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Theory of Kerr frequency combs in Fabry-Perot resonators
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We derive a spatiotemporal equation describing nonlinear optical dynamics in Fabry-Perot (FP) cavities
containing a Kerr medium. This equation is an extension of the equation that describes dynamics in Kerr-nonlinear
ring resonators, referred to as the Lugiato-Lefever equation (LLE) due to its formulation by Lugiato and Lefever
in 1987. We use the equation to study the generation and properties of Kerr frequency combs in FP resonators.
The derivation of the equation starts from the set of Maxwell-Bloch equations that govern the dynamics of
the forward and backward propagating envelopes of the electric field coupled to the atomic polarization and
population difference variables in a FP cavity. The final equation is formulated in terms of an auxiliary field
ψ(z,t) that evolves over a slow time t on the domain −L � z � L with periodic boundary conditions, where
L is the cavity length. We describe how the forward and backward propagating field envelopes can be obtained
after solving the equation for ψ . This formulation makes the comparison between the FP and ring geometries
straightforward. The FP equation includes an additional nonlinear integral term relative to the LLE for the ring
cavity, with the effect that the value of the detuning parameter α of the ring LLE is increased by an amount equal to
twice the spatial average of |ψ |2. This feature establishes a general connection between the stationary phenomena
in the two geometries. For the FP-LLE, we discuss the linear stability analysis of the flat stationary solutions,
analytic approximations of solitons, Turing patterns, and nonstationary patterns. We note that Turing patterns
with different numbers of rolls may exist for the same values of the system parameters. We then discuss some
implications of the nonlinear integral term in the FP-LLE for the kind of experiments that have been conducted
in Kerr-nonlinear ring resonators.
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I. INTRODUCTION

Optical frequency combs have revolutionized the measure-
ment of optical frequencies and enabled a wide array of basic
research applications in fields such as time-keeping, cosmol-
ogy, and astronomy [1–3]. Now, the realization of broadband
frequency combs using the whispering gallery modes of
high-Q ring microresonators with the Kerr nonlinearity (first
described in Ref. [4]) promises to bring the capabilities of
frequency combs to a new set of applications outside the
laboratory. In contrast with mode-locked laser-based frequency
combs, microresonator-based Kerr frequency combs arise from
the parametric four-wave mixing (FWM) processes activated
by the interaction between the driving field and the Kerr
medium. The potential of these combs for applications relies
on the fact that, under suitable conditions, the newly generated
frequency components can mode-lock to form well-behaved
dissipative Kerr-cavity solitons [5–12]. These combs can yield
natively octave-spanning spectra [13,14], and they can be
regarded as multiwavelength sources where all the lines except
for the pump laser are created by the gain induced by the FWM
processes.
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Kerr-microresonator-based frequency combs (microcombs)
are anticipated to have a significant impact as a compact, low-
cost, low-power technology. Microcavities can be conveniently
pumped with a variety of laser wavelengths, can be embedded
on photonics chips, can be integrated in fiber networks, and are
compatible with CMOS technology. These properties make
microcombs quite promising and have inspired a worldwide
effort to develop the technology [15].

The effects of the Kerr nonlinearity in passive, driven optical
cavities were analyzed in the 1970s in the field of optical
bistability [16,17]. In this context the possibility that such
systems can spontaneously emit cavity modes different from
the mode quasiresonant with the injected driving frequency,
then referred to as the multimode instability, was theoretically
predicted [17–19] and experimentally observed [20] before the
concept of a frequency comb was introduced.

As shown, e.g., in Refs. [6,21–25], the model that is appro-
priate for the description of comb generation in Kerr resonators
and for the exploration and prediction of comb characteristics
is an equation formulated 30 years ago by one of us and Lefever
[26,27] in our investigation of optical bistability. This model is
referred to as the Lugiato-Lefever equation (LLE) in the field
of microcombs. The equation was originally formulated to
provide a paradigm for transverse spatial pattern formation à la
Turing [28] in nonlinear optical systems, which arises through
the simultaneous effects of Kerr nonlinearity and diffraction.
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FIG. 1. Experimental geometries for microresonator frequency
combs. (a) The ring geometry. A pump laser is coupled into the
ring resonator through a bus waveguide, and the intracavity intensity
envelope (here a soliton pulse) is coupled out once per round trip.
(b) The Fabry-Perot geometry. A pump laser is coupled in through
a cavity mirror, and the intensity envelope is coupled out at each
reflection. Not shown is the background standing wave in the Fabry-
Perot cavity, which is made up of forward-propagating and backward-
propagating field components.

The temporal-longitudinal version of the LLE that describes
Kerr-comb formation was introduced some years later [29–31]
and is characterized by the replacement of diffraction by group
velocity dispersion. It is mathematically equivalent to the
transverse LLE in 1D. This equation has been applied both
to fiber ring cavities (e.g., Refs. [32,33]) and to high-Q
microresonators (e.g., Refs. [6,21–25]). The spontaneous
formation of traveling spatiotemporal patterns along the ring
cavity, described by the LLE, corresponds to the generation of
new optical frequencies. It is a remarkable development that
the rather idealized physical conditions assumed in the LLE 30
years ago have been perfectly realized by recent progress in the
field of photonics, and the LLE and higher-order corrections
to it have provided a framework in which the vast majority of
experimental microcomb results are now understood. In this
way the investigations of pattern formation based on the LLE
have acquired significant practical importance.

An interesting variation on microcomb experiments, which
to our knowledge has only recently been performed for the
first time ([34], see also Ref. [35]), is the generation of cavity
solitons in resonators with the Fabry-Perot (FP) geometry. This
is depicted schematically in Fig. 1. In their study, Obrzud and
colleagues report on dissipative Kerr-cavity soliton generation
in a passive, high-Q Fabry-Perot resonator constructed of
standard (anomalous dispersion) single-mode fiber (SMF) with
high-reflectivity end-coatings. It is worth mentioning that this
work also makes use of a pulsed pump laser (see also, e.g.,
Ref. [36]).

Practical differences with the ring geometry make mi-
crocomb generation in FP cavities appealing. In particular,

the FP geometry offers different methods for tailoring the
cavity dispersion, which dictates the bandwidth and temporal
duration of cavity solitons. Engineering of the core-cladding
index contrast is analogous to engineering of the geometrical
dispersion in ring resonators [37], while there exists for FP
cavities the additional opportunity to employ chirped mirror
end-coatings. Further, in the particular case of an FP cavity
constructed of SMF the cavity naturally has a single transverse
mode family, which avoids the practical difficulties of comb
generation in a resonator populated with higher-order mode
families, each with its own free spectral range.

In this article we provide a theoretical treatment of the
nonlinear dynamics in a passive, driven FP cavity containing
a Kerr medium as they apply to frequency comb formation.
A brief treatment within the formalism of coupled-mode
equations was provided by Obrzud et al. in Ref. [34]. Here,
we derive and explore the properties of a complementary
spatiotemporal equation analogous to the LLE for the FP
geometry. This FP-LLE differs from the ring LLE in the
existence of an additional nonlinear term that represents phase
modulation by the average of the intracavity intensity. The
effects of this term are similar to the effects of the thermal shift
of the cavity resonance frequency present in all microresonator
experiments [6,38], but the additional nonlinear term acts on
the timescale of the Kerr nonlinearity, which is effectively
instantaneous. The new term connects stationary patterns in
the Fabry-Perot resonator to stationary patterns in the ring
resonator with a shifted detuning parameter, and it imparts
a dispersion-dependence to the region of parameter space
over which solitons can exist. We explore in particular the
generation of single solitons through laser frequency sweeps,
which is commonplace for ring resonators, and find that the
additional nonlinear term may present new challenges that can
be alleviated by using high pump power or a pulsed pump
laser.

In Sec. II we derive a set of two coupled equations for the
forward- and backward-propagating electric field components
in a Kerr-nonlinear FP resonator. In Sec. III we derive the
generalization of the LLE to the FP geometry from these
coupled equations. We show how to reverse the procedure and
obtain the two counterpropagating fields from the solution of
the FP-LLE.

