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Abstract—The series resistor is a common on-wafer device 

typically used in the series-resistor calibration and for estimating 

the capacitance per unit length of coplanar waveguide 

transmission lines. While much work has been done using series 

resistors, this paper addresses the design of the resistor itself, 

considering both its dc resistance value and geometry, and 

evaluates which resistor is the best resistor. We fabricated 48 

different series resistors with dc resistances ranging from 

approximately 1 Ω to over 6 kΩ and tested their utility in the 

series-resistor calibration and in extracting the capacitance per 

unit length of coplanar waveguide transmission lines. We found 

that a dc resistance near 100 Ω produces the best series-resistor 

calibration when compared to multiline thru-reflect-line. For 

extracting the capacitance per unit length, resistors with a dc 

resistance near 150 Ω and shorter than 20 µm long gave the 

capacitance values with the lowest uncertainty. Additionally, we 

provide some guidance on choosing frequency bounds for the 

capacitance estimation. These results are of interest to anyone who 

performs on-wafer calibrations.  

 
Index Terms—Calibration, capacitance, microwave, on-wafer, 

scattering parameters, series resistor  

I. INTRODUCTION 

CATTERING parameter (S-parameter) calibrations are a 

cornerstone in microwave metrology. Accurate calibrations 

help circuit designers validate new components for high-

frequency electronics and wireless communications. Typically, 

we measure the complex S-parameters of a device-under-test 

(DUT) with a vector network analyzer (VNA). However, raw 

S-parameters are generally of little value and must be corrected 

with an error model [1]–[3]. This correction is required at 

microwave frequencies because the wavelength of the 

microwave signals is often on the same or smaller length scale 

as the cables, connectors, and probes used to interface with a 

DUT. Calibrations correct for these effects, translating the 

reference planes of the measurement to the DUT and ensuring 

an accurate measurement of a device’s true response or 

performance despite the less-than-perfect VNAs we use to 
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There are a variety of commonly-used on-wafer calibrations, 

including the thru-reflect-line (TRL) [4], the multiline thru-

reflect-line (mTRL) [5], [6], the short-open-load-thru (SOLT) 

[7], [8], the short-open-load-reciprocal (SOLR) [9], [10], the 

line-reflect-match (LRM) [11], [12], the line-reflect-reflect-

match (LRRM) [12], [13], the line-reflect-line (LRL) [14], and 

the series resistor [15]–[17] calibrations. Many of these 

calibrations share a reliance on lumped-element 

approximations for some of their constituent standards. Unlike 

its counterparts, mTRL depends on distributed circuit models 

and measures the traveling-wave solutions to Maxwell’s 

equations directly, making it more accurate. This accuracy 

makes mTRL an ideal choice for benchmarking new calibration 

algorithms [5], [16], [18]. Indeed, the parasitics in lumped 

element models are often characterized with mTRL calibrations 

[16], [17]. In such cases, benchmarking against lumped element 

models is redundant with a benchmark against mTRL. 

However, even for mTRL calibrations on low-loss substrates 

with negligible dielectric dispersion, one must provide an 

estimate for the capacitance per unit length of the transmission 

line standards to set the reference impedance. 

There are several approaches to estimate the transmission 

line capacitance per unit length on low-loss substrates. These 

approaches include measurements of shunt resistors [19], 

measurements of the per-unit-length resistance of transmission 

lines [19], direct measurement of transmission line capacitance 

[19], conformal mapping [20], finite-element simulations [21], 

and measurements of series resistors [16]. Both conformal 

mapping and finite-element simulations require detailed 

information about the transmission lines, including the 

dimensions, conductivities, electrical permittivities, and 

magnetic permeabilities of all constituent materials that 

comprise the transmission line. Simulations also typically 

require validation through comparison to measurements. It is 

therefore critical to have accurate measurement-based estimates 

of the transmission line capacitance. Unlike conformal mapping 
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and finite-element simulations, transmission line capacitance 

extraction from a shunt or series resistor only requires dc 

measurements, S-parameter measurements, and the assumption 

that the resistor is accurately described by a lumped-element 

model. While previous work focused on fabrication and circuit 

models of some shunt resistors [22], there are several 

outstanding questions for series-resistor design. Specifically, 

this paper addresses which dc resistances and resistor 

geometries are optimal for estimating the capacitance per unit 

length, and for providing the highest-accuracy series-resistor 

calibration when compared to mTRL.  

The series-resistor calibration has several advantages that 

make it an attractive option for on-wafer calibrations. First, 

since it is based on a lumped-element model, it is well-

conditioned at lower frequencies. In contrast, mTRL is 

increasingly ill-conditioned as the phase shift between the 

longest and the shortest line drops below a quarter wavelength. 

Second, the series-resistor calibration only requires three 

standards (a short-circuit reflect, a thru, and a series resistor). 

The small number of standards consumes much less space on a 

chip than mTRL calibration standards, making it a good 

candidate when on-wafer area is limited. The series-resistor 

standard also contains only a single resistive element, as 

opposed to the two different elements for shunt resistors. This 

eliminates the possibility that the shunt resistors on port 1 and 

port 2 are slightly different, as may be the case in SOLT 

calibrations. We note that for planar geometries, this slight 

difference between the resistors on port 1 and port 2 may be 

smaller than for vertically integrated resistors that employ vias. 

In either the planar or vertically integrated case, the shunt 

resistors have the potential to be different, which can affect the 

accuracy of a calibration especially at high frequency as 

parasitics increase. Finally, series-resistor calibration standards 

are stable both over time and over a wide temperature range 

[15], [16]. 

The resistors used in previously published work had a 

resistance value of 56.69 Ω, and were 10 µm long and 10 µm 

wide [16], or had a resistance value of 223.7 Ω, and were 

128 µm long and 64 µm wide [15]. Shunt resistors used in 

SOLT calibrations are typically close to 50 Ω. In this work, our 

objective was to test whether the previously employed resistor 

values and dimensions were the best values to use for extracting 

the capacitance per unit length and in the series-resistor 

calibration itself. 

In the following sections, we begin with a discussion of the 

design, fabrication, and measurement of our devices (Section 

II). Next, we describe the estimation of the capacitance per unit 

length for mTRL calibrations (Section III) and compare the 

various series resistors in the context of the series-resistor 

calibration (Section IV). We show the results of finite-element 

simulations of the series-resistor devices (Section V), discuss 

potential future directions (Section VI), and conclude (Section 

VII). For the interested reader, we also offer an appendix with 

a full uncertainty budget for the extracted capacitance per unit 

length for both a typical series resistor (~50 Ω) and the best 

series resistor in the data set. 

II. METHODS 

A. Fabrication 

To test which resistor yields the best results in extracting the 

capacitance and for the series-resistor calibration, we fabricated 

48 different resistors integrated into coplanar waveguide 

(CPW) transmission lines along with a complementary set of 

mTRL calibration artifacts. We note that while we chose 

materials that were readily available in our internal clean room, 

the techniques developed here are not strictly limited to the 

 
Fig. 1. (a) Top-view schematic representation of a series resistor device 
showing nominal device dimensions. Resistor lengths are in the x-direction and 

widths are in the y-direction. (b) Photograph of a series-resistor device. Scale 

bar is 100 µm. Scale bar for magnified region is 10 µm. (c) Photograph of a 
few series-resistor devices showing varying resistor geometries. Scale bar is 
500 µm. 
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conductor, resistor, and dielectric materials that we chose, but 

are broadly applicable to on-wafer calibrations that require the 

accuracy, precision, and traceability of multiline TRL.  

