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We load cold atoms into an optical lattice dramatically reshaped by radio-frequency coupling of state-
dependent lattice potentials. This radio-frequency dressing changes the unit cell of the lattice at a
subwavelength scale, such that its curvature and topology departs strongly from that of a simple sinusoidal
lattice potential. Radio-frequency dressing has previously been performed at length scales from mm to
tens of wm, but not at the single-optical-wavelength scale. At this length scale significant coupling
between adiabatic potentials leads to nonadiabatic transitions, which we measure as a function of lattice
depth and dressing amplitude. We also investigate the dressing by measuring changes in the momentum

distribution of the dressed states.

DOI: 10.1103/PhysRevLett.100.150401

For almost 20 years, optical lattices have been used to
cool and confine neutral atoms, recently leading to
condensed-matter-analog systems, optical clocks, and pos-
sible platforms for quantum computing [1-6]. Optical
lattices are remarkably versatile, with dynamically variable
depth, spin dependence, and topology [7-10]. However,
they generally have a structure whose length scale is con-
strained by the wavelength of the lattice light. Here we
demonstrate a new technique not subject to this limitation.
This leads to increased flexibility in unit-cell construction,
allowing access to lattice models not previously achiev-
able. We obtain this lattice by radio-frequency (rf) dressing
a spin-dependent optical lattice, in the spirit of a recently-
proposed technique [11]. The adiabatic potentials have
new, subwavelength structure, which in certain limits
should be ringlike within a unit cell. Extensions of the
band-structure engineering demonstrated by this experi-
ment lead to more complex lattice structures that suggest
intriguing single-site wave functions and the nearest-
neighbor interactions required for extended Bose-
Hubbard models [12]. The symmetry of a ringlike wave
function in conjunction with the associated orbital degree
of freedom can also lead to interesting condensed-matter
phenomena [13].

The creation of rf-dressed adiabatic potentials in inho-
mogeneous magnetic fields is well-known experimentally,
from the use of rf transitions in evaporative cooling [14] to
the creation of shell-like quasi-two-dimensional systems in
magnetically trapped condensates [15—17], and the use of
rf dressing to effect condensate splitting and interferometry
in micron-scale chip traps [18]. Optical lattices with sub-
half-wavelength structure in 1D have been generated by
several groups through the use of multiphoton Raman
processes [19-21] or static magnetic field couplings
[22]. The approach we present here, using the rf dressing
of a state-dependent lattice, creates 2D subwavelength
structure beyond simple lattice period division. The
dressed lattice comprises unit cells whose localized adia-
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batic eigenstates are spatially varying superpositions of the
bare spin states. We create such a dressed lattice, and load
ultracold atoms into the ground band of the uppermost
adiabatic potential.

For these state-dependent lattice experiments we use a
spin-polarized 8’Rb (5%S,/, |F = 1,mz = —1)) Bose-
Einstein condensate (BEC). The state dependence is pro-
duced by tuning the lattice laser between the 8’Rb D1 and
D2 resonances, where vector light shifts are important [9].
Applying an rf field of appropriate amplitude and fre-
quency creates an adiabatic potential whose shape is dis-
torted from the bare potentials, as shown in Fig. 1(b). After
holding the atoms in the dressed lattice for a variable time,
we abruptly turn off the lattice and observe the momentum
distribution by imaging the atoms after time-of-flight
(TOF) time t1og. This gives information about the structure
of the dressed lattice, as well as a measure of the lifetime of
the dressed adiabatic eigenstates.

Our apparatus, described elsewhere [23], produces
BECs of ~10° atoms in a Ioffe-Pritchard magnetic trap.
We load the m = —1 condensate into the ground band of
a 3D optical lattice via an exponentially increasing inten-
sity ramp of duration 300 us (7 = 50 us), a time scale
adiabatic with respect to band (vibrational) excitation. We
then remove the magnetic trapping fields, leaving a uni-
form bias field of 5.117(3) mT [24], a Zeeman resonance
frequency v_; o = 36.12(2) MHz, and a quadratic Zeeman
shift 6'/27 = v_y g — vo+1 = 376(1) kHz, where hv,,
is the positive energy difference between Zeeman suble-
vels |[F = 1, mp).