Section IV is devoted to the homogeneous stationary solu-
tions of the FP-LLE and to their linear stability analysis; in
both cases we compare with the ring cavity case. In addition,
we demonstrate a general connection that links the stationary
patterns of the FP-LLE with those of the ring LLE.

In Sec. V we focus on the soliton solutions of the LLE. We
review a well-known analytical expression obtained in the ring
case and extend it to the FP case.

In Sec. VI we explore Turing patterns under the FP-LLE,
and in particular their multi-stability.

In Sec. VII we discuss nonstationary phenomena in the FP-
LLE, including spatiotemporal chaos and oscillating breather
solitons.

In Sec. VIII we discuss implications for experiments of
the differences between the dynamics under the FP-LLE and
dynamics under the ring LLE, which have been well explored
experimentally.

Finally, in Sec. IX we conclude with some general remarks.
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II. DERIVATION OF COUPLED EQUATIONS FOR
THE FORWARD- AND BACKWARD-PROPAGATING

ENVELOPES

In this section we present the derivation of a set of coupled
equations for the slowly-varying envelopes of the forward-
and backward-propagating field components in a Fabry-Perot
cavity exhibiting second-order dispersion and the Kerr non-
linearity. In the following section we unify these two coupled
equations into a single spatiotemporal equation, the LLE for
the Fabry-Perot cavity.

The derivation of the coupled equations we seek is involved,
and generalizes calculations that have been performed and
described in detail elsewhere. Therefore, in this section we
describe the motivation for the steps involved and the results
that these steps provide, and we sometimes refer to published
literature for the full details of these calculations.

The main problem in deriving the coupled equations we
seek is to correctly formulate the cubic terms that describe the
Kerr nonlinearity in this two-field configuration. To do this, we
exploit arguments given in Ref. [39] that connect the physics
in a medium with general Kerr nonlinearity to the physics of a
two-level atomic medium. First, we present coupled equations
describing the case of the two-level medium, and then we
explain the conditions under which they also apply to the case
of the general Kerr nonlinearity.

We start from a set of equations (Eqs. (14.61)–(14.64)
of Ref. [39]) that provide a convenient generalization of the
Maxwell-Bloch equations, which describe the interaction of
the field envelope with a two-level medium, to the FP case and
include the high-Q limit. These equations represent the analog
of the MBE for the ring cavity, starting from which Ref. [31]
shows the derivation of the temporal-longitudinal LLE. Obtain-
ing these equations from the MBE is not trivial, and is described
in detail in Ref. [39]. Generally, the process goes as follows:

(1) Start from the Maxwell equations and the Bloch
equations for two-level atoms. By inserting into them the
expressions of the electric field and of the atomic polarization
in terms of their slowly varying envelopes, one obtains a
set of three partial differential equations that involve both
the envelope of the forward-propagating field and that of the
backward-propagating field.

(2) Transform the envelopes so that they obey the boundary
conditions given by Eq. (7) below.

(3) Take the high-Q limit, also called mean field limit or
uniform field limit in the literature.

(4) Distinguish between the widely separated scales of the
optical wavelength and the cavity length.

The last step immediately allows for derivation of two sepa-
rate equations for the two counterpropagating field envelopes.
The resulting equations read
∂F̃F (z,t)

∂t
+ c̃

∂F̃F (z,t)

∂z

= −κ

[
(1+iα)F̃F (z,t)−F̃+C

π

∫ π

−π

dφ e−iφP̃ (z,φ,t)

]
, (1)

∂F̃B(z,t)

∂t
− c̃

∂F̃B(z,t)

∂z

= −κ

[
(1+iα)F̃B(z,t)−F̃+C

π

∫ π

−π

dφ eiφP̃ (z,φ,t)

]
, (2)

γ −1
⊥

∂P̃ (z,φ,t)

∂t
= [(F̃F (z,t)eiφ + F̃B(z,t)e−iφ) × D(z,φ,t)]

− (1 + i	)P̃ (z,φ,t), (3)

γ −1
‖

∂D(z,φ,t)

∂t

= −1

2
{[(F̃F (z,t)eiφ + F̃B(z,t)e−iφ)P̃ (z,φ,t)] + c.c.}

−D(z,φ,t) + 1, (4)

where F̃F (z,t), F̃B(z,t), and F̃ denote the normalized en-
velopes of the forward and backward propagating fields and
of the input field, respectively, and P̃ (z,φ,t) and D(z,φ,t)
indicate the normalized atomic polarization and population
difference of the two-level atoms, respectively. The speed
of light in the medium is c̃ = c/n, with c the speed of
light in vacuum and n the background refractive index. The
transverse and longitudinal atomic relaxation rates are γ⊥
and γ‖, respectively, and the atomic detuning parameter is
	 = (ωa − ωo)/γ⊥, where ωo is the frequency of the driving
field and ωa is the Bohr transition frequency of the two-level
atoms; C is the bistability parameter [17,39]. Time is indicated
by t , while there are two distinct spatial variables: the slow
spatial variable z, which varies on the scale of the cavity length,
and the fast spatial variable φ = ωoz/c̃, which varies from
−π to +π and is related to the wavelength scale. The cavity
damping rate is defined as κ = c̃T /2L, where L is the cavity
length. The cavity detuning is given by α = (ωc − ωo)/κ (in
many of the references relevant to this derivation this quantity is
represented by θ , which here we reserve for another purpose),
with ωc being the cavity frequency closest to ωo. As usual c.c.
means complex conjugate.

The electric field E(z,t), assumed linearly polarized for
simplicity, is expressed as

E(z,t) = 1

2

h̄
√

γ⊥γ‖
d

(F̃F (z,t)e−iωo(t− z
c̃

)

+ F̃B(z,t)e−iωo(t+ z
c̃

) + c.c.), (5)

where d is the modulus of the atomic dipole moment and h̄ is
Planck’s constant. The two exponentials that appear in Eq. (5)
can be rewritten as e−i(ωot−φ) and e−i(ωot+φ). The electric field
injected into the cavity is given by

EI = 1

2

h̄
√

T γ⊥γ‖
d

(F̃ e−iωot + c.c.), (6)

where T is the transmissivity coefficient of the cavity mir-
rors. The forward- and backward-propagating fields obey the
boundary conditions

F̃F (0,t) = F̃B(0,t), F̃F (L,t) = F̃B(L,t). (7)
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To derive two coupled self-contained equations for the
counterpropagating fields, we follow the same steps described
in the Appendix of Ref. [31], starting from Eqs. (1)–(4) instead
of the MBE for the ring cavity. As the derivation is described
in detail there, we simply note here the assumptions that are
introduced:

(i) The dispersive limit |	| � 1, i.e., the central frequency
ωo is far off-resonance from the atomic line, and 	 < 0.

(ii) The bandwidth of the fields is small in comparison with
the detuning of the central frequency.

(iii) We assume that |F̃F /	| � 1 and |F̃B/	| � 1, which
allows truncation of the power expansion of the atomic polar-
ization in terms of the counterpropagating fields after the first
terms.

(iv) The radiative limit γ‖ = 2γ⊥.
If we define normalized fields as

F =
√

2C

|	|3 F̃ , (8)

where the same scaling factor also relates F̃F to FF and F̃B to
FB , and

αo = α − 2C

	
, (9)

ā = 2Cv2
g

	3γ 2
⊥

< 0, (10)

then we arrive at the two coupled equations

∂FF (z,t)

∂t
+ vg

∂FF (z,t)

∂z
= −κ

[
(1 + iαo)FF − F − i(|FF |2 + 2|FB |2)FF + iā

∂2FF

∂z2

]
, (11)

∂FB(z,t)

∂t
− vg

∂FB(z,t)

∂z
= −κ

[
(1 + iαo)FB − F − i(|FB |2 + 2|FF |2)FB + iā

∂2FB

∂z2

]
. (12)

Here the second derivative terms describe anomalous dis-
persion as explained in Ref. [31]. The first nonlinear term
describes self-phase modulation and the second describes
cross-phase modulation, while the components of the term
(1 + iαo) describe loss and detuning, respectively. The group
velocity vg is given by

vg = c̃

(
1 + 2Cκ

	2γ⊥

)−1

≈ c̃

(
1 − 2Cκ

	2γ⊥

)
≈ c̃. (13)

We now seek the same equations in the general case of a
Kerr medium with chromatic dispersion of second order. By
following the analysis in Sec. 28.2.1 of Ref. [39] we find that
if the electric field and the input field are given by

E(z,t) = 1

2

√
4

3

(1 − R)

L

cn

ωo

1

χ (3)

×
(
FF e

−iωo

(
t− z

vg

)
+ FBe

−iωo

(
t+ z

vg

)
+ c.c.