We fabricated the devices on a (500 ± 25) µm-thick fused 

silica substrate. Fused silica has a relatively low dielectric 

constant, negligible dispersion, and a low loss tangent, making 

it an excellent choice for on-wafer calibrations. Given our 

choice of fused silica, it is possible that our conclusions may 

not generalize to Si-CMOS or III-V substrates. However, one 

can follow our procedure to optimize the series-resistor design 

for other low-loss substrates.  

For fabrication of the resistor element, we coated the 

substrate with a lift-off photoresist and an imaging photoresist, 

exposed it with i-line stepper photolithography, and developed 

the photoresist. We then electron-beam evaporated a (2 ± 1) nm 

Ti adhesion layer and a (12.5 ± 1) nm layer of Pd53Au47 without 

breaking vacuum. This thickness of Pd53Au47 has a sheet 

resistance of approximately 50 Ω/𿘱, which is a common sheet 

resistance in commercial foundry processes. The PdAu 

deposition rate was approximately 0.3 nm/s and was 

automatically controlled with a commercial quartz crystal 

monitor deposition controller. The base pressure of the 

deposition chamber was approximately 6.7x10-6 Pa. After 

depositing the PdAu, we performed a lift-off step, forming the 

resistor layer. We then repeated this process with a 10 nm layer 

of Ti and a 500 nm layer of Au to define the CPW structures. 

We note that the choice of Au in lieu of Cu or some other 

conductor only affects the distributed circuit parameters of the 

transmission lines that lead up to the series resistor. Replacing 

the Au with Cu should not alter the conclusions of our 

manuscript. The CPW designs had a 20 µm-wide center 

conductor, a 2 µm-wide gap between the center conductor and 

ground plane, and 200 µm-wide ground planes. The mTRL 

standards included eight CPW transmission lines with lengths 

of 0.420 mm, 0.670 mm, 1.010 mm, 1.580 mm, 2.450 mm, 

4.000 mm, 6.210 mm, and 9.620 mm, as well as a short-circuit 

reflect with 0.210 mm-long transmission lines on each port, 

symmetric about the termination. All transmission line lengths 

had an uncertainty of 0.25 µm, but the dominant uncertainty 

mechanism was the wafer-probe landing position, 

approximately 4 µm. 

A schematic of a representative series-resistor device is 

 
Fig. 2. Real part of capacitance per unit length (C) vs. frequency for a representative set of series resistors showing C approximated from transmission (red) 

and reflection (black) S-parameters. The blue vertical lines indicate the frequency window defined by our proposed criteria for extracting C0. Panels (c) and 

(e) have no blue bars because these resistors had no acceptable frequency window. 
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shown in Fig. 1(a). Transmission lines of length 0.210 mm 

connect each port to series-resistor structures of varying sizes. 

We fabricated resistors with lengths (x-direction) of 1 µm, 

2 µm, 5 µm, 10 µm, 20 µm, 50 µm, 100 µm, and 200 µm and 

widths (y-direction) of 1 µm, 2 µm, 5 µm, 10 µm, 15 µm, and 

20 µm in an array for a total of 48 different resistors. The 

uncertainty in the resistor dimensions was 0.25 µm. The dc 

resistances (RDC) ranged from 1.36 Ω to 6641.09 Ω, after 

subtracting the resistance of the 0.420 mm thru to compensate 

for the transmission line leads on the resistors. The uncertainty 

of all the RDC values reported throughout this manuscript is 

discussed in Appendix A and is ± 0.06 Ω. A close-up picture of 

one of the devices is shown in Fig. 1(b) and a picture of several 

of the series resistors is shown in Fig. 1(c). 

B. Measurements 

The RDC values and complex, frequency-dependent S-

parameters of all devices were evaluated with devices mounted 

on a temperature-controlled stage set to (25 ± 2) °C. We 

measured the S-parameters using a VNA, from 100 MHz to 

110 GHz with 402 frequency points on a logarithmic spacing. 

The VNA had an intermediate-frequency bandwidth of 50 Hz 

and a source power of -20 dBm. The on-wafer probes had a 

50 µm pitch. To ensure the best probe landing repeatability, we 

used a semi-automated probe station for the measurements and 

each device had alignment marks. First we measured a set of 

mTRL calibration standards, next we measured each of the 

series-resistor devices, and finally we repeated the 

measurements of the mTRL calibration standards. The 

reference planes for all series-resistor measurements were at the 

boundary between the PdAu resistive element and Au center 

conductor in the CPW structure.  

III. EXTRACTING THE CAPACITANCE PER UNIT LENGTH 

A. Theory 

Our typical algorithm for correcting on-wafer measurements 

begins with a mTRL calibration to correct the measurements to 

the (unknown) characteristic impedance Z0(ω) of the 

transmission lines and to find the propagation constant γ(ω). 

The propagation constant is given by 𝛾(ω)  =

 √(𝑅(ω) + 𝑖ω𝐿(ω))(𝐺(ω) + 𝑖ω𝐶(ω)) and the characteristic 

impedance is 𝑍0(ω) =  √
𝑅(ω)+𝑖ω𝐿(ω)

𝐺(ω)+𝑖ω𝐶(ω)
, where R is the resistance 

per unit length, L is the inductance per unit length, G is the 

conductance per unit length, and C is the capacitance per unit 

length of the transmission lines. 

The next step in our typical algorithm is to estimate Z0(ω) and 

transform the reference impedance from Z0(ω) to 50 Ω. Given 

the low dispersion and loss tangent of the substrate, we make 

the approximations that the capacitance is constant across 

frequencies and that the substrate is lossless (i.e. C(ω) = C0 and 

G = 0 S/m). Given these approximations, we estimate Z0(ω) 

from γ(ω) and C0 as Z0(ω) = γ(ω)/iωC0. Thus, we require an 

estimate of C0 in order to impedance transform the error 

correction matrices (error boxes) to a reference impedance of 

50 Ω [16]. 

We estimate C0 by combining S-parameters measurements of 

a series resistor with the propagation constant obtained from the 

mTRL algorithm. The S-parameters for a series load ZL are 

given by [16] 

 

𝑆 =
1

1+
𝑍𝐿

2𝑍0(𝜔)

(

𝑍𝐿

2𝑍0(𝜔)
1

1
𝑍𝐿

2𝑍0(𝜔)

).          (1) 

 

If we assume that the series load impedance ZL is real and 

 
Fig. 3. C0 vs. RDC found using (a) our proposed frequency window criteria and 

(b) manual frequency bounds. The aspect ratio is the length of a resistor 

divided its width. The error bars represent the standard deviation of C across 
the frequency bounds. Aspect ratio is resistor length/width. 

