ter equilibration with the time step set to δt = 0.005 τ ,
where τ = σ(mb/ε)

1/2 is the unit of time. Temperature
and pressure are measured in units of ε/kB and σ3/ε, re-
spectively. Simulations were performed at different tem-
peratures and 〈P 〉 ≈ 0.1 in reduced units.

We calculate the total structure factor S(q) of star
polymer and bottlebrush polymer melts; see Fig. 1. S(q)
of the entire bottlebrush polymer melt is similar to that
of a simple liquid [10]. In both types of branched poly-
mers, there is a peak in S(q) at q σ ≈ 7, corresponding
to the distance between the neighboring segments. For
star polymers, there is an additional feature of a pre-peak
associated with the higher in segmental density near the
core particle [33]. Moreover, the density fluctuations are
suppressed and a plateau is reached for q σ . 2 for bot-
tlebrush polymers and q σ . 0.3 for star polymers. Based
on this plateau position, one can reliably extrapolate to
S(0). For liquids in equilibrium, it is well know that S(0)
and isothermal compressibility κT are related [10],

S(0) = ρ kBT κT , (1)

where ρ is the segmental density. The extrapolated val-
ues of S(0) from S(q) calculations are in agreement with
the recently developed empirical correlation of volume
V (T, P ), see Supplementary Information for more de-
tails, allowing the estimation of ρ and κT , via the Eq. 1,
meaning that our systems are equilibrated. However, the
hyperuniform parameter based on S(q) is larger than the
threshold value h > 10−3, suggesting that when these
materials are considered as a whole then they are not
effectively hyperuniform.

We next consider the partial static structure factor,
corresponding to the backbone chain segments Sb(q) for
bottlebrush polymers and core particles Sc(q) of star
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polymers; the latter is discussed in the Supplementary
Information. For bottlebrush polymers, we find an ad-
ditional peak in Sb(q), which is absent in S(q), near
q σ ≈ 1.1 corresponding to the average distance between
neighboring bottlebrush backbones, see Fig. 1. This is
analogous to the pre-peak in S(q) in highly branched star
polymers. Indeed, the pre-peak in the star polymers is
also found in Sc(q) at the same location. Trends in the
peak location and its scaling with molecular parameters
is discussed in Ref. [34]. For smaller q-values, there is a
steep decrease in Sb(q) and in Sc(q) as q → 0 and for
low q-values Sb(q) < S(q), as illustrated in Fig. 1. Inter-
estingly, the location of the polymer peak or its height
change little with T variation, as can be seen in Fig. 2.
Specifically, the backbones lack short and medium range
structural order, as illustrated for the intermolecular pair
correlation function of backbone chains gb(r) in the in-
set of Fig. 2. This lack of short and medium structural
correlations makes the structure of the backbone chains
less sensitive to T variation, which is also reminiscent of
a gas [35]. The striking lack of medium range order in
our case derives from strong shape-fluctuations of these
polymers. Changes in Sb(q) are observed for q σ < 0.4,
which we discuss below.

To probe the trends of the structural correlations as
q → 0, we prepared polymer melt systems having signif-
icantly more interaction centers than our original study
(for star polymers from 32 400 to 20 250 000 and for bot-
tlebrush polymers from 176 000 to 8 448 000 interaction
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FIG. 2: Partial static structure factor of bottlebrush polymer
melts, corresponding to backbone correlations Sb(q) (sym-
bols), and of star polymers, corresponding to core particle cor-
relations Sc(q) (continuous lines). Results for different tem-
peratures are also presented. The dashed lines corresponds
to fits based on a power law relation: Sb(q) = S0

(
1 + c q2

)
,

where c and S0 are fitting parameters. The dot-dashed line
corresponds to Sb(q) = 1.1 q2. Inset: Radial distribution func-
tion of the intra- and inter-backbone chains at T = 0.8 rep-
resented by blue dashed line and continuous red line, respec-
tively.

centers) [34]. The resulting Sb(q) curves at T > Tg are
presented in Fig. 2. Star polymers reach a plateau at low
q-values, a similar effect to that observed for bottlebrush
polymers where Sb(q) monotonically decreases to smaller
values as q → 0. For both branched polymer types, the
plateau in the partial correlations have small values, indi-
cating that the density fluctuations of the backbone seg-
ments are significantly suppressed. This is understand-
able as the backbone chains in bottlebrush polymers,
and correspondingly the core particle in star polymers,
are localized by the surrounding grafted chains. When
considering density correlations of the fluid as a whole,
the lack of structural indicators of the strong suppres-
sion of the density correlations between the cores of the
star polymers and the backbones of bottlebrush polymers
suggests that these correlations are hidden. To obtain a
better estimate of Sb(0) for bottlebrush polymers we note
that Sb(q) seems to approach to a plateau at low q for
T = 0.8, as in case of total structure factor S(q), sug-
gesting that Sb(q → 0) reaches a non-zero plateau value
S0 > 0. We estimate S0 by fitting Sb(q) to the relation,
Sb(q) = S0 (1 + c qα) in q σ < 0.4. We find the exponent
is α ≈ 2 so that Sb(q) consistent with the mean-field the-
ory of critical fluids [14]. However, the constant c is posi-
tive as the hyperuniform limit is approached rather than
negative as for fluids near their critical point. Negative
c values are found in microemulsion materials [36, 37].

