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We introduce probability estimation, a broadly applicable framework to certify randomness in
a finite sequence of measurement results without assuming that these results are independent and
identically distributed. Probability estimation can take advantage of verifiable physical constraints,
and the certification is with respect to classical side information. Examples include randomness
from single-photon measurements and device-independent randomness from Bell tests. Advantages
of probability estimation include adaptability to changing experimental conditions, unproblematic
early stopping when goals are achieved, optimal randomness rates, applicability to Bell tests with
small violations, and unsurpassed finite-data efficiency. We greatly reduce latencies for producing
random bits and formulate an associated rate-tradeoff problem of independent interest. We also
show that the latency is determined by an information-theoretic measure of nonlocality rather than
the Bell violation.

Randomness is a key enabling resource for compu-
tation and communication. Besides being required for
Monte-Carlo simulations and statistical sampling, pri-
vate random bits are needed for initiating authenticated
connections and establishing shared keys, both common
tasks for browsers, servers and other online entities [1].
Public random bits from “randomness beacons” have ap-
plications to fair resource sharing [2] and can seed private
randomness sources based on quantum mechanics [3].
Common requirements for random bits are that they are
unpredictable to all before they are generated, and pri-
vate to the users before they are published.

Quantum mechanics provides natural opportunities for
generating randomness. The best known example in-
volves measuring a two-level system that is in an equal
superposition of its two levels. A disadvantage of such
schemes is that they require trust in the measurement ap-
paratus, and undiagnosed failures are always a possibil-
ity. This disadvantage is overcome by a loophole-free Bell
test [4, 5], which can generate output whose randomness
can be certified solely by statistical tests of setting and
outcome frequencies. The devices preparing the quan-
tum states and performing the measurements may come
from an untrusted source. This strategy for certified ran-
domness generation is known as device-independent ran-
domness generation (DIRG).

Loophole-free Bell tests have been realized with
nitrogen-vacancy (NV) centers [6], with atoms [7] and
with photons [8, 9], enabling the possibility of full ex-
perimental implementations of DIRG. However, for NV
centers and atoms, the rate of trials is too low, and for
photons, the violation per trial is too small. As a result,
previously available DIRG protocols [3, 10–18] are not
ready for implementation with current loophole-free Bell
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tests. These protocols do not achieve good finite-data
efficiency and therefore require an impractical number
of trials. Experimental techniques will improve, but for
many applications of randomness generation, including
randomness beacons and key generation, it is desirable
to achieve finite-data efficiency that is as high as possi-
ble, since these applications often require short blocks of
fresh random bits with minimum delay or latency.

Excellent finite-data efficiency was achieved by a
method that we described and implemented in Refs. [19,
20], which reduced the time required for generating 1024
low-error random bits with respect to classical side infor-
mation from hours to minutes for a state-of-the-art pho-
tonic loophole-free Bell test. The method in Refs. [19, 20]
is based on the prediction-based ratio (PBR) analysis [21]
for hypothesis tests of local realism. Specifically, in
Refs. [19, 20] we established a connection between the
PBR-based p-value and the amount of randomness certi-
fied against classical side information. The basis for suc-
cess of the method of Refs. [19, 20] motivates our devel-
opment of probability estimation for randomness certifi-
cation, with better finite-data efficiency and with broader
applications.

In the probability estimation framework, the amount of
certified randomness is directly estimated without relying
on hypothesis tests of local realism. To certify random-
ness, we first obtain a bound on the conditional prob-
ability of the observed outcomes given the chosen set-
tings, valid for all classical side information. Then we
show how to obtain conditional entropy estimates from
this bound to quantify the number of extractable ran-
dom bits [22]. By focusing on data-dependent proba-
bility estimates, we are able to take advantage of pow-
erful statistical techniques to obtain the desired bound.
The statistical techniques are based on test supermartin-
gales [23] and Markov’s bounds. Probability estimation
inherits several features of the theory of test supermartin-
gales. For example, probability estimation has no inde-

ar
X

iv
:1

81
1.

11
92

8v
1 

 [
qu

an
t-

ph
] 

 2
9 

N
ov

 2
01

8



2

pendence or stationarity requirement on the probability
distribution of trial results. Also, probability estimation
supports stopping the experiment early, as soon as the
randomness goal is achieved.

Probability estimation is broadly applicable. In partic-
ular it is not limited to device-independent scenarios and
can be applied to traditional randomness generation with
quantum devices. Such applications are enabled by the
notion of models, which are sets of probability distribu-
tions that capture verified, physical constraints on device
behavior. In the case of Bell tests, these constraints in-
clude the familiar non-signaling conditions [24, 25]. In
the case of two-level systems such as polarized photons,
the constraints can capture that measurement angles are
within a known range, for example.

In this paper, we first describe the technical features
of probability estimation and the main results that en-
able its practical use. We propose a general information-
theoretic rate-tradeoff problem that closely relates to
finite-data efficiency. We then show how the general
theoretical concepts are instantiated in experimentally
relevant examples involving Bell-test configurations. We
demonstrate advantages of probability estimation such as
its optimal asymptotic randomness rates and show large
improvements in finite-data efficiency, which corresponds
to great reductions in latency.

Theory. Consider an experiment with “inputs” Z and
“outputs” C. The inputs normally consist of the random
choices made for measurement settings but may include
choices of state preparations such as in the protocols of
Refs. [26, 27]. The outputs consist of the correspond-
ing measurement outcomes. In the cases of interest, the
inputs and outputs are obtained in a sequence of n time-
ordered trials, where the i’th trial has input Zi and out-
put Ci, and Z = (Zi)

n
i=1 and C = (Ci)

n
i=1. We assume

that Zi and Ci are countable-valued. We refer to the trial
inputs and outputs collectively as the trial “results”, and
to the trials preceding the upcoming one as the “past”.
The party with respect to which the randomness is in-
tended to be unpredictable is represented by an external
classical system, whose initial state before the experiment
may be correlated with the devices used. The classical
system carries the side information E, which is assumed
to be countable-valued. After the experiment, the joint
of Z, C and E is described by a probability distribution
µ. The upper-case symbols introduced in this paragraph
are treated as random variables. As is conventional, their
values are denoted by the corresponding lower-case sym-
bols.

The amount of extractable uniform randomness in C
conditional on both Z and E is quantified by the (clas-
sical) smooth conditional min-entropy Hε

min(C|ZE)µ
where ε is the “error bound” (or “smoothness”) and µ
is the joint distribution of Z, C and E. One way to
define the smooth conditional min-entropy is with the
conditional guessing probability Pguess(C|ZE)µ defined
as the average over values z and e of the maximum con-
ditional probability maxc µ(c|ze). The ε-smooth condi-

tional min-entropy Hε
min(C|ZE)µ is the greatest lower

bound of − log2 Pguess(C|ZE)µ′ for all distributions µ′

within total-variation distance ε of µ. Our goal is to
obtain lower bounds on Hε

min(C|ZE)µ with probability
estimation.

The application of probability estimation requires a
notion of models. A modelH for an experiment is defined
as the set of all probability distributions of Z and C
achievable in the experiment conditionally on values e of
E. If a joint distribution µ of Z, C and E satisfies that for
all e, the conditional distributions µ(CZ|e), considered
as distributions of Z and C, are in H, we say that the
distribution µ satisfies the model H.

To apply probability estimation to an experiment con-
sisting of n time-ordered trials, we construct the model
H for the experiment as a chain of models Ci for each
individual trial i in the experiment. The trial model Ci
is defined as the set of all probability distributions of
trial results CiZi achievable at the i’th trial condition-
ally on both the past trial results and the side infor-
mation E. For example, for Bell tests, Ci may be the
set of non-signaling distributions with uniformly random
inputs. Let z<i = (zj)

i−1
j=1 and c<i = (cj)

i−1
j=1 be the re-

sults before the i’th trial. The sequences z≤i and c≤i are
defined similarly. The chained model H consists of all
conditional distributions µ(CZ|e) satisfying the follow-
ing two conditions. First, at each trial i the conditional
distributions µ(CiZi|c<iz<ie) for all c<i, z<i and e are
in the trial model Ci. Second, at each trial i the in-
put Zi is independent of the past outputs C<i given E
and the past inputs Z<i. The second condition prevents
leaking information about the past outputs through the
future inputs, which is necessary for certifying random-
ness in the outputs C conditional on both the inputs
Z and the side information E. In the common situation
where the inputs are chosen independently with distribu-
tions known before the experiment, the second condition
is always satisfied.

Since the model H consists of all conditional distri-
butions µ(CZ|e) regardless of the value e, the analy-
ses in the next paragraph apply to the worst-case con-
ditional distribution over e. To simplify notation we nor-
mally write the distribution µ(CZ|e) conditional on e as
µe(CZ), abbreviated as µe.

To estimate the conditional probability µe(c|z), we
design trial-wise probability estimation factors (PEFs)
and multiply them. Consider a generic trial with trial
model C, where for generic trials, we omit the trial in-
dex. Let β > 0. A PEF with power β for C is a
function F : cz 7→ F (cz) ≥ 0 such that for all σ ∈ C,
Eσ
(
F (CZ)σ(C|Z)β

)
≤ 1, where E denotes the expecta-

tion functional. Note that F (cz) = 1 for all cz defines
a valid PEF with each positive power. For each i, let
Fi be a PEF with power β for the i’th trial, where the
PEF can be chosen adaptively based on the past results
c<iz<i. Other information from the past may also be

used, see Ref. [28]. Let T0 = 1 and Ti =
∏i
j=1 Fj(CjZj).

The final value Tn of the running product Ti, where n is
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the total number of trials in the experiment, determines
the probability estimate. Specifically, for each value e of
E, each µe in the chained model H, and ε > 0, we have

Pµe
(
µe(C|Z) ≥ U(CZ)

)
≤ ε, (1)

where Pµe denotes the probability according to the distri-

bution µe and U(CZ) = (εTn)−1/β . The proof of Eq. (1)
is given in Appendix C 1. The meaning of Eq. (1) is
as follows: For each e and each µe ∈ H, the prob-
ability that C and Z take values c and z for which
U(C = c,Z = z) ≤ µe(C = c|Z = z) is at most ε.
This defines U(CZ) = (εTn)−1/β as a level-ε probability
estimator.

A main theorem of probability estimation is the con-
nection between probability estimators and conditional
min-entropy estimators, which is formalized as follows:

Theorem 1. Suppose that the joint distribution µ of Z,
C and E satisfies the chained model H. Let 1 ≥ κ, ε > 0
and 1 ≥ p ≥ 1/|Rng(C)|, where |Rng(C)| is the number
of possible outputs. Define {φ} to be the event that Tn ≥
1/(pβε), and let κ ≤ Pµ(φ). Then the smooth conditional
min-entropy satisfies

Hε
min(C|ZE;φ) ≥ − log2(p/κ1+1/β).