 
Fig. 4. C0 vs. RDC using manual frequency bounds for RDC artificially adjusted 

by (a) -0.5 Ω and (b) +0.5 Ω. Aspect ratio is resistor length/width. 
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equal to RDC and that G = 0 S/m, we can solve (1) for C(ω) [16] 

 

𝐶11,22 ≈ (
2𝛾(𝜔)

𝑖𝜔𝑅DC
)

𝑆11,22

1−𝑆11,22
              (2) 

 

𝐶12,21 ≈ (
2𝛾(𝜔)

𝑖𝜔𝑅DC
)

1−𝑆12,21

𝑆12,21
             (3) 

where γ(ω) is the propagation constant, Sij are the scattering 

parameters, ω = 2πf is the angular frequency, and RDC is the 

measured dc resistance. Cij is the capacitance extracted from the 

ijth S-parameter (Sij). To find the value for C0, authors have 

previously used a criterion where they took the median of the 

real part of C values below 1 GHz [16]. While this approach 

avoids high-frequency parasitics, it also gives increased weight 

to low frequencies, where TRL may not be well conditioned. 

Based on our observations in this work, we propose a new 

procedure for determining the frequency bounds to find the 

constant value of C0. To avoid ill-conditioned mTRL 

measurements, we choose the low frequency bound to be where 

the magnitude of the normalized standard deviation 𝜎(𝜔) [5] is 

less than 2, which, in our case, is the average of 𝜎𝛼 and 𝜎𝛽, 

where 

 

𝜎𝛼.𝛽 =
1

√∑ (𝑉𝛼,𝛽)𝑖𝑗
−1

𝑖𝑗

              (4) 

and the (𝑉𝛼,𝛽)
𝑖𝑗

−1
 denotes the inverse of 𝑉𝑖𝑗

𝛼,𝛽
, and 

𝑉𝑖𝑗
𝛼 =

𝐸1
1𝑖∗𝐸1

1𝑗
+𝛿𝑖𝑗

𝐾|𝐸2
1𝑖|

2
+(1+𝛿𝑖𝑗

𝐾)|𝐸1
1|

2
𝐸1

𝑖∗𝐸1
𝑗

(𝐸2
1𝑖−𝐸1

1𝑖)
∗

(𝐸2
1𝑗

−𝐸1
1𝑗

)
        (5) 

 

𝑉𝑖𝑗
𝛽

=
𝐸2

1𝑖∗𝐸2
1𝑗

+𝛿𝑖𝑗
𝐾|𝐸1

1𝑖|
2

+(1+𝛿𝑖𝑗
𝐾)|𝐸2

1|
2

𝐸2
𝑖∗𝐸2

𝑗

(𝐸2
1𝑖−𝐸1

1𝑖)
∗

(𝐸2
1𝑗

−𝐸1
1𝑗

)
        (6) 

 

are the covariance matrices. Additionally,  

 

𝐸1
𝑖𝑗

= 𝑒−𝛾(𝑙𝑗−𝑙𝑖)                 (7) 

 

𝐸2
𝑖𝑗

= 𝑒+𝛾(𝑙𝑗−𝑙𝑖)                 (8) 

 

𝐸1
𝑖 = 𝑒−𝛾𝑙𝑖                   (9) 

 

𝐸2
𝑖 = 𝑒+𝛾𝑙𝑖                   (10) 

 

where 𝑙1 is the length of the thru, i and j index the line lengths 

𝑙𝑖  used in the mTRL calibration excluding the thru, Σ𝑖𝑗  indicates 

a sum over the line pairs, 𝛿𝑖𝑗
𝐾 is the Kronecker delta, * denotes 

the complex conjugate, and γ is the propagation constant. In 

general, the index 1 denotes the common line and which line 

this is should be chosen and optimized at each frequency. 

Because here we are interested only in the low frequency 

behavior for a low frequency capacitance cutoff, we choose 

index 1 to denote only the shortest line, or the thru, because it 

gives the best performance at low frequency.  

 This normalized standard deviation is computed only from 

the propagation constant, the frequency range, and the line 

lengths in mTRL and is a measure of how well mTRL works as 

a function of frequency. In general, a higher normalized 

standard deviation results in a poorer calibration. For 

comparison, an LRL calibration with lossless lines would have 

a normalized standard deviation of 1 when the transmission 

phase is π/2 rad and a normalized standard deviation of 2 when 

the transmission phase difference between the lines is 
𝜋

6
 rad or 

5𝜋

6
 rad. This is a slightly more conservative phase window than 

the common recommendation that one should limit the use of a 

line pair so that the phase difference is between 
𝜋

9
 rad and 

8𝜋

9
 rad 

[5]. For the devices considered here, a threshold value of 2 for 

the normalized standard uncertainty yielded a low frequency 

cutoff of approximately (631 ± 15) MHz.  

We constructed a high-frequency condition on the physical 

length of the series resistor by imposing the phase condition 

 
𝛽ℓ

𝜋
<

1

3000
                    (11) 

 

where β is the imaginary part of the propagation constant and ℓ 

is the length of the resistor. This condition rejects frequencies 

where there is a non-negligible phase shift along the resistor, 

assuming the propagation constant in the resistor region is 

unperturbed by the resistor’s electrical properties and 

dimensions. The uncertainty in the phase of the transmission for 

a typical network analyzer is approximately 0.03 degrees 

around 1 GHz [23]. If we assume that non-negligible phase 

must be at least twice the uncertainty, then a resistor exhibiting 

non-ideal behavior would have approximately 0.06 degrees of 

phase shift in transmission. Converting this value into radians 

and dividing by pi yields a value of 1/3000. Modeling such a 

phase shift would require a series-resistor model that either 

includes parasitic lumped elements or distributed effects, 

neither of which are accounted for in (2) and (3). Interestingly, 

this phase condition excludes any resistors longer than 28 µm 

for our parametric study up to 110 GHz, which we found to be 

a good criterion for selecting a resistor to use to extract the 

correct value for C0 with low uncertainty. As we discuss later, 

we validated the phase condition by examining the lumped-

element model of the series resistor and noting where the 

parasitic inductance due to the length of the resistors becomes 

significant (see Section IV and Appendix B). 

To be clear and concise throughout the rest of the manuscript, 

we will refer to the capacitance per unit length vs. frequency (f) 

computed from the resistor S-parameters as C and to the 

constant (frequency-independent) value estimated from these 

data as C0. We found C0 by taking the average value of the real 

part of C across the frequency bounds of all four S-parameters. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

 

 

 

 

6 

We expect that selecting an optimal frequency range for the 

measurement of C ultimately reduces the uncertainty in the 

estimate of C0 by rejecting noisy measurements due to ill-

conditioned TRL calibrations at low frequencies or systematic 

errors due to parasitics at high frequencies. 

B. Step-by-Step Procedure for Estimating C0 

1) Measure the switch terms [2] and uncorrected S-

parameters of the mTRL standards.  

2) Measure RDC and S-parameters for all series-resistor 

devices.  

3) Perform a mTRL calibration to get the propagation 

constant γ(ω) and error boxes corrected to the unknown 

characteristic impedance Z0. 

4) Correct the S-parameters of the series resistors with the 

mTRL error boxes.  

5) Use (2) and (3) to estimate C(ω).  