)
, (14)

EI = 1

2

√
4

3

(1 − R)3/T

L

cn

ωo

1

χ (3)
(Fe−iωot + c.c.), (15)

where χ (3) is the third-order nonlinear susceptibility and R is
the reflectivity of the cavity mirrors, then the coupled equations
in this case coincide with Eqs. (11) and (12) provided that κ is
defined as κ = vg(1 − R)/2L, αo is replaced with α, and ā is
defined as

ā = k′′Lv2
g/T , (16)

where

k′′ = ∂2k(ω)

∂ω2

∣∣∣∣
ω=ωo

, (17)

with k(ω) being the dispersion law; k′′ > 0 in the case of normal
dispersion and k′′ < 0 in the case of anomalous dispersion.
Equations (11) and (12) include the correct form for the Kerr

nonlinear terms in the case of two counterpropagating fields.
The above treatment allows for mirror losses in the Fabry-Perot
cavity such that T < 1 − R is possible (but not required).

A final comment in this section is the following. In the case
of unidirectional propagation (i.e., for FB(z,t) = 0), Eq. (11)
is equivalent to the temporal-longitudinal version of the LLE;
as a matter of fact, by simply transforming Eq. (11) from the
variables (z,t) to the variables (t,t̄ = t − z/vg) one obtains the
LLE formulated in Ref. [29]. The same trick is not possible in
the case of Eqs. (11) and (12) because they involve two distinct
retarded times, one for forward propagation and the other for
backward propagation. This implies that one must solve numer-
ically the two equations calculating the forward propagation
in the cavity and then the backward propagation and so on, so
that an exceedingly high number of round trips are necessary
to reach the long timescale, on the order of the inverse of κ ,
which governs the relaxation of the system to a steady state.
Such a calculation is not practical in the high-Q limit.

III. THE LLE FOR FABRY-PEROT RESONATORS

A. Derivation of a single envelope equation
from the modal expansion

To unite Eqs. (11) and (12) into a single spatiotemporal
equation describing dynamics in the cavity, we next introduce
a modal expansion for the fields FF and FB in terms of the
modal amplitudes f̄μ (similar to that found in Eq. (A.20) of
Ref. [31]):

FF (z,t) =
∞∑

μ=−∞
f̄μ(t)ei

αμ

vg
z
, (18)

FB(z,t) =
∞∑

μ=−∞
f̄μ(t)e−i

αμ

vg
z
, (19)

where αμ is defined as

αμ = πμvg/L. (20)
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Using the expansions in Eqs. (18) and (19) one can extend
the functions FF (z,t) and FB(z,t) to the interval −L � z � L.
This amounts to defining FF (z,t) and FB(z,t) for −L � z � 0
as

FF (z,t) = FB(−z,t), FB(z,t) = FF (−z,t), (21)

and by using Eqs. (7), (8), and (21), one sees that FF (z,t) and
FB(z,t) obey periodic boundary conditions over the interval
−L � z � L. Thus, the modal amplitudes f̄μ can be obtained
as

f̄μ(t) = 1

2L

∫ +L

−L

dz e
−i

αμ

vg
z
FF (z,t), (22)

= 1

2L

∫ +L

−L

dz e
i

αμ

vg
z
FB(z,t). (23)

Next, we insert Eqs. (18) and (19) into Eq. (11) with αo replaced
by α and, by using Eqs. (22) and (23), we obtain the following
set of ordinary differential equations:

df̄μ

dt
= −iαμf̄μ − κ

⎡
⎣(1 + iα)f̄μ − Fδμ,0 − iaμf̄μ

− i
∑
μ′μ′′

f̄μ′ f̄ ∗
μ′′ (f̄μ−μ′+μ′′ + 2f̄−μ+μ′+μ′′ )

⎤
⎦, (24)

where

aμ = ā
(πμ

L

)2
. (25)

The same set of equations can also be obtained by inserting
Eqs. (18) and (19) into Eq. (12). If we now define

f̄μ(t) = fμ(t)e−iαμt , (26)

so that Eqs. (18) and (19) read

FF (z,t) =
∞∑

μ=−∞
fμ(t)e−iαμ(t− z

vg
)
, (27)

FB(z,t) =
∞∑

μ=−∞
fμ(t)e−iαμ(t+ z

vg
)
, (28)

then the set of differential equations becomes

dfμ

dt
= −κ

⎡
⎣(1 + iα)fμ − Fδμ,0 − iaμfμ

− i
∑
μ′μ′′

fμ′f ∗
μ′′ (fμ−μ′+μ′′ + 2f−μ+μ′+μ′′e2i(αμ−αμ′ )t )

⎤
⎦.

(29)

Equation (26) decomposes f̄μ(t) into the product of two
functions that vary on two distinct timescales. The exponential
varies on the scale of the round-trip time TRT = 2L/vg , while
fμ(t) varies on the scale of the cavity decay time κ−1 =
2L/vgT . For a high-Q cavity T is much smaller than 1, so
that the two scales are widely separated. If one averages the
terms of Eq. (29) over a time interval much longer than the
cavity round-trip time but much shorter than the cavity decay

time, then all terms of Eq. (29) remain unchanged except the
last, which vanishes in the average for μ′ �= μ. Therefore, in
the last term we set μ′ = μ, obtaining

dfμ

dt
= −κ

⎡
⎣(1 + iα)fμ − Fδμ,0 − iaμfμ

− i
∑
μ′μ′′

fμ′f ∗
μ′′fμ−μ′+μ′′ − 2ifμ

∑
μ′

f ∗
μ′fμ′

⎤
⎦, (30)

in agreement with the coupled-mode equations presented in
the Supplemental Material of Ref. [34].

Basically, to obtain Eq. (30) we neglect the terms that do not
conserve energy. The two nonlinear terms in Eq. (30) arise from
the two nonlinear terms in Eq. (11), respectively. Therefore, the
second nonlinear term represents the difference between the FP
cavity and the ring cavity. The first nonlinear term describes
processes of self-phase-modulation, cross phase-modulation,
and four-wave mixing among modes. The second nonlinear
term corrects the coefficients of self-phase-modulation and
cross-phase-modulation.