The probability of the event {φ} can be interpreted as
the probability that the experiment succeeds, and κ is
an assumed lower bound on the success probability. The
theorem is proven in Appendix C 2.

When constructing PEFs, the power β > 0 must be
decided before the experiment and cannot be adapted.
Thm. 1 requires that p, ε and κ also be chosen beforehand,
and success of the experiment requires Tn ≥ 1/(pβε), or
equivalently,

log2(Tn)/β + log2(ε)/β ≥ − log2(p). (2)

Since log2(Tn) =
∑
i log2(Fi), before the experiment we

choose PEFs in order to aim for large expected values of
the logarithms of the PEFs Fi. Consider a generic next
trial with results CZ and model C. Based on prior cal-
ibrations or the frequencies of observed results in past
trials, we can determine a distribution ν ∈ C that is a
good approximation to the distribution of the next trial’s
results CZ. Many experiments are designed so that each
trial’s distribution is close to ν. The PEF can be op-
timized for this distribution but, by definition, is valid
regardless of the actual distribution of the next trial in
C. Thus, one way to optimize PEFs before the next trial
is as follows:

Max: Eν
(
n log2(F (CZ))/β + log2(ε)/β

)
With:

∑
cz F (cz)σ(c|z)βσ(cz) ≤ 1 for all σ ∈ C,

F (cz) ≥ 0, for all cz. (3)

The objective function is strictly concave and the con-
straints are linear, so there is a unique maximum, which
can be found by convex programming. More details are

available in Appendix E.

Before the experiment, one can also optimize the ob-
jective function in Eq. (3) with respect to the power β.
During the experiment ε and β are fixed, so it suffices to
maximize Eν

(
log2(F (CZ))

)
. If during the experiment,

the running product Ti with i < n exceeds the target
1/(pβε), we can set future PEFs to F (CZ) = 1, which
is a valid PEF with power β. This ensures that Tn = Ti
and is equivalent to stopping the experiment after trial i.
Since the target needs to be set conservatively in order
to make the actual experiment succeed with high prob-
ability, this can result in a significant reduction in the
number of trials actually executed.

A question is how PEFs perform asymptotically for a
stable experiment. This question is answered by deter-
mining the rate per trial of entropy production assuming
constant ε and κ independent of the number of trials. In
view of Thm. 1, after n trials the entropy rate is given by(
− log2(p)+log2(κ1+1/β)

)
/n. Considering Eq. (2), when

n is large the entropy rate is dominated by log2(Tn)/(nβ),
which is equal to

∑n
i=1 log2(Fi)/(nβ). Therefore, if each

trial has distribution ν and each trial model is the same
C, then in the limit of large n the asymptotic entropy
rate witnessed by a PEF F with power β is given by
Eν
(

log2(F (CZ))/β
)
. Define the rate

g(β) = sup
F

Eν
(

log2(F (CZ))/β
)
, (4)

where the supremum is over PEFs F with power β for C.
The maximum asymptotic entropy rate at constant ε and
κ witnessed by PEFs is g0 = supβ>0 g(β). The rate g(β)
is non-increasing in β (see Appendix D), so g0 is deter-
mined by the limit as β goes to zero. A theorem proven
in Ref. [28] is that g0 is the worst-case conditional en-
tropy H(C|ZE) over joint distributions of CZE allowed
by C with marginal ν. Since this is a tight upper bound
on the asymptotic randomness rate [29], probability es-
timation is asymptotically optimal and we identify g0 as
the asymptotic randomness rate. We also remark that
probability estimation enables exponential expansion of
input randomness [28].

For finite data and applications requiring fresh blocks
of randomness, the rate g0 is not achieved. To understand
why, consider the problem of certifying a fixed number
of bits b of randomness at error bound ε and with as
few trials as possible, where each trial has distribution
ν. In view of Thm. 1, the PEF optimization problem in
Eq. (3), and the definition of g(β) in Eq. (4), n needs to
be sufficiently large so that

ng(β) + log2(ε)/β + (1 + 1/β) log2(κ) ≥ b. (5)

The left-hand side is maximized at positive β, whereas
g(β) increases to g0 as β goes to zero. As a result the
best actual rate b/n is less than g0.

Setting κ = 1 in Eq. (5) shows that the number of trials
n must exceed − log2(ε)/(βg(β)) before randomness can
be produced, which suggests that the maximum of βg(β)
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is a good indicator of finite-data performance. Another
way to arrive at this quantity is to consider ε = 2−γn,
where γ > 0 is the “certificate rate”. Given ν and the
trial model, we can ask for the maximum certificate rate
for which it is possible to have positive entropy rate at
κ = 1. It follows from Eq. (5) with κ = 1 that this rate
is at most

γPEF = sup
β>0

βg(β). (6)

We propose a general information-theoretic rate-tradeoff
problem given trial model C and ν ∈ C: For a given
certificate rate γ, determine the supremum of the en-
tropy rates achievable by protocols. Eq. (5) implies lower
bounds on the resulting tradeoff curve.

Our protocol assumes classical-only side information.
There are more costly DIRG protocols that handle quan-
tum side information [11, 13–17], but verifying that side
information is effectively classical only requires confirm-
ing that the quantum devices used in the experiment have
no long-term quantum memory. Verifying the absence
of long-term quantum memory in current experiments
is possibly less difficult than ensuring that there are no
backdoors or information leaks in the experiment’s hard-
ware and software.

Applications. We consider DIRG with the standard
two-party, two-setting, two-outcome Bell-test configura-
tion [30]. The parties are labeled A and B. In each trial,
a source prepares a state shared between the parties, and
each party chooses a random setting (their input) and ob-
tains a measurement outcome (their output). We write
Z = XY , where X and Y are the inputs of A and B, and
C = AB, where A and B are the respective outputs. For
this configuration, A,B,X, Y ∈ {0, 1}.

Consider the trial model N consisting of distributions
of ABXY with uniformly random inputs and satisfying
non-signaling [24]. We begin by determining and com-
paring the asymptotic randomness rates witnessed by
different methods. The rates are usually quantified as
functions of the expectation Î of the CHSH Bell func-
tion (Eq. G4) for Î > 2 (the classical upper bound).
We prove in Appendix G that the maximum asymptotic
randomness rate for any ν ∈ N is equal to (Î − 2)/2,
and the rate g0 witnessed by PEFs matches this value.
Most previous studies, such as Refs. [3, 10, 12, 18, 31–33],
estimate the asymptotic randomness rate by the single-
trial conditional min-entropy Hmin(AB|XY E). We de-

termine that Hmin(AB|XY E) = − log2((6 − Î)/4) < g0

when 2 < Î < 4. As Î decreases to 2 the ratio of g0

to Hmin(AB|XY E) approaches 1.386, demonstrating an
improvement at small violations.

Next, we investigate finite-data performance. We con-
sider three different families of quantum-achievable dis-
tributions of trial results. For the first family νE,θ, A
and B share the unbalanced Bell state |Ψθ〉 = cos θ|00〉+
sin θ|11〉 with θ ∈ (0, π/4] and apply projective measure-

ments that maximize Î. This determines νE,θ. This fam-
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FIG. 1: Maximum certificate rates γPEF (Eq. (6)) as a func-

tion of Î for each family of distributions.

ily contains the goal states for many experiments suf-
fering from detector inefficiency. For the second family
νW,p, A and B share a Werner state ρ = p|Ψπ/4〉〈Ψπ/4|+
(1− p)1l/4 with p ∈ (1/

√
2, 1] and again apply measure-

ments that maximize Î. Werner states are standard ex-
amples in quantum information and are among the worst
states for our application. In experiments with photons,
measurements are implemented with imperfect detectors.
For the third family νP,η, A and B use detectors with
efficiency η ∈ (2/3, 1) to implement the measurements
and to close the detection loophole [34]. They choose
the unbalanced Bell state |Ψθ〉 and measurements such
that an information-theoretic measure of nonlocality, the
statistical strength for rejecting local realism [35–37], is
maximized.

For each family of distributions, we determine the
maximum certificate rate γPEF as given in Eq. (6).
For this, we consider the trial model N , but we
note that γPEF does not depend on the specific con-
straints on the quantum-achievable conditional distribu-
tions P(AB|XY ) (see Appendix F). As an indicator of

finite-data performance, γPEF depends not only on Î, but
also on the distribution ν. To illustrate this behavior, we
plot the rates γPEF as a function of Î for each family of
distributions in Fig. 1. To obtain these plots, we note
that Î is a monotonic function of the parameter θ, p or
η for each family. We also find that γPEF is given by
the statistical strength of the distribution ν for reject-
ing local realism (see Appendix F for a proof). Conven-

tionally, experiments are designed to maximize Î, but in
general, the optimal state and measurements maximiz-
ing Î are different from those maximizing the statistical
strength [36, 37].

We further determine the minimum number of trials,
nPEF,b, required to certify b bits of ε-smooth conditional
min-entropy with a given distribution ν of trial results.
From Eq. (5), we get

nPEF,b = inf
β>0

bβ − log2(ε)− (1 + β) log2(κ)

βg(β)
,

where for simplicity we allow non-integer values for
nPEF,b. We can upper bound nPEF,b by means of the
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FIG. 2: Improvement factors as a function of Î.

simpler-to-compute certificate rate γPEF given in Eq. (6).
For the trial model N , γPEF is achieved when β is above
a threshold β0 that depends on ν (see Appendix F). From
γPEF and β0, we can determine the upper bound

n′PEF,b =
(
bβ0 − log2(ε)− (1 + β0) log2(κ)

)
/γPEF

on nPEF,b. The minimum number of trials required can
be determined for other published protocols, which usu-
ally certify conditional min-entropy from Î. (An excep-
tion is Ref. [18] but the minimum number of trials re-
quired is worse.) We consider the protocol “PM” of
Ref. [3] and the entropy accumulation protocol “EAT”
of Ref. [17]. From Thm. 1 of Ref. [3] with κ = 1 and
b↘ 0, we obtain a lower bound

nPM,0 = −2 loge(ε)/
(
(Î − 2)/(4 + 2

√
2)
)2
.

For the EAT protocol, we determine an explicit lower
bound nEAT,b in Appendix H. This lower bound applies
for b ≥ 0 and ε, κ ∈ (0, 1], and is valid with respect to
quantum side information for the trial model consisting
of quantum-achievable distributions.

We compare the three protocols over a broad range
of Î for b ↘ 0, ε = 10−6, and κ = 1. For each
family of distributions above, we compute the improve-
ment factors given by fPM = nPM,0/n

′
PEF,0 and fEAT =

nEAT,0/n
′
PEF,0. For νW,p, the improvement factors de-

pend weakly on Î: fPM increases from 3.89 at Î = 2.008
to 4.36 at Î = 2

√
2, while fEAT increases from 84.97

at Î = 2.008 to 86.35 at Î = 2
√

2. For νE,θ and νP,η,
the improvement factors can be much larger and depend
strongly on Î, monotonically decreasing with Î as shown
in Fig. 2. The improvement is particularly notable at
small violations which are typical in current photonic
loophole-free Bell tests. We remark that similar com-
parison results were obtained with other choices of the
values for ε and κ.

