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STABLE EXPLICIT STEPWISE MARCHING SCHEME IN
ILL-POSED TIME-REVERSED 2D BURGERS’ EQUATION

ALFRED S. CARASSO∗

Abstract. This paper constructs an unconditionally stable explicit difference scheme, marching
backward in time, that can solve a limited, but important class of time-reversed 2D Burgers’ initial
value problems. Stability is achieved by applying a compensating smoothing operator at each time
step to quench the instability. This leads to a distortion away from the true solution. However, in
many interesting cases, the cumulative error is sufficiently small to allow for useful results. Effective
smoothing operators based on (−∆)p, with real p > 2, can be efficiently synthesized using FFT
algorithms, and this may be feasible even in non-rectangular regions. Similar stabilizing techniques
were successfully applied in other ill-posed evolution equations. The analysis of numerical stabilty
is restricted to a related linear problem. However, extensive numerical experiments indicate that
such linear stability results remain valid when the explicit scheme is applied to a significant class of
time-reversed nonlinear 2D Burgers’ initial value problems.

As illustrative examples, the paper uses fictitiously blurred 256 × 256 pixel images, obtained
by using sharp images as initial values in well-posed, forward 2D Burgers’ equations. Such images
are associated with highly irregular underlying intensity data that can seriously challenge ill-posed
reconstruction procedures. The stabilized explicit scheme, applied to the time-reversed 2D Burgers’
equation, is then used to deblur these images. Examples involving simpler data are also studied.
Successful recovery from severely distorted data is shown to be possible, even at high Reynolds
numbers.

Key words. 2D viscous Burgers’ equation backward in time. High Reynolds numbers. Stabi-
lized explicit marching difference scheme. Numerical experiments.

AMS subject classifications. 35K59, 35Q30, 35R25, 65M12, 65M30.

1. Introduction. Following the 1951 seminal paper by Cole [1], a large literature
on the 2D Burgers’ equation has developed, spawned by significant applications in
science and engineering. Numerous references may be found in recent papers [2–7].
As is often stressed, the 2D Burgers’ coupled system is a useful simplification of the 2D
incompressible Navier-Stokes equations, providing valuable insight into the behavior
of complex flows, together with the expected behavior of possible numerical methods
for computing such flows. Accordingly, numerical methods for the well-posed forward
Burgers’ initial value problem have been actively investigated.

On the other hand, very little seems known about possible numerical compu-
tation of the ill-posed time-reversed 2D Burgers’ equation. The backward problem
is of considerable interest, as it may enable computation of initial conditions that
can produce desired flow patterns, as well as reconstructing the genesis of undesired
flows. Such inverse design problems are actively being studied for the 1D Burgers’
equation [8–10]. The inverse Burgers’ problem also plays an important role in studies
of data assimilation for nonlinear geophysical fluid dynamics [11–14]. Error estimates
of logarithmic convexity type have been obtained for backward recovery in the 1D
problem [15,16], but are not yet known in the 2D Burgers’ problem. For the Navier-
Stokes equations, backward error estimates are given in [17,18]. Further information
about ill-posed continuation in partial differential equations may be found in [19–21].

The present self-contained paper constructs an unconditionally stable explicit dif-
ference scheme, marching backward in time, that can solve an important but limited
class of time-reversed 2D Burgers’ initial value problems. Stability is achieved by ap-
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2 A. S. CARASSO

plying a compensating smoothing operator at each time step to quench the instability.
Eventually, this leads to a distortion away from the true solution. However, in many
interesting cases, the cumulative effect of these errors is sufficiently small to allow for
useful results. Effective smoothing operators based on (−∆)p, with real p > 2, can
be efficiently synthesized using FFT algorithms. Similar stabilizing techniques were
successfully applied in other ill-posed evolution equations, [22–25]. As was the case
in these papers, the analysis of numerical stabilty given in Sections 3 and 4 below, is
restricted to a related linear problem. However, extensive numerical experiments indi-
cate that these linear stability results remain valid when the explicit scheme is applied
to a significant class of time-reversed nonlinear Burgers’ initial value problems.

Following [1], we define the Reynolds number RE as follows

RE = (
√
A/ν)Umax (1.1)

where A is the area of the flow domain, ν is the kinematic viscosity, and Umax is
the maximum value of the initial velocity. In many numerical experiments on the
well-posed forward 2D Burgers’ equation, the objective is to demonstrate accurate
calculation of an exact solution, known analytically together with its specific initial
and time-dependent boundary values. Typically, with 100 ≤ RE ≤ 1000, computa-
tions are carried out up to some fixed time Tmax ≥ 1. In the present time-reversed
context, where only approximate values are generally available at some positive time
Tmax, the objective is to demonstrate useful backward reconstruction from noisy data.
As is well-known, there is a necessary uncertainty in ill-posed backward recovery from
imprecise data at Tmax. For the 1D Burgers’ equation, the error estimates at t = 0
given in [15, 16], contain a factor K = exp{RE × Tmax}. For the Navier-Stokes
equations, the corresponding uncertainty may be significantly larger [17, 18]. Taken
together, these results indicate that successful backward recovery in the 2D Burgers’
equation, with 100 ≤ RE ≤ 1000, may not be feasible unless Tmax � 1.

