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Abstract 
Plasmomechanical systems – formed by introducing a mechanically compliant gap between metallic 
nanostructures – produce large optomechanical interactions that can be localized to deep subwavelength volumes.  
This unique ability opens a new path to study optomechanics in nanometer-scale regimes inaccessible by other 
methods.  We show that the localized optomechanical interactions produced by plasmomechanics can be used to 
spatially map the displacement modes of a vibrating nanomechanical system with a resolution exceeding the 
diffraction limit.  Furthermore, we use white light illumination for motion transduction instead of a 
monochromatic laser, and develop a semi-analytical model matching the changes in optomechanical coupling 
constant and motion signal strength observed in a broadband transduction experiment.  Our results clearly 
demonstrate the key benefit of localized and broadband performance provided by plasmomechanical systems, 
which may enable future nano-scale sensing and wafer-scale metrology applications.  
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Introduction 
Progress in motion measurement for micro and nano-mechanical systems enables advances in many 
fields.  Indeed, the characteristics of diverse physical systems are usefully imprinted on mechanical 
vibrations, forming the basis for atomic force microscopy for imaging and materials characterization 1,2, 
precision mass and force detection 3,4, biological sensing 5, radiofrequency signal processing 6, and 
quantum engineering 7,8.  Improving device functionality often requires shrinking the physical size of 
mechanical transducers, thereby necessitating high-spatial resolution and low-noise readout of their 
motions 9–11. Cavity optomechanical systems are especially well-suited for this task.  By trapping light 
within a high-quality dielectric optical resonator, these devices extend the time and localize the physical 
space in which optical and mechanical modes interact.  As a result, these devices can transduce motion 
with remarkably high sensitivity12, in some cases at the fundamental limits imposed by quantum 
mechanics. 13. However, in dielectric devices, localization of the optical energy is limited to a volume of 
approximately 𝜆3, where 𝜆 is the optical wavelength inside the medium.  This diffraction limit constrains 
the ability to read nanoscale device motion at precisely specified locations, or to selectively enhance or 
suppress optical coupling to specific mechanical modes at the nanoscale. The need to selectively 
transduce weak mechanical signals from nanoscale regions motivates the design of new platforms that 
can access deeply sub-diffraction mode volumes.  
 
The emerging class of plasmomechanical systems offers a solution. These devices take advantage of the 
ability of plasmonic resonators to confine light into nanometer-sized volumes. By introducing a 
moveable mechanical degree of freedom into the gap separating metallic structures, plasmomechanical 
systems can concentrate light-motion interactions into these small volumes, while simultaneously 
providing optomechanical coupling rates several orders of magnitude larger than dielectric systems 14–17. 
A variety of geometries have been explored to take full advantage of these effects, including patterned, 
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gold-coated silicon nitride membranes 15,16,18, homogenous gold devices 19–22, and monolithically 
fabricated gold-nitride structures17,23. To date, previous efforts have focused mainly on transducing 
thermal motion 16,17, achieving broad optical resonance tuning 23, or harnessing near-field optical or 
thermal forces to control nanomechanical dynamics18,23,24. However, specifically employing the high-
spatial resolution of plasmomechanical transduction remains largely unexplored.  Additionally, in most 
studies, single-wavelength lasers are used to probe devices, neglecting the potential benefit of 
broadband plasmonic modes for transduction.  Utilizing the broadband response may allow for 
incoherent, white-light optomechanics 25.  
 
In this Article, we show that plasmomechanical interactions can be used to spatially map the 
displacement modes of a vibrating mechanical system. Localized gap plasmonic resonators embedded 
into cantilever structures act as point-like transducers which report the mechanical response from an 
area ≈ 4.3× smaller than the diffraction limited focal spot. By collecting the mechanical spectra from a 
set of localized-gap plasmon resonators (LGPRs), we can accurately reconstruct the shapes of the first 
three flexural modes of the cantilever.  We also show that a broadband laser source can be used to 
transduce the motion from each LGPR, effectively relaxing the constraint of a precisely tunable laser 
source commonly required to probe optomechanical systems.  We develop a semi-analytical model for 
broadband transduction which accounts for changes in optomechanical transduction gain and matches 
experimental results.  These results introduce a new functionality for plasmomechanical devices while 
expanding their versatility for applications in sensing and metrology. 
 

