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Cylindrical or rod-like particles are promising materials for the applications of fillers
in nanocomposite materials and additives to control rheological properties of colloidal
suspensions. Recent advances in particle synthesis allows for cylinders to be manu-
factured with short-ranged attractions to study the gelation as a function of packing
fraction, aspect ratio and attraction strength. In order to aid in the analysis of small-
angle scattering experiments of rod-like particles, computer simulation methods were
used to model these particles with specialized Monte Carlo algorithms and tabular
superquadric potentials. The attractive interaction between neighboring rods increases
with the amount of locally-accessible surface area, thus leading to patchy-like inter-
actions. We characterize the clustering and percolation of cylinders as the attractive
interaction increases from the homogenous fluid at relatively low attraction strength,
for a variety of aspect ratios and packing fractions. Comparisons with the experimen-
tal scattering results are also presented, which are in agreement. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5040252

I. INTRODUCTION

Anisotropic shapes are ubiquitous in nature, often conferring unique adaptations over more
symmetric counterparts. They manifest on a variety of length scales, which range from the internal
structure of the atom, to the domains within proteins, to the internal organization of cells, and beyond.
Anisotropy has become well appreciated in the field of colloidal science1,2 for its control over the
material properties of suspensions.3–7 By tuning the particle shape and taking advantage of anisotropy,
the self-assembly of colloidal particles can be carefully controlled.

Perhaps the simplest perturbation conferring anisotropy onto an otherwise isotropic object, is the
elongation of a sphere into a spherocylinder. These rod-like particles occur in many materials such as
cements, paints, pharmaceuticals and consumer products. They have been shown to be facile building
blocks in the assembly of nanoscale polyhedrons,8,9 and are also observed in viruses.10,11 Historically,
the study of athermal, hard rods has been the subject of great interest because the anisotropic shape of
the rods can lead to orientational ordering transitions on the basis of entropy alone due to its transfer
between rotational and translational modes.12–14 As the aspect ratio of the rods increases, their modes
progressively become decoupled, which facilitates the formation of a variety of morphologies.15 For
instance, interactions between grafted ligands can introduce greater complexity, and even be used to
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confer directional interactions.7 The addition of small polymers or other colloids to suspensions of
rods can alternatively introduce depletion effects, which are also entropic in nature.16,17

The latter instance has been the source of much theoretical interest,17–26 as depletion effects
are estimated to play a significant role in conditions where rods occur naturally, as in cellular envi-
ronments,27 and in the manufacturing of nanocomposites28 and liquid crystals.1,29,30 Furthermore,
understanding depletion effects may act as a surrogate for a plethora of other short-ranged inter-
actions, regardless of their cause.31–34 These short-range attractions may lead to percolation which
has implications for dynamical arrest35–39 and electrical conductivity.40,41 Although the connection
between rigidity percolation, coordination number and gelation has been studied for isotropic parti-
cles,42 the phase diagram for rod-like particles32 possesses an additional degree of freedom to explore
relative to spherical particles (i.e., the aspect ratio). The focus of this work is to study clustering and
percolation over a variety of attraction strengths, volume fractions and aspect ratios.

Owing to the symmetry of the spherical caps at their termini, it is generally simpler to both
simulate and synthesize colloidal spherocylinders rather than cylinders. Recent advances in exper-
imental synthesis, however, have led to the ability to produce silica-based colloidal rods that have
one spherical end while the other is flat.43,44 Although the termini of a cylinder are both flat, this
intermediate structure reflects the growing necessity for theoretical and simulation methods that can
be used to study the behavior of these systems.

To this end, we performed computer simulations of cylindrical particles with flat-ends and short-
ranged attractions. We achieved efficient simulation of flat-end cylinders (not spherocylinders) by
developing a numerical scheme to compute the interaction between convex superquadric solids of rev-
olution. The surfaces of superquadric solids may be described analytically, which has been exploited
in the past to study a subset of convex superquadrics known as superballs that can smoothly inter-
polate from a cube to a sphere and an octahedron.45–47 The addition of short-ranged attractions due
to depletion has also been investigated recently.48 Superquadric shapes also have been simulated as
hard rigid bodies49 and with attractive patches.50 Similarly, analytical solutions for the interaction
potential between convex superquadric shapes and a planar wall under the influence of depletion have
also been investigated.51

In this computational work, we study cylinders with an attraction range that is approximately 4%
of the cylinder diameter, which have also been the focus of recent experimental studies.43,52 Thus,
these systems represent an opportunity to compare experiment and simulation. It is also worth noting
for systems with such short interaction ranges that the liquid state is expected to be metastable with
respect to the solid.53 In addition, this study is limited to packing fractions of 22.5% or less, which
is below the nematic and smectic regions of the phase diagram of hard spherocylinders. In this work,
we study the clustering and percolation as a function of aspect ratio, packing fraction and attraction
strength.

Although analytical methods have been developed to simulate hard cylinders,54,55 including those
with patchy interactions requiring iterative procedures,50,56 we use a tabulated potential to speed up
the simulation of superquadrics with attractions due to the required calculation of excluded volume
overlaps between pairs of cylinders. This excluded volume overlap is the most computationally
intensive contribution to the interaction potential. The tabular potential allows the interactions to be
computed only one time for a given relative orientation and position before the simulations begin.
With this procedure, the expensive calculation of the interaction between pairs of anisotropic particles
is replaced by a query of the stored table. The relative efficiency of the tabular potential with respect to
analytical pair wise calculations depends upon the specific model and the resolution of the table. Here,
we first validate the simulations using the tabulated potential by calculating virial coefficients and
scattering profiles. The virial coefficients by themselves yield a cross over from end-end dominant
attractions to side-side dominant attractions as a function aspect ratio, and scattering profiles are
compared with experiment. We then use the simulations to study metrics which signal percolation
and dynamic arrest (e.g., cluster percolation probability, coordination number and orientational order),
by simulating colloidal cylinders over a wide range of aspect ratios, attraction strengths, and packing
fractions.

The outline of this paper is as follows. In Section II, we describe the model for the cylindrical
particles and the interaction potential. To explore the effects of aspect ratio on the interaction potential,
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virial coefficient calculations are presented in Section III. The Monte Carlo methods, including Wang-
Landau sampling and expanded ensemble approaches, used to simulate fluids composed of cylindrical
particles are described in Section IV. In Section V, we compare simulated and measured scattering
profiles to further test the model and simulation method. We then compare various metrics used to
identify clustering and percolation in Section VI. Finally, conclusions are made in Section VII and
the tabular potential for the computational modeling approach is detailed in the Appendixes.