6) Apply frequency bounds and average the real part of 

C(ω) within the bounds to get C0.  

C. Results for Estimating Capacitance Per Unit Length 

Fig. 2 shows a selection of C vs. f plots for different series 

resistors. The frequency range defined by our criteria that was 

used to extract a value of C0 is indicated by the blue lines. Fig. 

2(a) shows C vs. f for the resistor with the lowest RDC value 

measured, 1.36 Ω. The resulting C vs. f data for this 1.36 Ω 

resistor appear noisy, and the transmission and reflection values 

do not agree, making it a poor choice for a series-resistor 

artifact. Fig. 2(b) shows the C for a “traditional” series resistor, 

whose resistance is close to 50 Ω. This 50 Ω resistor is 2 µm 

long and is a reasonable choice for a resistor to extract C0. Fig. 

2(c) shows the C for the resistor that produced the best series-

resistor calibration (see section IV), 91.28 Ω. This 91.28 Ω 

resistor is 50 µm long and is not as good of a choice for finding 

the C as some of the other resistors that we measured. Fig. 2(d) 

shows the C for one of the best resistors for extracting the C0 

with an RDC value of 155.88 Ω. Here, C is flat, with little 

variability within the frequency window, and the transmission 

and reflection values are the same. Fig. 2(e) shows the C for a 

resistor with an RDC value of 183.52 Ω. This resistor has an RDC 

value close to the best resistor, but it is long (100 µm) compared 

to the guided wavelength and C decreases significantly at 

higher frequencies, which we speculate may be attributed to 

parasitic inductance or the onset of distributed effects. Fig. 2(f) 

shows the C for the resistor with the highest RDC value that is 

also 28 µm or shorter and thus has a non-zero frequency 

window according to our conditions. This resistor had an RDC 

value of 649.28 Ω and despite its relatively high RDC, the C0 

extracted from within our frequency bounds agrees well with 

the other optimal resistors. The key result is that our frequency 

bounds reject frequencies where the C begins to depart from a 

constant value due to ill-conditioned mTRL measurements at 

low frequencies, parasitic inductance, parasitic capacitance, or 

distributed effects at high frequencies. 

 Fig. 3 shows C0 vs. RDC for the resistors we measured. Fig. 

3(a) are the data where “bad” resistors were excluded by our 

phase criterion. As an additional check, it proved informative 

to manually select frequency bounds for capacitance extraction 

for all the resistors measured, including the ones longer than 

28 µm. We did this by selecting and averaging approximately 

one decade of frequency of the C vs. f data with the lowest 

variation. Fig. 3(b) shows all the extracted capacitance values 

with manual frequency bounds. The values are split into those 

extracted from transmissive and reflective S-parameters. The 

optimal resistors are ones that have accurate C0 values around 

the consensus value of ~111 pF/m, low uncertainty, and where 

the transmission and reflection data points are approximately 

the same. 

It is interesting to note that C0 extracted from transmissive 

(S12 and S21) S-parameters is consistently slightly higher than 

the values extracted from reflective S-parameters (S11 and S22). 

We speculate that this difference could be due to systematic 

errors in the port match error term, or probe contact resistance 

errors on one of the on-wafer probes. Regardless of this 

difference, these values are typically equal for “good” resistors, 

but tend to differ for especially long resistors or those with a 

low RDC value (typically < 40 Ω). For the long resistors, the 

approximation that the load resistance ZL is equal to RDC [16], 

[19] may not be valid, due to a non-negligible parasitic 

inductance. For the small resistors, these resistors tend to be 

shorter and wider and thus have a small aspect ratio that could 

result in a parasitic capacitance due to the CPW center 

conductors being very close together. For small RDC resistors, 

this effect could also be due to the S-parameters showing high 

transmission. If the uncertainty on the reflective and 

transmissive S-parameters is the same, the uncertainty is a 

much larger fraction of the magnitude of the reflective S-

parameters that are close to 0. 

After estimating C across all measurements and frequencies, 

we found C0 by averaging C across the selected frequency 

window. The error bars presented in Fig. 3 and Table 1 are the 

TABLE I 

PARAMETERS OF THE BEST RESISTORS IN OUR DATA SET FOR EXTRACTING C0 

RDC (Ω) C0 (pF/m) Standard deviation of C (pF/m) Length, x-direction (µm) Width, y-direction (µm) Aspect ratio (length/width) 

140.28 110.88 0.15 20 5 4 

155.88 110.88 0.15 5 1 5 

165.84 110.88 0.13 10 2 5 
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standard deviation of the C values that we averaged to compute 

C0. For the “bad” resistors, there is a large spread in C even 

within the frequency window and the standard deviation of 

these values is a valid representation of the uncertainty in C0. 

For the optimal resistors, we can compute a more rigorous 

uncertainty by error propagation, which we found was less than 

the standard deviation of the C values. We show this calculation 

explicitly for the 155.88 Ω and 54.68 Ω resistors in Appendix 

A. Overall, we found that the best resistors in our data set for 

measuring C0 have RDC values near 150 Ω, are 5 µm, 10 µm, or 

20 µm-long, and have aspect ratios (length/width) around 4 or 

5. The exact parameters for these resistors are found in Table 1, 

where we averaged both the transmissive and reflective values 

of C to get a single number for C0 to use in our calculations and 

algorithms.  

In applying (2) and (3), it is important that the measured RDC 

value is accurate and precise. A small error in the RDC 

measurement can result in an incorrect C0 value, as the 1/RDC in 

(2) and (3) gives an overall scale factor to the C data. As the 

resistance of the thru is also used to calculate RDC, this 

measurement must be accurate and precise as well. Smaller RDC 

values are more affected by measurement errors as the 

fractional uncertainty is greater. To demonstrate this, we 

artificially changed RDC, keeping everything else the same, and 

computed C0 in the same way as in Fig. 3(b). These data are 

shown in Fig. 4(a and b) for artificially adjusting RDC by -0.5 Ω 

and +0.5 Ω, respectively. Subtracting 0.5 Ω has a larger overall 

effect, because the already small denominator shifts closer to 

zero. In both cases, we find the adjustment causes incorrect C0 

values for smaller RDC resistors, especially below 100 Ω. 

Accurate and precise RDC values are important; however, 

choosing a series resistor with an RDC value around 150 Ω will 

make the data more robust against errors in the RDC 

measurements that are caused by small variations in probe 

placement and probe contact repeatability.  

IV. SERIES-RESISTOR CALIBRATION 

A. Theory 

In some on-wafer measurement scenarios, mTRL 

calibrations are either not available or not ideal. These scenarios 

include low-frequency calibrations where it is impractical to 

fabricate transmission lines that are long enough for mTRL. 

They also include measurements with fixed probe-to-probe 

distances (e.g., measurements with a probe card, and 

cryogenics), where it is not possible to measure lines with 

different lengths. In these scenarios, it is advantageous to 

employ lumped-element calibration standards, which includes 

the series-resistor calibration. In this section, we explore the 

question of which series-resistor design is best for the series-

resistor calibration. 