Finally, we define

ψ(z,t) =
+∞∑

μ=−∞
fμ(t)ei

αμ

vg
z
, (31)

and we obtain from this equation the following partial differ-
ential equation for ψ(z,t):

∂ψ

∂t
= −κ

[
(1 + iα)ψ − F + iā

∂2ψ

∂z2
− i|ψ |2ψ

− 2iψ
1

2L

∫ +L

−L

dz |ψ |2
]
. (32)

B. The normalized LLE for Fabry-Perot resonators:
Connection to experimental parameters

We now pass to normalized temporal and spatial variables
τ = κt and θ = z × π/L, so that when z varies from −L to
L, θ varies from −π to π , and we obtain from Eq. (32) the
LLE for the Fabry-Perot cavity as we discuss it throughout the
remainder of the paper:

∂ψ

∂τ
= −(1+iα)ψ+i|ψ |2ψ−i

β

2

∂2ψ

∂θ2
+2iψ〈|ψ |2〉+F. (33)

Here, 〈g〉 denotes the spatial average over the domain: 〈g〉 =
1

2π

∫ π

−π
dθ g(θ ). We have defined

β = 2π2

L2
ā. (34)

If we drop the additional nonlinear integral term, then Eq. (33)
reduces to the temporal-longitudinal LLE in the notations of,
e.g., Refs. [24,25]. Hence, the complete Eq. (33) constitutes
the LLE for a Fabry-Perot cavity, with the additional nonlinear
integral term 2iψ〈|ψ |2〉 representing phase modulation by
twice the average intracavity intensity. We stress that we use
the spatial variable θ to make the comparison with the ring
cavity case straightforward. We also note that the coefficients
“1” and “2” of the two self-phase modulation terms in Eq. (33)
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may be rescaled arbitrarily (keeping their ratio fixed) through
renormalization of ψ and F . For example, the sum of the
phase-modulation coefficients can be made unity through the
rescaling ψ = ψ ′/

√
3, F = F ′/

√
3, after which the equation

in the new parameters ψ ′ and F ′ describing flat solutions (i.e.,
those for which ∂ψ ′/∂θ = 0 so that 〈|ψ |2〉 = |ψ |2) is the same
as that for the ring cavity. The normalization we have chosen
here is particularly convenient for analysis and description of
the behavior of the system near threshold (see Sec. IV).

The FP-LLE is formulated in terms of normalized param-
eters: α represents the detuning of the pump laser from the
nearest cavity resonance, F 2 represents the input power, and β

represents the dispersion. The relationship of these quantities
to the experimental parameters is

α = ωc − ωo

κ
= −2(ωo − ωc)

	ωo

, (35)

β = − 2D2

	ωo

= − 2

	ωo

∂2ωμ

∂μ2

∣∣∣∣
μ=0

, (36)

F 2 = 8go	ωext

	ω3
o

Aeff

Ain

no

next

P

h̄ωo

. (37)

In the above, ωμ represents the set of resonance frequencies
of the cavity including the effects of dispersion, with μ = 0
indexing the pumped mode (see, e.g., Ref. [11]). The full-
width-at-half-maximum cavity linewidth is twice the damping
rate, 	ωo = 2κ = (1 − R)c/ngL, and 	ωext = cT /2ngL is
the coupling rate, with ng = c/vg the group index. The quanti-
ties Ain and Aeff represent the mode’s effective area πw2

in (for
a Gaussian mode of radius w) at the input mirror and the same
averaged over the cavity of length L, π

L

∫
dz w(z)2, respec-

tively. Further, go = n2h̄ω2
oD1/(2πngAeff) is the nonlinear

gain parameter, where D1 = ∂ωμ

∂μ
|
μ=0

is the cavity free-spectral

range in angular frequency [here and in Eq. (36) μ is treated as
a continuous variable]. The nonlinear index n2 is related to the
third-order susceptibility via χ (3) = (4/3)n2

oεocn2, where no is
the refractive index of the nonlinear medium. The power P =
ηPinc denotes the mode-matched power, with mode-matching
factor η and power Pinc incident on the input mirror, and next

is the refractive index of the medium external to the cavity.
Figure 2 schematically depicts the relationship between the

FP-LLE quantity ψ , the forward- and backward-propagating
fields FF and FB , and the total electric field E. The forward
and backward fields can be obtained from ψ(θ,τ ) in the
following way: One solves Eq. (33) with periodic boundary
condition in the interval −π � θ � +π . Then one passes to
the original variables z, t to obtain ψ(z,t). Next one calculates
the coefficients fμ(t) using Eq. (31) as

fμ(t) = 1

2L

∫ +L

−L

dz e
−i

αμ

vg
z
ψ(z,t). (38)

Finally one obtains FF (z,t) and FB(z,t) by utilizing Eqs. (27)
and (28). Figure 2 depicts the behavior of a soliton in the FP
cavity as described by Eq. (33). The soliton bounces back and
forth in the physical region 0 � z � L of the domain, with a
period equal to the cavity round-trip time.

We conclude this section with two remarks. The first starts
from the final comment in the previous section, that the
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FIG. 2. The relationship between the FP-LLE quantity ψ and
the electric field. (a) Soliton-shaped stationary solution of the FP-
LLE, Eq. (33), shown in a frame moving in the direction of the
forward field (the mirrors move in this frame) so that the field ψ is
stationary. (b) Forward-propagating field FF in the laboratory frame
for t = 0 [see Eq. (27)]. (c) Backward-propagating field FB (z,t) =
FF (−z,t) in the laboratory frame for t = 0 [see Eq. (28)]. The fields
FF (z,t) and FB (z,t) obey periodic boundary conditions in the interval
−L � z � L. (d, e) Fields FF and FB after propagation for half
a round-trip time. The soliton in the forward-propagating field has
entered the unphysical region −L � z � 0, and the soliton in the
backward-propagating field appears in the physical region 0 � z � L.
(f) The quantity |FF |2 + |FB |2 corresponding to panels (d) and (e),
proportional to the intensity averaged over fast temporal and spatial
oscillations associated with the optical frequency. (g) The physical
intensity |E|2, calculated from Eq. (14) and shown here at a particular
time t1. Cavity parameters have been chosen to facilitate depiction of
the standing wave and the soliton on the same scale.

problem with Eqs. (11) and (12) lies in the presence of two
retarded times. This problem has been solved by introducing
the field ψ(z,t) defined by Eq. (31), which has made the
formulation of the LLE for FP cavity straightforward. We
note that ψ(z,t) is precisely the field in terms of which the
temporal-longitudinal LLE for a ring cavity was formulated in
Ref. [30] (where ψ(z,t) is indicated by X(z,t)).

The second remark is that the extension of Eqs. (18) and
(19) in the interval −L � z � L has allowed us to use periodic
boundary conditions and therefore traveling waves, which
make calculations straightforward. Of course, one can also use
the FP boundary conditions in the original interval 0 � z � L
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with standing waves, but one arrives at the same results after
calculations that are several times longer.

IV. FLAT STATIONARY SOLUTIONS AND THEIR
STABILITY; A GENERAL CONNECTION BETWEEN

STATIONARY PATTERNS IN FABRY-PEROT AND RING
RESONATORS

A. Flat stationary solutions

By using Eqs. (20) and (31) and the definitions of the
normalized variables τ and θ we can write

ψ(θ,τ ) =
∞∑

μ=−∞
fμ(τ )eiμθ , (39)

and the quantities |fμ(τ )|2 constitute the spectrum of the field.
Let us first consider the flat (i.e., homogeneous) stationary

solutions of the FP-LLE, Eq. (33); these are the solutions that
have no spatial dependence, and are obtained by setting all
derivatives to zero. This leads to the stationary equation

F = [1 + i(α − 3ρ)]ψs, (40)

where ψs denotes a flat stationary solution and ρ = |ψs |2, so
that, assuming that F is real and positive for definiteness,

F 2 = [1 + (α − 3ρ)2]ρ. (41)

By solving this equation for ρ one obtains the function
ρ(α,F 2). Considering this function for fixed values of α, we
obtain the stationary curve of ρ as a function of F 2. This curve
is single-valued for α <

√
3 and S-shaped for α >

√
3 (as for

the ring cavity); in the latter case it displays one stationary
solution if ρ < ρ−(α) or ρ > ρ+(α), and three stationary
solutions for ρ in the interval (ρ−(α),ρ+(α)). Here, ρ± are
defined as the points at which the derivative ∂F 2/∂ρ vanishes:

ρ± = 2α ± √
α2 − 3

9
. (42)

These results are summarized in Fig. 3: Fig. 3(a) shows the
stationary curveρ for several values ofα, and Fig. 3(b) exhibits,
in particular, the plots of F 2

−(α) = F 2[ρ+(α)] and F 2
+(α) =

F 2[ρ−(α)] obtained from Eqs. (41) and (42) (see Ref. [25] for
the ring cavity).

In the ring cavity case the factor 3 in Eqs. (40) and (41) is
replaced with 1, and in Eq. (42) the denominator is 3 instead
of 9.