Results and Discussion 

 

 

Figure 1. (a) Schematic of experimental setup. A supercontinuum (SC) laser supplies a broadband optical 
excitation focused to a ≈ 950 nm spot with a 0.9 NA objective.  Reflected optical signals from the LGPR are 
passed onto a photodiode through a pinhole.  A vector network analyzer drives the cantilever with ≈ 1 V signal 
and the transmission 𝑆21 is measured.  The suspended cantilever (false-color scanning electron micrograph, 
inset) is separated from a large gold pad underneath by a quadratically increasing gap as fabricated, visible as 
the dark shadow under the cantilever.  The embedded LGPR produces a visible bulge on the top cantilever 
surface.  All experiments are performed in ambient air conditions.  (b) The spectrum of the SC source (black), 
collected in reflection from the flat gold reflector next to the cantilever and the reflectance of a typical LGPR 
(blue).  In the latter case, the background SC spectrum is first normalized by focusing on the cantilever ≈ 1 µm 
from the LGPR.  The inset shows the electric field intensity distribution for the LGP mode with incident electric 
field (blue arrow) and wavevector (white arrow).  



Our plasmomechanical system is based on an LGPR comprising a gold cuboid that measures 
approximately (350×150×40) nm3 in length, width, and thickness, respectively.  This structure represents 
a truncated metal-insulator-metal waveguide supporting a gap plasmon mode that is confined to the 
nanoscale gap below the cuboid 26. The LGPR dimensions are chosen to produce a relatively high-quality 
factor localized gap plasmon (LGP) mode (𝑄 ≈ 20) with a third-order resonance (Fig. 1b). This mode is 
primarily magnetic in character, exhibiting a magnetic dipole-like response directed orthogonal to the 
electric field polarization of the exciting laser beam 17. The LGPR is suspended above an underlying gold 
substrate by embedding it on the underside of a free-hanging silicon nitride cantilever.  The optical 
frequency (𝜔) response of the plasmon resonance dependes sensitively on the size 𝑧 of the gap, yielding 
extremely large optomechanical interactions.  The nominally 4 µm long, 150 nm thick silicon nitride 
cantilevers are attached to a ≈ 1.5 µm wide suspended frame and have a thin gold electrode patterned 
on their top surface to provide electrostatic actuation of their mechanical vibrations. The frame extends 
the total effective cantilever length to 5.5 μm and is included in our models. These devices are produced 
using a fabrication method previously described 23. The false color scanning electron micrograph in Fig. 
1a shows that the cantilevers are separated from the gold substrate by a gap that increases 
approximately parabolically toward the cantilever tip from an initial gap of ≈ 15 nm at the cantilever 
base and under the frame.  The curvature is a result of the residual stress gradient in the nitride 
deposition process and can be controlled by varying process parameters (see Methods).  Generally, 
decreasing the initial gap requires larger stresses to facilitate the release of the cantilevers and avoid 
stiction. Larger stress gradient leads to larger curvature, increasing cantilever-substrate gap along the 
cantilever length23. Six independent devices are studied, each having a single LGPR positioned at a 
location (𝑥-coordinate) ranging nominally from 0.5 µm to 1.75 µm from the base with the cantilever and 
LGPR long dimensions oriented along 𝑥.   
 
The experimentally measured optical response of a typical LGPR is shown in Fig. 1b. This reflectance 
spectrum is measured in a confocal arrangement, whereby a broadband supercontinuum (SC) is focused 
onto the LGPR to a diffraction-limited spot with a high-numerical aperture (0.9 NA) and the collected 
light is imaged onto a fiber-coupled spectrometer (Fig. 1a).  The spectrum of the SC source, which is 
well-represented by a sum of two Gaussian functions (yellow curve, Fig. 1b), is normalized to a flat 
reference prior to measuring the LGPR response by focusing through the cantilever at the gold pad 
surface a small ≈ 1 µm distance away from the LGPR.  The LGPR imparts a dip in the reflectance 
spectrum, near which we fit to a Lorentzian given by  

 𝑟(𝜆) = 𝑅0 + 𝑀
𝑤2

4(𝜆−𝜆c)2+𝑤2, (1) 

where 𝑅0 is the reflectance far from resonance, 𝑀 is the coupling depth, 𝑤 is the optical cavity linewidth 
(full-width at half maximum, FWHM), and 𝜆c is the LGP resonance wavelength (frequency, 𝜔c = 2𝜋𝑐/𝜆c, 
where 𝑐 is the speed of light).  The fit produces an LGP resonance with 𝜆c ≈ 748 nm, 𝑀 ≈ 0.3, and 
𝑤 ≈ 49 nm.   