In Section 5 below, three instructive numerical experiments are discussed. In
these experiments, the solutions have the value zero on the domain boundary. Inter-
esting initial values are propagated forward up to a time Tmax � 1, by numerically
solving the well-posed forward 2D Burgers’ equation. Despite the small value of
Tmax, considerable distortion of the initial values occurs. These limited precision nu-
merical values are then used as input data at Tmax, for the backward computation
with the stabilized explicit scheme. In the first experiment, relatively simple data
are used, involving two Gaussians on the unit square, and Tmax = 2.5 × 10−3 with
RE = 50000. The second experiment involves images on the unit square, defined by
highly non-smooth intensity data. Here, Tmax = 2.5 × 10−4 and RE = 3400. The
last experiment, with Tmax = 2.5× 10−4 and RE = 2500, involves non-smooth image
data in an elliptical region.

2. 2D Burgers’ Equation. Let Ω be the unit square in R2 with boundary ∂Ω.
Let < , > and ‖ ‖2, respectively denote the scalar product and norm on L2(Ω).
With ν > 0 the kinematic viscosity, we consider the following 2D Burgers’ system for
(x, y) ∈ Ω,

ut = L1u ≡ ν∆u− uux − vuy, 0 < t ≤ Tmax,

vt = L2v ≡ ν∆v − uvx − vvy, 0 < t ≤ Tmax,
(2.1)

together with periodic boundary conditions on ∂Ω, and the initial values

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y), (x, y) ∈ Ω. (2.2)
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The well-posed forward initial value problem in Eq. (2.1) becomes ill-posed if
the time direction is reversed, and one wishes to recover u(x, y, 0)), v(x, y, 0), from
given approximate values for u(x, y, Tmax), v(x, y, Tmax). We contemplate such time-
reversed computations by allowing for possible negative time steps ∆t in the ex-
plicit time-marching finite difference scheme described below. With a given pos-
itive integer N , let |∆t| = Tmax/(N + 1) be the time step magnitude, and let
ũn(x, y) ≡ ũ(x, y, n∆t), n = 0, 1, · · · , N + 1, denote the intended approximation
to u(x, y, n∆t), and likewise for ṽn(x, y). It is helpful to consider Fourier series ex-
pansions for ũn(x, y), ṽn(x, y), on the unit square Ω,

ũn(x, y) =

∞∑
j,k=−∞

ũnj,k exp{2πi(jx+ ky)}, (2.3)

with Fourier coefficients {ũnj,k} given by

ũnj,k =

∫
Ω

ũn(x, y) exp{−2πi(jx+ ky)}dxdy, (2.4)

and similarly for ṽn(x, y). With given fixed ω > 0 and p > 1, define λj,k, σj,k, as
follows

λj,k = 4π2ν(j2 + k2), σj,k = exp{−2ω|∆t|λpj,k}. (2.5)

For any f(x, y) ∈ L2(Ω), let {fj,k} be its Fourier coefficients as in Eq (2.4). Using
Eq. (2.5), define the linear operators P and S as follows

Pf =
∑∞
j,k=−∞ λpj,kfj,k exp{2πi(jx+ ky)}, ∀f ∈ L2(Ω),

Sf =
∑∞
j,k=−∞ σj,kfj,k exp{2πi(jx+ ky)}, ∀f ∈ L2(Ω).

(2.6)

As in [22–25], the operator S is used as a stabilizing smoothing operator at each time
step, in the following explicit time-marching finite difference scheme for the system
in Eq (2.1), in which only the time variable is discretized, while the space variables
remain continuous,

ũn+1 = Sũn + ∆tSL1ũ
n,

ṽn+1 = Sṽn + ∆tSL2ṽ
n, n = 0, 1, · · · , N.

(2.7)

The analyses presented in Sections 3 and 4 below, are relevant to the above semi-
discrete problem. In Section 5, where actual numerical computations are discussed,
the space variables are also discretized, and FFT algorithms are used to synthesize
the smoothing operator S.

3. Fourier stability analysis in linearized problem. As in [22–25], useful
insight into the behavior of the nonlinear scheme in Eq. (2.7), can be gained by
analyzing a related linear problem with constant coefficients. With positive constants
a, b, consider the initial value problem on the unit square Ω,

ut = Lu ≡ ν∆u− aux − buy, 0 < t ≤ Tmax,

u(x, y, 0) = u0(x, y),
(3.1)
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together with periodic boundary conditions on ∂Ω. Unlike the case in Eq. (2.7), the
stabilized marching scheme

ũn+1 = Sũn + ∆tSLũn, n = 0, 1, · · · , N, (3.2)

with the linear operator L, is susceptible to Fourier analysis. If Lũn = fn(x, y), then
the Fourier coefficients {fnj,k} satisfy fnj,k = gj,kũ

n
j,k, where

gj,k = −{4π2ν(j2 + k2) + 2πi(aj + bk)}. (3.3)

Let R be the linear operator R = S + ∆tSL. Then,

ũn+1 = Rũn =

∞∑
j,k=−∞

ũnj,k{1 + ∆tgj,k}σj,k,

‖ ũn+1 ‖22 = ‖ Rũn ‖22 ≤
∞∑

j,k=−∞

|ũnj,k|2{1 + |∆t||gj,k|}2σ2
j,k, (3.4)

on using Parseval’s formula.