II. MODELS

Cylindrical particles were modeled with the superquadric equation,57
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where x, y and z are the Cartesian coordinates, ε1 and ε2 parameters determine the curvature, and
the ai parameters, with i = x, y, z, determine the maximum extent of the shape from the center, in the
given dimension. To model cylinders, the constraints ax = ay, ε2 = 1 are imposed, such that the length
of the cylinder, L = 2az, which extends in the z direction in the body-fixed frame of reference, and
the diameter of the cylinder, D = 2ax. The parameter ε1 = 0.1 was chosen such that the ends of the
cylinders were flat. An example is shown in Figure 1. As shown in the figure, the relative position
and orientation of two solids of revolution, i and j, are given by the center separation distance, r,
and three angles, θi, θj, and ψ. The first two angles, θi and θj, are the angles formed between the
center separation vector and the axis of revolution of a particles i and j. The third angle, ψ, is the
dihedral angle formed by the three vectors described above (i.e., ψ is the angle between two planes
formed by the center separation vector and the axes of revolution of each particle). The potential
energy, U, between a pair of cylindrical particles, i and j, is U = Uh + Ua + Ue, which includes a
hard-particle steric repulsion, Uh, a short-range attractive interaction, Ua, and a screened electrostatic
repulsion, Ue. These contributions are described below.

The hard-particle interaction between two particles, Uh, is given by

Uh(r, θi, θj,ψ)=



∞ r < rh(θi, θj,ψ)

0 r ≥ rh(θi, θj,ψ).
(2)

where rh(θi, θj, ψ) is the hard center separation distance at contact, which is computed numerically
using Equation (1) as described in Appendix B.

The short-ranged attractive interaction was modeled with the pair-wise implicit-depletant
potential,

Ua(r, θi, θj,ψ)

ε
=−

∆Vex(r, θi, θj,ψ)

∆Vm
ex

(3)

FIG. 1. A pair of cylinders with L/D = 3, ε1 = 0.1, θ i = θ j = ψ = π/2 and r = 2D.
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where ∆V ex is the excluded volume overlap (for a hard sphere of radius Rg = 0.04D) between two
cylinders, i and j, and ∆Vm

ex is the maximum of ∆V ex over all non-overlapping positions and orien-
tations between a pair of rods. The parameter ε is the scale of the interaction strength. Note that the
potential goes to zero at the interaction center separation cut off distance, rc, when the edges of the
excluded volumes of the particles touch. A physical interpretation of Equation (3) may be obtained
by considering the Asakura-Oosawa depletion force16 induced by a dilute solution of particles with
a packing fraction of φd . The potential energy is given by Ua =−

∆Vex(r,θi ,θj ,ψ)
4
3 πR3

g
φdkBT , where kB is the

Boltzmann constant and T is the temperature. Equation (3) is then obtained when ε is equal to the
maximum of the absolute value of Ua. The algorithm used to compute ∆V ex(r, θi, θj, ψ) is described
in Appendix C. The excluded volume of a particle was approximated by Equation (1) with the size
parameters ai→ ai + Rg, which is accurate for ax� Rg. For ax� Rg, the implicit depletant potential is
more computationally efficient than explicitly simulating the depletant molecules, although there are
alternative methods.58 With this implicit depletion treatment, many-body effects can arise when the
excluded volume of more than two particles overlap,59 but these effects are expected to be small for
ax � Rg.48 This model is amenable to studying systems with attractions that are physically dis-
tinct from the depletant interaction, but are also similarly short-ranged. For example, van der Waals
attractions in colloidal systems (e.g., recently synthesized cylindrical particles43) may be accurately
modeled with this short ranged potential by applying extended corresponding states.60,61

Finally, we include an electrostatic repulsive term, Ue, which we assume to have a Yukawa form
given by

Ue(r, θi, θj,ψ)

ε
=

D
r

e−κ[r−rh(θi ,θj ,ψ)], (4)

where the parameter κD = 104 was chosen such that Ue only contributes over an extremely short
distance of approximately 5D×10−4. Note that this is an approximation of the electrostatic interaction,
where a more rigorous treatment might require accounting for the Gaussian curvature by using
the Derjaguin approximation.51 We note that simulations were also performed without Eq. (4) and
we did not see a difference in the computed properties. This term is relatively insignificant for
the results of this study due to the size of the parameter κD = 104, relative to the strength of the
attractive interactions, which we will discuss quantitatively in the following paragraph. But we used
this term to make the model more amenable to molecular dynamics simulations with continuous
potentials.

Examples of the potential energy as a function of center-center distance for four different relative
orientations are shown in Figure 2. Additionally, examples of the distance between centers at contact,

FIG. 2. The total potential energy between a pair of cylinders with aspect ratio of L/D = 3 and short-ranged attractions,
Rg/D = 0.04, as a function of the separation distance of the centers for a few orientations. Letter-coded labels refer to structures
shown in Figure 3.



095210-5 Hatch et al. AIP Advances 8, 095210 (2018)

FIG. 3. Example configurations of pairs of cylinders with aspect ratio of L/D = 3 and the following relative positions:
(a) cos θ i = cos θ j = 0, and cos ψ = ±1, resulting in rh = D and Ua/ε = −1 (b) cos θ i = cos θ j = 0.2, and cos ψ = −1, resulting
in rh = 1.02062D and Ua/ε = −0.952 (c) cos θ i = cos θ j = 1, resulting in rh = 3D and Ua/ε = −0.965 and (d) cos θ i = 0.98,
cos θ j = 0.2, and cos ψ = 1, resulting in rh = 2.04156D and Ua/ε = −0.464.

rh(θi, θj, ψ), and the attractive interaction at contact, Ua(rh, θi, θj, ψ), are provided in Figure 4, with
sample configurations shown in Figure 3. The configuration where the cylinders are parallel and the
axes of symmetry lie in a plane is given by cos θi = cos θj = 0 and cos ψ = 1. As shown in Figure 4
and illustrated in Figure 3(a), this configuration is highly favorable. Also note, in the context of the

FIG. 4. (top) The center separation distance of a pair of cylinders at hard contact, rh, for L/D = 3 and (top left) cos ψ = −1,
or (top right) cos θ j = 0.2. Letter-coded labels refer to structures shown in Figure 3. (bottom) The short-range attractive
interaction, Ua, at the center separation distance of a pair of cylinders at hard contact, rh, for L/D = 3 and (bottom left) cosψ =−1,
or (bottom right) cos θ j = 0.2.
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FIG. 5. The maximum excluded volume overlap, ∆Vm
ex , as a function of the aspect ratio, L/D. The solid line is a linear fit for

aspect ratios L/D ≥ 3, with a resulting slope of 0.021 and zero intercept on the ordinate axis, and the dashed line is a linear fit
for aspect ratios L/D ≤ 2, which intersects at L/D = 2.9.