The large latency reduction with probability estima-
tion persists for certifying blocks of randomness. For
randomness beacons, good reference values are b = 512
and ε = 2−64. We also set κ = 2−64. Setting κ = ε
is a common conservative choice, but we remark that
soundness for randomness generation can be defined with

a better tradeoff between ε and κ [28]. We consider
the trial model T of distributions with uniformly ran-
dom inputs, satisfying both non-signaling conditions [24]
and Tsirelson’s bounds [38]. Consider the state-of-the-
art photonic loophole-free Bell test reported in Ref. [20].
With probability estimation, the number of trials re-
quired for the distribution inferred from the measurement
statistics is 4.668× 107, which would require about 7.78
minutes of running time in the referenced experiment.
With entropy accumulation [17], 2.887×1011 trials taking
802 hours would be required. For atomic experiments, we
can use the distribution inferred from the measurement
statistics in Ref. [7], for which probability estimation re-
quires 7.354×104 trials, while entropy accumulation [17]
requires 5.629×106. The experiment of Ref. [7] observed
1 to 2 trials per minute, so probability estimation would
have needed at least 612.8 hours of data collection, which
while impractical is still less than the 5.35 years required
by entropy accumulation [17].

Finally, we briefly discuss the performance of proba-
bility estimation on DIRG with published Bell-test ex-
perimental data. The first experimental demonstration
of conditional min-entropy certification for DIRG is re-
ported in Ref. [10]. The method therein certifies the pres-
ence of 42 random bits at error bound ε = 10−2 against
classical side information, where the trial model con-
sists of quantum-achievable distributions with uniform
inputs. (The lower bound of the protocol success prob-
ability κ = 1 was used implicitly in Ref. [10], so κ = 1
in the following comparison.) For the same data but
with the less restrictive trial model T , probability esti-
mation certifies the presence of at least nine times more
random bits with ε = 10−2. With ε = 10−6 probabil-
ity estimation can still certify the presence of 80 random
bits, while other methods fail to certify any random bits.
For the loophole-free Bell-test data reported in Ref. [9]
and analyzed in our previous work Ref. [19], the pres-
ence of 894 random bits at ε = 10−3 was certified against
classical side information with the trial model N . Fur-
ther, 256 private random bits within 10−3 (in terms of
the total-variation distance) of uniform were extracted in
Ref. [19]. With probability estimation we can certify the
presence of approximately two times more random bits
at ε = 10−3. The presence of four times more bits can be
certified if we use the more restrictive trial model T . Fur-
thermore, we can certify randomness even when the input
distribution is not precisely known, which was an issue in
the experiment of Ref. [9]. Applications to other experi-
mental distributions, complete analyses of the mentioned
experiments, and details on handling input choices whose
probabilities are not precisely known are in Ref. [28].

In conclusion, probability estimation is a powerful and
flexible framework for certifying randomness in data from
a finite sequence of experimental trials. Implemented
with probability estimation factors, it witnesses opti-
mal asymptotic randomness rates. For practical appli-
cations requiring fixed-size blocks of random bits, it can
reduce the latencies by orders of magnitude even for high-
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quality devices. Latency is a notable problem for device-
independent quantum key generation (DIQKD). If prob-
ability estimation can be extended to accommodate secu-
rity against quantum side information, the latency reduc-
tions may be extendable to DIQKD by means of existing
constructions [17].

Finally we remark that if the trial results are explain-
able by local realism, no device-independent randomness
would be certified by probability estimation. The reason
is as follows. For simplicity we assume that the input
distribution is fixed and known [52]. Consider a generic
trial with results CZ and model C. Let PLR be the set of
distributions of CZ explainable by local realism, which
is a convex polytope with a finite number of extremal
distributions σLR,k, k = 1, 2, ...,K. Since PLR is a subset
of C, by definition a PEF F with power β satisfies the
condition ∑

cz

F (cz)σLR,k(c|z)βσLR,k(cz) ≤ 1, (7)

for each k. For each extremal distribution σLR,k in PLR

and each cz, the value of σLR,k(c|z) is either 0 or 1, from
which it follows that σLR,k(c|z)βσLR,k(cz) = σLR,k(cz).
Eq. (7) now becomes

EσLR,k

(
F (CZ)

)
=
∑
cz

F (cz)σLR,k(cz) ≤ 1. (8)

Since any local realistic distribution can be written as
a convex mixture of extremal distributions σLR,k, k =
1, 2, ...,K, Eq. (8) implies that for all distributions ν ∈

PLR

Eν
(
F (CZ)

)
≤ 1. (9)

By the concavity of the logarithm function and Eq. (9)
we get that

Eν
(

log2(F (CZ))
)
≤ log2

(
Eν(F (CZ))

)
≤ 0.

Hence, the asymptotic entropy rate in Eq. (4) cannot be
positive if the distribution of trial results is explainable
by local realism. Furthermore, Eq. (9) shows that the
PEF F is a test factor for the hypothesis test of local
realism [21] (see Appendix B for the formal definition of
test factors). So, if a finite sequence of trial results is
explainable by local realism and Fi is a PEF with power
β for the i’th trial, according to Ref. [21] the success
event Tn ≥ 1/(pβε) with Tn =

∏n
i=1 Fi in Thm. 1 for

randomness certification would happen with probability
at most pβε.
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Wengerowsky, Johannes Handsteiner, Armin Hochrainer,
Kevin Phelan, Fabian Steinlechner, Johannes Kofler,
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Appendix

Appendix A: Notation

Much of this work concerns stochastic sequences, that is, sequences of random variables (RVs). RVs are functions
on an underlying probability space. The range of an RV is called its value space and may be thought of as the set
of its observable values or realizations. Here, all RVs have countable value spaces. We truncate sequences of RVs
so that we only consider finitely many RVs at a time. With this the underlying probability space is countable too.
We use upper-case letters such as A,B, . . . ,X, Y, . . . to denote RVs. The value space of an RV such as X is denoted
by Rng(X). The cardinality of the value space of X is |Rng(X)|. Values of RVs are denoted by the corresponding
lower-case letters. Thus x is a value of X, often thought of as the particular value realized in an experiment. When
using symbols for values of RVs, they are implicitly assumed to be members of the range of the corresponding RV.
In many cases, the value space is a set of letters or a set of strings of a given length. We use juxtaposition to
denote concatenation of letters and strings. Stochastic sequences are denoted by capital bold-face letters, with the
corresponding lower-case bold-face letters for their values. For example, we write A = (Ai)

N
i=1 and A≤m = (Ai)

m
i=1.

Our conventions for indices are that we generically use N to denote a large upper bound on sequence lengths, n to
denote the available length and i, j, k, l,m as running indices. By convention, A≤0 is the empty sequence of RVs.
Its value is constant. When multiple stochastic sequences are in play, we refer to the collection of i’th RVs in the
sequences as the data from the i’th trial. We typically imagine the trials as happening in time and being performed
by an experimenter. We refer to the data from the trials preceding the upcoming one as the “past”. The past can also
include initial conditions and any additional information that may have been obtained. These are normally implicit
when referring to or conditioning on the past.

Probabilities are denoted by P(. . .). If there are multiple probability distributions involved, we disambiguate with
a subscript such as in Pν(. . .) or simply ν(. . .), where ν is a probability distribution. We generally reserve the symbol
µ for the global, implicit probability distribution, and may write µ(. . .) instead of P(. . .) or Pµ(. . .). Expectations are
similarly denoted by E(. . .) or Eµ(. . .). If φ is a logical expression involving RVs, then {φ} denotes the event where
φ is true for the values realized by the RVs. For example, {f(X) > 0} is the event {x : f(x) > 0} written in full set
notation. The brackets {. . .} are omitted for events inside P(. . .) or E(. . .). As is conventional, commas separating
logical expressions are interpreted as conjunction. When the capital/lower-case convention can be unambiguously
interpreted, we abbreviate “X = x” as “x”. For example, with this convention, P(x, y) = P(X = x, Y = y).
Furthermore, we omit commas in the abbreviated notation, so P(xy) = P(x, y). RVs or functions of RVs appearing
outside an event but inside P(. . .) or after the conditioner in E(. . . | . . .) result in an expression that is itself an
RV. We can define these without complications because of our assumption that the event space is countable. Here
are two examples. P(f(X)|Y ) is a function of the RVs X and Y and can be described as the RV whose value is
P(f(X) = f(x)|Y = y) whenever the values of X and Y are x and y, respectively. Similarly E(X|Y ) is the RV
defined as a function of Y , with value E(X|Y = y) whenever Y has value y. Note that X plays a different role before
the conditioners in E(. . .) than it does in P(. . .), as E(X|Y ) is not a function of X, but only of Y . We comment
that conditional probabilities with conditioners having probability zero are not well-defined, but in most cases can be
defined arbitrarily. Typically, they occur in a context where they are multiplied by the probability of the conditioner
and thereby contribute zero regardless. An important context involves expectations, where we use the convention
that when expanding an expectation over a set of values as a sum, zero-probability values are omitted. We do so
without explicitly adding the constraints to the summation variables. We generally use conditional probabilities
without explicitly checking for probability-zero conditioners, but it is necessary to monitor for well-definedness of the
expressions obtained.

To denote general probability distributions, usually on the joint value spaces of RVs, we use symbols such as µ, ν, σ,
with modifiers as necessary. As mentioned, we reserve the unmodified µ for the distinguished global distribution
under consideration, if there is one. Other symbols typically refer to probability distributions defined on the joint
range of a subset of the available RVs. We usually just say “distribution” instead of “probability distribution”. The
terms “distributions on Rng(X)” and “distributions of X” are synonymous. If ν is a joint distribution of RVs, then
we extend the conventions for arguments of P(. . .) to arguments of ν, as long as all the arguments are determined by
the RVs for which ν is defined. For example, if ν is a joint distribution of X, Y , and Z, then ν(x|y) has the expected
meaning, as does the RV ν(X|Y ) in contexts requiring no other RVs. Further, ν(X) and ν(XY ) are the marginal
distributions of X and XY , respectively, according to ν.

