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CHAPTER

ONE

PRELIMINARIES

1.1 About Sesame

Sesame is a Python3 package for solving the drift diffusion Poisson equations for multi-dimensional systems using
finite differences.

The software computes the steady state of a semiconductor between two contacts, and subject to voltage bias and/or
illumination. It was developed to study polycrystalline solar cells containing charged interfaces (grain boundaries,
sample surface). Sesame handles single charged states and continuum of defect states alike.

1.2 Installation instructions (for experienced users)

This section documents how to build Sesame.

1.2.1 Prerequisites

Building Sesame requires

• Python 3.4 or above,

• SciPy 0.9 or newer,

• LAPACK and BLAS, (other options are the free OpenBLAS or the nonfree MKL can be used.)

The following software is highly recommended though not strictly required:

• Matplotlib 1.1 or newer, for Sesame’s plotting routines. Matplotlib is required when using the graphical
interface of Sesame.

• MUMPS, a sparse linear algebra library that will in many cases speed up Sesame several times and reduce
the memory footprint. (Sesame uses only the sequential, single core version of MUMPS. The advantages
due to MUMPS as used by Sesame are thus independent of the number of CPU cores of the machine on
which Sesame runs.)

• An environment which allows to compile Python extensions written in C, C++ and Fortran.

The graphical user interface requires PyQt5.

For users with no python installation, a convenient standalone installation which automatically includes all of the
requisiste libraries and packages is Anaconda .

Sesame may be downloaded from https://github.com/usnistgov

3
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https://github.com/usnistgov


Sesame Documentation

1.2.2 Generic instructions

Standard build and install

Sesame can be built and installed following the usual Python conventions by running the following commands in the
root directory of the Sesame distribution:

python setup.py build
python setup.py install

Depending on your system, you might have to run the second command with administrator privileges. The installation
step can be done locally either by using the --user prefix:

python setup.py install --user

or by specifying the location where to install the package files with --prefix=/path/of/directory.

The tutorial examples can be found in the directory examples inside the root directory of the Sesame source distri-
bution.

Build configuration

The setup script of Sesame parses the file setup.cfg in the root directory of the distribution to know if the graphical
user interface should be installed, and whether or not to link Sesame against the MUMPS library.

The graphical user interface will be installed if use = True in the GUI section. The default is to install it (use use
= False to avoid install). The mumps section provides the paths to relevant directories where MUMPS is installed.
By default this section is commented out and MUMPS is not used.

Building the documentation

To build the documentation, the Sphinx documentation generator is required (version 1.4 or newer) with numpydoc
extension (version 0.5 or newer), and Latex.

HTML documentation is built by entering the doc sub-directory of the Sesame package and executing make html.
Open the file index.html in the directory build/html with a web browser to access the documentation. PDF
documentation is generated by executing make latex followed by make latexpdf. The pdf file is generated in
build/latex.

Because of some quirks of how Sphinx works, it might be necessary to execute make clean between building
HTML and PDF documentation. If this is not done, Sphinx may mistakenly use PNG files for PDF output or other
problems may appear.

As an alternative if make is not available, the HTML documentation can be built using the command from the root
directory:

python setup.py build_sphinx

The documentation is produced in doc/build/html. To build the PDF file:

python setup.py build_sphinx -b latex
cd doc/build/latex
make all-pdf

The resulting PDF is produced in doc/build/latex.

4 Chapter 1. Preliminaries
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1.2.3 Hints for specific platforms

Unix-like systems (GNU/Linux)

Sesame should run on all recent Unix-like systems.

1. Install the required packages.

2. Inside the Sesame source distribution’s root directory run

python setup.py build
sudo python setup.py install

Run python setup.py --help install for installation options.

Microsoft Windows

The generic installation instructions given above also apply on Windows. However, since the only recommended way
to compile Python extensions on Windows is using Visual C++, we are not able to provide guidelines as to how to
build with the MUMPS library.

1.3 Installation instructions (for beginners)

This section documents how to build Sesame for those with zero Python experience.