relative insignificance of Eq. (4) discussed in the previous paragraph, the softness introduced by this
term is visually imperceptible and the potential well reaches very nearly a value of −ε because the
contribution of Eq. (4) is relatively small compared to the contribution of Eq. (3). The cylinders may
also tilt slightly, as shown in Figure 3(b) and still interact favorably. In addition, because the ends of
the cylinders are relatively flat, the attraction of the flat ends, as illustrated in Figure 3(c), is nearly
as strong as the parallel configuration shown in Figure 3(a), for an aspect ratio of about L/D ≈ 3.
As shown in Figure 5, ∆Vm

ex increases linearly with L/D for aspect ratios of L/D ≥ 3, because the
overlap volume in the parallel configuration grows with the length of the cylinder. Note that the slight
decrease in ∆Vm

ex shown in Figure 5 for L/D ≤ 3 is controlled by ε1 = 0.1. The curvature at the ends of
the cylinders gradually increases with length, which leads to a slight decrease in end-end attraction
as length increases.

The interaction potential used here requires the calculation of two computationally expensive
quantities, rh and ∆V ex. The latter is significantly more expensive than the former, and it is not
computationally viable to calculate ∆V ex on-the-fly. It follows that any effort to speed up simulations
of these types of systems should focus on speeding up ∆V ex. Thus, we have adopted to tabulate these
interactions as described in Appendix A. Even during the tabulation process, the time to calculate rh

is negligible to that of∆V ex. The multi-dimensional tabulation of the anisotropic potential accelerated
the simulation by pre-computing these computationally expensive quantities described above over a
range of relative positions and orientations, and then interpolating from the stored values during the
course of the simulation.

III. SECOND VIRIAL COEFFICIENT

The second virial coefficient is a useful measure of the relative balance of repulsive and attrac-
tions. It is also the central quantity of interest in applying extended corresponding states to compare
results obtained from different computational models or experimental measurements. The second
virial coefficient, B2, for solids of revolution is given by62,63

B2(βε)= −
1
4

∫ π

0
dθi

∫ π

0
dθj

∫ 2π

0
dψ

∫ ∞
0

f (r, θi, θj,ψ, βε)r2 sin θi sin θjdr, (5)

f (r, θi, θj,ψ, βε)= e−βU(r,θi ,θj ,ψ,ε ) − 1, (6)

where β = 1/kBT and the definitions of the relative orientation variables are described in Section II and
Figure 1. In practice, the virial coefficients were computed via Eq. (5) by numerically integrating the
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FIG. 6. The second virial coefficient, B2, of hard cylinders (βε = 0) as a function of the aspect ratio, L/D. The line is
Bfit

2 = 0.773 + 2.22L/D + 0.629(L/D)2. The error bars for this Figure, and all remaining figures, show the standard deviation
of 3 independent simulations. Error bars are smaller than the size of the symbols and are not visible in this Figure.

tabular potential, as described in Appendix D. The second virial coefficient was split into contributions
from the hard particle potential, Uh, and the continuous potential, Ua + Ue, such that B2 =Bh

2 + Bae
2 .

The second virial coefficients for hard cylinders with no attractions (i.e., βε = 0) are shown
in Figure 6. These hard-particle virial coefficients are expected to increase with the volume of the
particle, here determined by L. Comparing with theoretical calculations for hard spherocylinders,64

there is expected to be a L2 dependence, as appears to be the case in Figure 6. Second virial coef-
ficients for cylinders with various aspect ratios as a function of the interaction strength, βε , are
shown in Figure 7. As the attractive interaction is increased, the virial coefficients become nega-
tive. Note that the dependence of B2 with respect to the aspect ratio follows a similar trend to ∆Vm

ex
(see Figure 5).

The theta solvent condition, B2(βεθ ) = 0, is a convenient parameter to characterize the various
shapes, and is shown in Figure 8 and Table I. In practice, the theta solvent condition was obtained by
computing B2 over a large range of values of βε with a spacing of 5 × 10−4. The reported value for
βεθ is the average of the following two values of βε : the maximum βε for which B(βε) > 0, and the

FIG. 7. The second virial coefficient, B2, as a function of the interaction strength, βε , for integer value aspect ratios in the
range L/D ∈ [1, 8].
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FIG. 8. The theta solvent condition, B2(βε θ ) = 0, is shown as a function of aspect ratio, L/D.

TABLE I. Properties of cylinders as a function of the aspect ratio.

L/D Vp/D3 ∆Vm
ex/D

3 βε θ

1 0.779585 0.06712 15.96(6)
2 1.55918 0.06388 15.31(6)
3 2.33877 0.06378 14.45(6)
4 3.11837 0.08448 16.15(8)
5 3.89797 0.10535 16.8(1)
6 4.67758 0.12603 17.3(1)
7 5.45717 0.14671 17.4(1)
8 6.23672 0.16739 17.6(2)

minimum βε for which B(βε) < 0. The reported error for βεθ is the difference between these two
values.

The theta solvent condition, B2(βεθ ) = 0, may be used to identify a cross over from end-end
dominant attractions to side-side dominant attractions at approximately L/D = 3, as seen in both
Figure 5 and 8. For aspect ratios L/D < 3, βεθ decreases because the end-end contact interaction
dominates energetically, and the end-end contact depends slightly on L/D, as discussed previously in
Section II for Figure 5. For aspect ratios L/D ≥ 3, as the aspect ratio increases, βεθ increases toward an
asymptotic value. The location of this cross over depends on both the shape of the end of the cylinder,
and also the interaction range, Rg. For the remainder of this work, we focus on cylindrical shapes
with 3 ≤ L/D ≤ 8, because a thorough study of particle shapes with end-end dominant interactions
and the effect of end-shape is beyond the scope of this study. In addition, the focus of this work is on
aspect ratios of cylindrical particles that were recently synthesized.43