We evaluated each of the 48 resistors for their utility in the 

series-resistor calibration [15] and compared the quality of the 

calibration to mTRL [18]. The series-resistor calibration 

requires raw S-parameter measurements of at least three 

standards—a thru, a reflect, and a series resistor—and a 

corresponding model for each. For the thru, we used an ideal 

model (perfect transmission with no reflection). For the short-

circuit reflect and the series resistor, we used the models shown 

in Figs. 5(a) and 5(b), respectively. 

To estimate the values of the parameters in the models for the 

short-circuit reflect and the series resistor, we corrected the raw 

S-parameter measurements of the short-circuit reflect and the 

series resistor with the error boxes from a mTRL calibration, 

then fit the models to the error-corrected, frequency-dependent 

S-parameters. The error boxes obtained from mTRL were 

transformed to a reference impedance of 50 Ω, where C0 was 

estimated with the procedure outlined in Section III, and we 

always employed the same resistor to both estimate C0 and 

serve as the resistor in the series-resistor calibration.  

After correcting the S-parameters of the series resistor, we 

observed ripples in the impedance of the series resistor. We 

suspect that these ripples (Fig. 6) are due to crosstalk between 

the on-wafer probes and moding, which could be further 

decreased with crosstalk correction [24] and or the addition of 

dielectric spacer [13]. 

Once the parameters of the models were estimated for each 

series resistor, we employed the models as standard definitions 

in the series-resistor algorithm [15] and computed error boxes 

for each of the 48 series resistors.  

To assess the accuracy of the error boxes from the series-

resistor calibration for each series resistor, we compared these 

error boxes to the error boxes from mTRL by computing the 

maximum error between the calibrations. 

 

 
Fig. 5. (a) Circuit diagram for the lumped-element model of the short standard. 

(b) Circuit diagram for the lumped-element model of the series-resistor 

standard.  
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B. Step-by-Step Procedure for Series-Resistor Calibration  

1) Measure the switch terms and uncorrected S-

parameters of the mTRL standards.  

2) Measure RDC and S-parameters for all series-resistor  

3) constant γ(ω) and error boxes corrected to the unknown 

characteristic impedance Z0. 

4) Correct the series resistors’ S-parameters with the 

mTRL error boxes.  

5) Use (2) and (3) to estimate C(ω).  

6) Apply frequency bounds and average the real part of 

C(ω) within the bounds to get C0.  

7) Use C0 to get the characteristic impedance from 

Z0(ω) = γ/iωC0.  

8) Use Z0 to impedance transform the mTRL error boxes 

to 50 Ω.  

9) Use the mTRL error boxes corrected to 50 Ω to correct 

the raw S-parameters of the short and the series 

resistors.  

10) For each series resistor, fit the frequency-dependent S-

parameters of the short and series resistor, corrected to 

50 Ω, to the circuit models shown in Fig. 5. Scattering 

parameters data and associated fits for some 

representative series resistors are shown in Fig. 6.  

11) Generate the series-resistor calibration error boxes for 

each series resistor [15], [16], taking the raw S-

parameters of the short, series resistor, and thru as the 

measurement data and the fits of the short, series 

resistor, and an ideal model for the thru as standard 

definitions. 

12) Compare the series-resistor calibration error boxes for 

each series resistor to the mTRL error boxes corrected 

to 50 Ω [18].  

C. Results for Series-Resistor Calibration  

Fig. 7 shows the S-parameters of a transmission line of length 

1.010 mm corrected to 50 Ω with mTRL and with series-

resistor calibrations using different resistors. We found that 

very low and very high RDC did not produce as good calibrations 

as resistors with more intermediate values between 50 Ω to 

200 Ω. Fig. 8 shows the calibration comparison [18] of series-

resistor calibrations with different resistors to mTRL as well as 

mTRL repeatability as a function of frequency. We found that 

series-resistor calibrations with the best resistors tended to 

perform almost as well as the mTRL repeatability, comparable 

to the instrument drift in our measurements. This result is also 

highlighted in Fig. 9(a), which shows the average calibration 

comparison value for each of the 48 resistors as well as mTRL 

repeatability. Fig. 9(b) shows the same data, but with the 

average separated into a low-frequency (<10 GHz) and high-

frequency (≥10 GHz) average. We observe the same trends no 

matter how we average over frequency. From this data, we 

conclude that resistors with RDC near 100 Ω produce the best 

series-resistor calibrations. We also note that all these resistors 

are 50 µm long or shorter. Table 2 has the exact parameters for 

the best resistors in our data set for the series-resistor 

calibration. 

V. FINITE-ELEMENT SIMULATIONS 

We performed finite-element simulations of our series-

resistor devices to validate our measurements. The structures 

we simulated were the same sizes and geometries as our actual 

devices. We used the conductivity we experimentally measured 

for the PdAu and Au in the simulations. The simulation volume 

included the 500 µm thick quartz substrate and a symmetric 

500 µm layer of air above the CPW structures. We used a 

radiative boundary conditions and wave port excitations with a 

single CPW mode normalized to 50 Ω. We used a full 3D 

simulation with the CPW leads included. A picture of the 

simulation geometry is shown in Fig. 10. The reference planes 

were at the edge of the resistive element, as in our 

measurements. We used 100 frequency points on a linear grid 

from 100 MHz to 110 GHz. The maximum mesh element 

length was 1.5 µm and we used broadband adaptive solving 

over the full frequency range with a maximum Delta S of 0.001 

and a maximum of 35 adaptive passes. We selected a first order 

direct solver and simulated the S-parameters of all 48 of our 

series resistor geometries. Overall, we found very good 

agreement between our simulations and experimental data. Fig. 

11(a and b) show the S-parameters data and simulation results 

for the 54.68 Ω resistor and Fig. 11(c) shows the maximum 

difference (S-parameter error) vs. frequency between the data 

and simulations for this resistor. Fig. 11(d) plots the maximum 

S-parameter error averaged over the frequency range for all the 

resistors studied. From this figure, we conclude that the 

simulations and experimental data agree very well. While the 

finite-element simulations successfully replicated the corrected 

S-parameters, we cannot assume this level of accuracy without 

high quality measurements. In Appendix B we also show the 

circuit model parameters extracted from the simulations match 

those from the experimental data. 

We note that in addition to circuit parameters in Fig. 5, one 

could include other additional circuit parameters to capture the 

in the corrected S-parameters. However, the agreement between 

the model and the finite-element simulations support only 

including the circuit parameters in Fig. 5 for the conditions in 

this experiment. 

VI. DISCUSSION 

Despite sampling a large parameter space, this work was not 

exhaustive. We fabricated and measured a variety of series 

resistors and evaluated their performance for extracting 

capacitance and performing the series-resistor calibration. Still, 

there are many other possible resistors with different 

geometries that were not included, and we evaluated only one 

resistor material and thickness. 
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13) devices.  