The lattice in the x-J plane (xy lattice) is similar to that
described in [23]. We tune a Ti:sapphire laser to A =
790.76 nm, where for o* light, atoms in the three F = 1
Zeeman sublevels mp = —1, 0, +1 experience total light
shifts in the approximate ratio of —3:1:5. This can be
understood as the sum of a state-independent scalar light
shift and a state-dependent vector light shift—an effective
magnetic field related to the local ellipticity of the optical
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polarization. For appropriate phase shifts of the lattice
beams [9], the combination of the light shifts and the
bias field along (£ — $)/+/2 results in the potentials shown
in Fig. 1.

The atoms are confined along Z (the direction of gravity)
using a 1D optical lattice, derived from the same
Ti:sapphire laser [25]. These lattice beams are linearly
polarized, yielding an effectively blue-detuned and spin-
independent lattice. As measured by pulsed-lattice diffrac-
tion [26] this vertical lattice is 6Ep deep, where Ep =
hW2k?*/2M =~ h X 3.68 kHz, k = 27/ A, and M is the atomic
mass. This lattice, together with the xy lattice, fully con-
fines the atoms in 3D, and we do not observe any displace-
ment due to gravity over the duration of the experiment,
even though the magnetic trap has been removed.

After loading, we wait 30 ms for the atoms to dephase
and fill the lowest Bloch band of the lattice [8], such that a
sudden-release TOF image will approximate the single-
lattice-site momentum distribution (with resolution limited
mainly by the initial spatial extent of the atom cloud). The
dephasing time is well within the 1/¢ lifetime of atoms in
the lattice due to spin-flip loss from light scattering, which
we measured to be 85 ms at an xy lattice depth of U =
55Eg for mp = —1 atoms; this lattice depth is more than
twice the largest used in the experiment. The depth of the
xy lattice was measured with two-photon Raman vibra-
tional spectroscopy [27].

We dress the lattice with an rf magnetic field aligned
perpendicular to the bias field. The single-particle rotating-
frame Hamiltonian, taking the rotating-wave approxima-
tion, is H = p?/2M + H (r), where

V)-8 Q)2 0
5'[1(1')=( Q/2 Vo (r) Q/2 ) (1)
0 Q)2 Vo) +8+8

and 6 = wyy — 27v_ ;. The state-dependent lattice po-
tentials V,, (r) (see Fig. 1) are calculated using our model
of the lattice [23]. ) is obtained through observations of rf-
driven oscillations between mp = —1 and my = 0 (in a
spin-independent lattice) at rates up to a maximum of
Wy /2™ = 200 kHz. Q) differs slightly from w,,. due to
the multilevel nature of this system. Diagonalizing only
H | (i.e., the Born-Oppenheimer approximation) gives rise
to adiabatic potentials; failure of this approximation will
manifest as momentum-dependent couplings between the
adiabatic potentials.

We apply r1f beginning well below resonance
(=— 1 MHz), sweeping at constant rate (300 kHz/ms)
over =3 ms to a final near-resonant frequency, and hold
the newly created dressed state for a variable time. The
lattice beams, rf field, and bias field are then turned off in
=<1 us, =210 us, and =300 ws, respectively. After a
12.2 ms TOF we observe the atoms with resonant absorp-
tion imaging along the Z direction.