B. Linear stability analysis of the flat stationary solutions

In correspondence with a flat stationary solution, the modal
coefficients fμ are

fμs = ψsδμ,0. (43)

To perform the linear stability analysis, we start from the modal
equations Eq. (30) linearized around a flat stationary solution
ψs . If we set

fμ(τ ) = fμs + δfμ(τ ), (44)

FIG. 3. Analytical curves depicting behavior of the FP-LLE.
(a) Stationary curves ρ of normalized transmitted intensity as a
function of normalized input intensity F 2 for the indicated values of
the cavity detuning parameter α. (b) Important curves in the α − F 2

plane, as discussed in the text. Shown in dashed red is the line obtained
from Eq. (41) by setting ρ = ρinst(α), where ρinst(α) = 1 for α � 4
and for α > 4 is given by the solution of the equation μ−(ρ) = 0 with
respect to ρ, where μ− is defined by Eq. (54). The dotted red curve is
the continuation of the curve obtained from Eq. (41) by setting ρ = 1
for α > 4. Multiple real values of ρ exist in the region bounded by
the solid blue curves, which trace out the local extrema values of the
curves F 2(ρ) as a function of α. (c) Analogous curves in the ring
cavity. For direct comparison we also plot the FP-cavity curves in
thick light gray.

then the linearized equations for fμ(τ ) read

∂δfμ

∂τ
= −{

(1 + iα)δfμ − iaμδfμ

− i
[
4δfμρ+δf ∗

−μψ2
s + 2δμ,0

(
δf ∗

0 ψ2
s +δf0ρ

)]}
, (45)

∂δf ∗
−μ

∂τ
= −{

(1 − iα)δf ∗
−μ + iaμδf ∗

−μ

+ i
[
4δf ∗

−μρ+δfμψ∗2
s +2δμ,0

(
δf ∗

0 ρ+δf0ψ
∗2
s

)]}
. (46)

A peculiar feature is represented by the terms with the factor
δμ,0 which appear only in the equations for δf0 and δf ∗

0 ; these
terms arise from the last term of Eq. (30) and imply that the
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case μ = 0 must be considered separately from the case μ �= 0.
This feature is not present in the ring cavity.

If one considers Eqs. (45) and (46) for μ = 0, then their
detailed analysis leads to the usual conclusion: the flat station-
ary solutions with ∂F 2

∂ρ
< 0 are unstable. Consequently, if three

stationary solutions exist to the FP-LLE at a point (α,F 2) and
they are ordered according to magnitude, the middle solution
is always unstable.

Next, let us focus on Eqs. (45) and (46) for μ �= 0. If we set

δfμ(τ ) = eλτ δf ′
μ, δf ∗

−μ(τ ) = eλτ δf ′∗
−μ, (47)

then we obtain a system of linear homogenous equations for
δf ′

μ and δf ′∗
−μ that leads to an eigenvalue equation for λ:

λ2 + 2λ + co = 0, (48)

with

co = 1 + α2 + 15ρ2 − 8αρ + 2(4ρ − α)aμ + a2
μ. (49)

The solutions of Eq. (49) are

λ± = −1 ±
√

1 − co, (50)

so that the instability condition Re λ+ > 0 reads

� > 1, (51)

where � is the gain

� =
√

1 − co. (52)

Hence, the flat stationary solution is unstable for co < 0, i.e.,
for

aμ− < aμ < aμ+, aμ± = α − 4ρ ±
√

ρ2 − 1, (53)

or, using Eqs. (25) and (34), the pump-referenced optical mode
numbers that bound the region of gain � > 1 are

μ± =
{

2

β
[(α − 4ρ) ±

√
ρ2 − 1]

}1/2

, (54)

where μ and aμ are treated as continuous variables. From
Eq. (54) we see that, if α � 4, the boundary value of ρ at
which � = 1 (indicating the onset of instability) is ρ = 1, as
in the ring cavity case (see, e.g., Refs. [25,39]). Under these
conditions the threshold value of μ, determined from ρ = 1,
is

μthr =
[

2

β
(α − 4)

]1/2

. (55)

From Eqs. (25), (34), (49), and (52) we can also obtain the mode
number (i.e., the value of μ) for which the gain is maximum,
given by

μmax =
[

2

β
(α − 4ρ)

]1/2

. (56)

Figure 4(a) shows the curves μ+, μ−, and μmax as functions
of ρ for the fixed value of β = −0.02 and various values of
α. From this figure, it is apparent that when α > 4 (and β <

0, |β| � 1), instability exists above the value of ρ at which
μ−(ρ) vanishes; this value depends on α according to Eq. (54).
Therefore, we denote by ρinst(α) the curve defined by ρ = 1

FIG. 4. Exploration of the flat solutions and their stability.
(a) Curves μmax where the gain � is greatest, for β = −0.02 and
various values of α, with shading indicating the region between μ−
and μ+ where � > 1. Of note is that the region where � > 1 does not
extend to ρ = 1 for α = 6. Regardless of the value of β, the curve
μmax for α = 4 passes through the point (ρ = 1,μ = 0). (b) Plots of
the Kerr-tilted intensity resonance profiles ρ(α,F 2) for three values
of F 2 (thin black): F 2 = 0.5 (smallest peak), 1 (middle peak), and 4
(largest peak). The thick orange dashed line shows ρinst(α), and the
thick blue solid lines indicate the values ρ+(α) and ρ−(α) that bound
the region where multiple flat solutions exist. Resonance curves for
F 2 > 1 are qualitatively similar to the curve for F 2 = 4.

below α = 4 and μ−(ρ) = 0 above it, leading to ρinst(α) =
(4α − √

α2 − 15)/15 for α > 4.
The value of ρinst(α) is shown in Fig. 4(b), together with

the functions ρ±(α) given by Eq. (42), which define the limits
of the upper and the lower branch of stationary solutions. We
also plot curves illustrating the stationary solutions ρ(α,F 2)
for three values of F 2. A stationary solution ψs (|ψs |2 = ρ) is
unstable if it lies above the line ρinst(α). Further, the solution
is unstable if ∂ρ/∂F 2 < 0, i.e., if it is the middle of three
values of ρ(α,F 2), regardless of its location relative to ρinst(α).
Therefore, the curve ρinst(α) does not correspond to a stability
boundary when it intersects the middle branch of the stationary
curve, because this curve is already unstable. This is the case for
intersections of the stationary curves with ρinst(α) when α >

α1, where α1 ≈ 3.17 is the value at which ρ+(α) = 1, given
by (2α1 +

√
α2

1 − 3)/9 = 1 and occurring at the intersection
of the dashed red ρinst(α) curve with the lower blue curve in
Fig. 3(b).

From an experimental standpoint, we are concerned with
identifying the values α at which the flat solution becomes
unstable and an extended pattern will be formed as α is
varied. From Figs. 3(b) and 4(b) we can see that, if we
increase the value of α from some negative initial value
(this corresponds to decreasing the laser frequency from blue
detuning), for F 2 > 1 the flat solution becomes unstable when
ρ = 1, while for F 2 < 1 it is always stable. However, if we
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decrease the value of α from some large positive initial value
(this corresponds to increasing the laser frequency from red
detuning), the system will follow the lower branch, which is
always stable, until this branch vanishes, whereupon a jump
to the unique and unstable (if F 2 > 1) flat solution results in
the formation of an extended pattern. In the α − F 2 plane
shown in Fig. 3(b), the disappearance of the lower branch
[see Fig. 4(b)] corresponds to the upper blue line; in Fig. 4(b)
this disappearance corresponds to the intersection of the lower
branch of the black curves with the lower blue line.

In the case of the ring cavity the factor 4 must be replaced
with 2 in Eqs. (53)–(56).