Lemma 1. Let λj,k, σj,k, be as in Eq. (2.5), and let gj,k be as in Eq. (3.3).
Choose a positive integer J such that if λJ = 4π2νJ , we have

max(j2+k2)≤J {|gj,k|} ≤ 2λJ , |gj,k| ≤ 2λj,k, ∀ (j2 + k2) > J. (3.5)

With p > 1, choose ω ≥ (λJ)1−p in Eq. (2.5). Then,

σj,k (1 + |∆t||gj,k|) ≤ 1 + 2|∆t|λJ . (3.6)

Hence, from Eq. (3.4), ‖ R ‖2≤ 1 + 2|∆t|λJ , and

‖ ũn ‖2=‖ Rnu0 ‖2≤ exp{2n|∆t|λJ} ‖ u0 ‖2, n = 1, 2, · · · , N + 1. (3.7)

Therefore, with this choice of (ω, p), the explicit linear marching scheme in Eq. (3.2)
is stable.

Proof : The inequality in Eq. (3.6) is valid whenever (j2 + k2) ≤ J , since σj,k ≤ 1.
For (j2 + k2) > J, we have λJ < λj,k and |gj,k| ≤ 2λj,k. Hence

σj,k = exp{−2ω|∆t|λpj,k} ≤ exp{−2ω|∆t|λj,kλp−1
J } ≤ exp{−2|∆t|λj,k}, (3.8)

since ωλp−1
J ≥ 1. Also, exp{−2|∆t|λj,k} ≤ (1 + 2|∆t|λj,k)

−1
, since 1 + x ≤ ex for

real x. Hence, with |gj,k| ≤ 2λj,k for (j2 + k2) > J, we find σj,k (1 + |∆t||gj,k|) ≤ 1.
Next, using Eq. (3.6) in Eq. (3.4) leads to ‖ ũn ‖2≤ (1 + 2|∆t|λJ) ‖ ũn−1 ‖2, which
implies Eq. (3.7). QED.

For functions v(x, y, t) on Ω× [0, Tmax], define the norm |||v|||2,∞ as follows

|||v|||2,∞ ≡ Sup0≤t≤Tmax
{‖ v(·, t) ‖2}. (3.9)

Lemma 2. Let un(x, y) ≡ u(x, y, n∆t) be the exact solution in Eq. (3.1). Let
ω, p, λj,k, σj,k, be as in Eq. (2.5). Let P and S be as in Eq. (2.6), and let L be
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the linear operator in Eq. (3.1). Then, un+1 = un + ∆tLun + τn, where τn is the
truncation error. With the norm definition in Eq (3.9), and 0 ≤ n ≤ N ,

‖ τn ‖2 ≤ 1/2(∆t)2 |||L2u|||2,∞,
‖ un − Sun ‖2 ≤ 2ω|∆t| |||Pu|||2,∞,

|∆t| ‖ Lun − SLun ‖2 ≤ 2ω(∆t)2 |||PLu|||2,∞. (3.10)

Proof : The inequality for the truncation error τn in Eq. (3.10) follows naturally from
a truncated Taylor series expansion. Using the inequality 1− e−x ≤ x for all real x,
together with Parseval’s formula, we have

‖ un − Sun ‖22 =

∞∑
j,k=−∞

|unj,k|2(1− σj,k)2 ≤ (2ω|∆t|)2 |||Pu|||22,∞. (3.11)

This proves the second inequality in Eq. (3.10). The last inequality is a corollary of
the second. QED.

In Lemma 1, the finite difference approximation ũn(x, y) ≡ ũ(x, y, n∆t) satisfies
Eq. (3.2), whereas the exact solution un(x, y) ≡ u(x, y, n∆t) in Eq. (3.1), satisfies
un+1 = un + ∆tLun + τn, where τn is the truncation error. We need to estimate the
error wn(x, y) = un(x, y)− ũn(x, y), n = 0, 1, · · · , N + 1.