Figure 2(a) depicts the observed width of the momentum
distribution (from a Gaussian fit to the TOF density distri-
bution) as a function of final frequency at maximum rf
power. The optical power in the xy lattice was fixed at bare
depth U = 10ER. Also shown is the expected width from
the calculated ground-state momentum wave function in
the adiabatic potential. The data show narrowing of the
momentum distribution as the lattice is dressed, implying
significant alteration of the wave function and hence the
lattice structure itself. While at these dressed depths the
potential exhibits ringlike character, the ground state is still
simply connected: see Fig. 2(a). The observed dressed state
(corresponding to my = —1 without rf) is predominantly a
superposition of my = *1 at these rf detunings, which we
verified via Stern-Gerlach separation of the spin compo-
nents during TOF. Unlike in a two-level system, the
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FIG. 2 (color). (a) The width of the momentum distribution as
a function of final dressing frequency, as measured by absorption
imaging. The width is calculated as Md/htyop, where d is the
Gaussian 1/e radius along one direction, corrected for the initial
cloud size. The displayed uncertainties represent 1o shot-to-shot
scatter of five points. The shaded area represents predicted
widths given the values and estimated uncertainties of the
magnetic field [5.117(3) mT] and the depth of the bare lattice
U = 10.0(5)ER. Also shown are the bare and dressed single-site
potentials (solid lines) and ground-state wave functions (gray).
(b, ¢) Sample images of the off-resonant (effectively bare) and
dressed momentum distributions, respectively, (both at /27 =
205 kHz) showing significant narrowing of the latter. (d,
e) Examples of dressed momentum distributions created through
faster (>1 MHz/ms) rf ramps, such that higher vibrational states
of the dressed lattice are populated.

avoided-crossing energy gap hA between adiabatic poten-
tials is not simply related to 2. For Q < &', A = Q?/§/,
and for Q> 6§, A=Q/J2—8'/4. For Q)27 =
205 kHz, the largest used in this experiment, and w, =
35.90 MHz, we calculate A/27 =~ 75 kHz, a value only
weakly dependent on U. To further characterize our
dressed lattice, we performed Raman vibrational spectros-
copy, but observed that the Raman signal did not persist
beyond weak dressing. This may be due to shrinking
matrix elements between the combined spin and spatial
eigenfunctions of the dressed bands, or increasing width of
the excited bands of the (shallower) dressed lattice.

Three adiabaticity criteria are relevant to loading and
holding atoms in the ground band of the dressed lattice.
(1) Adiabatic following of the local spin eigenstates of
I | (r) during the upward rf sweep 8(¢) is well satisfied.
(2) Deformation of the dressed lattice with respect to
vibrational excitation is nearly adiabatic, yielding pre-
dominantly ground-band occupation. Faster sweep rates
yielded interesting deviations from this condition, shown
in Figs. 2(d) and 2(e), in which we observe lobed structure

in the momentum distributions indicating higher vibra-
tional states. (3) The Born-Oppenheimer approximation,
i.e., the degree to which zero-point motion in the lattice
does not induce transitions between adiabatic potentials, is
more difficult to satisfy. In previous experiments involving
rf-dressed adiabatic potentials, the length scales were large
enough such that this condition was easily met for cold
atoms [15-18]. For our experiment, the bare lattice con-
finement is such that, even for our largest rf coupling,
nonadiabatic loss is a factor; in our experiment these loss
rates are 10'-10% s~!. Understanding these losses is cru-
cial to using dressed lattices on a time scale relevant to
strongly correlated many-body physics.

We load atoms into the uppermost adiabatic dressed
potential using the procedure described above, and mea-
sure the number of atoms remaining in the central momen-
tum feature, as in Figs. 2(b)-2(e), as a function of hold
time. Atoms transitioning to lower adiabatic potentials
appear in absorption images as high-momentum rings of
~10hk [well outside the range of Figs. 2(b)—2(e)], and are
counted as loss. Figure 3 shows loss rates as a function of
calculated avoided-crossing gap A as a function of U, at
dressing frequencies near 35.90 MHz. The rates are first
obtained through two-parameter fits to an exponential
decay and then slightly corrected via subtraction of the
appropriately scaled spin-flip loss rate (1/85 ms™' for
55Eg). The data are well described by y(A) = Ae 54,
Figure 4 shows loss rate at constant {) as a function of
U, well described by y(U) = CePV.