C. General connection between stationary patterns
of the LLE in the ring and FP geometries

Let us now focus on the stationary patterns, in which ψ

depends on θ but not on τ . Equation (33) reduces to

F = [1 + i(α − 2〈|ψ |2〉)]ψ + i
β

2

∂2ψ

∂θ2
− i|ψ |2ψ, (57)

which shows that a stationary pattern for the FP cavity for the
parameter α coincides with a stationary pattern for the ring
cavity when α is replaced with α′, given by

α′ = α − 2〈|ψ |2〉. (58)

Note that α′ depends on the shape of the pattern. One caveat
is that this connection does not formally extend to the stability
of stationary patterns, so to establish stability the analysis must
be performed in each case separately.

V. ANALYTICAL APPROXIMATION OF SOLITONS

There are two fundamental types of stationary patterns:
Turing patterns and solitons. Turing patterns are periodically
modulated solutions with a number of maxima and minima
throughout the domain, while solitons are single-peaked. When
the stationary curve is single-valued, Turing patterns arise
when the instability threshold is crossed. Analytic approxi-
mations for these patterns are possible near threshold [26,27]
or in the small damping limit [40]. We focus our immediate
attention on analytic approximations for solitons, and discuss
Turing patterns below. Because of the correspondence between
stationary patterns of the ring LLE and stationary patterns of
the FP-LLE, discussed in the previous section and summarized
by Eq. (58), we begin by recalling the approximation to solitons
for the ring LLE. Stationary solutions to the ring LLE satisfy
Eq. (33) without the derivative with respect to time and without
the integral term. The expression [6]

ψsol(θ ) = ψs +
√

2αeiφo sech

(√
2α

−β
θ

)
(59)

approximates the stationary soliton solution to the ring LLE,
including a constant background corresponding to the stable
flat stationary solution in the lower branch of the stationary
curve. Here,

φo = cos−1(
√

8α/πF ), (60)

and ψs denotes the unique flat stationary solution when α <√
3 and the flat stationary solution in the lower branch of

the stationary curve when α >
√

3. The relevant stationary
equation is for the ring LLE and is identical to Eq. (40) with 3
replaced with 1:

F = [1 + i(α − ρ)]ψs, (61)

where ρ = |ψs |2. Two important characteristics of the function
in Eq. (59) are worth noting, because they remain generally
true for soliton solutions of the ring LLE and the FP-LLE: The
amplitude of the soliton increases with increased detuning α,
and the temporal width of the soliton decreases as α is increased
or β is decreased. We note that an approximation without the
background, which is an exact solution to the ring LLE with a
particular form of a spatially-varying pumping term F 2(θ ), is
presented in Ref. [23].

Let us now turn to the case of the FP cavity. On the basis of
the general connection between stationary patterns in the ring
and in the FP case and using Eq. (59), we can write that the
approximate analytic expression of the soliton is

ψsol(θ ) = ψ ′
s +

√
2α′eiφ′

o sech

(√
2α′

−β
θ

)
, (62)

where by integrating Eq. (62) and using Eq. (58) we obtain an
equation for α′:

α′ = α − 2ρ ′ − 2

π

√
−2α′β tanh

(
π

√
2α′

−β

)

− 8
√−βρ ′

π
cos(φ′ − φ′

o) tan−1 tanh

(
π

√
α′

−2β

)
. (63)

Here quantities have been primed to indicate that they are
defined according to the ring LLE at the point (α′,F 2) in the
parameter space plane, thus:

F 2 = ρ ′[1 + (α′ − ρ ′)2], (64)

ψ ′
s = F

1 + i(α′ − ρ ′)
, (65)

φ′ = arg(ψ ′
s) = tan−1(ρ ′ − α′), (66)

φ′
o = cos−1

√
8α′

πF
. (67)

In Fig. 5 we present plots of the analytical approxima-
tion to the soliton solution of the FP-LLE as described by
Eqs. (62)–(67). For comparison, we also present numerically
calculated steady-state soliton solutions of the FP-LLE. These
simulations, and the numerical investigations of the FP-LLE
presented in the following sections, are performed using a
fourth-order Runge-Kutta interaction picture method [41] with
an adaptive step size [42].

In addition to single solitons, the FP-LLE supports en-
sembles of multiple copropagating solitons as stationary so-
lutions, with an analytical approximation to these ensembles
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FIG. 5. Soliton solutions to the FP-LLE. Analytical approxima-
tions are shown by thin black curves (dotted, for spectra); numerically
calculated solutions are shown in thick color. Here β = −0.02 and
the resonator FSR is 16.5 GHz. (a, b) F 2 = 3, α = 4.37, time
domain curves in (a) with inset showing the deviation between
analytic approximation and numerical solution in the level of the c.w.
background near the pulse, optical spectrum in (b). (c, d) F 2 = 12,
α = 8.68.

possible as

ψens(θ ) = ψ ′
s +

√
2α′eiφ′

o

∑
j

sech

[√
2α′

−β
(θ − θj )

]
. (68)

Such an ensemble may or may not be stable, depending on
the separation between the locations of the solitons {θj } and the
temporal width of the solitons determined by α′ and β. Each
soliton in the ensemble contributes to the average intensity
〈|ψ |2〉, and so a different equation for α′ must be derived by
integrating Eq. (68) over the domain.

VI. TURING PATTERNS

In this section we discuss the formation and behavior of
Turing patterns, with results summarized in Fig. 6. Turing
patterns have great relevance for experiment because they
can be generated with a blue-detuned pump laser, avoiding
thermal instability [38]. Moreover, they are the first non-c.w.
phenomenon generated in a decreasing scan of the pump-laser
frequency across a cavity resonance, a technique that has been
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FIG. 6. Simulations of Turing patterns in the FP-LLE. (a) Three
Turing patterns, with 18, 17, and 16 rolls, all stable against pertur-
bations at the point (α = 2.5,F 2 = 6). The Turing pattern with 17
rolls (middle, blue) arises most frequently from vacuum fluctuations.
(b) Plots of |FF |2 + |FB |2 in the physical domain 0 < z < L at
two different times for the 17-roll Turing pattern plotted in (a),
demonstrating how a stationary solution of the FP-LLE relates to
a time-varying intensity pattern. (c) Optical spectrum of the 17-roll
Turing pattern from (a) and (b), assuming a cavity with 16.5 GHz
FSR. (d) Summary of multistabilility of Turing patterns as revealed by
simulations for F 2 = 6. Data points indicate Turing patterns that can
be excited from appropriate initial conditions. Data points enclosed
by a circle indicate Turing patterns stable against perturbations, and
blue (gray) data points indicate Turing patterns that arise from vacuum
fluctuations.

used to explore Kerr nonlinear optics and generate solitons in
ring resonators.

As in the ring cavity, Turing patterns in the FP cavity are
generated spontaneously through the amplification of vacuum
fluctuations and other noise. This amplification is caused by
modulation instability of the flat solution when its amplitude
is above the instability threshold, which as discussed above
occurs when ρ > 1 if α < 4, and when ρ is above the value
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determined by μ−(α) = 0 otherwise. In the field quantity ψ

of the FP-LLE, a Turing pattern consists of a periodically
modulated waveform with multiple minima and maxima in
|ψ |2 over the domain of length 2L. Corresponding to the n-fold
decreased period (relative to the round-trip time) of an n-roll
Turing pattern’s modulated waveform in the time-domain,
the optical spectrum of a Turing pattern consists of modes
spaced by n resonator FSR. Figure 6(a) shows plots of |ψ |2
for several Turing patterns that are stable at the point (α =
2.5,F 2 = 6), and Fig. 6(b) shows plots of the representative
physical quantity |FF |2 + |FB |2, which is proportional to the
intensity in the resonator averaged over fast temporal and
spatial oscillations associated with the optical frequency, for
one of these. A difference between Turing patterns in ring
resonators and Turing patterns in Fabry-Perot resonators is
that the intensity profile is constant, up to rotation at the group
velocity, in the ring resonator. In the Fabry-Perot resonator,
however, the intensity profile evolves with time in a more
complex way due to the summation of the intensities of
counterpropagating waves; this phenomenon is demonstrated
by the two intensity profiles depicted in Fig. 6(b). Figure 6(c)
shows an optical spectrum corresponding to this Turing pattern,
assuming a cavity FSR of 16.5 GHz.