IV. WANG-LANDAU MONTE CARLO SIMULATIONS IN AN EXPANDED ENSEMBLE

Computer simulations employing specialized techniques to sample highly-attractive and short-
ranged interactions are used to investigate packing, non-equilibrium gelation and macroscopic phase
separation of the cylindrical particles. Wang-Landau (WL) sampling is a flat-histogram method used
to obtain the probability distribution function of some specified order parameter. By setting the order
parameter to βε , the expanded ensemble65,66 effectively functions as parallel tempering aided by the
flat-histogram methods to enhance sampling of transitions with large energy barriers. Note that in this
work, the attraction strength, βε , is trivially related to the temperature, and therefore the expanded
ensemble in βε is analogous to the temperature expanded ensemble. Wang-Landau Monte Carlo with
an expanded ensemble in attraction strength enhances sampling of transitions between macroscopic
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phases and microscopic structural changes.48 In addition, specialized Monte Carlo trials are utilized
to enhance sampling of clusters which are expected to form due to the strongly attractive interactions.
These simulations were conducted using the FEASST simulation package.67

The following Monte Carlo trials were employed. Translations and rotations of particles were
attempted with equal probability. For expanded ensemble simulations, βε , was increased or decreased
by a fixed amount, ± δ βε , subject to Metropolis acceptance criteria. Collective trial moves were also
implemented to facilitate convergence in systems with short-ranged attractions that self-assemble.46,68

This included rigid-body translations and rotations of clusters, where clusters were defined as all
particles with excluded volume overlap, rh(θi, θj, ψ) < r < rc(θi, θj, ψ), with at least one other
particle in the cluster, obtained via a recursive flood-fill algorithm. To obey detailed balance, cluster
moves resulting in a particle joining a different cluster were rejected.

The geometric cluster algorithm (GCA) was also used.46,69,70 The GCA is a rejection-free algo-
rithm that collectively moves particles, and results in better sampling of clusters of particles than
traditional single particle moves. The algorithm proceeds as follows. A particle and a pivot point in
space are randomly selected, and the particle is reflected about the pivot. All other particles which
interact with the pivoted particle, in both the old and newly pivoted positions, are then attempted to
be pivoted with a probability related to the pair interaction energy between the two particles. Each
attempted pivot was carried out recursively until all the interacting particles were attempted to be
pivoted. To avoid inefficient moves involving most of the particles in the system, the pivot point was
confined to a cubic box centered on the first randomly selected particle. The size of this bounding
cubic box was tuned during the course of the simulation in order to obtain an average target number
of particles involved in a pivot, set to Np/5, where Np is the maximum number of particles in the
simulation. While the rigid cluster moves could not create or destroy clusters due to detailed balance,
the GCA does not suffer from this limitation. For anisotropic particles, pivots about a point, as imple-
mented in this work, result in reflections of the particle orientation, and cannot sample all particle
orientations without other Monte Carlo trials (e.g., rigid body single-particle and cluster rotations).
Note that this is not a deficiency of the GCA method, because particle reflections about a plane and
line may be used to sample arbitrary orientations.71

The weights for the probability of selecting each trial type are provided in Table II. For each
Monte Carlo trial that involved movement of particles, the parameter associated with the maximum
change was optimized, via a 5 % change every 106 trials, to yield approximately 25 % acceptance of
the trial move.

Simulations were conducted for aspect ratios of L/D = [3, 4, 5, 6, 7, 8] and 15 different volume
fractions in the interval φ = [0.05, 0.225], with a spacing of 0.0125. The initial configuration was
generated by grand-canonical insertion of Np particles in a cubic domain of edge length lb/D = 20
with periodic boundary conditions in order to obtain a given particle volume fraction, φ, rounded to
the nearest particle number. Note that volume fractions were computed using particle volumes given
in Table I, which were calculated as described in Appendix C. The Wang-Landau update factor, lnf,
was initially set to unity, and was multiplied by 0.5 whenever the flatness criteria of 80 % was met.
See Appendix A of Ref. 72 for implementation details of WL. The simulations were then equilibrated
with 2.5 × 108 Monte Carlo trial moves, or 10 update factor reductions (i.e., lnf < 10−6). Follow-
ing this equilibration, quantities of interest were averaged, and configurations were stored every
106 trials until at least 14 Wang-Landau flatness conditions were met, although some simulations
reached over 37. Each simulation consisted of (3 - 50) × 109 Monte Carlo trials, depending on the
conditions, and were run for well over a month of computer time. Expanded ensemble simulations

TABLE II. Monte Carlo trials and relative weights for the probability of selection.

trial weight

single-particle translation or rotation 5
cluster translation or rotation 1/5Np

geometric cluster algorithm 1/Np

βε change 1/100
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were conducted for a range of βε in the interval [0.001∆Vm
ex/(4πR3

g/3), 0.201∆Vm
ex/(4πR3

g/3)], using
increments of δ βε = 0.004∆Vm

ex/(4πR3
g/3). In order to estimate the standard deviation, all simulations

were conducted with 3 identical, independent replicas with different random number seeds. Note that
these simulations were well equilibrated and reproducible due in large part to the expanded ensem-
ble flat histogram sampling. Over the course of each simulation, which consisted of 3 - 50 billion
Monte Carlo trials, we observed that the system was able to sample fluidly over the range of attrac-
tion strengths, indicating that freezing did not occur. Additional simulations were conducted for
lb/D = 10 and 15 to test the system size dependence of the calculated properties discussed below.

V. SMALL-ANGLE SCATTERING INTENSITY AND STRUCTURE FACTOR

Small-angle scattering experiments are able to probe short-to-intermediate length scale struc-
tures. As such, it is useful to compare the simulations of our model with experiments in order to
validate the model and also aid in the interpretation of the experimental results. In order to compare
the model and simulations with small-angle X-ray or neutron scattering experiments, as related to the
recent experimental synthesis of cylinders and scattering measurements,43 the scattering intensity,
I(q), was obtained as the three-dimensional numerical Fourier transform of the scattering density,
ρ(r), averaged over all orientations, Ω,73,74

I(q)=

〈�����

∫
V
ρ(r)e−iq ·rdr

�����

2〉
Ω

. (7)

The scattering density was discretized on a grid with 256 elements along each dimension. For each
particle, the center point was used to initialize a flood-fill algorithm to fill the spatial grid with scatters
if the center point of the grid was inside the particle. The software package FFTW375 was utilized
to compute the discrete three-dimensional Fourier transform. Note that discrete Fourier transforms
of ρ(r) naturally take into account the periodicity of the simulation domain. The complex conjugate
was then averaged over many uncorrelated configurations stored during the course of the simulations.
Orientational averaging of the intensity, I(q), was performed with channel sharing.73 The effective
structure factor was obtained by dividing the intensity by the number of particles and by the form
factor, which mimics traditional experimental practices. The form factor was computed as the intensity
from a single-particle simulation with the same spatial grid resolution.