 
Fig. 6. S-parameter data (magnitude and phase) vs. frequency, and model fits for representative series resistors with RDC of (a) and (b) 1.36 Ω, (c) and (d) 54.68 Ω, 

(e) and (f) 91.28 Ω, and (g) and (h) 649.28 Ω.  
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10 

  

 
Fig. 7. S-parameter data (magnitude and phase) vs. frequency for a transmission line of length 1.010 mm corrected with mTRL and the series-resistor (SR) 

calibration with series resistors having dc resistance values RDC of 1.36 Ω (a) and (b), 54.68 Ω (c) and (d), 91.28 Ω (e) and (f), and 649.28 Ω (g) and (h). The 
lines are guides for the eye.  
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Decreasing the thickness of the PdAu will increase the 

overall resistance, and that will yield higher resistances for the 

shorter length resistors which meet the ‘less than 28-µm 

criterion’. These would be interesting to investigate to see if 

they yield similar trends and results to those presented in this 

work. A potential issue with resistors that are thinner than 

12.5 nm is variability in the deposition thickness. It can be 

harder to control deposition thickness as it gets smaller as there 

is some uncertainty as the evaporator shutter opens and the 

quartz crystal monitor begins to register a deposition rate and 

total thickness. The rate of PdAu deposition is also important as 

this can affect grain size and the resistivity of the films 

deposited. For consistency, it is probably better to aim for 

thicker resistor layers, so that small variations in deposition 

thickness still result in consistent and useful resistors across a 

typical wafer diameter. 

A different material with higher intrinsic resistivity could 

potentially be beneficial to make resistors with higher 

resistance, but still thicker and shorter in length. Studies along 

these lines could help to separate the optimal aspect ratio of the 

resistor—which controls the balance between the parasitic 

inductance of the resistor and the parasitic capacitance between 

the leads connecting to the resistor—and the optimal dc 

resistance of the resistor. However, PdAu is known to have two 

properties that make it advantageous as an on-wafer resistor. 

First, it consists of only noble metals, so the resistance does not 

drift due to surface effects like oxidation. Second, it has a low 

temperature coefficient of resistance, making its RDC nearly 

constant as a function of temperature [25]–[27]. This makes 

PdAu resistors especially appealing for calibrations and 

experiments at low temperatures, where accurate and compact 

calibrations are valuable. Nevertheless, it would be interesting 

to compare our current results to future work with a material 

 
Fig. 8. Maximum error between series-resistor calibrations and a mTRL 

calibration vs. frequency for a representative set of series resistors, as well as 

mTRL repeatability vs. frequency. 

 
Fig. 9. (a) Average maximum error between mTRL and series-resistor calibrations 

using series resistors with different RDC values. The maximum error is averaged 

over the full frequency range of the calibration. The value for mTRL repeatability 
is indicated as well. The error bars are the average deviation from the median value 

of the maximum error, and indicate the spread in the data rather than a true 

uncertainty. The shaded region is the average deviation from the median value of 
the maximum error for mTRL repeatability. (b) Same as in (a) but with the data 

separated into averages below 10 GHz and above 10 GHz.  

 

 
Fig. 10. Schematic of the geometry used in the finite element simulations. The 

reference planes of the data are at the edges of the resistive element as in the 
measured data.  Scale bar is 200 µm. 
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with higher resistivity.  

For this work, we selected fused silica to use as a lossless 

substrate. While some of our conclusions about optimal series 

resistors may not generalize to other substrates, we see no 

physical or mathematical reason why our conclusions are not 

extensible to other low-loss substrates. For lossy substrates, one 

approach to performing calibrations is to start with a calibration 

on a lossless substrate that has the same geometry CPWs and 

then to assume that the resistance per unit length and inductance 

per unit length on the lossy substrate are the same [28]. This 

approach provides a mechanism to perform accurate 

calibrations on lossy substrates. 

  

VII. CONCLUSION  

In summary, we fabricated and measured a variety of on-

 
Fig. 11. Finite-element simulation results. Data and finite-element simulation results for the 54.68 Ω resistor showing S-parameter magnitude (a) and phase (b) 
vs. frequency. (c) S-parameter error vs. frequency between the data and simulations for the 54.68 Ω resistor. (d) Average S-parameter error over all frequencies 

between the data and simulations for the 48 resistors studied. The error bars are the standard deviation of the S-parameter error vs. frequency.  

 
TABLE II 

PARAMETERS FOR THE BEST RESISTORS IN OUR DATA SET FOR USE IN THE SERIES-RESISTOR CALIBRATION 

RDC (Ω) Average max 

error 

Average deviation 

from the median 

Length, x-

direction (µm) 

Width, y-

direction (µm) 

Aspect ratio, 

length/width 

Rs (Ω) Ls (pH) Cs (fF) Cg (fF) 

54.68 0.0260 0.0188 2 1 2 54.84 14.9 4.47 0.51 

69.16 0.0240 0.0172 10 5 2 69.34 18.0 2.13 0.81 

71.08 0.0234 0.0169 20 10 2 71.25 19.6 1.49 1.19 

81.48 0.0250 0.0185 5 2 2.5 81.67 20.6 2.37 0.64 

91.28 0.0225 0.0159 50 20 2.5 91.52 24.6 < 0.01 3.14 

121.08 0.0268 0.0197 50 15 3.33 121.23 33.6 < 0.01 2.57 

140.28 0.0252 0.0154 20 5 4 140.44 31.6 0.55 1.10 

TRL 
repeatability 

0.0056 0.0030        

Circuit fit parameters Rs, Ls, Cs, and Cg are defined in Fig. 5. The averages are over all frequencies. 
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wafer series-resistor devices to understand which resistor is 

optimal for finding C0 in a mTRL calibration and which resistor 

is optimal to use in an on-wafer series-resistor calibration. We 

evaluated 48 series resistors that covered a wide range of 

lengths, widths, and resistances. We found that resistors with 

RDC values near 150 Ω and 20 µm long or shorter were optimal 

for measuring C0. We also found that resistors with RDC values 

near 100 Ω were optimal for use in the series-resistor 

calibration. We note that these resistances are higher than the 

50 Ω resistance typically employed for resistors in an SOLT 

calibration. We expect the identification of optimal series-

resistor values will improve the accuracy of on-wafer 

calibrations, offering improved insights into the behavior of 

novel devices and materials for high-frequency electronics and 

wireless communications applications. 

Prior to this work it was unclear what dc resistance value of 

a series resistor produced the most accurate and precise on-

wafer calibrations with the lowest possible uncertainty. Based 

on empirical evidence and the detailed analysis presented here, 

we can recommend series resistors with a dc resistance between 

100 Ω and 150 Ω and aspect ratio in the range of 2 to 4 for 

optimal capacitance extraction and optimal on-wafer series-

resistor calibrations.  
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APPENDIX A 

TREATMENT OF UNCERTAINTY 

Equations (2) and (3) are used to estimate C0, a quantity that 

is necessary for correcting raw S-parameter measurements to a 

reference impedance of 50 Ω. The exact value of C0 has a strong 

influence on the accuracy of both the mTRL and series-resistor 

calibrations. It is thus useful to rigorously analyze the 

uncertainty on the value of C0 we estimated in Section III.  