By combining an estimation of the partial structure
factor as q → 0 and the height of the partial structure
factor, we can determine the degree of hyperuniformity,
see Fig. 3. The definition of h can be extended to non-
equilibrium materials, so that the concept of hyperuni-
formity applies broadly to condensed materials [4]. For
comparison, we also determine h for the whole polymer
material based on S(q) for both star and bottlebrush
polymer melts. It is evident that h is at least an order
of magnitude smaller than when all the molecular seg-
ments are considered. The latter case closely tracks the
h values for linear chain polymer melts; see Fig. 3. More-
over, the backbone chains exhibit h < 10−3 for T/Tg . 2,
meaning that the backbone chains are effectively hype-
runiform over a wide range of T over Tg. The degree
of hyperuniform packing of the bottlebrush polymers is
comparable with that of PGNs (Fig. 3). The core par-
ticles of star polymers exhibit even lower h values than
both bottlebrush polymers and PGNs, even though the
h values from the total correlations of star polymers is
as linear chain polymer melts. Similar to bottlebrush
backbones, the cores of star polymers are hyperuniform
at temperatures well above Tg.

Recent work by the authors have demonstrated that
suppression of density fluctuations in the backbones of
bottlebrush polymer melts and in the cores of stars oc-
curs over a wide range of molecular parameters, signi-
fying a rather general trend [34]. Indeed, bottlebrush
polymers and moderately branched star polymer melts
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FIG. 3: Hyperuniformity parameter of bottlebrush polymer
melts as a function of temperature, T . Results for total and
backbone correlations are presented. The highlighted regions
represent the regions at which glassy dynamics and the hy-
peruniform states emerge. The dot-dashed lines corresponds
to h-parameter found for polymer grafted nanoparticles, for
details see Ref. [25]. The double-dashed lines are based on
power law relation h = cT δ, where c and δ are fitting param-
eters; for the total correlation trends we utilize the parameters
developed for linear chain melts (c, δ) = (0.03, 2.69) and they
are obtained in Ref. [20], while for the backbone trends we
find (c, δ) = (0.00174, 2.12) and for the core particles of star
polymers we find (c, δ) = (0.00033, 1.87).

are more closely related in their configurational and ther-
modynamic properties, as well as to ring polymer melts,
than linear chain melts [34, 38]. Similar suppression of
density fluctuations has been observed in the packing of
polymer-grafted nanoparticles in the absence of solvent, a
novel type of materials that several studies demonstrated
their have special properties related to hybrid character
of the particles and the highly uniform packing configu-
rations that these particles exhibit [39–41]. It is evident
that branched molecules exhibit non-trivial correlations
in their molecular packing and hyperuniformity can pro-
vide a valuable tool to probe these correlations.

Our observations of hyperuniformity in bottlebrush,
star polymer melts, and previously in PGN melts [25],
in conjunction with experimental observations of hyper-
uniformity in biological context (e.g., photoreceptors in
the eye cells of certain birds [22]) and synthetic ma-
terials, e.g., sphere-forming block copolymers [24] and
PGNs [30], indicate a general strategy for creating hype-
runiform polymeric materials. Greater molecular packing
efficiency is achieved by having one component fluid com-
posed of molecules having a substituent of their particles
(the core of the star polymers and PGNs or the back-
bone chains in the case of bottlebrush polymers) local-
ized within their own molecular structure, which tends to
increase the magnitude of Sp in the partial structure fac-
tor correlations. The combination of these features leads

to molecular packing that is highly uniform at both small
and large length scales. An important practical consid-
eration here is that the substituent particles can have
different properties, such as being conductive [27, 28],
to achieve useful property changes based on hyperuni-
formity, thus greatly expanding the usefulness of these
materials. The cases of photoreceptors in the eye cells of
certain birds [22] and the nuclei of cat retinal ganglion
cells [42], can be considered to be, in a coarse-grained
sense, like the cores of star polymers. We may also ex-
pect particles in plasmas [43, 44] and nanoparticles in
ionic fluids [45] to interact through soft repulsive inter-
actions, leading to hyperuniformity. Our findings offer a
conceptual path for the design of hyperuniform polymer
materials for many potential applications and provide sci-
entific insight into the origin of this class of materials.
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fold, Proc. Nat. Acad. Sci. 114, 9570 (2017).