In our work, probability distributions are constrained by a “model”, which is defined as a set of distributions and
denoted by letters such as H or C. The models for trials to be considered here are usually convex and closed.
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The total-variation (TV) distance between ν and ν′ is defined as

TV(ν, ν′) =
∑
x

(ν(x)− ν′(x)) Jν(x) ≥ ν′(x)K =
1

2

∑
x

|ν(x)− ν′(x)|, (A1)

where JφK for a logical expression φ denotes the {0, 1}-valued function evaluating to 1 iff φ is true. True to its name,
the TV distance satisfies the triangle inequality. Here are three other useful properties: First, if ν and ν′ are joint
distributions of X and Y and the marginals satisfy ν(Y ) = ν′(Y ), then the TV distance between ν and ν′ is the
average of the TV distances of the Y -conditional distributions:

TV(ν, ν′) =
∑
y

ν(y)TV(ν(X|y), ν′(X|y)). (A2)

Second, if for all y, the conditional distributions ν(X|y) = ν′(X|y), then the TV distance between ν and ν′ is given
by the TV distance between the marginals on Y :

TV(ν, ν′) = TV(ν(Y ), ν′(Y )). (A3)

Third, the TV distance satisfies the data-processing inequality. That is, for any stochastic process E on Rng(X) and
distributions ν and ν′ of X, TV(E(ν), E(ν′)) ≤ TV(ν, ν′). We use this property only for functions E , but for general
forms of this result, see Ref. [39]. The above properties of TV distances are well known, specific proofs can be found
in Refs. [20, 28].

When constructing distributions close to a given one in TV distance, which we need to do for the proof of Thm. 1
in the main text, it is often convenient to work with subprobability distributions. A subprobability distribution of
X is a sub-normalized non-negative measure on Rng(X), which in our case is simply a non-negative function ν̃ on
Rng(X) with weight w(ν̃) =

∑
x ν̃(x) ≤ 1. For expressions not involving conditionals, we use the same conventions

for subprobability distributions as for probability distributions. When comparing subprobability distributions, ν̃ ≤ ν̃′
means that for all x, ν̃(x) ≤ ν̃′(x), and we say that ν̃′ “dominates” ν̃.

Lemma 2. Let ν̃ be a subprobability distribution of X of weight w = 1 − ε. Let ν and ν′ be distributions of X
satisfying ν̃ ≤ ν and ν̃ ≤ ν′. Then TV(ν, ν′) ≤ ε.

Proof. Calculate

TV(ν, ν′) =
∑
x

(ν(x)− ν′(x)) Jν(x) ≥ ν′(x)K

≤
∑
x

(ν(x)− ν̃(x)) Jν(x) ≥ ν̃(x)K

=
∑
x

(ν(x)− ν̃(x))

= 1− w = ε.

Lemma 3. Assume that p ≥ 1/|Rng(X)|. Let ν be a distribution of X and ν̃ ≤ ν a subprobability distribution of X
with weight w = 1− ε and ν̃ ≤ p. Then there exists a distribution ν′ of X with ν′ ≥ ν̃, ν′ ≤ p, and TV(ν, ν′) ≤ ε.

Proof. Because p ≥ 1/|Rng(X)|, that is,
∑
x p ≥ 1, and for all x, ν̃(x) ≤ p, there exists a distribution ν′ ≥ ν̃ with

ν′ ≤ p. Since ν′ and ν are distributions dominating ν̃ and by Lem. 2, TV(ν, ν′) ≤ ε.

Appendix B: Test Supermartingales and Test Factors

Definition 4. A test supermartingale [23] with respect to a stochastic sequence R and model H is a stochastic
sequence T = (Ti)

N
i=0 with the properties that 1) T0 = 1, 2) for all i Ti ≥ 0, 3) Ti is determined by R≤i and the

governing distribution, and 4) for all distributions in H, E(Ti+1|R≤i) ≤ Ti. The ratios Fi = Ti/Ti−1 with Fi = 1 if
Ti−1 = 0 are called the test factors of T.

Here R captures the relevant information that accumulates in a sequence of trials. It does not need to be accessible
to the experimenter. Between trials i and i+ 1, the sequence R≤i is called the past. In the definition, we allow for Ti
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to depend on the governing distribution µ. With this, for a given µ, Ti is a function of R≤i. Below, when stating that
RVs are determined, we implicitly include the possibility of dependence on µ without mention. The µ-dependence can
arise through expressions such as Eµ(G|R≤i) for some G, which is determined by R≤i given µ. One way to formalize
this is to consider µ-parameterized families of RVs. We do not make this explicit and simply allow for our RVs to
be implicitly parameterized by µ. We note that the governing distribution in a given experiment or situation is fixed
but usually unknown with most of its features inaccessible. As a result, many RVs used in mathematical arguments
cannot be observed even in principle. Nevertheless, they play important roles in establishing relationships between
observed and inferred quantities.

Defining Fi = 1 when Ti−1 = 0 makes sense because given {Ti−1 = 0}, we have {Ti = 0} with probability 1.
The sequence F = (Fi)

N
i=1 satisfies the conditions that for all i, 1) Fi ≥ 0, 2) Fi is determined by R≤i, and 3) for

all distributions in H, E(Fi+1|R≤i) ≤ 1. We can define test supermartingales in terms of such sequences: Let F
be a stochastic sequence satisfying the three conditions. Then the stochastic sequence with members T0 = 1 and
Ti =

∏
1≤j≤i Fj for i ≥ 1 is a test supermartingale. It suffices to check that E(Ti+1|R≤i) ≤ Ti. This follows from

E(Ti+1|R≤i) = E(Fi+1Ti|R≤i) = E(Fi+1|R≤i)Ti ≤ Ti,

where we pulled out the determined quantity Ti from the conditional expectation. In this work, we construct test
supermartingales from sequences F with the above properties. We refer to any such sequence as a sequence of test
factors, without necessarily making the associated test supermartingale explicit. We extend the terminology by calling
an RV F a test factor with respect to H if F ≥ 0 and E(F ) ≤ 1 for all distributions in H. Note that F = 1 is a valid
test factor.

For an overview of test supermartingales and their properties, see Ref. [23]. The notion of test supermartingales and
proofs of their basic properties are due to Ville [40] in the same work that introduced the notion of martingales. The
name “test supermartingale” appears to have been introduced in Ref. [23]. Test supermartingales play an important
theoretical role in proving many results in martingale theory, including that of proving tail bounds for large classes
of martingales. They have been studied and applied to Bell tests [21, 41, 42].

The definition implies that for a test supermartingale T, for all n, E(Tn) ≤ 1. This follows inductively from
E(Ti+1) = E(E(Ti+1|R≤i)) ≤ E(Ti) and T0 = 1. An application of Markov’s inequality shows that for all ε > 0,

P(Tn ≥ 1/ε) ≤ ε. (B1)

Thus, a large final value t = Tn of the test supermartingale is evidence against H in a hypothesis test with H as the
(composite) null hypothesis. Specifically, the RV 1/T is a p-value bound against H, where in general, the RV U is a
p-value bound against H if for all distributions in H, P(U ≤ ε) ≤ ε.

One can produce a test supermartingale adaptively by determining the test factors Fi+1 to be used at the next trial.
If the i’th trial’s data is Ri, including any incidental information obtained, then Fi+1 is expressed as a function of
R≤i and data from the (i+ 1)’th trial (a “past-parameterized” function of Ri+1), and constructed to satisfy Fi+1 ≥ 0
and E(Fi+1|R≤i) ≤ 1 for any distribution in the model H. Note that inbetween trials, we can effectively stop the
experiment by assigning all future Fi+1 = 1, which is a valid test factor, conditional on the past. This is equivalent
to constructing the stopped process relative to a stopping rule. This argument also shows that the stopped process is
still a test supermartingale.

More generally, we use test supermartingales for estimating lower bounds on products of positive stochastic se-
quences G. Such lower bounds are associated with unbounded-above confidence intervals. We need the following
definition:

Definition 5. Let U, V,X be RVs and 1 ≥ ε ≥ 0. I = [U, V ] is a confidence interval for X at level ε with respect to
H if for all distributions in H we have P(U ≤ X ≤ V ) ≥ 1 − ε. The quantity P(U ≤ X ≤ V ) is called the coverage
probability.

As noted above, the RVs U , V and X may be µ-dependent. For textbook examples of confidence intervals such
as in Ch. 2.4.3 of Ref [43], X is a parameter determined by µ, and U and V are obtained according to a known
distribution for an estimator of X. The quantity ε in the definition is a significance level, which corresponds to a
confidence level of (1− ε). The following technical lemma will be used in the next section.

Lemma 6. Let F and G be two stochastic sequences with Fi ∈ [0,∞), Gi ∈ (0,∞], and Fi and Gi determined by R≤i.
Define T0 = 1, Ti =

∏
1≤j≤i Fi and U0 = 1, Ui =

∏
1≤j≤iGi, and suppose that for all µ ∈ H, E(Fi+1/Gi+1|R≤i) ≤ 1.

Then [Tnε,∞) is a confidence interval for Un at level ε with respect to H.

Proof. The assumptions imply that the sequence (Fi/Gi)
N
i=1 forms a sequence of test factors with respect to H and
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generate the test supermartingale T/U, where division in this expression is term-by-term. Therefore, by Eq. (B1),

P(Tnε ≥ Un) = P(Tn/Un ≥ 1/ε) ≤ ε, (B2)

so [Tnε,∞) is a confidence interval for Un at level ε.

Appendix C: Proof of Main Results

In this section, we show how to perform probability estimation and how to certify smooth conditional min-entropy
by probability estimation.

1. Probability Estimation by Test Supermartingales: Proof of Main Text Eq. (1)

We consider the situation where CZ is a time-ordered sequence of n trial results, and the classical side information
is represented by an RV E with countable value space. In an experiment, Z and C are the inputs and outputs of the
quantum devices, and the side information E is carried by an external classical system E. Before the experiment, the
initial state of E may be correlated with the quantum devices. At each trial of the experiment, we allow arbitrary
one-way communication from the system E to the devices. For example, E can initialize the state of the quantum
devices via a one-way communication channel. We also allow the possibility that the device initialization at a trial
by E depends on the past inputs preceding the trial. This implies that the random inputs Z can come from public-
randomness sources, as first pointed out in Ref. [3]. However, at any stage of the experiment the information of the
outputs C cannot be leaked to the system E. After the experiment, we observe Z and C, but not the side information
E.

A model H for an experiment is defined as the set of joint probability distributions of CZ that satisfy the known
constraints and consists of all achievable probability distributions of CZ conditional on values e of E. Thus we say
that a joint distribution µ of CZ and E satisfies the model H if µ(CZ|E = e) ∈ H for each value e.

We focus on probability estimates with lower bounds on coverage probabilities that do not depend on E. Our
specific goal is to prove Eq. (1) in the main text. We will show that the probability bound of U(CZ) = (Tnε)

−1/β in
Eq. (1) of the main text is an instance of what we call an “ε-uniform probability estimator”:

Definition 7. Let 1 ≥ ε ≥ 0. The function U : Rng(CZ) → [0,∞) is a level-ε E-uniform probability estimator
for H (ε-UPE or with specifics, ε-UPE(C|ZE;H)) if for all e and distributions µ satisfying the model H, we have
Pµ(U(CZ) ≥ µ(C|Ze)|e) ≥ 1− ε. We omit specifics such as H if they are clear from context.