The multiplicity (or number of rolls) n of a Turing pattern
excited from broadband noise is determined by the spectrum
of the modulation instability gain and the presence of noise to
seed the formation of the pattern, and is close to the number
μmax = [ 2

β
(α − 4ρ)]

1/2
described above. This process is not

deterministic, but from broadband noise the distribution of roll
numbers is very narrow—running 1000 trials of Turing pattern
generation from white noise at the point α ≈ 2.75 and F 2 = 6
yielded 997 Turing patterns with 17 rolls, one Turing pattern
with 16 rolls, and two Turing patterns with 18 rolls.

Despite the narrow distribution of Turing pattern multiplic-
ity n generated from broadband noise, multiple Turing patterns
with different n values can exist stably at the same point in
the α − F 2 plane. As ρ increases due to increased pump-laser
power or wavelength, the range of stable n values increases in
accordance with the increase in the difference μ− − μ+ [see
Eq. (54)]. In Fig. 6(d) we plot, forF 2 = 6 and for various values
of α, the multiplicity n of Turing patterns we have generated
in simulations.

VII. NONSTATIONARY SOLUTIONS OF THE FP-LLE

The stationary solutions of the FP-LLE are the flat solutions,
solitons and soliton ensembles, and Turing patterns. Besides
these, the FP-LLE exhibits the same nonstationary solutions as
the LLE for the ring cavity: spatiotemporal chaos and breather
solitons. These solutions can be investigated numerically, and
some results of these investigations are shown in Fig. 7. Spa-
tiotemporal chaos consists of many fluctuating and colliding
pulses that fill the cavity. Generally, chaos lies in a region
of the α − F 2 plane that is reached by increasing α or F 2

from a point where Turing patterns exist [25], provided F 2 is
above some critical threshold, and the fluctuations of the chaos
become more severe as the pump power F 2 is increased. The
transition from Turing patterns to chaos is not well defined,
but begins with a kind of period-doubling of the Turing pattern

FIG. 7. Numerical investigations of nonstationary solutions to the
FP-LLE. (a) Maximum and minumum amplitudes of an oscillat-
ing breather soliton at the point (α = 5.6,F 2 = 8) for β = −0.02.
(b) A snapshot of the time-varying, aperiodic intensity profile of
spatiotemporal chaos at the point (α = 5.3,F 2 = 8) for β = −0.02.
(c) Time-averaged optical spectrum of spatiotemporal chaos under
the conditions given in (b) for a cavity with 16.5 GHz FSR. (d) Top:
A histogram of local maxima values of spatiotemporal chaos for the
FP LLE at the point (α = 5.3,F 2 = 8), β = −0.02 (blue, behind),
and at the corresponding point (α = 1.1,F 2 = 8) for the ring LLE
(orange, in front), recorded over simulations with the same duration.
Bottom: Fractional difference between the two histograms.

in the time-domain in which the amplitudes of the Turing
pattern rolls begin to oscillate, with adjacent rolls oscillating
out of phase. Following this, pulses begin to exhibit lateral
motion and collisions, and the number of maxima and minima
in the cavity then varies [43]. Breather solitons are pulses
whose amplitudes oscillate periodically, and they are found
near the lower bound in α of the region where solitons can
exist (discussed extensively below). The properties of these
phenomena are similar to their ring LLE counterparts.

An interesting question is whether the dynamics of spa-
tiotemporal chaos under the FP-LLE differ significantly from
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the dynamics under the ring LLE as a result of the fluctuations
in the value of α′ = α − 2〈|ψ |2〉 attendant to the fluctuations in
the average intensity 〈|ψ |2〉. As a preliminary investigation,
we perform simulations of spatiotemporal chaos under the
FP-LLE at the point (α = 5.3,F 2 = 8), and then perform sim-
ulations under the ring LLE at the point (α′ = α − 2〈|ψ |2〉 =
1.1,F 2 = 8), where ḡ denotes time-averaging. The histogram
of the height of local maxima in |ψ |2 shown in Fig. 7(d)
suggests little difference in the behavior of chaos between the
two equations, but more extensive investigations could yield
more interesting results.

VIII. PRACTICAL IMPLICATIONS OF THE NONLINEAR
INTEGRAL TERM

In this section we discuss implications of the differences
between the FP-LLE and the ring LLE—namely, the additional
nonlinear integral term representing modulation by twice the
average intensity—for the types of experiments that have been
conducted in Kerr ring resonators. Many of the promising
potential applications of c.w.-pumped Kerr ring and FP res-
onators rely on the generation of single solitons, so we focus
here on two issues: the effect of the nonlinear integral term
on the existence range of single solitons, and its effect on
the experimental generation of single solitons via scans of the
pump-laser frequency. These results are summarized in Fig. 8.

A. Existence range of single solitons

An important consequence of the additional nonlinear term
2iψ〈|ψ |2〉 in the FP-LLE is that the range of parameters
over which single solitons exist acquires a dependence on the
dispersion parameter β, through the effect of dispersion on
pulse energy. This is in contrast to the situation for the ring LLE,
where the existence range is independent of β. For the FP-LLE
the existence range also depends on the number of copropa-
gating pulses and can be greatly extended in the case of many
copropagating solitons. We will not focus on this case here.

As is well-known for the ring LLE, solitons can exist only
with a red-detuned pump laser α > 0 so that the phase rotation
coming from the detuning term α in the LLE can be balanced
by the phase shift from the nonlinear terms. The minimum
value of detuning α at which solitons exist as a function of
F 2 is determined by the existence of a stable flat solution to
the LLE that can form the c.w. background for the soliton.
The maximum value of detuning for which solitons can exist
is determined by α′ = α − 2〈|ψ |2〉 according to α′

max(F 2) =
π2F 2/8, which approximately gives the maximum detuning
for solitons in the ring LLE [6].

For the FP-LLE, a stable flat solution exists to the right of
the line F 2

+(α) in the α − F 2 plane that bounds from above
the region of multiple flat solutions, shown by the upper blue
line in Fig. 3(b). Explicitly [see Eqs. (41) and (42) and the
accompanying discussion], this curve in the α − F 2 plane is
given by

F 2
+(α) = F 2

(
ρ−(α),α

)
, (69)

F 2(ρ,α) = ρ
(
1 + (α − 3ρ)2

)
, (70)

ρ−(α) = (
2α −

√
α2 − 3

)
/9, (71)

FIG. 8. Effects of nonlinear integral term in the FP-LLE, Eq. (33).
(a) Approximate existence bounds of single solitons in the zero-
dispersion limit (green, furthest left) and for β = −0.001 (blue,
second from left), β = −0.02 (purple, third), and β = −0.3 (red,
furthest right), calculated using the analytical approximation to the
single soliton. (b) Comparisons between the approximate existence
bounds and the bounds as determined numerically. Solid points
indicate the maximum and minimum values of F 2 at which solitons
have been simulated for a given value of α. Values for the dispersion
parameters are as shown in (a): β = −0.001 (blue, top), β = −0.02
(purple, middle), and β = −0.3 (red, bottom). (c) Simulated spa-
tiotemporal chaos (blue, extended pattern) and single soliton solution
(purple, localized near θ = 0), either of which can exist at the point
(α = 8,F 2 = 8). The amplitude of the soliton is larger than the
characteristic amplitude of the features in the chaos because the
effective detuning α′ is larger for the soliton. (d) Analytical and
numerical soliton existence limits (purple) for β = −0.02 from panel
(a) and the upper bound in α for the existence of spatiotemporal chaos
and/or Turing patterns (black with error bars), estimated as described
in the text.

so that the minimum detuning for solitons αmin(F 2) in the
limit β → 0− (leading to zero soliton energy) is determined
by inverting Eqs. (69)–(71) to solve for α as a function of
F 2. In the same limit of zero soliton energy, the maximum
value of detuning for the FP-LLE at fixed F 2 is approximately
αmax(F 2) = α′

max + 2ρ ′
min[α′

max(F 2),F 2], where ρ ′
min(α′,F 2) is

the smallest solution to F 2 = ρ ′[1 + (α′ − ρ ′)2] (here, as
before, primed values are solutions of the appropriate equations
for the ring LLE). These boundaries are plotted in Fig. 8(a).
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For finite dispersion and soliton energy, numerical simu-
lations show that the curves bounding the region of soliton
existence are shifted as the energy of the soliton changes with
dispersion. An intuitive way to understand the shift of the left
boundary αmin is to note that the introduction of a soliton with
finite energy onto a stable flat solution near and just right of
the boundary αmin leads to a decrease in the effective detuning
αeff under which the flat solution evolves (due to the nonlinear
integral term), and if this decrease is large enough it can lead
to instability.