To elucidate the nature of the optomechanical coupling of the system, we perform finite element 
calculations of the LGPR optical response as a function of the gap size 𝑧 using the same geometry and 
dimensions of the fabricated devices.  Figure 2a shows the calculated reflectance spectra for gaps 
spanning from 7.5 nm to 50 nm.  These curves qualitatively match the Lorentzian form of the resonance 
observed in experiment, and we find close quantitative agreement between measured and calculated 
responses for 𝑧 ranging from 20 nm to 30 nm.  The LGPR exhibits both dispersive and reactive 
optomechanical coupling 23,27–29. The dispersive component is characterized by changes in the resonance 
frequency with gap 𝑔om = 𝜕𝜔c/𝜕𝑧 and is strongest in the small-gap region below ≈ 20 nm with values in 
excess 2 THz nm-1.  In contrast, the reactive component derives from changes in both the modulation 



depth 𝜕𝑀/𝜕𝑧 and the linewidth 𝜕𝑤/𝜕𝑧 of the LGP, and dominates in the large gap regions above ≈ 35 
nm, where the dispersive component becomes small.  

Using these simulation data, we can construct a semi-analytical model for predicting the 
optomechanical transduction behavior of the devices. To build the model, we fit the FEM derived 
spectra 𝑟(𝜆) to a series of Lorentzian curves, and extract the resonance wavelength, linewidth, and 
modulation depth at each gap (Fig. 2b-d).  We then plot each fit parameter over the gap range and fit 
the resultant values to a set of phenomenological models.  Figure 2b shows the extracted resonance 
wavelengths, which exhibit a well-known exponential dependence on gap 𝜆c(𝑧) = 𝜆0 + 𝐴λ exp[−𝑧/ℓλ] 
30.  Similarly, the linewidth, representing the plasmonic losses, is expected to be large at small gaps due 
to significant electric field penetration into the metal, and to decrease as the gap becomes large 26.  We 
therefore fit the linewidth to an exponential form 𝑤(𝑧) = 𝑤0 + 𝐴w exp[−𝑧/ℓw] (Fig. 2c).  There is an 
apparent hybridization of the LGP with another mode for gaps near 20 nm.  This mode is likely a 
dielectric loaded surface plasmon: a propagating surface plasmon excited by the LGPR and coupled to  
the nitride cantilever, which forms a dielectric waveguide 17.  The hybridization increases the apparent 
linewidth for gaps ≈ 20 nm (red diamond, Fig. 2c).  Inversely, the modulation depth approaches zero at 
vanishing gap and is expected to reach a limiting value for large gaps.  This suggests a power-law model 
of the form 𝑀(𝑧) = 𝑎M − 𝑏M 𝑐M

𝑧  shown in Fig. 2d.  We note that the deviations of 𝑤(𝑧) and 𝑀(𝑧) for 
gaps smaller than ≈ 20 nm are not expected to contribute significantly to the optomechanical 
transduction, due to the fact that dispersive coupling significantly outweighs reactive in this regime 
23,27,29. The deviations of 𝑀(𝑧) in this regime and the anomalously large gap value at 20 nm are therefore 
neglected in the fitting procedure in favor of a simplified model. Table 1 shows the derived fit 
parameters for each component along with their 𝑅2 values which indicate the goodness of fit of each 
model value. Uncertainties in Table 1 are one-standard deviation from the fits.  