We can obtain ε-UPEs by constructing test supermartingales. In order to achieve this goal, we consider models
H(C) of distributions of CZ constructed from a chain of trial models Ci+1|c≤iz≤ie, where the trial model Ci+1|c≤iz≤ie
is defined as the set of all achievable distributions of Ci+1Zi+1 conditional on both the past results c≤iz≤i and the
value e of E. The chained model H(C) consists of all conditional distributions µ(CZ|e) satisfying the following two
properties. First, for all i, c≤iz≤i, and e, the conditional distributions

µ(Ci+1Zi+1|c≤iz≤ie) ∈ Ci+1|c≤iz≤ie.

Second, the joint distribution µ of CZ and E satisfies that Zi+1 is independent of C≤i conditionally on both Z≤i and
E. The second condition is needed in order to be able to estimate ZE-conditional probabilities of C and corresponds
to the Markov-chain condition in the entropy accumulation framework [17].

In many cases, the trial models Ci+1|c≤iz≤ie do not depend on the past outputs c≤i, but probability estimation can

take advantage of dependence on the past inputs z≤i. Such dependence captures the possibility that at the (i+ 1)’th
trial the device initialization by the external classical system E depends on the past inputs z≤i. In applications
involving Bell-test configurations, the trial models capture constraints on the input distributions and on non-signaling
or quantum behavior of the devices. For simplicity, we write Ci+1 = Ci+1|c≤iz≤ie, leaving the conditional parameters
implicit. Normally, models for individual trials Ci+1 are convex and closed. If they are not, we note that our results
generally extend to the convex closures of the trial models used.

For chained models H(C), we can construct ε-UPEs from products of “probability estimation factors” according to
the following definition, see also the paragraph containing Eq. (1) in the main text.

Definition 8. Let β > 0, and let C be any model, not necessarily convex. A probability estimation factor (PEF) with
power β for C is a non-negative RV F = F (CZ) such that for all σ ∈ C, Eσ(Fσ(C|Z)β) ≤ 1.
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We emphasize that a PEF is a function of the trial results CZ, but not of the side information E.

Consider the model H(C) constructed as a chain of trial models Ci. Let Fi be PEFs with power β > 0 for Ci,
past-parameterized by C<i and Z<i. Define T0 = 1, Ti =

∏
1≤j≤i Fj for i ≥ 1, and

U(CZ) = (Tnε)
−1/β . (C1)

Then, U(CZ) satisfies the inequality in Eq. (1) of the main text as proven in the following theorem, and is therefore
an ε-UPE. To simplify notation in the following theorem, we normally write the distribution µ(CZ|e) conditional on
e as µe(CZ), abbreviated as µe.

Theorem 9. Fix β > 0. For each value e of E, each µe ∈ H(C), and ε > 0, the following inequality holds:

Pµe
(
µe(C|Z) ≥ (εTn)−1/β

)
≤ ε. (C2)

Note that β cannot be adapted during the trials. On the other hand, before the i’th trial, we can design the PEFs
Fi for the particular constraints relevant to the i’th trial.

Proof. We first observe that for each value e of E,

i−1∏
j=0

µe(Cj+1|Zj+1Z≤jC≤j) = µe(C≤i|Z≤i). (C3)

This follows by induction with the identity

µe(C≤j+1|Z≤j+1) = µe(Cj+1|Zj+1Z≤jC≤j)µe(C≤j |Zj+1Z≤j)

= µe(Cj+1|Zj+1Z≤jC≤j)µe(C≤j |Z≤j)

by conditional independence of Zj+1 on C≤j given Z≤j and E = e.

We claim that for each e, Fi+1µe(Ci+1|Zi+1Z≤iC≤i)
β is a test factor determined by C≤i+1Z≤i+1. To prove this

claim, for all c≤iz≤i, the distributions ν = µe(Ci+1Zi+1|c≤iz≤i) ∈ Ci+1. With Fi+1 = Fi+1(Ci+1Zi+1; c≤iz≤i), we
obtain the bound

E
(
Fi+1µe(Ci+1|Zi+1z≤ic≤i)

β |c≤iz≤i
)

= Eν
(
Fi+1ν(Ci+1|Zi+1)β

)
≤ 1,

where we invoked the assumption that Fi+1 is a PEF with power β for Ci+1. By arbitrariness of c≤iz≤i, and because
the factors Fi+1µe(Ci+1|Zi+1Z≤iC≤i)

β are determined by C≤i+1Z≤i+1, the claim follows. The product of these test
factors is

i−1∏
j=0

Fj+1µe(Cj+1|Zj+1Z≤jC≤j)
β = Ti

i−1∏
j=0

µe(Cj+1|Zj+1Z≤jC≤j)
β

= Tiµe(C≤i|Z≤i)β , (C4)

with Ti =
∏i
j=1 Fj . To obtain the last equality above, we used Eq. (C3). Thus, for each e, the sequence

Q0 = 1 and Qi = Tiµe(C≤i|Z≤i)β for i > 0 satisfies the supermartingale property Eµe(Qi+1|C≤iZ≤i) ≤ Qi.
We remark that as a consequence, Eµe(Qi+1) = Eµe

(
Eµe(Qi+1|C≤iZ≤i)

)
≤ Eµe(Qi). By induction this gives

Eµe(Qn) = Eµe(Tnµe(C|Z)β) ≤ 1. Thus, considering that Tn =
∏n
i=1 Fi ≥ 0, Tn is a PEF with power β for

H(C), that is, chaining PEFs yields PEFs for chained models.

In Lem. 6, if we replace Ti and Ui there by Ti and µe(C≤i|Z≤i)−β here, then from Eq. (B2) and manipulating the
inequality inside P(.), we get the inequality in Eq. (C2).

That Fi+1 can be parameterized in terms of the past as Fi+1 = Fi+1(Ci+1Zi+1; C≤iZ≤i) allows for adapting the
PEFs based on CZ, but no other information can be used. To adapt the PEF Fi+1 based on other past information
besides C≤iZ≤i, we need a “soft” generalization of probability estimation as detailed in Ref. [28].
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2. Smooth Min-Entropy by Probability Estimation: Proof of Main Text Thm. 1

We want to generate bits that are near-uniform conditional on E and often other variables such as Z. For our
analyses, E is not particularly an issue because our results hold uniformly for all values of E, that is, conditionally
on {E = e} for each e. However this is not the case for Z. For this subsection, it is not necessary to structure the
RVs as stochastic sequences, so below we use C and Z in place of C and Z.

Definition 10. The distribution µ of CZE has ε-smooth average ZE-conditional maximum probability p if there
exists a distribution ν of CZE with TV(ν, µ) ≤ ε and

∑
ze maxc(ν(c|ze))ν(ze) ≤ p. The minimum p for which µ has

ε-smooth average ZE-conditional maximum probability p is denoted by P εmax,µ(C|ZE). The quantity Hε
min,µ(C|ZE) =

− log2(P εmax,µ(C|ZE)) is the (classical) ε-smooth ZE-conditional min-entropy.

We denote the ε-smooth ZE-conditional min-entropy evaluated conditional on an event {φ} by Hε
min(C|ZE;φ). We

refer to the smoothness parameters as “error bounds”. Observe that the definitions are monotonic in the error bound.
For example, if P εmax,µ ≤ p and ε′ ≥ ε, then P ε

′

max,µ ≤ p. The quantity
∑
ze maxc(ν(c|ze))ν(ze) in the definition of

P εmax,µ can be recognized as the (average) maximum guessing probability of C given Z and E (with respect to ν),
whose negative logarithm is the guessing entropy defined, for example, in Ref. [44].

A summary of the relationships between smooth conditional min-entropies and randomness extraction with respect
to quantum side information is given in Ref. [22] and can be specialized to classical side information. When so
specialized, the definition of the smooth conditional min-entropy in, for example, Ref. [22] differs from the one above
in that Ref. [22] uses one of the fidelity-related distances. One such distance reduces to the Hellinger distance h for

probability distributions for which h2 ≤ TV ≤
√

2h.
The Z-conditional maximum probabilities with respect to E = e can be lifted to the ZE-conditional maximum

probabilities, as formalized by the next lemma.

Lemma 11. Suppose that for all e, P εemax,µ(CZ|e)(C|Z) ≤ pe, and let ε̄ =
∑
e εeµ(e) and p̄ =

∑
e peµ(e). Then

P ε̄max,µ(CZE)(C|ZE) ≤ p̄.

Proof. For each e, let νe witness P εemax,µ(CZ|e)(C|Z) ≤ pe. Then TV(νe, µ(CZ|e)) ≤ εe and
∑
z maxc(νe(c|z))νe(z) ≤

pe. Define ν by ν(cze) = νe(cz)µ(e). Then the marginals ν(E) = µ(E), so we can apply Eq. (A2) for

TV(ν, µ) =
∑
e

TV(νe, µ(CZ|e))µ(e) ≤
∑
e

εeµ(e) = ε̄.

Furthermore, ∑
ze

max
c

(ν(c|ze))ν(ze) =
∑
e

µ(e)
∑
z

max
c

(νe(c|z))νe(z)

≤
∑
e

µ(e)pe = p̄,

as required for the conclusion.

The level of a probability estimator relates to the smoothness parameter for smooth min-entropy via the relationships
established below.

Theorem 12. Suppose that U is an ε-UPE(C|ZE;H) and that the distribution µ of CZE satisfies the model H. Let

p ≥ 1/|Rng(C)| and κ = µ(U ≤ p). Then P
ε/κ
max,µ(CZE|U≤p)(C|ZE) ≤ p/κ.