Theorem 1. With ∆t > 0, let un(x, y) be the unique solution of Eq. (3.1) at
t = n∆t. Let ũn(x, y) be the corresponding solution of the forward explicit scheme in
Eq. (3.2), and let p, λJ , ω, be as in Lemma 1. If wn(x, y) = un(x, y) − ũn(x, y),
denotes the error at t = n∆t, n = 1, 2, · · · , N + 1, we have

‖ wn ‖2≤ e2tλJ ‖ w0 ‖2 +
{
ω(e2tλJ − 1)/λJ

}
|||Pu|||2,∞

+
{

(e2tλJ − 1)/2λJ
}{

2ω∆t |||PLu|||2,∞ + (∆t/2) |||L2u|||2,∞
}
. (3.12)

Proof : Let hn = τn + (un − Sun) + ∆t(Lun − SLun). Let R be the linear operator
in Eq. (3.4). Then, un+1 = Run + hn, while ũn+1 = Rũn. Therefore

wn+1 = Rwn + hn = Rn+1w0 + ∆t

n∑
j=0

Rn−jhj/(∆t). (3.13)

Let |||h|||2,∞ ≡ max0≤n≤N+1{hn}. Using Lemma 1, and letting t = (n+ 1)∆t,

‖ wn+1 ‖2 ≤ e2tλJ ‖ w0 ‖2 + {|||h|||2,∞/∆t}∆t

n∑
j=0

‖ Rn−j ‖2,

≤ e2tλJ ‖ w0 ‖2 + {|||h|||2,∞/∆t}
∫ t

0

e2λJ (t−u)du

= e2tλJ ‖ w0 ‖2 + {|||h|||2,∞/∆t} (e2tλJ − 1)/2λJ . (3.14)

Next, using Lemma 2 to estimate {|||h|||2,∞/∆t}, one obtains Eq. (3.12) from Eq.
(3.14). QED.
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4. The stabilization penalties in the forward and backward linearized
problem in Eq. (3.1). The stabilizing smoothing operator S in the explicit scheme
in Eq. (3.2) leads to unconditional stability, but at the cost of introducing a small
error at each time step. We now assess the cumulative effect of that error.

In the forward problem in Theorem 1, we may assume the given initial data
u0(x, y) to be known with sufficiently high accuracy that one may set ‖ w0 ‖2= 0
in Eq. (3.12). Choosing ω = (λJ)1−p in Lemma 1, and putting t = n∆t ≤ Tmax,
Eq.(3.12) reduces to

‖ wn ‖2≤ (λJ)−p(e2tλj − 1) |||Pu|||2,∞ + O(∆t), n = 1, 2, · · · , N + 1. (4.1)

Therefore, when using the explicit scheme in Eq.(3.2), there remains the non-vanishing
residual error (λJ)−p(e2tλj−1) |||Pu|||2,∞, as ∆t ↓ 0. This is the stabilization penalty,
which results from smoothing at each time step, and grows monotonically as t ↑ Tmax.
Recall that λJ must be chosen large enough to satisfy Eq. (3.5) in Lemma 1. Clearly,
if Tmax = (N + 1)|∆t| is large, the accumulated distortion may become unacceptably
large as t ↑ Tmax, and the stabilized explicit scheme is not useful in that case. On
the other hand, if Tmax is small, as is the case in problems involving small values of
t, it may be possible to choose p > 2 and sufficiently large λJ , yet with small enough
λJTmax that (λJ)−p(e2λjTmax − 1) is quite small. In that case, the stabilization
penalty remains acceptable on 0 ≤ t ≤ Tmax. As an example, with Tmax = 5.0 ×
10−4, p = 2.75, and λJ = 104, we find (λJ)−p(e2λjTmax − 1) < 2.21× 10−7. For this
important but limited class of problems, the absence of restrictive Courant conditions
on the time step ∆t in the explicit scheme in Eq.(3.2), provides a significant advantage
in well-posed forward computations of two dimensional problems on fine meshes.

However, there is an additional penalty in the ill-posed problem of marching
backward from t = Tmax, in that solutions exist only for a restricted class of data
satisfying certain smoothness and other constraints. These data are seldom known
with sufficient precision. We shall assume that the given data ũ0(x, y) at t = Tmax,
differ from such unknown exact data by small errors γ(x, y):

ũ0(x, y) = u(x, y, Tmax) + γ(x, y), ‖ γ ‖2≤ δ. (4.2)

Theorem 2. With ∆t < 0, let un(x, y) be the unique solution of the forward well-
posed problem in Eq. (3.1) at s = Tmax − n|∆t|. Let ũn(x, y) be the corresponding
solution of the backward explicit scheme in Eq. (3.2), with initial data ũ0(x, y) =
u(x, y, Tmax)+γ(x, y) as in Eq. (4.2). Let p, λJ , ω, be as in Lemma 1. If wn(x, y) ≡
un(x, y)− ũn(x, y), denotes the error at s = Tmax−n|∆t|, n = 0, 1, 2, · · · , N + 1, we
have, with δ as in Eq.(4.2),

‖ wn ‖2≤ δe2n|∆t|λJ +
{
ω(e2n|∆t|λJ − 1)/λJ

}
|||Pu|||2,∞

+
{

(e2n|∆t|λJ − 1)/2λJ

}{
2ω|∆t| |||PLu|||2,∞ + (|∆t|/2) |||L2u|||2,∞

}
. (4.3)