A comparison between the scattering intensity of experiments and simulations is shown in
Figure 9 for an aspect ratio of L/D = 4 and a volume fraction of φ = 0.11 for experiments and

FIG. 9. A comparison between scattering intensity from experiment43,52 for (black dotted line) USAXS and (red dashed line)
USANS at 15 ◦C, L/D = 4 and φ = 0.1125, and simulations shown by the solid lines for varying values of attractive strength,
βε . The experimental scattering intensity was manually shifted by a constant value for comparison.
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FIG. 10. The effective structure factor is shown as a function of qD for an aspect ratio, L/D = 4, and various attraction
strengths, βε , and volume fractions, φ.

φ = 0.1125 for simulations. To facilitate comparison with experimental scattering intensity results,43

smearing functions were utilized to represent the aperture of the instrument and the polydisper-
sity,76,77 as described in Appendix E. There is deviation between the experiments and simulations
at the lowest qD value calculated, but this is expected due to finite size effects of the simulation
periodic boundary conditions. In addition, small differences observed for qD values above an approx-
imate value of 7 arise from polydispersity of the rods, which were only qualitatively accounted
for by smearing the intensity of the monodisperse simulations. In addition to polydispersity, other
deviations between experiment and simulation may be due to the approximate modeling of the
attractive interactions, which are due to the polymer brush in experiment. This comparison allows
us to qualitatively relate the attractive strength, βε , of the simulations to the temperature in the
experiments.

The effective structure factor is shown in Figure 10 for an aspect ratio, L/D = 4, and various
attraction strengths, βε , and volume fractions, φ. As the attractive strength increases, well defined
peaks appear in the structure factor, and the low-qD values increase. Structure factor values which
exceed unity at the low-q values (i.e., the largest length scales) are typically associated with macro-
scopic phase separation, cluster formation or aggregation.78,79 Here, the smallest q value attainable is
qD = 4π/lb, where lb is the side length of the cubic simulation box. The structure factor for the smallest
qD values are summarized in Figure 11 for L/D = 4. At low attraction strength, βε , Seff (4π/lb) is less

FIG. 11. The value of the effective structure factor at the smallest accessible value of qD = 4π/lb is shown for various attraction
strengths, βε , volume fraction, φ, and L/D = 4. In addition, the dashed black line shows where Seff = 1.
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FIG. 12. The loci of points where Seff (qD = 4π/lb) = 1 is shown for a given aspect ratio, L/D, attraction strength, βε , and
volume fraction, φ.

than unity, but increases with increasing βε . The value of βε at which Seff (4π/lb) = 1 tends to increase
with increasing packing fraction, φ. The increase of Seff (4π/lb) upon decreasing density could be an
indication that the fluid is metastable with respect to the solid. We do not impose a constraint which
forbids the formation of the solid, as previously used in computations with the adhesive hard sphere
model.80 This is why we do not report on the critical temperature as a function of aspect ratio, as
has been studied previously for ellipsoids with an order of magnitude longer range attraction.81 As
noted previously, our flat-histogram simulations sampled a wide range of attraction strengths without
any difficulties, consistent with the avoidance of the stable solid phase. The low-q Seff results for
cylinders with other aspect ratios are summarized in Figure 12, where we plot the attraction strength
corresponding to Seff (4π/lb) = 1 for a cylinder of given L/D and packing fraction, φ. An interesting
trend that can be gleaned from Figure 12 is that cylinders with smaller aspect ratios tend to exhibit
low-q structure factors greater than unity more readily than higher aspect ratio cylinders. Analysis of
the peaks in the structure factor may be aided by computation of clustering and orientational order,
which is presented in the following section.

VI. CLUSTERS, ORIENTATIONAL ORDER AND PERCOLATION

In the final results section of this manuscript, a detailed analysis of the clustering, percolation
and orientational order of the attractive cylinders is presented. In particular, two different measures of
clustering will be shown. The first is the average coordination number, nc, which is a local quantity that
depends on the nearest neighbors. The second is the probability of connectivity percolation, which
is a global quantity that encompasses the entire simulation box, and has been previously shown to
be relatively system size independent at the point of 50% probability40 and verified for a few of our
simulations. In addition, a local and global measure of orientational order will also be shown. The
local measure is the angle between axes of revolution of nearest neighbors, and the global measure
is the nematic order parameter.

Rigidity percolation has been proposed to occur at 〈nc〉 = 2.4,82 which has been shown previ-
ously to indicate gelation and dynamical arrest in isotropic model systems.39,42 The coordination
number, nc, was computed as the average number of particles, denoted by i, whose exclusion volume
overlaps with a central common particle, denoted by j,i (e.g., when rh(θi, θj, ψ) < r < rc(θi, θj, ψ)).
As shown in Figure 13 for L/D = 4, the coordination number increases with increasing attractive
strength, βε , as expected. For low attraction strengths, when nc / 2.4, the coordination number tends
to increase with volume fraction; however, this trend reverses when nc ' 3. Figure 14 shows the
distributions of nc at conditions where the average, 〈nc〉 ≈ 2.4. Because the overall shape of these
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FIG. 13. The coordination number for a given interaction strength, βε , particle volume fraction, φ, and aspect ratio,
L/D = 4. The black, dashed line shows a coordination number of 2.4.

distributions resemble those of previously published spherical particles,39 the underlying physics of
rigidity percolation in the different systems could be similar. However, a more detailed compari-
son with the distributions in the literature is complicated by the difficulty in finding the conditions
where nc = 2.4, precisely. An example configuration of the cylinders with 〈nc〉 = 2.4 is shown in
Figure 15 for L/D = 4, φ = 0.1125 and βε = 15.44. Figure 16 shows that the attraction strength, βε ,
at which 〈nc〉 = 2.4, increases with increasing aspect ratio, L/D. In addition, the attractive strength
corresponding to 〈nc〉 = 2.4 tends to decrease with increasing volume fraction. Also notice that a
coordination number of 2.4 can be found at all packing fractions, even when the packing fraction
is too low to allow percolation. This is due to the formation of clusters. The coordination num-
ber criterion for rigidity percolation should be used with some caution for freely diffusing particle
systems.