1.3.1 Installing Python

For users with no Python installation, there are a number of convenient standalone installations which automatically
includes all of the requisiste libraries and packages, including:

• Anaconda

• Canopy

• Pythonxy

These can be installed on any operating system (Windows, GNU/Linux, MacOS). This page walks through the process
using Anaconda in a Windows environment.

First download and install Anaconda, using the default settings. After installation, you’ll find a new folder with various
programs in the windows Start button folder: Start→ All Programs→ Anaconda.

1.3.2 Downloading and Installing Sesame (on Windows)

To obtain Sesame, first open the Anaconda Prompt: Start → All Programs → Anaconda → Anaconda
Prompt. A command line should appear (a primer on using the Windows command line can be found here). Sesame
is downloaded using git. Make sure git is installed by first typing:

conda install -c anaconda git

Once you have git, obtain Sesame with the command:

git clone http://github.com/usnistgov/sesame

1.3. Installation instructions (for beginners) 5

https://www.anaconda.com/
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The git repository of Sesame is cloned in the directory where the command was issued. Enter the sesame repository,
build and install Sesame with the commands:

cd sesame
python setup.py build
python setup.py install --user

The essential procedure for installing for other operating systems is the same.

1.3.3 Running Sesame

Upon installation, you can try some of the examples. Navigate the examples directory:

cd sesame\examples

Running a sesame python script is done with the command:

python 1dpn.py

The GUI is launched with the command from the sesame install directory:

python app.py

Note: some distributions of Anaconda are packaged with older versions of PyQt. If you find that graphics do not
render, or that the GUI does not run, it may be because PyQt is not up to date (Sesame uses PyQt5). You can try this
command to update PyQt if you have difficulty using graphics:

conda install -c anaconda pyqt

1.4 Authors of Sesame

The authors of Sesame are

• Benoit Gaury (NIST / University of Maryland)

• Paul M. Haney (NIST)

Benoit Gaury acknowledges support under the Cooperative Research Agreement between the University of Mary-
land and the National Institute of Standards and Technology Center for Nanoscale Science and Technology, Award
70NANB14H209, through the University of Maryland.

1.5 Citing Sesame

We provide Sesame as a free software to the research community. If you have used Sesame for a publication, we ask
that you mention the software explicitly by name in the main text, and cite the introduction paper:

B. Gaury, Y. Sun, P. Bermel, P. M. Haney, Sesame: A 2-dimensional solar cell modeling tool, Sol. Energ.
Mat. Sol. Cells 198, 53-62 (2019)

6 Chapter 1. Preliminaries
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1.6 Sesame license

Copyright 2017 University of Maryland.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

1.6. Sesame license 7



Sesame Documentation

8 Chapter 1. Preliminaries



CHAPTER

TWO

ANALYTICAL MODEL AND NUMERICAL IMPLEMENTATION

2.1 Physical model

Here we present the geometry with the system of coordinates that Sesame assumes, and the set of equations that it
solves.

2.1.1 Geometry and governing equations

Our model system is shown below. It is a semiconductor device connected to two contacts at 𝑥 = 0 and 𝑥 = 𝐿. The
doped regions are drawn for the example only, any doping profile can be considered.

x

z

pn+
depletion
region

y

The steady state of this system under nonequilibrium conditions is described by the drift-diffusion-Poisson equations:

∇⃗ · 𝐽𝑛 = −𝑞(𝐺−𝑅)

∇⃗ · 𝐽𝑝 = 𝑞(𝐺−𝑅)

∇⃗ · (𝜖∇⃗𝜑) = −𝜌/𝜖0

(2.1)

with the currents

𝐽𝑛 = −𝑞𝜇𝑛𝑛∇⃗𝜑+ 𝑞𝐷𝑛∇⃗𝑛

𝐽𝑝 = −𝑞𝜇𝑝𝑝∇⃗𝜑− 𝑞𝐷𝑝∇⃗𝑝
(2.2)

where 𝑛, 𝑝 are the electron and hole number densities, and 𝜑 is the electrostatic potential. 𝐽𝑛(𝑝) is the charge current
density of electrons (holes). Here 𝑞 is the absolute value of the electron charge. 𝜌 is the local charge, 𝜖 is the dielectric
constant of the material, and 𝜖0 is the permittivity of free space. 𝜇𝑛,𝑝 is the electron/hole mobility, and is related
the diffusion 𝐷𝑛,𝑝 by 𝐷𝑛,𝑝 = 𝑘𝐵𝑇𝜇𝑛,𝑝/𝑞, where 𝑘𝐵 is Boltzmann’s constant and 𝑇 is the temperature. 𝐺 is the