Proof : Let hn = τn + (un − Sun) + ∆t(Lun − SLun). Let R be the linear operator
in Eq. (3.4). Then, un+1 = Run + hn, while ũn+1 = Rũn. Therefore

wn+1 = Rwn + hn = Rn+1w0 + |∆t|
n∑
j=0

Rn−jhj/(|∆t|). (4.4)
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Let |||h|||2,∞ ≡ max0≤n≤N+1{hn}. Using Lemma 1, and letting r = (n+ 1)|∆t|,

‖ wn+1 ‖2 ≤ δe2rλJ + {|||h|||2,∞/|∆t|} |∆t|
n∑
j=0

‖ Rn−j ‖2,

≤ δe2rλJ + {|||h|||2,∞/|∆t|}
∫ r

0

e2λJ (r−u)du,

= δe2rλJ {|||h|||2,∞/|∆t|} {e2rλJ − 1}/2λJ . (4.5)

As in the preceding Theorem, we may now use Lemma 2 to estimate {|||h|||2,∞/|∆t|}
and obtain Eq. (4.3) from Eq.(4.5). QED.

It is instructive to compare the results in the well-posed case in Eq.(4.1), with the
ill-posed results implied by Eq.(4.3). For this purpose, we must reevaluate Eq.(4.3)
at the same t values that are used in Eq. (4.1). With ∆t > 0, t = k∆t, and
uk(x, y) = u(x, y, k∆t), let ũk(x, y) now denote the previously computed backward
solution evaluated at t = k∆t. With Tmax = (N + 1)∆t, let wk(x, y) = uk(x, y) −
ũk(x, y), k = 0, 1, 2, · · · , N + 1, denote the error at t = k∆t. Again, choosing
ω = (λJ)1−p, we get from Eq. (4.3),

‖ wk ‖2 ≤ (λJ)−p {exp[2λj(Tmax − t)]− 1} |||Pu|||2,∞
+ δ exp{2λJ(Tmax − t)}+ O(∆t), 0 ≤ t ≤ Tmax. (4.6)

Here, the stabilization penalty is augmented by an additional term, resulting from
amplification of the errors γ(x, y) in the given data at t = Tmax, as indicated in
Eq. (4.2). Both of the first two terms on the right in Eq. (4.6) grow monotonically as
t ↓ 0, reflecting backward in time marching from t = Tmax.

Let the exact solution u(x, y, 0) at t = 0, satisfy a prescribed L2 bound,

‖ u0 ‖2≤M. (4.7)

Again, with large Tmax, and λJ large enough to satisfy Eq. (3.5) in Lemma 1, the
non-vanishing residuals in Eq. (4.6) lead to large errors, and the backward explicit
scheme is not useful in that case. However, if Tmax is small enough that

2λJTmax ≤ log(M/δ), (4.8)

with (δ,M) as in Eqs. (4.2) and (4.7), we find, with β(t) = t/Tmax,

‖ wk ‖2 ≤ (λJ)−p {exp[2λj(Tmax − t)]− 1} |||Pu|||2,∞
+ M1−β(t)δβ(t) + O(∆t), 0 ≤ t ≤ Tmax. (4.9)

The second term on the right in Eq. (4.9) represents the fundamental uncer-
tainty in ill-posed backward continuation from noisy data, for solutions satisfying the
prescribed bounds (δ,M) in Eqs. (4.2) and (4.7). That uncertainty is known to be
best-possible in the case of autonomous selfadjoint problems. Therefore, in a limited
but potentially significant class of problems, the stabilized backward explicit scheme
for the linearized problem in Eq. (3.1), can produce results differing from what is
best-possible only by a small stabilization penalty as ∆t ↓ 0.

For example, with parameter values such as Tmax = 10−3, M = 102, δ = 10−3,
we have M/δ = 105 = exp{2λjTmax}, and λJ ≥ 5756. Hence, with p = 3.0, we find



(λJ)−p < 1.91× 10−11. We would then obtain from Eq. (4.9),

‖ wk) ‖2 ≤M1−β(t) δβ(t)

+ (1.91× 10−6) |||Pu|||2,∞ + O(∆t), 0 ≤ t ≤ Tmax. (4.10)

Remark 1. In most practical applications of ill-posed backward problems, the values
of M and δ in Eq. (4.10) are seldom known accurately. In many cases, interactive
adjustment of the parameter pair (ω, p) in Eq. (2.5), in the definition of the smoothing
operator S in Eq. (2.6), based on prior knowledge about the exact solution, is crucial
in obtaining useful reconstructions. This process is similar to the manual tuning
of an FM station, or the manual focusing of binoculars, and likewise requires user
recognition of a ‘correct’ solution. There may be several possible good solutions,
differing slightly from one another.