We consider our observations in the context of semiclas-
sical theory for the losses. The traversal of a two-level
avoided crossing is often described by Landau-Zener (LZ)
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FIG. 3 (color). Dressed-state losses as a function of calculated
avoided-crossing gap A /24 for four bare lattice depths. Vertical
bars represent uncertainties of fit; multiple points near a given A
indicate scatter in multiple runs. The data are well represented by
Y(A)=Ae BA27  with B=283(6) us, 83(11) us, 82(13) us,
and 100(30) us for U=8Eg, 10Eg, 12Eg, and 16Ey, respec-
tively. The scaling of the data does not change if plotted versus
Q.
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FIG. 4 (color). Dressed-state losses as a function of bare lattice
depth U at constant /27 = 205 kHz and dressing frequency
35.900(35.875) MHz for the first five (last four) depths, resulting
in approximately constant gap A/27 =75 kHz. Vertical bars
represent uncertainties of fit; multiple points at a given depth
represent the scatter in multiple runs. Horizontal bars represent
known drifts in laser power; not shown is a constant systematic
uncertainty in depth determination on the order of 5%. The data
are well represented by a simple exponential fit y(U) = CePY,
yielding C = 1.2(4) s™! and D = 0.27(3)E".

theory, in which for a particle traveling along x at veloc-
ity v through an avoided crossing characterized by a gap A
and bare energy levels whose difference E(x) = Ex, the
adiabatic following probability is P, =1 — e~ (1/27hA%/(WE)
A semiclassical scaling argument for the motion of an atom
in the ground state of a lattice site of depth U yields v «
U'/* and vE' o U5/*, and a loss rate scaling as y « w,(1 —
P,), where w is a trapping frequency and (1 — P,) << 1.
For a particle of insufficiently large energy with respect to
A (i.e., atoms trapped in the ground state of an adiabatic
potential), the simple LZ approach may not apply. In a
more sophisticated semiclassical approximation [28,29],
more appropriate to ground-state trapped atoms, the result-
ing transition rates can be estimated as y o w,e”*A/@1,
where w; « \/U/A is the trapping frequency (w; < A) of
the uppermost adiabatic potential and « ~ 1 is a constant.
The shape of our adiabatic potentials differs significantly
from this simple case, but the scaling suggests transition
rates that change exponentially with the coupling gap and
bare lattice depth.

Unsurprisingly, the LZ model does not describe the data
in Figs. 3 and 4; the exponential coefficient scales as —A
rather than —A? and also scales as U, not —1/U%/*. Fits to
the LZ model are significantly worse than those in Figs. 3
and 4, although they agree with the general trends. Similar
results were found upon calculating a Fourier-weighted
sum of the LZ formula over the dressed 2D ground-state
wave function, [ |y |>Pxa(k)dk. The more sophisticated
semiclassical approximation performs better than the LZ
approach, but still fails to satisfactorily predict the ob-
served scaling. It is likely that 1D semiclassical descrip-
tions are simply inadequate for this 2D quantum problem;
perhaps a more complete solution will yield the very
simple scaling we observe.

While the dressed potentials shown in Fig. 1(b) are ring-
like, the corresponding ground-state wave functions are

generally not. Nevertheless, ringlike wave functions with
reasonable lifetimes would be possible with sufficient rf
coupling; based on the data presented here, we extrapolate
that ringlike wave functions of lifetime =100 ms should
appear for a coupling /27 =~ 400 kHz and U = 55Ej.
This Letter presents observations of a novel lattice
poten-
tial consisting of rf-coupled components of a state-
dependent optical lattice. The lifetime of this dressed lat-
tice depends exponentially on both coupling strength and
optical lattice depth. We observe lifetimes up to 100 ms for
strongly dressed shallow lattices, a time scale sufficient for
the realization of many-body condensed-matter systems.
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