[8] G. Gkantzounis, T. Amoah, and M. Florescu, Phys. Rev.
B 95, 258 (2017).

[9] G. Zhang, F. H. Stillinger, and S. Torquato, J. Chem.
Phys. 145, 244109 (2016).

[10] J.-P. Hansen and I. R. McDonald, Theory of simple liq-
uids (Academic Press, Cambridge, 2006).

[11] Y. Jiao, H. Berman, T.-R. Kiehl, and S. Torquato, PloS
6, e27323 (2011).

[12] J. Kim and S. Torquato, Phys. Rev. B 97, 054105 (2018).
[13] B. Widom, J. Chem. Phys. 43, 3898 (1965).
[14] H. E. Stanley, Introduction to Phase Transitions and

Critical Phenomena (Oxford University Press, New York,
1971).

[15] J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J.
Newman, The Theory of Critical Phenomena: An Intro-
duction to the Renormalization Group (Oxford Univer-
sity Press, Oxford, 1992).

mailto:alexandros.chremos@nist.gov
mailto:jack.douglas@nist.gov


5

[16] V. G. Puglielli and N. C. Ford, Phys. Rev. Lett. 25, 143
(1970).

[17] M. Florescu, K. Busch, and J. P. Dowling, Phys. Rev. B
75, 201101 (2007).

[18] H. Miyazaki, M. Hase, H. T. Miyazaki, Y. Kurokawa, and
Y. Shynya, Phys. Rev. B 67, 1 (2003).

[19] R. Xie, G. G. Long, S. J. Weigand, S. C. Moss, T. Car-
valho, S. Roorda, M. Hejna, S. Torquato, and P. J. Stein-
hardt, Proc. Natl. Acad. U.S.A. 110, 13250 (2013).

[20] W. S. Xu, J. F. Douglas, and K. F. Freed, Macro-
molecules 49, 8341 (2016).

[21] F. Martelli, S. Torquato, N. Giovambattista, and R. Car,
Phys. Rev. Lett. 119, 136002 (2017).

[22] Y. Jiao, T. Lau, H. Hatzikirou, M. Meyer-Hermann, J. C.
Corbo, and S. Torquato, Phys. Rev. E 89, 022721 (2014).

[23] J. H. Weijs, R. Jeanneret, R. Dreyfus, and D. Bartolo,
Phys. Rev. Lett. 115, 108301 (2015).

[24] G. Zito, G. Rusciano, G.Pesce, A. Malafronte, R. Di
Girolamo, G. Ausanio, A. Vecchione, and A. Sasso, Phys.
Rev. E 92, 050601 (2015).

[25] A. Chremos and J. F. Douglas, Annanel der Physik 529,
1600342 (2017).

[26] C. N. Likos, Soft Matter 2, 478 (2006).
[27] P. Baek, N. Aydemir, Y. An, E. W. C. Chan, A. Sokolova,

A. Nelson, J. P. Mata, D. McGillivray, D. Barker, and
J. Travas-Sejdic, Chem. Mater. 29, 8850 (2017).

[28] S. E. Root, S. Savagatrup, A. D. Printz, D. Rodriquez,
and D. J. Lipomi, Chem. Rev. 117, 6467 (2017).

[29] N. J. Fernades, H. Koerner, E. P. Giannelis, and R. A.
Vaia, MRS Commun. 3, 13 (2013).

[30] S. Srivastava, S. Choudhury, A. Agrawal, and L. A.

Archer, Curr. Opin. Chem. Eng. 16, 92 (2017).
[31] S. J. Plimpton, J. Comput. Phys. 117, 1 (1995).
[32] LAMMPS Molecular Dynamics Simulator, URL http:

//lammps.sandia.gov/index.html.
[33] A. Chremos, E. Glynos, and P. F. Green, J. Chem. Phys.

142, 044901 (2015).
[34] A. Chremos and J. F. Douglas, J. Chem. Phys. 149,

044904 (2018).
[35] D. Bolmatov, V. V. Brazhin, Y. D. Fomin, V. N. Ryzhov,

and K. Trachenko, J. Chem. Phys. 139, 234501 (2013).
[36] J. S. Huang, S. A. Safran, M. W. Kim, G. S. Grest,

M. Kotlarchyk, and N. Quirke, Phys. Rev. Lett. 53, 592
(1984).

[37] S. T. Milner, S. A. Safran, D. Andelman, M. E. Cates,
and D. Roux, Journal de Physique 49, 1065 (1988).

[38] A. Chremos and J. F. Douglas, J. Chem. Phys. 143,
111104 (2015).