5. Behavior in the nonlinear stabilized explicit scheme in Eq. (2.7). In
the nonlinear system in Eq. (2.1), the ‘coefficients’ for the first order derivative terms
are u(x, y, t) and v(x, y, t), rather than the positive constants a and b, which is the
case in the linearized problem in Eq. (3.1). However, if the solution to the nonlinear
problem satisfies |u(x, y, t)| ≤ a, |v(x, y, t)| ≤ b, for (x, y) ∈ Ω, 0 ≤ t ≤ Tmax,
and suitable positive a, b, the stability analyses given in Section 3 and 4 may be
applicable. Theorems 1 and 2, and Eqs. (4.1, 4.9), may provide helpful insight into
the behavior of the nonlinear explicit scheme in Eq. (2.7). In particular, as in Remark
1, we may expect to obtain useful results by interactive adjustment of the parameter
pair (ω, p) in Eq. (2.5), in backward in time computations with the nonlinear scheme
in Eq. (2.7). As will be shown below, numerical experiments with examples similar
to that discussed in Eq. (4.10), appear to confirm such expectations.

5.1. Two Gaussians experiment at RE = 50000. With Ω be the unit square
in R2 with boundary ∂Ω, Tmax = 2.5× 10−3, and the kinematic viscosity ν = 0.001,
consider the following initial value problem

ut = L1u ≡ ν∆u− uux − vuy, 0 < t ≤ Tmax,

vt = L2v ≡ ν∆v − uvx − vvy, 0 < t ≤ Tmax,
(5.1)

together with homogeneous boundary conditions on ∂Ω, and the initial values

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y), (x, y) ∈ Ω. (5.2)

where

u0(x, y) = 50.0 ∗ exp{−150.0 ∗ [(x− 0.35)2 + (y − 0.35)2]
+ 25.0 ∗ exp{−150.0 ∗ [(x− 0.55)2 + (y − 0.55)2],

v0(x, y) = 50.0 ∗ exp{−150.0 ∗ [(x− 0.55)2 + (y − 0.55)2]
+ 25.0 ∗ exp{−150.0 ∗ [(x− 0.35)2 + (y − 0.35)2].

(5.3)

Plots of the initial values u0, v0, are shown in the first column of Figure 5.1. From
Eq. (1.1), with

√
A = 1.0, ν = 0.001, Umax = 50.0, we have RE = 50000 in this

experiment. We shall apply the previously discussed nonlinear explicit scheme

ũn+1 = Sũn + ∆tSL1ũ
n,

ṽn+1 = Sṽn + ∆tSL2ṽ
n, n = 0, 1, · · · , N.

(5.4)
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With |∆t| = 1.0 × 10−8, (N + 1) = 250000, Tmax = (N + 1)|∆t| = 2.5 × 10−3, and
S chosen as the identity operator in Eq. (5.4), we first consider the forward problem.
We use centered finite differencing for the spatial derivatives in L1, L2, on a uniform
grid with ∆x = ∆y = 1.0/512. The results of this stable forward computation are
shown in the middle column in Figure 5.1. Note that the vertical scales in the middle
column differ from those in the other two columns. Indeed, in the middle column, the
computed maximum values for ũ(x, y, Tmax), ṽ(x, y, Tmax), on the 512 × 512 spatial
grid, are, respectively, 144.54, and 209.25.

Next, we consider the backward problem. Here, we use the previously com-
puted values at time Tmax as input data, and apply the stabilized explicit scheme in
Eq. (5.4). With a uniform grid on the unit square Ω, FFT algorithms are the natu-
ral tool to use in synthesizing the smoothing operator S which is based on (−ν∆)p.
After a few interactive parameter trials, values of ω = 1.0 × 10−9, together with
p = 3.0, were arrived at. Because of the S-induced unconditional stability, it was
possible to use a value of |∆t| five times larger in the backward computation, namely,
∆t = −5.0×10−8, (N+1) = 50000. The resulting recovered initial values are plotted
in the right column of Figure 5.1. The maximum values in the recovered data are
46.7, as compared to the true values of 50.0.

5.2. Image experiment at RE = 3400. Our next experiment, illustrated in
Figures 5.2 and 5.3, involves 256 × 256 pixel gray scale images, defined on the unit
square Ω. As is well-known, many natural images are generated by highly non-
smooth intensity data. Use of such data in ill-posed time-reversed evolution equa-
tions, presents significant challenges to any reconstruction algorithm. At the same
time, the use of images is particularly instructive as it enables visualizing the dis-
tortion produced by the forward evolution, together with the subsequent attempt at
undoing that distortion by marching backward in time.

Here, the 2D Burgers’ system in Eq. (5.1) is used, with Tmax = 2.5 × 10−4, the
kinematic viscosity ν = 0.075, and homogeneous boundary conditions on ∂Ω. The
initial values are the intensity data, shown in the leftmost column of Figure 5.3, that
define the images shown in the leftmost column of Figure 5.2. These intensities range
from 0 to 255. Accordingly, with

√
A = 1.0, ν = 0.075, Umax = 255.0, we have

RE = 3400 in this experiment.