Proof. Let κe = µ(U ≤ p|e). Below we show that for all values e of E, P
ε/κe
max,µ(CZ|e,U≤p)(C|Z) ≤ p/κe. Once this is

shown, we can use ∑
e

1

κe
µ(e|U ≤ p) =

∑
e

1

µ(U ≤ p|e)
µ(e|U ≤ p) =

∑
e

µ(e)

µ(U ≤ p)
= 1/κ, (C5)

and Lem. 11 to complete the proof. For the remainder of the proof, e is fixed, so we simplify the notation by universally
conditioning on {E = e} and omitting the explicit condition. Further, we omit e from suffixes. Thus κ = κe from
here on.
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Let κz = µ(U ≤ p|z). We have
∑
z κzµ(z) = κ and

κz = µ(z|U ≤ p)κ/µ(z). (C6)

Define the subprobability distribution µ̃ by µ̃(cz) = µ(cz) JU(cz) ≥ µ(c|z)K. By the definition of ε-UPEs, we get that
the weight of µ̃ satisfies

w(µ̃) =
∑
cz

µ(cz) JU(cz) ≥ µ(c|z)K

= µ(U(CZ) ≥ µ(C|Z))

≥ 1− ε. (C7)

Define ν̃(cz) = µ̃(cz) JU(cz) ≤ pK /κ. The weight of ν̃ satisfies

w(ν̃) =
∑
cz

µ̃(cz) JU(cz) ≤ pK /κ

≤
∑
cz

µ(cz) JU(cz) ≤ pK /κ

= µ(U ≤ p)/κ = 1, (C8)

w(ν̃) =
∑
cz

µ(cz) JU(cz) ≤ pK /κ−
∑
cz

(µ(cz)− µ̃(cz)) JU(cz) ≤ pK /κ

= 1−
∑
cz

(µ(cz)− µ̃(cz)) JU(cz) ≤ pK /κ

≥ 1−
∑
cz

(µ(cz)− µ̃(cz))/κ = 1− (1− w(µ̃))/κ

≥ 1− (1− (1− ε))/κ = 1− ε/κ. (C9)

To obtain the last inequality above, we used Eq. (C7). Thus ν̃ is a subprobability distribution of weight at least
1− ε/κ. We use ν̃ to construct the distribution ν witnessing the conclusion of the theorem. For each cz we bound

ν̃(cz)/µ(z|U ≤ p) = µ(cz) JU(cz) ≥ µ(c|z)K JU(cz) ≤ pK /(κµ(z|U ≤ p))
= µ(c|z) JU(cz) ≥ µ(c|z)K JU(cz) ≤ pK /κz
≤ p/κz, (C10)

where in the second step we used Eq. (C6). Define ν̃(C|z) by ν̃(c|z) = ν̃(cz)/µ(z|U ≤ p), with ν̃(c|z) = 0 if
µ(z|U ≤ p) = 0, and let wz = w(ν̃(C|z)). We show below that wz ≤ 1, and so the definition of ν̃(C|z) extends the
conditional probability notation to the subprobability distribution ν̃ with the understanding that the conditionals are
with respect to µ given {U ≤ p}. Applying the first two steps of Eq. (C10) and continuing from there, we have

ν̃(c|z) = µ(c|z) JU(cz) ≥ µ(c|z)K JU(cz) ≤ pK /κz
≤ µ(c|z) JU(cz) ≤ pK /κz
= µ(c, U ≤ p|z)/µ(U ≤ p|z) = µ(c|z, U ≤ p). (C11)

Since µ(C|z, U ≤ p) is a normalized distribution, the above equation implies that wz ≤ 1. For each z, we have that
ν̃(C|z) ≤ p/κz (Eq. (C10)), p/κz ≥ p ≥ 1/|Rng(C)|, and µ(C|z, U ≤ p) dominates ν̃(C|z) (Eq. (C11)). Hence, we can
apply Lem. 3 to obtain distributions νz of C such that νz ≥ ν̃(C|z), νz ≤ p/κz, and TV(νz, µ(C|z, U ≤ p)) ≤ 1−wz.
Now we can define the distribution ν of CZ by ν(cz) = νz(c)µ(z|U ≤ p). By Eq. (A2), we get

TV(ν, µ(CZ|U ≤ p)) =
∑
z

TV(νz, µ(C|z, U ≤ p))µ(z|U ≤ p)

≤
∑
z

(1− wz)µ(z|U ≤ p)

= 1−
∑
z

w(ν̃(C|z))µ(z|U ≤ p)



16

= 1−
∑
z

∑
c

(ν̃(cz)/µ(z|U ≤ p))µ(z|U ≤ p)

= 1− w(ν̃) ≤ ε/κ, (C12)

where in the last step we used Eq. (C9). For the average maximum probability of ν, we get∑
z

max
c
ν(c|z)ν(z) =

∑
z

max
c
νz(c)µ(z|U ≤ p)

≤ p
∑
z

µ(z|U ≤ p)/κz

= p
∑
z

µ(z)/κ = p/κ, (C13)

where to obtain the last line we used Eq. (C6). The above two equations show that for an arbitrary value e of

E, P
ε/κe
max,µ(CZ|e,U≤p)(C|Z) ≤ p/κe, which together with the argument at the beginning of the proof establishes the

theorem.

The above theorem implies Thm. 1 in the main text as a corollary.

Corollary 13. Suppose that the distribution µ of CZE satisfies the chained model H(C). Let 1 ≥ p ≥ 1/|Rng(C)|
and 1 ≥ κ′, ε > 0. Define {φ} to be the event that U ≤ p, where U is given in Eq. (C1). Let κ′ ≤ κ = Pµ(φ). Then
the smooth conditional min-entropy satisfies

Hε
min(C|ZE;φ) ≥ − log2(p/κ′1+1/β).

Proof. We observe that the event that U ≤ p is the same as the event that U ′ ≤ p/κ1/β , where U ′ = (Tnεκ)−1/β and
Tn is defined as above Eq. (C1). By Thm. 9, U ′ is an εκ-UPE. In Thm. 12, if we replace U and p there by U ′ and
p/κ1/β here, then we obtain P εmax,µ(CZE|φ)(C|ZE) ≤ p/κ1+1/β . Since κ′ ≤ κ, we also have P εmax,µ(CZE|φ)(C|ZE) ≤
p/κ′1+1/β . According to the definition of the smooth conditional min-entropy in Def. 10, we get the lower bound in
the corollary.

We remark that, to obtain uniformly random bits, Cor. 13 can be composed directly with “classical-proof” strong
extractors in a complete protocol for randomness generation. The error bounds from the corollary and those of the
extractor compose additively [28]. Efficient randomness extractors requiring few seed bits exist, see Refs. [45, 46].
Specific instructions for ways to apply them for randomness generation can be found in Refs. [19, 20, 28].

Appendix D: Properties of PEFs

Here we prove the monotonicity of the functions g(β) and βg(β): As β increases, the rate g(β) as defined in
Eq. (4) of the main text is monotonically non-increasing, and βg(β) is monotonically non-decreasing. These are the
consequence of the following lemma:

Lemma 14. If F is a PEF with power β for the trial model C, then for any 0 < γ ≤ 1, F is a PEF with power β/γ
for C, and F γ is a PEF with power γβ for C.

Proof. For an arbitrary distribution σ ∈ C, we have 0 ≤ σ(c|z) ≤ 1 for all cz. By the monotonic property of the
exponential function x 7→ ax with 0 ≤ a ≤ 1, we get that σ(c|z)β/γ ≤ σ(c|z)β for all cz. Therefore, if a non-negative
RV F satisfies that ∑

cz

F (cz)σ(c|z)βσ(cz) ≤ 1,

then ∑
cz

F (cz)σ(c|z)β/γσ(cz) ≤
∑
cz

F (cz)σ(c|z)βσ(cz) ≤ 1.

Hence, if F is a PEF with power β for C, then F is a PEF with power β/γ for C.
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On the other hand, by the concavity of the function x 7→ xγ with 0 < γ ≤ 1, we can apply Jensen’s inequality to
get

Eσ
(
F (CZ)γσ(C|Z)γβ

)
= Eσ

((
F (CZ)σ(C|Z)β

)γ)
≤
(
Eσ
(
F (CZ)σ(C|Z)β

))γ
≤ 1,

for all distributions σ ∈ C. Hence F γ is a PEF with power γβ for C.

The property that βg(β) is monotonically non-decreasing in β follows directly from Lem. 14 and the definition of
g(β) in Eq. (4) of the main text. On the other hand, to prove that g(β) is monotonically non-increasing in β, we also
need to use the equality that

Eσ
(

log2(F γ(CZ))/(γβ)
)

= Eσ
(

log2(F (CZ))/β
)
.

The monotonicity of the function g(β) (or βg(β)) helps to determine the maximum asymptotic randomness rate
g0 = supβ>0 g(β) (or the maximum certificate rate γPEF = supβ>0 βg(β)), as one can analyze the PEFs with powers
β only in the limit where β goes to 0 (or where β goes to the infinity).

Appendix E: Numerical Optimization of PEFs

We provide more details here on how to perform the optimizations (such as the optimization in Eq. (3) of the main
text) required to determine the power β and the PEFs Fi to be used at the i’th trial. We claim that to verify that
the PEF F satisfies the first constraint in Eq. (3) of the main text for all σ ∈ C, it suffices to check this constraint on
the extremal members of the convex closure of C. The claim follows from the next lemma, Carathéodory’s theorem,
and induction on the number of terms in a finite convex combination.

Lemma 15. Let F ≥ 0 and β > 0. Suppose that the distribution σ can be expressed as a convex combination of
two distributions: For all cz, σ(cz) = λσ1(cz) + (1 − λ)σ2(cz) with λ ∈ [0, 1]. If the distributions σ1 and σ2 satisfy∑
cz F (cz)σi(c|z)βσi(cz) ≤ 1, then σ satisfies

∑
cz F (cz)σ(c|z)βσ(cz) ≤ 1.

Proof. We start by proving that for every cz, the following inequality holds:

σ(c|z)βσ(cz) ≤ λσ1(c|z)βσ1(cz) + (1− λ)σ2(c|z)βσ2(cz). (E1)

If σ1(z) = σ2(z) = 0, we recall our convention that probabilities conditional on z are zero, and so for every c,
σ1(c|z) = σ2(c|z) = σ(c|z) = 0. Hence, Eq. (E1) holds immediately (as an equality). If σ1(z) = 0 < σ2(z), then
for every c, σ1(c|z) = 0 and σ(cz) = (1 − λ)σ2(cz). In this case, one can verify that Eq. (E1) holds. By symmetry,
Eq. (E1) also holds in the case that σ2(z) = 0 < σ1(z). Now consider the case that σ1(z) > 0 and σ2(z) > 0. Let
xi = σi(cz) and yi = σi(z), and consider the function

f(λ) = (λx1 + (1− λ)x2)1+β(λy1 + (1− λ)y2)−β ,

so f(0) = σ2(c|z)βσ2(cz), f(1) = σ1(c|z)βσ1(cz), and f(λ) = σ(c|z)βσ(cz). If we can show that f(λ) is convex in λ
on the interval [0, 1], Eq. (E1) will follow. Since f(λ) is continuous for λ ∈ [0, 1] and smooth for λ ∈ (0, 1), it suffices
to show that f ′′(λ) ≥ 0 as follows:

f ′(λ) = (λx1 + (1− λ)x2)β(λy1 + (1− λ)y2)−β−1

×
(

(1 + β)(x1 − x2)(λy1 + (1− λ)y2) + (−β)(λx1 + (1− λ)x2)(y1 − y2)
)

f ′′(λ) = (λx1 + (1− λ)x2)β−1(λy1 + (1− λ)y2)−β−2

×
(
β(1 + β)(x1 − x2)2(λy1 + (1− λ)y2)2

+ 2(−β)(1 + β)(x1 − x2)(y1 − y2)(λx1 + (1− λ)x2)(λy1 + (1− λ)y2)

+ (−β)(−1− β)(y1 − y2)2(λx1 + (1− λ)x2)2
)

= (λx1 + (1− λ)x2)β−1(λy1 + (1− λ)y2)−β−2
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× β(1 + β)
(

(x1 − x2)(λy1 + (1− λ)y2)− (y1 − y2)(λx1 + (1− λ)x2)
)2

,

which is a non-negative multiple of a square. Having demonstrated Eq. (E1), we can complete the proof of the lemma
as follows: ∑

cz

F (cz)σ(c|z)βσ(cz) ≤
∑
cz

F (cz)
[
λσ1(c|z)βσ1(cz) + (1− λ)σ2(c|z)βσ2(cz)

]
= λ

∑
cz

F (cz)σ1(c|z)βσ1(cz) + (1− λ)
∑
cz

F (cz)σ2(c|z)βσ2(cz)

≤ λ× 1 + (1− λ)× 1

= 1.