9
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generation rate density, 𝑅 is the recombination and we denote the net generation rate 𝑈 = 𝐺 − 𝑅. The natural
length scale is the Debye length, given by 𝜆 = 𝜖0𝑘𝐵𝑇/(𝑞

2𝑁), where 𝑁 is the concentration relevant to the problem.
Combining Eqs. (2.1) and Eqs. (2.2), and scaling by the Debye length leads to the following system

̃⃗︀∇ ·
(︂
−�̄� ̃⃗︀∇𝜑+

̃⃗︀∇�̄�)︂ = �̄�

̃⃗︀∇ ·
(︂
−𝑝 ̃⃗︀∇𝜑− ̃⃗︀∇𝑝)︂ = −�̄�

̃⃗︀∇ · (𝜖∇⃗𝜑) = (�̄�− 𝑝) + (𝑁𝐴 −𝑁𝐷)

where ̃⃗︀∇ is the dimensionless spatial first derivative operator. �̄�𝐴,(𝐷) are the dimensionless ionized acceptor (donor)
impurity concentration. The dimensionless variables are given below:

𝜑 =
𝑞𝜑

𝑘𝐵𝑇

�̄� = 𝑛/𝑁

𝑝 = 𝑝/𝑁

�̄� =
𝑈𝜆2

𝑁𝐷

𝑡 = 𝑡
𝑞𝜇𝑁

𝜖0

𝐽𝑛,𝑝 = 𝐽𝑛,𝑝
𝜆

𝑞𝐷𝑁

with 𝐷 = 𝑘𝐵𝑇𝜇/𝑞 a diffusion coefficient corresponding to our choice of scaling for the mobility 𝜇 = 1 cm2/(V · s).
See the Scaling() class for the implementation of these scalings.

We suppose that the bulk recombination is through three mechanisms: Shockley-Read-Hall, radiative and Auger. The
Shockley-Read-Hall recombination takes the form

𝑅SRH =
𝑛𝑝− 𝑛2𝑖

𝜏𝑝(𝑛+ 𝑛1) + 𝜏𝑛(𝑝+ 𝑝1)

where 𝑛2𝑖 = 𝑁𝐶𝑁𝑉 𝑒
−𝐸𝑔/𝑘𝐵𝑇 , 𝑛1 = 𝑛𝑖𝑒

𝐸𝑇 /𝑘𝐵𝑇 , 𝑝1 = 𝑛𝑖𝑒
−𝐸𝑇 /𝑘𝐵𝑇 , where 𝐸𝑇 is the energy level of the trap state

measured from the intrinsic energy level, 𝑁𝐶 (𝑁𝑉 ) is the conduction (valence) band effective density of states. The
equilibrium Fermi energy at which 𝑛 = 𝑝 = 𝑛𝑖 is the intrinsic energy level 𝐸𝑖. 𝜏𝑛,(𝑝) is the bulk lifetime for electrons
(holes). It is given by

𝜏𝑛,𝑝 =
1

𝑁𝑇 𝑣th𝑛,𝑝𝜎𝑛,𝑝
(2.3)

where 𝑁𝑇 is the three-dimensional trap density, 𝑣th𝑛,𝑝 is the thermal velocity of carriers: 𝑣th𝑛,𝑝 = 3𝑘𝐵𝑇/𝑚𝑛,𝑝, and 𝜎𝑛,𝑝
is the capture cross-section for (electrons, holes).

The radiative recombination has the form

𝑅rad = 𝐵(𝑛𝑝− 𝑛2𝑖 )

where 𝐵 is the radiative recombination coefficient of the material. The Auger mechanism has the form

𝑅A = (𝐶𝑛𝑛+ 𝐶𝑝𝑝)(𝑛𝑝− 𝑛2𝑖 )

where 𝐶𝑛 (𝐶𝑝) is the electron (hole) Auger coefficient.