Percolation of clusters also serves as an important metric for relating structural quantities to
dynamical arrest. Clusters of particles were defined as all particles with overlap of their excluded
volumes, rh(θi, θj, ψ) < r < rc(θi, θj, ψ), with at least one other particle in the cluster, obtained via a

FIG. 14. The probability distribution of coordination number, nc, at the value of βε nearest an average coordination of 2.4,
for (blue square) L/D = 4, φ = 0.1125, βε = 15.44, where nc = 2.86 (orange x) L/D = 4, φ = 0.2125, βε = 12.92, where
nc = 2.6 and (green +) L/D = 8, φ = 0.1125, βε = 20.6, where nc = 2.58.
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FIG. 15. Cylinders colored on a red-green-blue gradient according to the number of cylinders in a cluster with L/D = 4,
φ = 0.1125 and βε = 15.44. The average coordination number is 2.4. The periodic boundaries are shown in gray.

recursive flood-fill algorithm. A cluster was considered percolated if the particles in the cluster were
connected to their own periodic images.40 The percolation of clusters of cylindrical particles was
investigated as a function of the interaction strength, βε , the particle volume fraction, φ, and aspect
ratio, L/D. In Figure 17, we plot the percolation probability for L/D = 4. As the volume fraction, φ,
and interaction strength, βε , increase, the probability of percolation increases. The point at which
there is a 50 % probability of percolation was shown to be system size independent in Ref. 40 and
verified for a few of our simulations (not shown). Figure 18 shows that the attraction strength, βε ,
corresponding to 50 % percolation probability generally increases with aspect ratio, and decreases
with packing fraction. There is a minimum packing fraction below which percolation does not
occur.

The orientation of the rods was investigated with two different order parameters. One measure is
the angle between the axes of revolution, denoted by θ, between neighboring particles with excluded
volume overlap, rh(θi, θj, ψ) < r < rc(θi, θj, ψ). Thus, this is a measure of local orientational
order. The absolute value of the cosine of this angle, | cos θ|, is unity for parallel configurations,

FIG. 16. The loci of points where the coordination number is 2.4, for a given interaction strength, βε , particle volume fraction,
φ, and aspect ratio, L/D.
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FIG. 17. The probability that there is a percolated cluster for a given interaction strength, βε , particle volume fraction, φ,
and aspect ratio, L/D = 4. The black, dashed line shows the 50 % probability.

and the ensemble average of this quantity, 〈| cos θ|〉, has an average expectation value of 0.5 for
random orientation.74 As shown in Figure 19, the local orientational order increases with attractive
strength, βε , and slightly decreases with packing fraction, φ. This trend for 〈| cos θ|〉 is very similar
to that observed for the coordination number in Figure 13, because similar physical mechanisms
dictate the behavior of both of these local ordering measures. For L/D = 4, 〈| cos θ|〉 does not reach
unity even for high attractive strengths, βε . Although the parallel orientation is strongly favored, a
perpendicularly-oriented cylinder may interact favorably with a cluster of parallel cylinders which
present an approximately flat face.

In addition, the nematic order parameter was computed as the largest eigenvalue of the tensor
Q = (2N)−1 ∑N (3uiui −I).40 The nematic order parameter is unity when rods are fully aligned, and
zero in a perfectly isotropic fluid. Figure 20 shows that the nematic order parameter rarely reaches
a value above 0.5. Nematic order decreases with packing fraction because the glassy and gel-like
configurations are less likely to sample the states with global orientational order. Furthermore, for
larger aspect ratios, particles are more likely to orient globally.

FIG. 18. The loci of points when there is a 50 % probability that a cluster is percolated, for a given interaction strength, βε ,
particle volume fraction, φ, and aspect ratio, L/D.
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FIG. 19. The ensemble average of the absolute value of the cosine of the angle between axes of revolution of rods with
surfaces within a distance 0.08D as a function of interaction strength, βε , particle volume fraction, φ, and aspect ratio, L/D.

FIG. 20. The nematic order parameter is shown at the highest attractive interaction strength investigated as a function of
particle volume fraction, φ, and aspect ratio, L/D.

VII. CONCLUSIONS

The structural properties of cylindrical particles with short-range attractions were investigated
using Wang-Landau Monte Carlo computer simulations over a wide range of attraction strengths,
volume fractions and aspect ratios. The second virial coefficients were calculated for different aspect
ratios and attraction strengths. Interestingly, B22 exhibits a crossover from end-end dominant attrac-
tions to side-side dominant attractions as a function of L/D. The scattering intensity compared well
with experiment, and the low wave-number effective structure factor provides a useful measure for
the structure of the cylinders. The conditions where percolating clusters form were investigated with
two independent measures: connectivity of the clusters across periodic boundaries and also 2.4 coor-
dination number, which has been related to rigidity percolation.82 The orientations of the rods were
also investigated with two different measures. First, the relative orientation of the axes of symme-
try of neighboring particles, which is a local measure of orientational order, was reported. Then,
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the nematic order parameter was also shown, and this is a global measure of orientational order.
These measures suggest the rods may possess orientational order at length scales corresponding to
nearest-neighbors, but the global orientational order of the entire system rarely, if ever, reaches a
full nematic phase. Instead, small crystallites with local order pack together into more disordered
configurations.

This manuscript lays the groundwork for more detailed comparisons with experimental results
of the gelation line in the temperature-packing fraction projection of the phase diagram obtained
from recently synthesized cylindrical particles.43,44 In particular, a method has been developed to
collapse this gelation line with respect to aspect ratio.52 This method involves fitting the structure
factor to a model for an adhesive hard sphere in order to quantify the temperature of gelation for
general potentials and models.

Other future work includes a more thorough analysis of particles with L/D < 3, where end-end
interactions become dominant. For example, one interesting phenomena observed at L/D = 1 was that
the particles stacked into larger cylinders which resembled the rouleaux of red blood cells.83 Finally,
the methodology for efficiently simulating particles according to the superquadric equation will be
used to investigate the phase behavior of a variety of different anisotropic-shaped particles in future
studies.
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APPENDIX A: TABULAR POTENTIAL

The tabular potential was constructed to obtain, rh(θi, θj, ψ), rc(θi, θj, ψ) and Ua(r, θi, θj, ψ)
efficiently during the course of the simulation, as described in Section II, where rc is the center
separation distance at which the edges of the excluded volumes of the particles touch. The construction
of the tabular potential is similar to that described in the Appendix of Ref. 48 for two dimensional
particles. In this work, the algorithm to find the contact distance, as described in Appendix B, also
returned the surface point which was closest to the contact. This surface point was subsequently used
to obtain the initial voxel of the recursive flood-fill algorithm to compute the overlap volume, as
described in Appendix C, over the range of nz + 1 values of z= r−rh

rc−rh
, z ∈ [0, 1].