Suppose that the trial model C is a convex polytope with a finite number of extremal distributions σk(CZ),
k = 1, 2, ...,K. In view of the claim before Lem. 15, the optimization problem in Eq. (3) of the main text is equivalent
to

Max: nEν log2(F (CZ))/β + log2(ε)/β
With:

∑
cz F (cz)σk(c|z)βσk(cz) ≤ 1, k = 1, 2, ...,K,

F (cz) ≥ 0,∀cz. (E2)

Given the values of n, β, ε, ν, and σk with k = 1, 2, ...,K, the objective function in Eq. (E2) is a concave function
of F (CZ), and each constraint on F (CZ) is linear. Hence, the above optimization problem can be solved by any
algorithm capable of optimizing nonlinear functions with linear constraints on the arguments. In our implementation,
we use sequential quadratic programming. Due to numerical imprecision, it is possible that the returned numerical
solution does not satisfy the first constraint in Eq. (E2) and the corresponding PEF is not valid. In this case, we can
multiply the returned numerical solution by a positive factor smaller than 1, whose value is given by the reciprocal
of the largest left-hand side of the above first constraint at the extremal distributions σk(CZ), k = 1, 2, ...,K. Then,
the re-scaled solution is a valid PEF. We remark that if the trial model C is not a convex polytope but there exists a
good approximation C ⊆ D with D a convex polytope, then we can enlarge the model to D for an effective method to
determine good PEFs.

Consider device-independent randomness generation (DIRG) in the CHSH Bell-test configuration [30] with inputs
Z = XY and outputs C = AB, where A,B,X, Y ∈ {0, 1}. If the input distribution P(XY ) is fixed with P(xy) > 0
for all xy, then we need to characterize the set of input-conditional output distributions P(AB|XY ). If we consider
all distributions P(AB|XY ) satisfying non-signaling conditions [24], then the associated trial model C is the non-
signaling polytope, which is convex and has 24 extreme points [25]. If we consider only the distributions P(AB|XY )
achievable by quantum mechanics, then the associated trial model is a proper convex subset of the above non-signaling
polytope. The quantum set has an infinite number of extreme points. In our analysis of the Bell-test results reported
in Refs. [9, 10], we simplified the problem by considering instead the set of distributions P(AB|XY ) satisfying non-
signaling conditions [24] and Tsirelson’s bounds [38], which includes all the distributions P(AB|XY ) achievable by
quantum mechanics. For a fixed input distribution P(XY ) with P(xy) > 0 for all xy, the associated trial model C
is a convex polytope with 80 extreme points [28]. If the input distribution P(XY ) is not fixed but is contained in a
convex polytope, the associated trial model C is still a convex polytope (see Ref. [28] for more details). Therefore,
for DIRG based on the CHSH Bell test [30], the optimizations for determining the power β and the PEFs Fi can be
expressed in the form in Eq. (E2) and hence solved effectively.

Appendix F: Relationship between Certificate Rate and Statistical Strength

We prove that for DIRG in the CHSH Bell-test configuration, the maximum certificate rate γPEF witnessed by
PEFs at a distribution ν of trial results is equal to the statistical strength of ν for rejecting local realism as studied
in Refs. [35–37]. To prove this, we first simplify the optimization problem for determining γPEF. Then, we show
that the simplified optimization problem is the same as that for determining the statistical strength. The argument
generalizes to any convex-polytope model whose extreme points are divided into the following two classes: 1) classical
deterministic distributions satisfying that given the inputs, the outputs are deterministic (here we require that for every
cz there exists a distribution in the model where the outcome is c given z), and 2) distributions that are completely
non-deterministic in the sense that for no input is the output deterministic. The argument further generalizes to
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models contained in such a model, provided it includes all of the classical deterministic distributions of the outer
model.

In order to determine γPEF = supβ>0 βg(β), considering the monotonicity of the function βg(β) proved in Sect. D
and the definition of g(β) in Eq. (4) of the main text, we need to solve the following optimization problem at arbitrarily
large powers β:

Max: Eν
(

log2(F (CZ))
)

With:
∑
cz F (cz)σ(c|z)βσ(cz) ≤ 1 for all σ ∈ C,

F (cz) ≥ 0, for all cz. (F1)

To simplify this optimization, we first consider the case that the trial model C is the set of non-signaling distributions
with a fixed input distribution P(Z) where P(z) > 0 for all z. The model C is a convex polytope and has 24 extremal
distributions [25], among which there are 16 deterministic local realistic distributions, denoted by σLRi , i = 1, 2, ..., 16,
and 8 variations of the Popescu-Rohrlich (PR) box [24], denoted by σPRj , j = 1, 2, ..., 8. According to the discussion
in Sect. E, the optimization problem in Eq. (F1) is equivalent to

Max: Eν
(

log2(F (CZ))
)

With:
∑
cz F (cz)σLRi(cz) ≤ 1,∀i,∑
cz F (cz)σPRj (c|z)βσPRj (cz) ≤ 1,∀j,

F (cz) ≥ 0, for all cz, (F2)

where we used the fact that σLRi(c|z) is either 0 or 1. Only the second constraint in Eq. (F2) depends on the power
β. The distributions σPRj satisfy that σPRj (c|z) < 1 for all cz. Hence σPRj (c|z)β → 0 for all cz as β →∞. Because
there are finitely many constraints and values of cz, the second constraint becomes irrelevant for sufficiently large β.
Let βNS

th be the minimum β for which the second constraint is implied by the first. The threshold βNS
th is independent

of the specific input distribution. To see this, the last factors in the sums on the left-hand sides of the constraints in
Eq. (F2) are of the form σ(cz), which can be written as σ(c|z)σ(z) with a fixed σ(z). We can define F̃ (cz) = F (cz)σ(z)

and optimize over F̃ instead, thus eliminating the fixed input distribution from the problem. Then the first constraint
on F̃ implies that

∑
cz F̃ (cz)

∑
i σLRi(c|z) ≤ 16. Since

∑
i σLRi(c|z) ≥ 4 for each cz, this constraint implies the second

provided that σPRj (c|z)1+β ≤ 1/4, which holds for each j and cz for sufficiently large β. Particularly, since σPRj (c|z)
is either 0 or 1/2 [25], we obtain that βNS

th ≤ 1. Furthermore, by numerical optimization for a sample of large-enough
β we find that βNS

th ≈ 0.4151. Therefore, when β ≥ βNS
th the optimization problem in Eq. (F2) is independent of β and

becomes

Max: Eν
(

log2(F (CZ))
)

With:
∑
cz F (cz)σLRi(cz) ≤ 1,∀i,

F (cz) ≥ 0, for all cz. (F3)

This optimization problem is identical to the one for designing the optimal test factors for the hypothesis test of local
realism [21, 41, 47]. In Ref. [21] it is proven that the optimal value of the optimization problem in Eq. (F3) is equal
to the statistical strength for rejecting local realism [35–37], which is defined as

s = min
σLR

DKL(ν|σLR).

Here, σLR is an arbitrary local realistic distribution and DKL(ν|σLR) is the Kullback-Leibler divergence from σLR

to ν [48]. Therefore, when β ≥ βNS
th we have βg(β) = s. Considering that the function βg(β) is monotonically

non-decreasing in β, we have shown that

γPEF = sup
β>0

βg(β) = s.

Now we consider the case where the trial model C is the set of quantum-achievable distributions with a fixed input
distribution P(Z) where P(z) > 0 for all z. Since the set of quantum-achievable distributions is a proper subset of the
non-signaling polytope, the constraints on F (CZ) imposed by quantum-achievable distributions are a subset of the
constraints imposed by non-signaling distributions. Moreover, the set of quantum-achievable distributions contains
all local realistic distributions. Therefore, in the quantum case, when β ≥ βNS

th , the constraints on F (CZ) are also
implied by the constraints associated with the local realistic distributions. Consequently the maximum certificate rate

γPEF is also equal to the statistical strength s. We remark that as a consequence, if we set βQM
th to be the threshold

such that when β ≥ βQM
th all quantum constraints on F (CZ) are implied by those imposed by the local realistic
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distributions, then βQM
th ≤ βNS

th .
We remark that β0 = inf{β|βg(β) = s} is typically strictly less than βNS

th and depends on both the distribution
ν as well as the trial model C. One way to understand this behavior is as follows: When β < βNS

th , the second
constraint in Eq. (F2) is relevant; however, if β is still large enough, it is possible that the constraint does not affect
the optimal solution of the optimization problem (F2). By numerical optimization, we find that for the CHSH Bell-
test configuration β0 is typically less than 0.2 when the trial model C includes all non-signaling distributions with the
uniform distribution for inputs.

Appendix G: Analytic Expressions for Asymptotic Randomness Rates

In this section we derive the asymptotic randomness rates for the trial model consisting of non-signaling distributions
according to two different methods for DIRG protocol based on the CHSH Bell test [30]. We first consider the maximum
asymptotic rate g0 witnessed by PEFs. Then, we derive the single-trial conditional min-entropy for comparison.

Suppose that the distribution of each trial’s inputs XY and outputs AB is ν(ABXY ) ∈ C, where C is the model
for each trial. The maximum asymptotic rate g0 is equal to the worst-case conditional entropy that is consistent with
the distribution ν(ABXY ) [28]. That is, the rate g0 is given by the following minimization:

g0 = min
σ
{Hσ(AB|XY E) : σ(ABXY ) = ν(ABXY )} , (G1)

where σ is the joint distribution of A,B,X, Y and E, and σ(ABXY ) is its marginal. By the assumption that the
value space of E is countable, we can also express the above minimization as

g0 = min
ωe,σe

{∑
e

ωeHσe(AB|XY,E = e) : ∀e, σe ∈ C and ωe ≥ 0,
∑
e

ωe = 1,
∑
e

ωeσe = ν
}
, (G2)

where σe is the distribution of A,B,X and Y conditional on E = e according to σ, and ωe is the probability of the
event E = e. By the concavity of the conditional entropy, if any of the σe contributing to the sum in Eq. (G2) is not
extremal in C, we can replace it by a convex combination of extremal distributions to decrease the value of the sum.
Thus, we only have to consider extremal distributions in the above minimization.