Table 1. Fit parameters for semi-analytical 𝑅(𝜆, 𝑧) model 

           𝜆c(𝑧)            𝑤(𝑧)               𝑀(𝑧) 
𝜆0 (752±0.4) nm 𝑤0 (32±0.2) nm 𝑎M 0.46±0.04 
𝐴𝜆 (326±20.5) nm  𝐴w (233 ± 68) nm 𝑏M 0.49±0.06 
ℓ𝜆 (6.3±0.3) nm ℓw (3.1 ± 0.3) nm 𝑐M 0.94±0.02 

𝑅2 0.99 𝑅2 0.84 𝑅2 0.91 

 

Incorporating the model functions into Eq. (1) produces an analytical function of the reflectance  

 𝑅(𝜆, 𝑧) = 𝑅0 + 𝑀(𝑧)
𝑤2(𝑧)

4[𝜆−𝜆c(𝑧)]2+𝑤2(𝑧)
,  (2) 



which is plotted in Fig. 2e.  The utility of this construction is that the model enables direct calculation of 
the optomechanical transduction signal  

 𝑠(𝜆, 𝑧) ∝
𝜕𝑅(𝜆,𝑧)

𝜕𝑧
 . (3) 

Commonly, optomechanical motion transduction is performed with a single-wavelength laser probe 
tuned near the cavity resonance of the device.  In dielectric cavity optomechanics, this scheme is often 
required, as many of these systems have large optical quality factors that are deliberately engineered to 
improve transduction sensitivity, at the expense of decreased optical bandwidth 12,25. Plasmomechanical 
systems, by contrast, have large intrinsic bandwidth and therefore the single-wavelength approach to 
transduction is not an a-priori requirement, despite being employed in most studies to date.  Despite 
having a low quality factor compared to dielectric devices, plasmomechanical systems can still achieve 
transduction with a large signal-to-noise ratio owing to their exceptionally large optomechanical 
coupling strength; the signal being proportional to the 𝑄 ∙ 𝑔om product 17.  

We utilize a broadband optical source – the supercontinuum laser – for plasmomechanical transduction 
of device motion.  This approach has several advantages. Presently, it enables monitoring the 
reflectance spectrum of the LGPR (Fig. 1) simultaneously with motion transduction, facilitating spatial 
alignment of the laser with the subwavelength resonator. The laser’s high spatial coherence allows us to 
locate and characterize the nanoscale LGPR with the high spatial resolution of confocal microscopy. In 
the future, optically-broadband transduction may allow parallel, wide area (e.g. wafer-scale) metrology 
of plasmomechanical devices with varied optical resonances using incoherent illumination.  

To account for broadband transduction, we use Eq. (3) and find 

 𝒮(𝑧) = ∫ 𝑠(𝜆, 𝑧) ∙ 𝑆𝐶(𝜆) ∙ 𝜉(𝜆) d𝜆
𝜆f

𝜆0
,  (4) 

 

Figure 2. (a) Finite-element calculated reflectance spectra for LGPRs with varying gap sizes. (b)-(d) Extracted 
parameters from Lorentzian fits to (a) (gray diamonds) and their model functions (red lines). The red diamond 
in (c) is excluded from the fit. (e)  Surface plot of the constructed analytical reflectance function 𝑅(𝜆, 𝑧) using 
the models in (b)-(d). The bottom plane is a contour map of the three-dimensional surface.  



where 𝑆𝐶(𝜆) is the supercontinuum spectrum ranging from 𝜆0 ≈ 600 nm to 𝜆f ≈ 900 nm (Fig. 1b), and 
𝜉(𝜆) is the normalized responsivity of the photodiode Fig. 1a. In our devices, the LGPRs are placed at 
varying positions (𝑥-coordinates) along the cantilever length and therefore sample different regimes of 
optomechanical coupling, owing to the curled shape of the released cantilever which is modeled by 

𝑧(𝑥) = 𝑧0 +
𝛿𝑧

𝐿2 𝑥2 with cantilever length 𝐿, initial gap 𝑧0, and deflection at the tip 𝛿𝑧 31.  As a result, a 

reduction of the optomechanical coupling strength with increasing 𝑥-coordinate (gap) is expected.   