10 Chapter 2. Analytical model and numerical implementation
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2.1.2 Extended line and plane defects

Additional charged defects can be added to the system to simulate, for example, grain boundaries or sample surfaces
in a semiconductor. These extended planar defects occupy a reduced dimensionality space: a point in a 1D model, a
line in a 2D model). The extended defect energy level spectrum can be discrete or continuous. For a discrete spectrum,
we label a defect with the subscript 𝑑. The occupancy of the defect level 𝑓𝑑 is given by1

𝑓𝑑 =
𝑆𝑛𝑛+ 𝑆𝑝𝑝𝑑

𝑆𝑛(𝑛+ 𝑛𝑑) + 𝑆𝑝(𝑝+ 𝑝𝑑)

where 𝑛 (𝑝) is the electron (hole) density at the defect location, 𝑆𝑛, 𝑆𝑝 are recombination velocity parameters for
electrons and holes respectively. 𝑛𝑑 and 𝑝𝑑 are

�̄�𝑑 = 𝑛𝑖𝑒
𝐸𝑑/𝑘𝐵𝑇

𝑝𝑑 = 𝑛𝑖𝑒
−𝐸𝑑/𝑘𝐵𝑇

where 𝐸𝑑 is calculated from the intrinsic Fermi level 𝐸𝑖. The defect recombination is of Shockley-Read-Hall form:

𝑅𝑑 =
𝑆𝑛𝑆𝑝(𝑛𝑝− 𝑛2𝑖 )

𝑆𝑛(𝑛+ 𝑛𝑑) + 𝑆𝑝(𝑝+ 𝑝𝑑)
.

The charge density 𝑞𝑑 given by a single defect depends on the defect type (acceptor or donor)

𝑞𝑑 = 𝑞𝜌𝑑 ×
{︂

(1 − 𝑓𝑑) donor
(−𝑓𝑑) acceptor

where 𝜌𝑑 is the defect density of state at energy 𝐸𝑑. 𝑆𝑛, 𝑆𝑝 and 𝜌𝑑 are related to the electron and hole capture cross
sections 𝜎𝑛, 𝜎𝑝 of the defect level by 𝑆𝑛,𝑝 = 𝜎𝑛,𝑝𝑣

th
𝑛,𝑝𝜌𝑑, where 𝑣th𝑛,𝑝 is the electron (hole) thermal velocity. Multiple

defects are described by summing over defect label 𝑑, or performing an integral over a continuous defect spectrum.

2.1.3 Carrier densities and quasi-Fermi levels

Despite their apparent simplicity, Eqs. (2.1) are numerically challenging to solve. We next discuss a slightly different
form of these same equations which is convenient to use for numerical solutions. We introduce the concept of quasi-
Fermi level for electrons and holes (denoted by 𝐸𝐹𝑛

and 𝐸𝐹𝑝
respectively). The carrier density is related to these

quantities as

𝑛(𝑥, 𝑦, 𝑧) = 𝑁𝐶𝑒
(𝐸𝐹𝑛 (𝑥,𝑦,𝑧)+𝑞𝜑(𝑥,𝑦,𝑧)+𝜒(𝑥,𝑦,𝑧))/𝑘𝐵𝑇

𝑝(𝑥, 𝑦, 𝑧) = 𝑁𝑉 𝑒
(−𝐸𝐹𝑝 (𝑥,𝑦,𝑧)−𝑞𝜑(𝑥,𝑦,𝑧)−𝐸𝑔−𝜒(𝑥,𝑦,𝑧))/𝑘𝐵𝑇

(2.4)

where the term 𝜒 is the electron affinity, 𝜑 is the electrostatic potential, and 𝐸𝑔 is the bandgap. Note that all of
these quantities may vary with position. Quasi-Fermi levels are convenient in part because they guarantee that carrier
densities are always positive. While carrier densities vary by many orders of magnitude, quasi-Fermi levels require
much less variation to describe the system.