For the rest of this section we let C consist of non-signaling distributions for the CHSH Bell-test configuration with
a fixed input distribution P(XY ) where P(xy) > 0 for all xy. As explained in the previous section, C is a convex
polytope with 24 extreme points. Considering the argument below Eq. (G2), the number of terms in the sum of
Eq. (G2) is at most 24. As in the previous section, we can divide the 24 extreme points into the two classes consisting
of the 16 deterministic local realistic distributions σLRi , i = 1, 2, ..., 16, and the 8 variations of the PR box σPRj ,
j = 1, 2, ..., 8. Because the σLRi are deterministic conditional on the inputs, if σe = σLRi then the conditional entropy
satisfies HσLRi

(AB|XY,E = e) = 0. For each PR box σPRj , the conditional probabilities σPRj (AB|XY ) are either 0

or 1/2 [25]. Thus, if σe = σPRj , the conditional entropy satisfies HσPRj
(AB|XY,E = e) = 1. Hence, the minimization

problem in Eq. (G2) becomes

g0 = Min:
∑
j ωPRj

With: ωLRi , ωPRj ≥ 0,∀i, j,∑
i ωLRi +

∑
j ωPRj = 1,∑

i ωLRiσLRi +
∑
j ωPRjσPRj = ν. (G3)

We need to find the minimum total probability of PR boxes in a representation of the distribution ν as a convex
combination of the 16 local realistic distributions and the 8 PR boxes. To help solve this problem, we consider the
violation of the CHSH Bell inequality [30]. Recall that there is only one PR box that can violate a particular CHSH
Bell inequality E(ICHSH) ≤ 2 [25], where ICHSH is the CHSH Bell function

ICHSH(ABXY ) = (1− 2XY )(−1)A+B/P(XY ), (G4)

and A,B,X, Y ∈ {0, 1}. Let σPR1
be the violating PR box. The expectation of ICHSH according to σPR1

is maximal,

that is, EσPR1
(ICHSH) = 4. Without loss of generality, Î = Eν(ICHSH) > 2. The probability ωPR1 in the convex

decomposition of ν satisfies the inequality 4ωPR1
+ (1 − ωPR1

)2 ≥ Î, or equivalently, ωPR1
≥ (Î − 2)/2. Hence,

according to Eq. (G3), we have g0 ≥ (Î − 2)/2.

We next show that g0 ≤ (Î − 2)/2. For this, we directly use the result of Ref. [49]. According to Ref. [49], for
any non-signaling distribution σ(ABXY ), if Eσ(ICHSH) > 2, then the distribution σ(ABXY ) can be decomposed
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FIG. 3: Asymptotic randomness rates as a function of Î. Results according to both our method (the solid curve) and Refs. [3,
10, 12, 18, 31–33] (the dashed curve) are shown. Our method witnesses the maximum asymptotic rate H(AB|XY E), which is
the worst-case conditional entropy.

as σ(ABXY ) = ωPR1
σPR1

+
∑
i ωLRiσLRi , where ωPR1

= (Eσ(ICHSH) − 2)/2, ωLRi ≥ 0, and
∑
i ωLRi = 1 − ωPR1

.

Specializing to the distribution ν(ABXY ), we get that g0 ≤ (Î − 2)/2 for Î > 2.

The arguments above show that given Î > 2, the maximum asymptotic randomness rate witnessed by PEFs is

g0 = (Î − 2)/2, (G5)

independent of the particular distribution ν realizing Î.
We also numerically evaluated the maximum asymptotic rate according to g0 = supβ>0 g(β) with g(β) given by

Eq. (4) of the main text. The numerical results are presented in Fig. 3, which are consistent with the analytic
expression in Eq. (G5).

Next, we consider the quantification of the asymptotic randomness rate by the single-trial conditional min-entropy
Hmin(AB|XY E), which is a lower bound and is studied in Refs. [3, 10, 12, 18, 31–33]. The single-trial conditional
min-entropy is defined by

Hmin(AB|XY E) = − log2(Pguess(AB|XY E)), (G6)

where Pguess(AB|XY E) is the average guessing probability of the output AB given the input XY and the side
information E, as defined in Ref. [33]. According to Refs. [32, 33], the guessing probability at xy is given by the
following maximization:

Pguess(AB|xyE) = max
ωe,σe

{∑
e

ωe max
ab

σe(ab|xy) : ∀e, σe ∈ C and ωe ≥ 0,
∑
e

ωe = 1,
∑
e

ωeσe = ν

}
. (G7)

If a σe contributing to the sum in Eq. (G7) is not extremal in the set C, we can replace it by a convex combination
of extremal distributions to increase the value of the sum. Thus, we only have to consider extremal distributions σe
in the above maximization. Applying the argument that led from Eq. (G2) to Eq. (G3), we obtain

Pguess(AB|xyE) = Max:
∑
i ωLRi + 1

2

∑
j ωPRj

With: ωLRi , ωPRj ≥ 0,∀i, j,∑
i ωLRi +

∑
j ωPRj = 1,∑

i ωLRiσLRi +
∑
j ωPRjσPRj = ν. (G8)

Since
∑
i ωLRi + 1

2

∑
j ωPRj = 1 − 1

2

∑
j ωPRj , we only need to minimize the total probability of PR boxes

∑
j ωPRj

in the convex decomposition of the distribution ν. From the derivation of g0 that gave Eq. (G5), we conclude that

min
(∑

j ωPRj

)
= (Î − 2)/2 for Î > 2. Therefore Pguess(AB|xyE) = (6 − Î)/4 regardless of the particular input xy.

Furthermore, the specific convex decomposition over E that achieves the maximum in Eq. (G8) is the same for all the
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possible inputs. Hence we also have Pguess(AB|XY E) = (6 − Î)/4 independent of the input distribution. Therefore
the single-trial conditional min-entropy is

Hmin(AB|XY E) = − log2((6− Î)/4), (G9)

which is plotted in Fig. 3.
The results of this section are summarized in the following theorem:

Theorem 16. Suppose that the trial model C consists of non-signaling distributions with a fixed input distribution
P(XY ) where P(xy) > 0 for all xy. For any ν ∈ C, both the maximum asymptotic randomness rate g0 witnessed by

PEFs and the single-trial conditional min-entropy Hmin(AB|XY E) depend only on Î = Eν(ICHSH) > 2 and are given

by g0 = (Î − 2)/2 and Hmin(AB|XY E) = − log2((6− Î)/4).

Appendix H: Entropy Accumulation

Consider DIRG in the CHSH Bell-test configuration. In this section, the input distribution P(XY ) at each trial

is assumed to be uniform. Define the winning probability at a trial by ω̂ = 1/2 + Î/8 where Î = Eν(ICHSH) with
ν the distribution of trial results. Entropy accumulation [17] is a framework for estimating (quantum) conditional
min-entropy with respect to quantum side information and can be applied to the CHSH Bell-test configuration. The
following theorem from Ref. [17] implements the framework:

Theorem 17. Let (2 +
√

2)/4 ≥ ωexp, pt ≥ 3/4, and 1 ≥ κ, ε > 0. Suppose that after n trials the joint quantum state
of the inputs XY, the outputs AB and the quantum side information E is ρ. Define {φ} to be the event that the
experimentally observed winning probability is higher than or equal to ωexp, and suppose that κ ≤ Pρ(φ). Denote the
joint quantum state conditional on {φ} by ρ|φ. Then the (quantum) smooth conditional min-entropy evaluated at ρ|φ
satisfies

Hε
min(AB|XYE)ρ|φ > nη(pt, ωexp, n, ε, κ),

where η is defined by

g(p) =

{
1− h

(
1
2 + 1

2

√
16p(p− 1) + 3

)
p ∈

[
3/4, (2 +

√
2)/4

]
1 p ∈

[
(2 +

√
2)/4, 1

]
,

fmin (pt, p) =

{
g (p) p ≤ pt
d
dpg(p)

∣∣
pt
p+

(
g(pt)− d

dpg(p)
∣∣
pt
pt

)
p > pt ,

v(pt, ε, κ) = 2

(
log2 13 +

d

dp
g(p)

∣∣
pt

)√
1− 2 log2(εκ) ,

η(pt, p, n, ε, κ) = fmin (pt, p)−
1√
n
v(pt, ε, κ) ,

with h(x) = −x log2(x)− (1− x) log2(1− x) be the binary entropy function.

The function fmin in the theorem is referred to as a min-tradeoff function. The parameter pt in the theorem is free,
and can be optimized over its range before running the protocol based on the chosen parameters n, ωexp, ε and κ. So
the optimal entropy rate is ηopt(ωexp, n, ε, κ) = maxpt η(pt, ωexp, n, ε, κ).

According to Thm. 17, in order to certify b bits of entropy given ωexp, ε and κ, we need that nη(pt, ωexp, n, ε, κ) ≥ b.
Equivalently, n ≥ nEAT,b(pt) where

nEAT,b(pt) =

(
v(pt, ε, κ) +

√
v(pt, ε, κ)2 + 4bfmin (pt, ωexp)

2fmin (pt, ωexp)

)2

. (H1)

Including the optimization over pt gives the minimum number of identical trials required:

nEAT,b = min
3/4≤pt≤(2+

√
2)/4

nEAT,b(pt). (H2)
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To compute nEAT,b, we set the parameter ωexp to the winning probability ω̂ according to the distribution ν of trial
results in a stable experiment.

We finish with several remarks on the comparison between entropy accumulation and probability estimation. First,
Thm. 17 based on entropy accumulation holds with respect to quantum side information, while Cor. 13 (Thm. 1 in
the main text) based on probability estimation holds with respect to classical side information. Second, in principle
both entropy accumulation and probability estimation can witness asymptotically tight bounds on the smooth condi-
tional min-entropies with respect to the assumed side information. Entropy accumulation can witness the maximum
asymptotic entropy rate with respect to quantum side information, if an optimal min-tradeoff function is available.
However, it is unknown how to obtain such min-tradeoff functions. In particular, the min-tradeoff function fmin (p, pt)
is not optimal for the CHSH Bell-test configuration considered here. A min-tradeoff function is required to be a
bound on the single-trial conditional von Neumann entropy H(AB|XY E). That fmin (p, pt) is not optimal is due to
the following: 1) fmin (p, pt) is designed according to a bound on the single-trial conditional von Neumann entropy
H(A|XY E) derived in Refs. [50, 51]. A tight bound on H(A|XY E) is generally not a tight bound on H(AB|XY E).
2) The bound on H(A|XY E) derived in Refs. [50, 51] is tight if the only information available is the winning prob-
ability. However, in practice one can access the full measurement statistics rather than just the winning probability.
In contrast to entropy accumulation, probability estimation is an effective method for approaching the maximum
asymptotic entropy rate (with respect to classical side information) considering the full measurement statistics and
the model constraints. In general, the maximum rate with respect to quantum side information is lower than that
with respect to classical side information, as accessing quantum side information corresponds to a more powerful
attack. Third and as demonstrated in the main text, probability estimation performs significantly better with finite
data.
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