Figure 3 shows the normalized transduction signal calculated using Eq. (4).  The decrease in transduction 
strength due to the cantilever curvature is evident.  In fact, we find that for a 4 µm length cantilever 
with a gap at the base (tip) of 18 nm (100 nm), corresponding to 𝛿𝑧 = 82 nm, the predicted relative 
transduction strength for the LGPRs closely matches experimental results (shown later).  These static 
cantilever shape parameters used in the model agree with the parameters from the fabricated devices. 
In particular, the initial gap is taken from the deposited sacrificial layer thickness and the tip deflection 
value from atomic force microscopy measurements 23.  These measurements, performed on a different 
sample produced in the same fabrication run as the present set of devices, indicate an approximately 10 
% variation of the tip deflection value across all devices.  We expect and account for this variation in the 
six devices studied in this work. The spectra (inset, Fig. 3) show a transition from dispersive to purely 
reactive optomechanical coupling for gaps larger than ≈ 35 nm.  Interestingly, this model reveals that 
broadband transduction using a dispersive device requires either an asymmetry in the source spectrum 
or an appreciable reactive coupling component.  Without such asymmetry, the opposite phase (negative 
value) of the transduction spectrum cancels the positive part leading, in principle, to a vanishing signal.  

The optomechanical transduction mechanism is most sensitive to motion that directly changes the gap 
size.  Thus, the flexural modes of the cantilever will couple strongly to the LGPR, which probes the 
motion from a localized region smaller than the input laser spot size.  We make use of this effect to 

 

Figure 3. Broadband optomechanical transduction signal for the plasmomechanical system.  The gray line is the 
result predicted from Eq. (4), using an initial gap of 18 nm and a tip deflection (gap at the tip) of 82 nm 
(100 nm) and the black circles derive from experimental measurements.  The red region represents one 
standard-deviation propagated from uncertainties in the fit to the SC spectrum and from the standard 
deviation (± 4 nm) of measured LGPR resonance wavelengths. The inset shows the individual transduction 
spectra 𝑠(𝜆, 𝑧i ) where 𝑧i are the predicted gaps for the six devices in our study. 



spatially map the first three flexural modes of the cantilever (Fig. 4b) using the setup shown in Fig. 1a.  
Here, a vector network analyzer supplies a radio-frequency (rf) voltage from 1 MHz to 125 MHz to the 
electrostatic actuator, driving device motion and producing a modulated LGPR reflectance signal 𝒮(𝑧) 
which is read out using a 125 MHz bandwidth photodiode.  
 

 

Figure 4a shows the squared amplitude of the mechanical frequency transfer functions |𝐻(𝑓)|2 of four 
representative devices transduced by the SC source.  These curves, proportional to the power spectral 
density (PSD) of the mechanical vibrations, show peaks at the frequencies of the first three flexural 
modes – referred to as modes one, two, and three, respectively – of the cantilevers.  The PSD is 
represented as a three-peaked Lorentzian function of the form 

 𝑆𝑧𝑧,𝑗(𝜔) = |∑ 𝜒𝑗(𝜔)3
𝑗 |

2
𝑆𝐹𝐹(𝜔) ≈ 𝑆𝐹𝐹 ∑

1

𝑚𝑗
2

1

(𝜔m,𝑗
2 −𝜔2)

2
+(𝛾m,𝑗 𝜔)

2

3
𝑗 ,  (5) 

where the index 𝑗 refers to the mechanical mode, 𝑆𝐹𝐹 is the (flat) force spectral density of the 
electrostatic actuation, and 𝜒𝑗(𝜔) is the complex mechanical susceptibility with modal mass 

𝑚𝑗, frequency 𝜔m,𝑗 = 2𝜋 𝑓m,𝑗, damping rate 𝛾m,𝑗, and quality factor 𝑄m,𝑗 = 𝜔m,𝑗/𝛾m,𝑗.   Given that 

there is no frequency overlap between the modes, the mechanical frequency response is effectively the 
incoherent sum of the three. The fit of Eq. 5 to the data (tan curve, Fig. 4a) includes a constant offset 
accounting for noise in the transduced signals. The mechanical frequencies, determined from Lorentzian 
fits to the full set of six devices, are (8.54 ± 0.52) MHz, (47.5 ± 0.02) MHz, and (112.5 ± 0.54) MHz, for 
modes one, two, and three (𝑗 =1, 2 and 3), respectively; uncertainties are the standard deviation of the 
average of the six devices.  While the values for modes two and three agree with finite-element 
calculations to within 2 %, the 𝑓m,1 is significantly larger than the predicted value of 7.2 MHz.  We 
attribute this difference to squeeze film air interaction, which is not included in the finite element model 
and is expected to both stiffen and damp the mechanical response at low frequencies32; the deviation 
from the Lorentzian fit at low frequency is also expected as a result this effect.  
 