The electron and hole current can be shown to be proportional to the spatial gradient of the quasi-Fermi level

𝐽𝑛 = 𝑞𝜇𝑛𝑛∇⃗𝐸𝐹𝑛

𝐽𝑝 = 𝑞𝜇𝑝𝑝∇⃗𝐸𝐹𝑝

These relations for the currents will be used in the discretization of Eq. (2.1).
1

23. Shockley, W. T. Read, Jr., Phys. Rev., 87, 835 (1952).

2.1. Physical model 11
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2.1.4 Boundary conditions at the contacts

Equilibrium boundary conditions

For a given system, Sesame first solves the equilibrium problem. In equilibrium, the quasi-Fermi level of electrons
and holes are equal and spatially constant. We choose an energy reference such that in equilibrium, 𝐸𝐹 = 𝐸𝐹𝑝 =
𝐸𝐹𝑛 = 0. The equilibrium problem is therefore reduced to a single variable 𝜑. Sesame employs both Dirichlet and
Neumann equilibrium boundary conditions for 𝜑, which we discuss next.

Dirichlet boundary conditions

Sesame uses Dirichlet boundary conditions as the default. This is the appropriate choice when the equilibrium charge
density at the contacts is known a priori, and applies for Ohmic and ideal Schottky contacts. For Ohmic boundary
conditions, the carrier density is assumed to be equal and opposite to the ionized dopant density at the contact. For an
n-type contact with 𝑁𝐷 ionized donors at the 𝑥 = 0 contact, Eq. (2.4) yields the expression for 𝜑𝑒𝑞(𝑥 = 0):

𝜑𝑒𝑞(0, 𝑦, 𝑧) = 𝑘𝐵𝑇 ln (𝑁𝐷/𝑁𝐶) − 𝜒(0, 𝑦, 𝑧)

Similar reasoning yields expressions for 𝜑𝑒𝑞 for p-type doping and at the 𝑥 = 𝐿 contact. For Schottky contacts, we
assume that the Fermi level at the contact is equal to the Fermi level of the metal. This implies that the equilibrium
electron density is 𝑁𝐶 exp[−(Φ𝑀 − 𝜒)/𝑘𝐵𝑇 ] where Φ𝑀 is the work function of the metal contact. Eq. (2.4) then
yields the expression for 𝜑𝑒𝑞 (shown here for the 𝑥 = 0 contact):

𝜑𝑒𝑞(0, 𝑦, 𝑧) = −Φ𝑀 |𝑥=0 𝑐𝑜𝑛𝑡𝑎𝑐𝑡

An identical expression applies for the 𝑥 = 𝐿 contact.

Neumann boundary conditions

Sesame also has an option for Neumann boundary conditions, where it is assumed that the electrostatic field at the
contact vanishes:

𝜕𝜑𝑒𝑞

𝜕𝑥
(0, 𝑦, 𝑧) =

𝜕𝜑𝑒𝑞

𝜕𝑥
(𝐿, 𝑦, 𝑧) = 0 (2.5)

The equilibrium potential 𝜑𝑒𝑞 determines the equilibrium densities 𝑛𝑒𝑞, 𝑝𝑒𝑞 according to Eqs. (2.4) with 𝐸𝐹𝑛
=

𝐸𝐹𝑝
= 0.

Out of equilibrium boundary conditions

Out of thermal equilibrium, we impose Dirichlet boundary conditions on the electrostatic potential. For example, in
the presence of an applied bias 𝑉 at 𝑥 = 𝐿, the boundary conditions are

𝜑(0, 𝑦, 𝑧) = 𝜑𝑒𝑞(0, 𝑦, 𝑧)

𝜑(𝐿, 𝑦, 𝑧) = 𝜑𝑒𝑞(𝐿, 𝑦, 𝑧) + 𝑞𝑉

For the drift-diffusion equations, the boundary conditions for carriers at charge-collecting contacts are typically pa-
rameterized with the surface recombination velocities for electrons and holes at the contacts, denoted respectively by
𝑆𝑐𝑝 and 𝑆𝑐𝑛