With |∆t| = 8.33× 10−10, (N + 1) = 300000, Tmax = (N + 1)|∆t|, and S chosen
as the identity operator in Eq. (5.4), stable computation of the forward problem on
a uniform grid with ∆x = ∆y = 1.0/256, produced the blurred images shown in the
middle column of Figure 5.2.

In the absence of the leftmost and rightmost columns in Figure 5.2, the images
in the middle column of that figure, when magnified, are almost unrecognizable, due
to the severe blurring caused by the forward evolution. In particular, the sea wall
surrounding the Sydney Opera House develops a striking wavy pattern in the bottom
middle image, reflecting some form of turbulence associated with Burgers’ equation.
Such severe distortion is noteworthy, as each of Tmax and RE, are one order of mag-
nitude smaller than was the case in the previous Gaussian data experiment.

Next, using the intensity data in the middle column of Figure 5.3 as input at
Tmax = 2.5 × 10−4, we apply the stabilized explicit scheme in Eq. (5.4) to march
backward in time. With ω = 3.0×10−9, p = 3.25, in the FFT-synthesized smoothing
operator S, and a value of |∆t| three times larger than in the forward prioblem, we
obtain the images shown in the rightmost column of Figure 5.2. These are the images
defined by the recovered intensity data shown in the rightmost column of Figure 5.3.
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Evidently, credible reconstruction has been achieved, although the recovered images
and data differ qualitatively and quantitatively from the exact values. However, such
discrepancies are to be expected in ill-posed continuation from noisy data.

5.3. Image experiment in non-rectangular region at RE = 2500. In rect-
angular regions Ψ, the Fast Fourier Transform is an efficient tool for synthesizing
(−ν∆)p for positive non-integer p. This was used to advantage in the previous two
experiments. However, as was shown in [24,25], and will be shown again below, FFT
Laplacian smoothing may be feasible for the 2D Burgers’ equation in non-rectangular
regions Ω, with zero Dirichlet data on an assumed smooth boundary ∂Ω. Enclosing
Ω in a rectangle Ψ, a uniform grid is imposed on Ψ, fine enough to sufficiently well
approximate ∂Ω. The discrete boundary ∂Ωd, consisting of the grid points closest to
∂Ω, is then used in place of ∂Ω . We use centered finite differencing for the spatial
derivatives in L1, L2, in Eq. (5.1). At each time step n in Eq. (5.4), after applying the
operators (I + ∆tL1), (I + ∆tL2), to ũn, ṽn, respectively, on Ω ⊂ Ψ, these discrete
functions are then extended to all of Ψ by defining them to be zero on the grid points
in Ψ − Ω. FFT algorithms are then applied on Ψ to synthesize S in Eq. (5.4), and
produce ũn+1, ṽn+1. Retaining only the values of these discrete functions on Ω, the
process is repeated at the next time step.

The last experiment, illustrated in Figures 5.4 and 5.5, involves recognizable face
images defined on an elliptical domain Ω, with area A = 0.544, enclosed in the unit
square Ψ. As before, the kinematic viscosity ν = 0.075, and Umax = 255.0. With√
A = 0.738, we now have RE = 2500. A 256× 256 grid was placed on Ψ. As in the

previous experiment, with S the identity operator, |∆t| = 4.17 × 10−10, (N + 1) =
600000, Tmax = (N + 1)|∆t| = 2.5 × 10−4, stable forward computation in Eq. (5.4),
using the intensity data shown in first column of Figure 5.5, produced the blurred
images in the middle column of Figure 5.4, and the intensity data in the middle column
of Figure 5.5. Although not as severe as in Figure 5.2, quite noticeable blurring is
evident in Figure 5.4.

Next, using the intensity data in the middle column of Figure 5.5 as input at
Tmax = 2.5 × 10−4, we apply the stabilized explicit scheme in Eq. (5.4) to march
backward in time, using the FFT strategy outlined in the first paragraph. With
ω = 4.0× 10−10, p = 3.5, in the smoothing operator S, and a value of |∆t| ten times
larger than in the forward prioblem, we obtain the images shown in the rightmost
column of Figure 5.4. These are the images defined by the recovered intensity data
shown in the rightmost column of Figure 5.5. Again, quite good reconstructions are
obtained, despite inevitable discrepancies between the exact and recovered data and
images in Figures 5.4 and 5.5.

6. Concluding remarks. To the author’s knowledge, successful backward in
time computations in the 2D Burgers’ equation, have not previously appeared in
the literature. The results obtained here offer a glimpse of what might be feasible,
although the stabilized explicit scheme in Eq. (2.7) will generally be useful only in
a limited class of problems. The successful first experiment in Section 5, at RE =
50000, is noteworthy even though relatively simple data were involved. The second
experiment, at a much smaller Reynolds number, was instructive in highlighting the
severe distortions that can occur with highly complex non-smooth data, and the
remarkable backward recovery that yet remains possible. The last experiment is
important in illustrating the possible use of FFT-synthesized smoothing operators in
non-rectangular regions.