 

Figure 4. Transduced mechanical modes. (a) Power spectral density (PSD) of the mechanical frequency 
response of four devices plotted on a dual logarithmic scale with LGPRs located 0.5 µm (black), 0.75 µm (gray), 
1.25 µm (blue), and 1.75 µm (green) from their respective cantilever bases. The inset is a zoom-in of mode 3.  
Solid curves are fits to Eq. (5) for each device.  (b) Finite-element calculated modal displacement at each 
frequency 𝑓m,𝑗.  (c) Phase of the transduced mode signals for 0.5 µm (red) and 1.75 µm (blue) devices.  

 



The mechanical responses in Fig. 4a bear distinct signatures suggesting that the LGPR transduces 
mechanical motion locally. For mode one, there is monotonically increasing motion power with 𝑥-
coordinate, whereas mode two shows little change in power.  In contrast, mode three displacement 
signal is non-monotonic, displaying a distinct node for locations near 𝑥 = 1.25 µm and a recovery of the 
signal for larger 𝑥 positions. These observations agree qualitatively with the calculated mode shapes of 
the cantilever (Fig. 4b).  Furthermore, the node in mode three implies that the displacement should 
exhibit opposite phase for locations on either side.  The measured phase response (Fig. 4c) of the 
devices indeed shows a phase reversal for mode three whereas modes one and two retain the same 
phase for each device.  

These observations suggest that the LGPR indeed acts as a localized motion transducer, as previously 
suggested for plasmomechanical systems 16,17. To further corroborate this point, we measure the 
mechanical response of mode two as the input laser is scanned along the cantilever length.  For this 
measurement, we supply a 47.5 MHz tone to drive the mode, measure the motion signal amplitude at 
each location, and fit the spatially resolved signal amplitudes to a Gaussian function of laser position 
with ≈ 100 nm increments across the laser scan range.  Given that (1) the lens used for excitation and 
detection has a high numerical aperture, and (2) the LGPR responds as a magnetic dipole  with its 
moment along the 𝑦-axis (orthogonal to the input electric field polarization), it is expected from 
diffraction theory that the point-spread function of the imaged LGPR is elongated parallel to the 𝑦-axis 
33.  Consequently, and somewhat counterintuitively, we expect to achieve better optical localization in 𝑥, 
parallel to the longer physical axis of the LGPR.  
 
The extracted center positions from the fit for each device agree very well with the designed values for 
the LGPR locations within the cantilevers (Fig. 5a).  Note that the fabrication process results in a 

 

Figure 5. Spatially resolved motion signals. (a) Center positions of the (b) spatially dependent motion signals for 
the four devices shown in the optical micrographs. Values in (a) are the center positions extracted from 
Gaussian fits to the data in (b), with uncertainties that are one standard deviation propagated from the fit; 
error bars are much smaller than the data points.  Error bars in (b) represent one standard deviation of the 
signal amplitude, propagated from a separate Gaussian fit to the motion signal data. Data in (b) are normalized 
such that the maximum signal value for each device is one.   



maximum variation in the device-to-device LGPR position of ≈ 4 nm.  Comparing this value to the 
minimum resolution of our wide-field microscope of ≈ 475 nm, we find that the signal is localized to a 
region that is ≈ 1.6× smaller than the diffraction limit.  A similar comparison can be made to a confocal 
imaging system, wherein the minimum resolution is given by 0.37𝜆SC,peak/NA ≈ 288 nm.  Thus, the 

measured motion signal localization (Fig. 5b) corresponds closely to the theoretical confocal resolution 
limit given by 0.37 𝜆SC,peak/NA ≈ 288 nm, indicating that the LGPR is acting effectively as a point 

transducer of nanomechanical motion.   
 