12 Chapter 2. Analytical model and numerical implementation
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𝐽𝑛(0, 𝑦, 𝑧) · �⃗�𝑥 = 𝑞𝑆𝑐𝑛(𝑛(0, 𝑦, 𝑧) − 𝑛eq(0, 𝑦, 𝑧))

𝐽𝑝(0, 𝑦, 𝑧) · �⃗�𝑥 = −𝑞𝑆𝑐𝑝(𝑝(0, 𝑦, 𝑧) − 𝑝eq(0, 𝑦, 𝑧))

𝐽𝑛(𝐿, 𝑦, 𝑧) · �⃗�𝑥 = −𝑞𝑆𝑐𝑛(𝑛(𝐿, 𝑦, 𝑧) − 𝑛eq(𝐿, 𝑦, 𝑧))

𝐽𝑝(𝐿, 𝑦, 𝑧) · �⃗�𝑥 = 𝑞𝑆𝑐𝑝(𝑝(𝐿, 𝑦, 𝑧) − 𝑝eq(𝐿, 𝑦, 𝑧))

(2.6)

where 𝑛(𝑝)eq is the thermal equilibrium electron (hole) density.

References

2.2 Numerical treatment of the drift diffusion Poisson equations

In this section we present the procedure followed to discretize the drift diffusion Poisson set of equations, the algorithm
used to solve it and its implementation.

2.2.1 Scharfetter-Gummel scheme

To solve the drift diffusion Poisson equations numerically, we utilize a simple spatial discretization. Recall that
densities are defined on sites, and fluxes (such as current flux, electric field flux) are defined on links. It’s important to
note that sites and links in the discretized grid are fundamentally different objects, as shown in the figure below.

Fig. 1: Sites versus links. We take the indexing convention that ∆𝑥𝑖 represents the space between sites 𝑖 and 𝑖+ 1.

We consider a one-dimensional system to illustrate the model discretization. First, we want to rewrite the currents in
semi-discretized form for link 𝑖 (link 𝑖 connects discretized points 𝑖 and 𝑖+ 1):

𝐽 𝑖𝑛 = 𝑞𝜇𝑛𝑛𝑖
𝜕𝐸𝐹𝑛,𝑖

𝜕𝑥

𝐽 𝑖𝑝 = 𝑞𝜇𝑝𝑝𝑖
𝜕𝐸𝐹𝑝,𝑖

𝜕𝑥

(2.7)

Note that link indices are denoted with a superscript, while site indices are denoted with a subscript.

Next, a key step to ensure numerical stability is to integrate the above in order to get a completely discretized version
of the current 𝐽 𝑖. This discretization is known as the Scharfetter-Gummel scheme1. First, rewrite the hole density in
terms of the quasi-Fermi level.

𝑝(𝑥) = 𝑒(−𝜒(𝑥)−𝐸𝑔(𝑥)−𝐸𝐹𝑝 (𝑥)−𝑞𝜑(𝑥)+𝑘𝐵𝑇 ln(𝑁𝑉 ))/𝑘𝐵𝑇

1

8. (k) Gummel, IEEE Transactions on Electron Devices, 11, 455 (1964).

2.2. Numerical treatment of the drift diffusion Poisson equations 13
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It’s convenient to define 𝜓𝑝 = 𝜒+ 𝐸𝑔 + 𝐸𝑔 − 𝑘𝐵𝑇 ln(𝑁𝑉 ). We plug this form of 𝑝 into Eq. (2.7):

𝐽 𝑖𝑝 = 𝑞𝜇𝑝𝑒
−𝜓𝑝(𝑥)/𝑘𝐵𝑇

𝜕𝐸𝐹𝑝

𝜕𝑥
,

next multiply both sides of the hole current by 𝑒𝜓𝑝(𝑥)/𝑘𝐵𝑇 𝑑𝑥, and integrate over link 𝑖

∫︁
𝐽 𝑖𝑝𝑒

𝜓𝑝(𝑥)/𝑘𝐵𝑇d𝑥 = 𝑞𝜇𝑝

∫︁
𝑒−𝐸𝐹𝑝/𝑘𝐵𝑇d𝐸𝐹𝑝

(2.8)