In this work, the tabulated angles were evenly spaced over cos θi, cos θj and cos ψ, in order to
avoid the arccos operation during the simulation. Because the shapes are symmetric about the plane
which possesses the center point and is perpendicular to the axis of symmetry, negative values of cos
θ did not need to be tabulated, and cos θ ∈ [0, 1] over a range of k + 1 evenly-spaced values. No
symmetry operation on ψ was necessary because cos ψ ∈ [−1, 1] over a range of 2k + 1 evenly-spaced
values. Nearly half of the possible combinations of cos θi and cos θj may be ignored by swapping
i and j if cos θi > cos θj, which is also required for unique computation of the potential energy
due to the randomness in Monte Carlo integration. In this work, k = 150, which was shown to be
sufficient in Ref. 48 and resulted in 6 863 101 tabulated orientations. As a measure of the expected
error in the tabular potential due to Monte Carlo integration, two tables with identical parameters,
and L/D = 3, but different random number seeds were compared. The square root of the sum of the
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squared difference of Ua(rh)/ε was 4 × 10−5, and these squared differences did not vary greatly with
orientation. During the course of the simulations, values of rh, rc and Ua are obtained for arbitrary
orientation by multi-dimensional linear interpolation. Example two-dimensional slices of the tabular
potential are shown in Figure 4. In addition, with nz = 4, the tabular potential stores in less than
1 gigabyte of memory. This smaller value of nz was used to capture the qualitative shape of the
implicit-depletant potential, but more precision was not necessary when one intends to use extended
corresponding states to compare with experiments, by matching second virial coefficients between
models and experiments.

APPENDIX B: HARD CONTACT

The following algorithm used to obtain the distance between centers at hard contact is less efficient
than alternative algorithms.54,55 But the efficiency of this algorithm is not an issue for two reasons.
First, this algorithm is not utilized during the simulations because the tabular potential described in
Appendix A requires these contact distances to be computed only once before the simulations begin.
Second, the bottleneck in the interaction between the particles is the attractions, and not the hard
contact.

The distance between the centers at hard contact is obtained by decorating the surface of the
particles with many points, and checking whether those surface points overlap with the other particle.
For a given relative orientation, rh(θi, θj, ψ) is obtained by incrementally moving a particle center by
an amount δ until the overlap status changes, and then halving δ and changing its sign, until δ ≤ 10−15.
Surface points are obtained by solving the implicit equation, Equation (1) in evenly-spaced grids for
two of the three independent variables for the following three cases: the x-y plane, the x-z plane, and
the y-z plane. Each of these grids was of size (ns + 1, ns + 1) and spanned the range of the respective
size parameter “a” for the relevant dimension. In addition, the parametric equations with longitude
and latitude parameters and a similar-sized grid, was also used to obtain a fourth set of surface points.
Combining these four cases ensures that there are no large gaps in coverage of the surface. In this
work, ns = 100, which resulted in 64 838 points for the cylinders, and 57 046 for a sphere, because
the edges of the Cartesian planes may have no solution for Equation (1).

The number of surface points was tested by the convergence of the contact function of two spheres
of unit diameter (ax = ay = az = D/2 and ε1 = ε2 = 1) for 57 046 orientations. Because each sphere
was represented by a mesh of surface points, each orientation may deviate from the theoretical center
separation distance of unity, and these deviations diminish as the number of surface points increase,
as shown in Appendix D. The square of the deviations for each orientation was summed and plotted

as a function of ns. Convergence was assessed by the quantity σr =

√∑N=57046
i (1/N)(rh(i) − 1)2,

which is the standard deviation from the theoretical result. As shown in Figure 21, the contact
function calculation with ns = 100 represents a sphere within a standard deviation of approximately
3.4D × 10−5.

FIG. 21. Convergence of the number of surface points for a sphere, ax = ay = az = 0.5 and ε1 = ε2 = 1 averaged over 57 046
orientations.
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APPENDIX C: OVERLAP VOLUME

The following algorithm was used to compute the overlap of the excluded volumes of two particles
during the tabulation of the potential before the simulations were run, as described in Appendix A.
Because this algorithm is not used during the course of the simulations, the efficiency of the algorithm
is not the simulation bottleneck as long as the tabular potentials do not take too long to compute for
a given pair of shapes. Here we used a combination of a recursive flood-fill algorithm and Monte
Carlo integration. In this algorithm, space is divided into a grid of voxels with side length of d3 . To
begin, a voxel is selected which is known to contain an overlap. Determining this voxel is described
more in the following Appendix A on construction of the tabular potential. This selected voxel, and
all neighbors of this selected voxel are then subject to Monte Carlo integration with nt random test
points. A test point is inside a shape described by Equation (1) if the “inside outside” function, which
is the left hand side of Equation (1), is less than or equal to unity. For each test point, if the point
is inside both shapes, then there is overlap at that point. The volume of overlap within the voxel is
determined by the number of test points which are inside the overlap. For each voxel that is computed
by Monte Carlo integration and found to have overlaps, all neighbors of that voxel are then considered
for Monte Carlo integration recursively. This algorithm applies to pairs of concave shapes which are
ensured to have a single contiguous region of overlap.

The parameters for the overlap volume are now compared with theory for the spherical case.
The accuracy of the overlap volume is determined by the average density of test points, here given by
nt/d3

3 . The number of test points in a voxel, nt , is chosen to be the smallest value with no appreciable
overhead cost for the flood-fill algorithm. For example, if nt is too small (e.g., nt = 1) then the
algorithm slows down, for a given average point density, due to increased memory to store the voxels
for the flood-fill algorithm. But if nt is too large, for fixed point density, then the flood fill algorithm
is not fully utilized. The side length of the voxel, d3 , was tested against the overlap of two contacting
spheres with diameter of 1.08 and a center separation of 1 averaged over 57 046 realizations of
random numbers. Theoretically, the overlap volume is known to be given by Vo = π(2R − d)2

(d + 4R)/12 for two equal-sized spheres of radius R = 0.54D and separation distance d = D. Thus,

convergence may be assessed by the quantity σV =

√∑N=57046
i (1/N)((V (i) − Vo)/Vo)2, which may

be thought of as the percent standard deviation. As shown in Figure 22, σV reaches a plateau that
depends on the number of surface points, ns. This plateau occurs when the relative precision of the
contact function due to ns becomes higher than the precision due to d3 . For the simulations of the
cylinders, d3 = 0.05D and nt = 512, which has a similar point density as d3 = 0.03D and nt = 128
for the sphere case, where overlap volumes were computed within an average precision lower than
0.01 percent.

The volume of a single particle, Vp, was computed by the same algorithm as described here, with
nt = 105 and d3 = 0.06D. The resulting values of Vp, reported in Table I were utilized to determine
volume fractions. Note that, with ε1 = 0.1, the volumes of the cylinders are within 0.74 % of the
expected cylindrical volume of Vp/D3 = L

D
π
4 .