We calculated C0 from the series resistor’s reflective and 

transmissive S-parameters separately as the equations are 

slightly different (see (2) and (3)). We will treat the reflective 

and transmissive uncertainties separately as well. Let 𝐶(𝜔) 

have some uncertainty, 𝜎𝐶𝑖
 for each value of 𝜔𝑖 within our 

frequency window criteria defined in Section III. To find C0, we 

average over the range of 𝐶(𝜔𝑖). The variance on C0 is given 

by, 

 

𝜎𝐶𝑜,𝑅𝑒𝑓𝑙

2 = (
1

2𝑛
)

2

 (∑ 𝜎𝐶𝑖,𝑆11

2𝑛
𝑖=1 + 𝜎𝐶𝑖,𝑆22

2 )       (A.1) 

 

𝜎𝐶𝑜,𝑇𝑟𝑎𝑛𝑠
2 = (

1

2𝑛
)

2

 (∑ 𝜎𝐶𝑖,𝑆12

2𝑛
𝑖=1 + 𝜎𝐶𝑖,𝑆21

2 )       (A.2) 

 

where i = 1, 2, …, n indexes the data points within the frequency 

window from 𝜔1 = the low frequency limit to 𝜔𝑛 = the high 

frequency limit. For the 155.88 Ω resistor, 𝜔1 = 2𝜋 ×
645 MHz and 𝜔𝑛 = 2𝜋 × 5.37 GHz with n = 93. For the 

54.68 Ω resistor, 𝜔1 = 2𝜋 × 645 MHz and 𝜔𝑛 = 2𝜋 × 

14.5 GHz with n = 129. 

From (2) and (3) and the propagation of uncertainty,  

 

𝜎𝐶𝑖,𝑆𝑗𝑘

2 =  |
𝜕𝐶𝑆𝑗𝑘

𝜕𝛾
|

𝜔𝑖

2

𝜎𝛾𝑖
2  + |

𝜕𝐶𝑆𝑗𝑘

𝜕𝜔
|

𝜔𝑖

2

𝜎𝜔𝑖
2  + |

𝜕𝐶𝑆𝑗𝑘

𝜕𝑅DC
|

𝜔𝑖

2

𝜎𝑅DC
2  +

|
𝜕𝐶𝑆𝑗𝑘

𝜕𝑆𝑗𝑘
|

𝜔𝑖

2

𝜎𝑆𝑗𝑘,𝑖

2                   (A.3) 

 

where the 𝜔𝑖 on the partial derivates indicates the derivative is 

evaluated at 𝜔𝑖 .  
The partial derivatives with respect to the propagation 

constant are 

 
𝜕𝐶𝑆11,22

𝜕𝛾
=  

2

𝜔𝑅DC

𝑆11,22

1−𝑆11,22
              (A.4) 

 
𝜕𝐶𝑆12,21

𝜕𝛾
=  

2

𝜔𝑅DC

1− 𝑆12,21

𝑆12,21
.             (A.5) 

 

We used StatistiCAL [29] to calculate the error boxes and 

effective dielectric constant (𝜀𝐸𝑓𝑓) in the mTRL algorithm [6]. 

StatistiCAL exported these quantities along with a standard 

error associated with each quantity at each frequency point. We 

calculated the propagation constant from the effective dielectric 

constant as 

 

𝛾 =
√−𝜀𝐸𝑓𝑓 𝜔

𝑐
                  (A.6) 

 

where ω is the angular frequency and c is the speed of light. The 

uncertainty in the propagation constant is then  

𝜎𝛾𝑖
2 =  |

𝜕𝛾

𝜕𝜀𝐸𝑓𝑓
|

𝜔𝑖

2

𝜎𝜀𝐸𝑓𝑓,𝑖
2  + |

𝜕𝛾

𝜕𝜔
|

𝜔𝑖

2

𝜎𝜔𝑖
2          (A.7) 

 

where 

 
𝜕𝛾

𝜕𝜀𝐸𝑓𝑓
=  −

1

2

 𝜔

√−𝜀𝐸𝑓𝑓 𝑐
                (A.8) 

 
𝜕𝛾

𝜕𝜔
=  

√−𝜀𝐸𝑓𝑓 

𝑐
.                   (A.9) 

 

𝜎𝜀𝐸𝑓𝑓
comes directly as an output from StatistiCAL. The 

frequency accuracy of our VNA was 10-6 f Hz, where f is the 

frequency, thus  

 

𝜎𝜔 = 2𝜋 ∗ 10−6 ∗ 𝑓 rad/s.                        (A.10) 

 

The derivatives in (A.3) with respect to ω are 
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𝜕𝐶𝑆11,22

𝜕𝜔
=  

−2𝛾

𝜔2𝑅DC

𝑆11,22

1−𝑆11,22
              (A.11) 

 
𝜕𝐶𝑆12,21

𝜕𝜔
=  

−2𝛾

𝜔2𝑅DC

1− 𝑆12,21

𝑆12,21
.             (A.12) 

 

The derivatives in (A.3) with respect to RDC are given by 

 
𝜕𝐶𝑆11,22

𝜕𝑅DC
=  

−2𝛾

𝜔𝑅DC
2

𝑆11,22

1−𝑆11,22
              (A.13) 

 
𝜕𝐶𝑆12,21

𝜕𝑅DC
=  

−2𝛾

𝜔𝑅DC
2

1− 𝑆12,21

𝑆12,21
.              (A.14) 

 

The uncertainty in RDC comes from the digital multimeter 

(DMM) used to measure the resistance and from the on-wafer 

probe contact landing repeatability. The data presented in this 

manuscript are from the first instance of landing probes on 

pristine Au CPWs. The intrinsic uncertainty of the DMM is 

0.04 Ω and we estimate the probe contact uncertainty to be 

0.02 Ω. RDC of the individual resistors is found from taking the 

total resistance of a series-resistor device integrated into a CPW 

and subtracting the resistance of the thru, equivalent to the 

resistance of the CPW leads up to the resistive element. The 

variance on each RDC value is thus  

 

 

𝜎𝑅DC
2 = 𝜎𝐷𝑀𝑀,𝑇ℎ𝑟𝑢

2 + 𝜎𝐷𝑀𝑀,𝑆𝑅
2 + 𝜎𝑃𝑟𝑜𝑏𝑒𝑠,𝑇ℎ𝑟𝑢

2 + 𝜎𝑃𝑟𝑜𝑏𝑒𝑠,𝑆𝑅
2 =

0.004 Ω2                    (A.15) 

 

and 

 

𝜎𝑅DC
= 0.06 Ω.                 (A.16) 

The derivatives in (A.3) with respect to the S-parameters are 

 
𝜕𝐶𝑆11,22

𝜕𝑆11,22
=  

2

𝜔𝑅DC
[

1

1−𝑆11,22
+

𝑆11,22

(1−𝑆11,22)
2]        (A.17) 

 
𝜕𝐶𝑆12,21

𝜕𝑆12,21
=  

−2𝛾

𝜔𝑅DC

1

𝑆12,21
2 .               (A.18) 

TABLE III 

RELATIVE UNCERTAINTY CONTRIBUTIONS 

Component of (A.3) Average reflective 

uncertainty contribution 
over frequency window 

(𝜔𝑖) for RDC = 155.88 Ω, 

(pF/m) 

Average transmissive 

uncertainty contribution 
over frequency window 

(𝜔𝑖) for RDC = 155.88 Ω, 

(pF/m) 