A preliminary approximation to the dispersion-dependent
boundary curves can be obtained using the analytical ap-
proximation to the soliton solution given by Eqs. (62)–(67).
For fixed β and F 2, we calculate the values of α at which
the background ρ ′ of the soliton [given by Eq. (64)] is the
same as the background along the zero-dispersion boundary
curves; that is, for the dispersion-shifted left boundary we use
the requirement ρ ′ = ρ−, and for the dispersion-shifted right
boundary we use the requirement ρ ′ = ρ ′

min(α′
max(F 2),F 2). We

compare the resulting curves with a numerical determination
of the boundary curves for three finite values of dispersion;
the results are plotted in Figs. 8(a) and 8(b). The analytical
approximation is accurate for low F 2 and small dispersion,
but becomes less accurate as these quantities increase. This is
because breather solitons are found near αmin for larger values
of F 2. Breather solitons are accompanied by traveling waves
that propagate away from the soliton and diminish in amplitude
as they do so, and their range increases with the dispersion. For
larger values of dispersion these waves fill the cavity, and in
this case the flat background whose stability forms the basis
for approximating the dispersion-dependent boundary curves
is actually not present.

The lines αmin(F 2) and αmax(F 2) intersect at F 2 = F 2
I ≈

1.87. Below this value of the pump power solitons do not exist
for the FP-LLE, and this can be seen as follows: The value
of ρ ′

min describing the amplitude of the soliton background
along the line of maximum detuning α′

max for the ring LLE
is in general also a flat solution ρ of the FP-LLE at the
corresponding point αmax = α′

max + 2ρ ′
min(α′

max,F
2); this is

due to the general correspondence between stationary patterns
discussed in Sec. IV C. However, when F 2 < F 2

I ≈ 1.87, the
flat solution ρ ′

min to the ring LLE is not the smallest flat solution
to the FP-LLE; instead, it is the middle of three, and is therefore
unstable. Therefore, when F 2 < F 2

I the line αmax(F 2) as
defined above does not represent the right boundary of soliton
existence for the FP-LLE. In fact, below this point, for all
values of α where a stable flat solution to the FP-LLE ρmin

exists, α − 2ρmin(α,F 2) > α′
max, preventing the existence of

solitons.

B. Generation of single solitons through laser frequency scans

A second important consequence of the additional nonlinear
term is an increase in the range of α values, for a given value
of F 2, at which the state of ψ can be either an extended pattern
(spatiotemporal chaos or Turing pattern) or a soliton or soliton
ensemble. This is because the extended patterns fill the domain
and, because of their higher average intensity, experience a
greater nonlinear shift than lower duty-cycle single solitons

or soliton ensembles due to the nonlinear integral term. In
Fig. 8(c) we plot simulations of spatiotemporal chaos and
a single soliton, both of which can be obtained at the point
(α = 8,F 2 = 8), along with a stable flat solution, depending
on the initial conditions.

A practical consideration is the impact of the nonlinear
integral term on the generation of single solitons via the
well-established method of scanning the laser across the
pumped resonance with decreasing frequency (increasing α)
[6]. Because this method relies on the excitation of an extended
pattern (chaos or Turing pattern) to provide initial conditions
out of which solitons condense as α is increased, it is im-
portant that the maximum detuning (the value of α where
α′ = α′

max = π2F 2/8) for single solitons is larger than the α

value at which an extended pattern will transition to a soliton
ensemble. Otherwise, the generation of single solitons using
this method will be difficult or impossible. To investigate this,
we numerically perform slow scans across the resonance to
identify where the transition from extended patterns to inde-
pendent solitons occurs. These scans are conducted slowly to
approximate adiabaticity: dα/dτ = 2.5 × 10−4. We perform
10 scans across the resonance at each integer value of F 2

from 3 to 12 with β = −0.02, and we identify the transition
from extended pattern to independent solitons by inspection
of several quantities as α is varied: the set of local maxima
and minima of |ψ |2 (see Ref. [43]), the distance between local
maxima, and the number of local maxima above |ψ |2 = 1. In
Fig. 8(d) we plot the line representing the upper boundary
in α of extended patterns obtained in the scans across the
resonance. Error bars represent the standard deviation of the
values α at which the transition is observed, with this spread
in the values arising due to the chaotic fluctuations in the
total intracavity power and therefore also in the size of the
nonlinear integral term. These results indicate that the region
over which single solitons exist and extended patterns do not
is narrow for small pump powers F 2, and widens as F 2 is
increased. Without performing experiments, it is impossible to
precisely quantify the limitations imposed by this observation,
but we expect this finding to be useful in refining schemes for
single-soliton generation. These challenges associated with the
necessary transition from high duty-cycle extended patterns to
low duty-cycle solitons are alleviated by pulsed pumping, as
demonstrated in Ref. [34].

For completeness, we note that after the transition to
solitons, we observe in a small number of scans the onset
of harmonic modelocking, by which we mean a slow (i.e.,
over hundreds or thousands of photon lifetimes) convergence
of the soliton ensemble to uniform spacing. Because har-
monic modelocking eliminates soliton collisions, which are
the mechanism by which single solitons can be obtained from a
multisoliton ensemble, it is unclear whether single solitons can
be generated under these conditions. Harmonic modelocking
is clearly observed for all the scans for F 2 = 3, four of
the scans for F 2 = 7, and one scan for F 2 = 9. While we
have not investigated the phenomenon in depth, we speculate
that harmonic modelocking occurs when a soliton ensemble
exhibits a suitable initial distribution and an appropriate density
of solitons, which is related to the pulse width and therefore to
α and β.
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IX. CONCLUSIONS

In this article we have presented the analog of the spatiotem-
poral Lugiato-Lefever equation applicable to a Fabry-Perot
cavity with the Kerr nonlinearity. This equation is derived
from the appropriate Maxwell-Bloch equations and allows
determination of the forward- and backward-propagating field
components in the cavity. We have presented this equation
using notation that is standard in the field of microresonator-
based frequency combs and that makes clear the important
difference between the two geometries, which is the existence
of an additional nonlinear integral term representing modula-
tion by twice the average intensity. This term leads to subtle
but important differences in the dynamics and the stationary
states exhibited in the two geometries. We expect that our
preliminary investigation of these differences will facilitate
future experiments using the Fabry-Perot geometry.

Importantly, the states that are stationary for the ring
LLE (solitons and Turing patterns) are also stationary for
the FP-LLE, up to a shift in the cavity detuning parameter
α. As discussed in Sec. VIII, this shift has implications for
experimental generation of cavity solitons. Besides this, we
have described our observations in simulation of multi-stability

of Turing patterns under the FP-LLE, and also investigated
the nonstationary solutions, spatiotemporal chaos and breather
solitons. These states appear similar to their counterparts under
the ring LLE, but further investigation of their properties may
reveal interesting differences due to the fact that these states
evolve with a fluctuating effective detuning parameter α′.

The Fabry-Perot geometry represents an exciting new direc-
tion for frequency comb generation in passive Kerr resonators,
as indicated also by the work of Obrzud et al. [34]. This
geometry presents a different set of cavity properties (e.g.,
wavelength-dependent mirror-coating reflectivity and group-
delay dispersion) that can be manipulated to control the
properties of the frequency comb, and thus has the potential
to expand the range of applications available to this emerging
technology.
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