The point-like transduction provided by the LGPRs can be used to map out the mechanical mode shapes.  
To perform the mapping, we fit the mechanical spectra in Fig. 4a to Eq. 5 for six LGPR locations 𝑥𝑙 from 
0.5 µm to 1.75 µm in 250 nm increments; 𝑙 is the LGPR location index from one to six.  The fits are then 
used to derive the raw modal displacement via 34 

 𝑧𝑗(𝑥𝑙) ∝ √∫ 𝑆𝑧𝑧,𝑗(𝜔)d𝜔
∞

0
 . (6) 

Finally, an error-weighted nonlinear fit of the raw 𝑧𝑗(𝑥𝑙) values to finite-element calculated mode 

shapes is performed.  The fitting procedure takes as input the eighteen 𝑧𝑗(𝑥𝑙) values with their 

associated uncertainties, defined as the one-standard deviation uncertainty propagated from the 
Lorentzian fit, and uses two types of fit parameters to define the output. The first is a force gain factor 

𝑔𝑗
f , comprising one value for each mode j =1,2,3, that accounts for the fact that the electrostatic 

actuator does not excite each mode with equal strength.  Applying 𝑔𝑗
f  effectively shifts the vertical 

positions of the raw 𝑧𝑗(𝑥𝑙).  A second transduction gain factor 𝑔𝑙
g
 comprises six values, one for each 

LGPR location. These parameters account for the change in the optomechanical coupling strength with 
gap size 𝑧(𝑥𝑙).  The results are shown in Fig. 6.  We find an excellent agreement between measured and 

theoretical mechanical mode shapes. The extracted 𝑔𝑙
g
 (black circles, Fig. 3a) agree very well with 

theoretical predictions for optomechanical transduction (which assumes the parabolic cantilever shape), 

up to a common proportionality constant.  Conversely, combining the experimentally determined 𝑔𝑙
g
 

 

Figure 6. Normalized modal displacement values (diamonds) resulting from an error-weighted fit to finite-
element calculated mode shapes (lines).  The error bars represent uncertainties propagated from the nonlinear 
fit of the raw 𝑧𝑗(𝑥𝑙) to theoretical mode shapes and an additional 10 % uncertainty resulting from the variation 

in the cantilever tip deflection across all devices.  



with the theoretical transduction model enables reconstruction of the curved equilibrium cantilever 

shape. Figure 7 shows the gap values, corresponding to the experimental transduction gains 𝑔𝑙
g
, 

extracted from the 𝒮(𝑧) curve.  Indeed, we find that these values match the expected parabolic gap 
profile of the deflected cantilever.  

 
The reduction of optomechanical coupling strength with larger gap along the cantilever length, a direct 
result of the stress-induced deflection shown in Fig. 7, appears to limit the lateral extent over which the 
modes can be mapped.  However, this is a consequence of the specific device parameters used in this 
work and is not a general limitation of the plasmomechanical mode mapping scheme.  In order to 
produce and study LGPRs that sample both the dispersive and reactive regimes, it is necessary to 
fabricate narrow ≈ 15 nm initial gaps. Wet-etching release and supercritical CO2 drying of such devices 
are more reliable with large film stress gradients, producing a large 𝛿𝑧.  When mode mapping is the only 
goal, it can be done entirely in the reactively coupled regime, whereby a larger initial gap can be used, 
easing the constraints on the stress required for device release, reducing δz, and ultimately extending 
the measurable lateral extent of the nanomechanical modes. 
 
In the current implementation, the use of a single plasmonic element within each separate device is not 
only sufficient to map the nanomechanical modes, but also enables straightforward assessment of the 
sub-diffraction optical footprint of the motion transduction (Fig. 5).  A natural extension of this 
technique is to employ multiple LGPRs in a single device.  This method would allow the modes of 
individual devices to be mapped in one or two spatial dimensions, potentially revealing non-idealities in 
the dynamics of surface-machined NEMS devices. However, in such an approach, it is important to 
retain sufficient spacing between the plasmonic elements to prevent LGPR optical coupling.  Finite 
element calculations show that LGPRs can be spaced as close as 100 nm without introducing significant 
coupling effects such as a shift in the LGP resonance frequency.  Along these lines, an interesting future 
avenue would be to use smaller first-order resonators, measuring approximately 75 nm and 40 nm in 
length and width, respectively. These LGPRs support the first-order LGP mode in the same spectral 

 

Figure 7. Gap size extracted (gray diamonds) through a combination of the experimental transduction gains 
and the theoretical broadband model.  Error bars are the difference between the transduction gains and 
theoretical curve.  The gray line is a parabola fit to the extracted gaps, with the blue region representing one 
standard deviation of the fit.  



range and may improve the spatial resolution and enable transduction of mechanical signals at sub 100 
nm length scales and GHz frequencies.  
 