Average reflective 

uncertainty contribution 
over frequency window 

(𝜔𝑖) for RDC = 54.68 Ω, 

(pF/m) 

Average transmissive 

uncertainty contribution over 

frequency window (𝜔𝑖) for 

RDC = 54.68 Ω, (pF/m) 

√|
𝜕𝐶𝑆𝑅𝑒𝑓𝑙,𝑇𝑟𝑎𝑛𝑠

𝜕𝛾
|

𝜔𝑖

2

𝜎𝛾𝑖
2  

0.05 0.05 0.13 0.13 

√|
𝜕𝐶𝑆𝑅𝑒𝑓𝑙,𝑇𝑟𝑎𝑛𝑠

𝜕𝜔
|

𝜔𝑖

2

𝜎𝜔𝑖
2  

<< 0.01 << 0.01 << 0.01 <<0.01 

√|
𝜕𝐶𝑆𝑅𝑒𝑓𝑙,𝑇𝑟𝑎𝑛𝑠

𝜕𝑅DC

|
𝜔𝑖

2

𝜎𝑅DC

2
 

0.05 0.04 0.36 0.36 

√|
𝜕𝐶𝑆𝑅𝑒𝑓𝑙,𝑇𝑟𝑎𝑛𝑠

𝜕𝑆𝑗𝑘

|
𝜔𝑖

2

𝜎𝑆𝑅𝑒𝑓𝑙,𝑇𝑟𝑎𝑛𝑠,𝑖

2
 

0.30 0.18 0.77 0.71 

 

TABLE IV 

UNCERTAINTIES IN C0 USING PROPAGATION OF UNCERTAINTY 

Quantity Value (pF/m) Uncertainty (pF/m) 

𝐶0,𝑇𝑜𝑡,𝑅DC=155.88 Ω 110.88 0.01 

𝐶0,𝑇𝑜𝑡,𝑅DC=54.68 Ω 110.84 0.04 
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Like 𝜀𝐸𝑓𝑓, we used StatistiCAL to compute the calibration error 

boxes and the uncertainty in the error box components. We 

performed a sensitivity analysis using the error box 

uncertainties to compute the uncertainty in the S-parameters for 

the 155.88 Ω and 54.68 Ω resistors. We varied the error box 

components one standard deviation higher and lower than their 

nominal values and calculate the corresponding variation in the 

corrected S-parameters. We then took the difference between 

the nominal S-parameters and the S-parameters computed with 

the shifted error boxes as the uncertainty in the S-parameters as 

a function of frequency.  

Now we can compare the relative contributions of the terms 

in (A.3) to the uncertainty in C0 and compute the total 

uncertainty in C0. The relative contributions are found in Table 

III and the total uncertainty in C0 is found in Table IV.  

We found that the uncertainty in the S-parameters was the 

dominant contribution to the uncertainty in (A.3). Now we can 

average together all the C values from all four S-parameters 

within the frequency window to get a single number to use for 

C0 in our algorithms and calculations.  

 

𝐶0,𝑇𝑜𝑡 = (
1

4𝑛
) (∑ 𝐶𝑖,𝑆11

+ 𝐶𝑖,𝑆12
+ 𝐶𝑖,𝑆21

+ 𝐶𝑖,𝑆22
𝑛
𝑖=1 )  (A.19) 

 

with 

 

𝜎𝐶𝑜,𝑇𝑜𝑡
2 = 

(
1

4𝑛
)

2

 (∑ 𝜎𝐶𝑖,𝑆11

2 + 𝜎𝐶𝑖,𝑆12

2𝑛
𝑖=1 + 𝜎𝐶𝑖,𝑆21

2 + 𝜎𝐶𝑖,𝑆22

2 ).   (A.20) 

 

The 𝐶0,𝑇𝑜𝑡 values were the same as the ones reported in Table 1.  

We found that the uncertainties calculated using propagation 

of errors are smaller than the standard deviations of the C values 

averaged and reported in Table 1. While an optimal resistor 

design minimizes the structure in C, in cases where a sub-

optimal resistor is chosen and there is substantial structure in C 

within the frequency bounds (for example, as in Fig. 2a), the 

standard deviation of the C values would serve as a better 

estimate of the uncertainty in C0. 

APPENDIX B 

LUMPED-ELEMENT CIRCUIT MODEL FIT PARAMETERS 

We fit the series-resistor S-parameters to the circuit model in 

Fig. 5 as part of Step 10 in the procedure in outlined Section IV-

B. We extracted the lumped-element circuit parameters from 

the fit for each of the 48 series resistors and examined them 

further. We expect the lumped series resistance Rs to follow the 

well-known geometric relation 

 
Fig. 12. Resistance vs. aspect ratio for the extracted circuit model fit parameters 
Rs and for the model is (B.1). Aspect ratio is resistor length/width. The error 

bars represent a 95 % confidence interval on the fit.  

 

 
Fig. 13. Inductance/width vs. aspect ratio for the extracted circuit model fit 

parameters Ls, circuit model fits to the finite-element (FE) simulations, and for 

the model in (B.2). Aspect ratio is resistor length/width. The error bars 
represent a 95 % confidence interval on the fit.  

 

 
Fig. 14. Inductance vs. length for the extracted circuit model fit parameters Ls 

and the finite-element simulations. The error bars represent a 95 % confidence 

interval on the fit. The inset shows the same data on a logarithmic scale.  
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𝑅 =  
𝜌𝑙

𝐴
                   (B.1) 

 

where ρ is the resistivity of the PdAu in Ω·m, l is the length of 

the resistor in m, and A is the cross-sectional area in m2. We 

find that the Rs extracted from our data agree well with the 

model in (B.1) for ρ = 3.75*10-7 Ω·m, which we show in 

Fig. 12.  

We also extract the series inductance Ls from our data and 

from our finite-element simulations. Steinberg et al. [30] 

provide an analytical model for the microwave inductance of 

thin metal strips. Since, in our resistors, the width w is much 

greater than the thickness t, their model reduces to 

 

𝐿 ≈ 0.2 ∗ 10−6 ∗ 𝑙 ∗ [𝑙𝑛 (
2𝑙

𝑤
) + 0.5 +

𝑤

3𝑙
]     (B.2) 

 

where the inductance L is in H, l is the length in m, and w is the 

width in m. If we divide (B.2) by the width w, all the dimensions 

enter in terms of the aspect ratio (l/w) of the resistor. In Fig. 13, 

we show the extracted Ls divided by the width of the resistors 

vs. their aspect ratio. We find that the model in (B.2) is 

reasonably close to our data, but slightly underestimates the 

inductance. We believe this deviation arises because to the 

length scales in our resistors are significantly smaller than the 

length scales examined in [30], as well as the large step edge at 

the transition between the Au CPW center conductor and the 

PdAu resistor in our devices which was not considered in [30]. 

The finite-element simulations match our data well, and the Ls 

extracted from the simulations also agree with those from the 

measured data.  

 Fig. 14 plots the extracted Ls vs. the length of our resistors. 

Here, we clearly see that when the resistor gets too long 

(≳ 30 µm), the total parasitic inductance can become 

significant. This length cutoff agrees well with our phase 

condition (11) that excludes resistors longer than 28 µm. 
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