Theoretical error estimates for backward reconstruction from noisy data, such
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as are given in [15–17], necessarily reflect worse case error accumulation scenarios,
and may be too pessimistic in individual situations. As in [22–25], the use of 8 bit
gray scale images provide challenging test examples, as well as an instructive way
of exploring the feasibility of backward recovery with various types of complicated
non-smooth data.
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[16] Hào DN, Nguyen VD, Nguyen VT. Stability estimates for Burgers-type equations backward in
time. J. Inverse Ill Posed Probl. 2015;23:41–49.

[17] Knops RJ, Payne LE. On the stability of solutions of the Navier-Stokes equations backward in
time. Arch. Rat. Mech. Anal. 1968;29:331–335.

[18] Payne LE, Straughan B. Comparison of viscous flow backward in time with small data. Int. J.
Nonlinear Mech. 1989;24:209-214.

[19] Knops RJ. Logarithmic convexity and other techniques applied to problems in continuum me-
chanics. In: Knops RJ, editor. Symposium on non-well-posed problems and logarithmic
convexity. Vol. 316, Lecture notes in mathematics. New York (NY): Springer-Verlag; 1973.

[20] Ames KA, Straughan B. Non-standard and improperly posed problems. New York (NY): Aca-
demic Press; 1997.

[21] Carasso AS. Reconstructing the past from imprecise knowledge of the present: Effective non-
uniqueness in solving parabolic equations backward in time. Math. Methods Appl. Sci.
2012;36:249-261.

11



[22] Carasso AS. Stable explicit time-marching in well-posed or ill-posed nonlinear parabolic equa-
tions. Inverse Probl. Sci. Eng. 2016;24:1364–1384.

[23] Carasso AS. Stable explicit marching scheme in ill-posed time-reversed viscous wave equations.
Inverse Probl. Sci. Eng. 2016;24:1454–1474.

[24] Carasso AS. Stabilized Richardson leapfrog scheme in explicit stepwise computation of forward
or backward nonlinear parabolic equations. Inverse Probl. Sci. Eng. 2017;25:1–24.

[25] Carasso AS. Stabilized backward in time explicit marching schemes in the numerical computa-
tion of ill-posed time-reversed hyperbolic/parabolic systems. Inverse Probl. Sci. Eng. 2018;
DOI:10.1080/17415977.2018.1446952

12



           2D BURGERS EQUATION  IN RECTANGULAR REGION
                       RUN BACKWARD IN TIME, WITH RE=50000

   

Blurred input at time T       Reconstruction at time 0   Exact data at time 0

Reconstruction at time 0Blurred input at time TExact data at time 0

Fig. 5.1. Using precomputed input data at time T = 2.5 × 10−3, shown in middle column,
nonlinear explicit scheme in Eq. (2.7), run backward in time, seeks to recover true initial data
shown in leftmost column. Actually recovered data are shown in rightmost column. Note that
maximum values in middle column are much larger than in leftmost column, and maximum values
in the rightmost column are slightly smaller than in leftmost column.
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           2D BURGERS EQUATION  IN RECTANGULAR REGION
                       RUN BACKWARD IN TIME, WITH RE=3400

   

Blurred input at time T       Reconstruction at time 0Exact image at time 0

Reconstruction at time 0Blurred input at time TExact image at time 0

Fig. 5.2. Using precomputed input data at time T = 2.5 × 10−4, shown in middle column,
nonlinear explicit scheme in Eq. (2.7), run backward in time, seeks to recover the true images shown
in leftmost column. Actually recovered mages are shown in rightmost column. Notice severe wavy
distortion of sea wall in blurred Sydney Opera House image, shown at bottom in middle columnm,
and its successful reconstruction in bottom rightmost image.
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           2D BURGERS EQUATION  IN RECTANGULAR REGION
                       RUN BACKWARD IN TIME, WITH RE=3400

   

Blurred input at time T       Reconstruction at time 0 Exact data at time 0

Reconstruction at time 0Blurred input at time TExact data at time 0

Fig. 5.3. Backward recovery of the underlying intensity data that generate the images in the
reconstruction experiment shown in Figure 5.2.
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                   2D BURGERS EQUATION  IN ELLIPTICAL REGION
                      RUN BACKWARD IN TIME, WITH  RE=2500

   

Blurred input at time T     Reconstruction at time 0   Exact image at time 0

 Exact image at time 0        Blurred input at time T     Reconstruction at time 0

Fig. 5.4. Using precomputed input data at time T = 2.5 × 10−4, shown in middle column,
nonlinear explicit scheme in Eq. (2.7), run backward in time, seeks to recover the true images
shown in leftmost column. Actually recovered images are shown in rightmost column.
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                   2D BURGERS EQUATION  IN ELLIPTICAL REGION
                      RUN BACKWARD IN TIME, WITH  RE=2500

   

Blurred input at time T     Reconstruction at time 0   Exact data at time 0

 Exact data at time 0          Blurred input at time T      Reconstruction at time 0

Fig. 5.5. Backward recovery of the underlying intensity data that generate the images in the
reconstruction experiment shown in Figure 5.4.
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