While the large 𝑄 ⋅ 𝑔om product of the LGPRs contributes to a high sensitivity of the optomechanical 
readout, it is also important to maximize the number of photons (optical power) used for measurement 
to ensure a large signal-to-noise ratio (SNR). For plasmonic systems, the heat generated can be a limiting 
factor for the maximum optical power and therefore the achievable transduction SNR, as morphological 
changes can occur at temperatures as low as 200 °C 35,36.  With this temperature representing a 
conservative estimate of the structural damage threshold, we use a finite element model to calculate 
the maximum temperature of the LGPR and thus the likelihood of thermal damage.  In our experiments, 
an input optical power of ≈ 5 mW (distributed over the full source bandwidth) is used, leading to a total 
dissipation of ≈ 100 μW over the LGPR bandwidth and a calculated maximum temperature of ≈ 70 °C, 
significantly below the damage threshold.  We calculate that a maximum broadband input power of 20 
mW can be used prior to damage.  Assuming that photon shot noise is the primary noise source 17, this 
4× increase of input power could improve the transduction SNR by a factor of two.  
 
 
Conclusion 
In summary, we have demonstrated new functionalities for plasmomechanical systems: high-spatial 
resolution mapping of the vibrational modes of a nanomechanical system and broadband optical 
transduction. Our broadband optomechanical transduction model, in conjunction with spatially resolved 
motion power spectral data, closely predicts the change in optomechanical coupling strength of the 
LGPRs. These results can form the basis of a useful design space for future plasmomechanical systems 
whereby a desired optomechanical response (e.g., dispersive or reactive coupling, enhancement or 
suppression of signals at certain frequencies) can be engineered into the system through felicitous 
“decoration” of the mechanical system with subwavelength optical resonators.  By making such features 
available, we envision that this work will benefit future applications of plasmomechanical systems in 
metrology, nanomechanical sensing and signal processing and extend these capabilities to future white-
light optomechanics using incoherent sources.  
 
Methods 
Device fabrication.  Devices are fabricated using a procedure detailed previously23.  Briefly, the process 
uses repeated steps of electron beam lithography (EBL) for patterning.  The bottom pads are formed by 
electron beam evaporation and liftoff (EBEL) of a Ti-Au-Cr stack with thicknesses of approximately 5 nm, 
50 nm, and 15 nm.  Next, the ≈ 40 nm thick cuboids are formed using aligned EBL and EBEL.  The silicon 
nitride layer measuring ≈ 150 nm is deposited using plasma enhanced chemical vapor deposition 
(PECVD), followed by two additional steps of EBL and EBEL to form the Au actuators and leads, each 
having a ≈ 5 Ti layer underneath for adhesion.  A final aligned EBL with reactive ion etching is used to 
pattern the silicon nitride cantilevers, followed by a wet chemical etch of Cr and critical point drying to 
release the devices.  The devices are wirebonded onto a printed circuit board to facilitate electrostatic 
via an applied radio-frequency voltage.   
 
Controlling the stress gradient in the deposited nitride film is a crucial process step as it simultaneously 
determines (i) whether or not the cantilever will remain suspended following the release and (ii) the 
final deflected shape of the cantilever.  It has been previously shown 23 that as the initial gap is 
decreased (a thinner Cr layer as deposited), larger stress gradients are needed to overcome attractive 
forces that tend to collapse the cantilever to the Au substrate (stiction).  We control the residual stress 
and stress gradient 31 by modifying both the radio frequency (RF) and the inductively coupled plasma 



(ICP) power supplied during our PECVD process; the residual stress being directly proportional to the 
input power of both sources.  For a desired initial gap, test samples are produced with varying RF and 
ICP power to determine a combination that ensures release yet produces the minimum device 
curvature.  We find that an RF and ICP power settings of 100 W and 1200 W produces a residual 
compressive stress of approximately -200 MPa and a sufficient stress gradient through our 
approximately 150 nm thick film to ensure released devices.  
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