[39] A. Chremos, A. Z. Panagiotopoulos, H.-Y. Yu, and D. L.
Koch, J. Chem. Phys. 135, 114901 (2011).

[40] S. Srivastava, J. H. Shin, and L. A. Archer, Soft Matter
8, 4097 (2012).

[41] H.-Y. Yu, S. Srivastava, L. A. Archer, and D. L. Koch,
Soft Matter 10, 9120 (2014).
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ADDITIONAL INFORMATION ON THE
MODEL AND METHODS

We use a bead-spring model to model bottlebrush and
regular star polymers. A bottlebrush polymer has a
backbone chain composed of Nb segments and f side
chains each composed of M segments, where one of
their free ends is grafted along the backbone chain in
a uniform fashion, i.e., one side chain per backbone seg-
ment, as illustrated in Fig. S1. A star polymer is effec-
tively a bottlebrush having only one backbone segment,
i.e., Nb = 1. All the interactions in bottlebrush poly-
mer melts are described by the cut-and-shifted Lennard-
Jones (LJ) potential,

V (r) =

{
4ε
[(
σ
r

)12 −
(
σ
r

)6]− v r ≤ rc

0 r > rc

, (1)

where v is the value of the (unshifted) Lennard-Jones
potential at r = rc. The energy and length reduced
units are ε and σand the cutoff distance rc = 2.5σ.
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FIG. S1. Schematic illustration of the topological architec-
ture of bottlebrushes and regular stars.

In the case of star polymers, all interactions are mod-
eled by the LJ potential as in the case of bottlebrush
polymers, except for the core particles where we use the
purely repulsive Weeks-Chandler-Andersen potential [1]
with modification taking into account the difference in
the particle sizes [2],

VWCA(r) =

 4ε

[(
( σ
r−∆

)12

−
(

( σ
r−∆

)6

+ 1
4

]
r ≤ rm

0 r > rm,
(2)

where rm = 21/6σ+∆. The energy and interaction range
parameters are chosen to be the same for interactions
between core-core, core-segment, and segment-segment

such that εcc = εcb = εbb = ε and σcc = σcb = σbb = σ.
∆ = −0.5 for core-core interactions and ∆ = −0.25 for
core-segment interactions.

STATIC STRUCTURE FACTOR OF
BOTTLEBRUSH POLYMER MELTS

We use two different approaches to estimate the struc-
ture factor S(q) of bottlebrush polymer melts at differ-
ent temperatures as q → 0. The first approach is a direct
calculation of S(q), where S(q) tends to have a linear
dependence for qσ < 1 and thus S(0) is extrapolated
from this region. The second approach is by estimating
S(0) from the equilibrium relation [3],

S(0) = ρkTκT , (3)

where ρ is the density, T is the temperature, k is the
Boltzmann constant, and κT is the isothermal compress-
ibility. The two main parameters that are needed are
ρ and κT for the estimation of S(0) are estimated from
an empirical relation that we have recently developed,
see Ref. 4, and we briefly outline our approach below.
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FIG. S2. Comparison of the total structure factor S(q) of
bottlebrush polymers at different temperatures as q → 0 be-
tween two different approaches in calculating S(0). The first
approach is by extrapolation from the direct calculation of
S(q) and the second way is by estimating S(0) from Eqn. 3,
where ρ is the density, T is the temperature, k is the Boltz-
mann constant, and κT is the isothermal compressibility.

The volume V of the polymer melt is correlated as a
function of T and pressure P ,
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V (T, P ) = −1

2
k2TP

2 − P (k1T + k3) + k4T + k5, (4)

where k1, k2, k3, k4, and k5 are fitting parameters. A se-
ries of simulations were performed at different pressures
(P = 0, 0.05, 0.10, 0.15, 0.20, and 0.25) and tempera-
tures (T = 0.55, 0.60, 0.65, 0.70, and 0.75) and the av-
erage volume was obtained. While these fitting param-
eters are system size dependent, the properties of inter-
ested to us, i.e., ρ and κT , are not system size dependent
in the T range of our investigation. We start by fitting
the PV T data to Eq. 4 at P = 0 and thus obtaining the
k4 and k5 coefficients; note that k4 is αPV at P = 0.
We then fit the PV T data to obtain the rest of the fit-
ting parameters namely k1, k2, and k3. Once we have
all the parameters, we obtain ρ and κT = − 1

V

(
∂V
∂P

)
T

through differentiation of Eq. 4 at the desired thermo-

dynamic conditions within the boundaries of the fitting
mentioned above.

The comparison between these two approaches is pre-
sented in Fig. S2, where each data point corresponds to
a different temperature. The agreement between these
two approaches means that our bottlebrush polymer
melt systems are well equilibrated. Similar results are
found for star polymer melts (not shown here).
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