FIG. 22. Convergence of the voxel side length, d3 with nt = 128 for a sphere, ax = ay = az = 0.54 and ε1 = ε2 = 1 for (red +)
ns = 50 and (black x) ns = 100.
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APPENDIX D: COMPUTATION AND CONVERGENCE OF THE SECOND
VIRIAL COEFFICIENT

The tabulated interaction described in Appendix A can be used directly to calculate the second
virial coefficient, B2, using Equation (5). Note that the tabulated potential applies to solids of rev-
olution possessing an axis of rotational symmetry and a plane of symmetry at the center point and
perpendicular to the axis of symmetry. In other words, we use the following

∫ π

0
f sin θdθ = 2

∫ π/2

0
f sin θdθ, (D1)

∫ 2π

0
fdψ = 2

∫ π

0
fdψ. (D2)

The tabular potential described in Appendix A may be conveniently integrated according to this
equation with some changes of variables. In particular,

∫ π/2

0
f sin θdθ =

∫ 1

0
fd(cos θ), (D3)

∫ rc

rh

f (r, . . .)r2dr =
∫ 1

0
f (z, . . .)r2(rc − rh)dz, (D4)

where z= r−rh
rc−rh

and rc is the center separation ”cut off” distance at which the edges of the excluded
volumes of the particles touch. Note that no change of variable for ψ was used to avoid numerical
instabilities due to a singularity. In addition, the second virial coefficient was split into contributions
from the hard particle potential, Uh, and the continuous potential, Ua + Ue, such that B2 =Bh

2 + Bae
2 .

For the hard particle contribution,

∫ ∞
0

f h(r, θi, θj,ψ, βε)r2dr =−
1
3

rh(θi, θj,ψ)3, (D5)

where f h = e−βUh
−1. Thus, the second virial coefficient contribution from the hard particle potential,

Bh, is obtained by substitution of Equations (6), (7), (D1)–(D3), and (D5) into Equation (5),

Bh
2 =

2
3

∫ 1

0
d(cos θi)

∫ 1

0
d(cos θj)

∫ π

0
rh(θi, θj,ψ)3dψ. (D6)

The second virial coefficient contribution from the continuous interaction, Bae
2 , is obtained by

substitution of Equations (6), (7), (D1)–(D4) into Equation (5),

Bae
2 (βε)= −2

∫ 1

0
d(cos θi)

∫ 1

0
d(cos θj)

∫ π

0
dψ

∫ 1

0

f (z, θi, θj,ψ, βε)r2(rc − rh)dz. (D7)

The numerical integration was then performed using a multi-dimensional trapezoidal rule, which is
expected to converge well for periodic functions. Because z is tabulated with lower resolution than
θ and ψ, the resolution of z used to perform the integration was increased by a factor of 100 with
respect to the resolution of the tabular potential. To show that nez = 100 is sufficient, the second virial
coefficient was computed for a number of interpolated values in z, nez, as shown in Figure 23. Direct
integration of the table is expected to be more efficient than Monte Carlo integration (e.g. Ref. 48)
because a very small portion of configuration space contributes significantly, especially at relatively
high values of βε and L/D.
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FIG. 23. The second virial coefficient of a cylinder with L/D = 3 as a function of interaction strength, βε , for the following
values of nez: (dashed blue line) 1, (dotted green line) 10, (solid red line) 100 and (black points) 1000.

APPENDIX E: SMEARING OF THE SCATTERING INTENSITY

For slit aperture smearing,

Is(qi)≈
N−1∑
j=i

[√
q2

j+1 − q2
i −

√
q2

j − q2
i

]
I(qj) (E1)

≈

N−1∑
j=i

WijI(qj) (E2)

where W ij = 0 when qj+1 − qi > ∆q = 0.117Å−1. See the SASVIEW 4.1.2 manual77 for derivation of
the above equation in the smearing functions section. Using a diameter of 2610Å for comparison to
the experimental system,43 ∆qD = 305.37.

For polydispersity smearing, we assume that the diameter of the cylinder follows a Gaussian
function and that the scattering intensity scales with the diameter of the cylinder. This assumes that
the length and the diameter are correlated and follow the same distribution and that the polydispersity
has no effect on the relative packing of all the cylinders. Following these assumptions, the smeared
intensity is given by

Is(qi)=
∫ ∞

0

1√
2πσ2

q

exp

−

(Di − Dj)2

2σ2
q


I(qj)dDj, (E3)

where qjDj = qiD. In order to implement this polydispersity smearing on the simulation data, the
integration variable is changed from Dj to qj and converted to a summation. In addition, the Gaussian
width parameter, σq, was truncated at 3σq. Finally, the Gaussian width parameter was normalized
such that σq = ∆qDj, where ∆q = 0.135. Note that we normalize by Dj instead of D so that the
discretized Gaussian kernel width does not depend on qj. The working equation is given by

Is(qi)≈
N−1∑
j=i

exp

−

(qi − qj)2

2(qi∆q)2



qi

qj
I(qj). (E4)

In order to apply the smearing kernel at the minimum and maximum q values, I(qj) was extended
assuming it was constant.
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40 T. Schilling, S. Jungblut, and M. A. Miller, Phys. Rev. Lett. 98, 108303 (2007).
41 T. Schilling, S. Dorosz, M. Radu, M. Mathew, S. Jungblut, and K. Binder, Eur. Phys. J. Spec. Top. 222, 3039 (2013).
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81 S. Varga, E. Meneses-Júarez, and G. Odriozola, J. Chem. Phys. 140, 134905 (2014).
82 H. He and M. F. Thorpe, Phys. Rev. Lett. 54, 2107 (1985).
83 J. S. Horner, M. J. Armstrong, N. J. Wagner, and A. N. Beris, J. Rheol. 62, 577 (2018).

https://doi.org/10.1063/1.3694271
https://doi.org/10.1063/1.4884124
https://doi.org/10.1107/s002188980604550x
https://doi.org/10.1107/s1600576716012929
https://doi.org/10.1109/jproc.2004.840301
https://doi.org/10.1107/s0021889894010095
https://doi.org/10.5281/zenodo.825675
https://doi.org/10.1039/c3sm53220h
https://doi.org/10.1103/physreve.91.042312
https://doi.org/10.1063/1.1758693
https://doi.org/10.1063/1.4869938
https://doi.org/10.1103/physrevlett.54.2107
https://doi.org/10.1122/1.5017623