Now we assume that 𝜓𝑝 varies linearly between grid points,

𝜓𝑝 (𝑥) =
𝜓𝑝𝑖+1 − 𝜓𝑝𝑖

∆𝑥𝑖
(𝑥− 𝑥𝑖) + 𝜓𝑝𝑖 ,

which enables the integral on the left hand side above to be performed:

∫︁ 𝑥𝑖+1

𝑥𝑖

d𝑥𝑒𝜓𝑝(𝑥)/𝑘𝐵𝑇 = 𝑘𝐵𝑇∆𝑥𝑖
𝑒𝜓𝑝𝑖+1

/𝑘𝐵𝑇 − 𝑒𝜓𝑝𝑖
/𝑘𝐵𝑇

𝜓𝑝𝑖+1
− 𝜓𝑝𝑖

(2.9)

Plugging Eq. (2.9) into Eq. (2.8) and solving for 𝐽 𝑖𝑝 yields

𝐽 𝑖𝑝 =
𝑞𝜇𝑖𝑝
∆𝑥𝑖

𝜓𝑝𝑖 − 𝜓𝑝𝑖+1

𝑒𝜓𝑝𝑖+1
/𝑘𝐵𝑇 − 𝑒𝜓𝑝𝑖

/𝑘𝐵𝑇
𝜇𝑝

[︁
𝑒−𝐸𝐹𝑝,𝑖+1/𝑘𝐵𝑇 − 𝑒−𝐸𝐹𝑝,𝑖

]︁
(2.10)

Where 𝜇𝑖𝑝 = (𝜇𝑝𝑖 + 𝜇𝑝𝑖+1
)/2. A similar procedure leads to the following expression for 𝐽 𝑖𝑛:

𝐽 𝑖𝑛 =
𝑞𝜇𝑖𝑛
∆𝑥𝑖

𝜓𝑛𝑖+1
− 𝜓𝑛𝑖

𝑒−𝜓𝑛𝑖+1
/𝑘𝐵𝑇 − 𝑒−𝜓𝑛𝑖

/𝑘𝐵𝑇

[︁
𝑒𝐸𝐹𝑛,𝑖+1/𝑘𝐵𝑇 − 𝑒𝐸𝐹𝑛,𝑖/𝑘𝐵𝑇

]︁
(2.11)

where 𝜓𝑛 = 𝑞𝜑+ 𝜒+ 𝑘𝐵𝑇 ln(𝑁𝐶).

2.2.2 Newton-Raphson algorithm

We want to write the continuity and Poisson equations in the form 𝑓(𝑥) = 0, and solve these coupled nonlinear
equations by using root-finding algorithms. The appropriate form is given by:

𝑓 𝑖𝑝 =
2

∆𝑥𝑖 + ∆𝑥𝑖−1

(︀
𝐽 𝑖𝑝 − 𝐽 𝑖−1

𝑝

)︀
+𝐺𝑖 −𝑅𝑖

𝑓 𝑖𝑛 =
2

∆𝑥𝑖 + ∆𝑥𝑖−1

(︀
𝐽 𝑖𝑛 − 𝐽 𝑖−1

𝑛

)︀
−𝐺𝑖 +𝑅𝑖

𝑓 𝑖𝑣 =
2

∆𝑥𝑖 + ∆𝑥𝑖−1

(︂(︂
𝜖𝑖 + 𝜖𝑖−1

2

)︂(︂
𝜑𝑖 − 𝜑𝑖−1

∆𝑥𝑖−1

)︂
−

(︂
𝜖𝑖+1 + 𝜖𝑖

2

)︂(︂
𝜑𝑖+1 − 𝜑𝑖

∆𝑥𝑖

)︂)︂
− 𝜌𝑖

These equations are the discretized drift-diffusion-Poisson equations to be solved for the variables
{︀
𝐸𝐹𝑛,𝑖, 𝐸𝐹𝑝,𝑖, 𝜑𝑖

}︀
,

subject to the boundary conditions given in introduction.

We use a Newton-Raphson method to solve the above set of equations. The idea behind the method is clearest in a
simple one-dimensional case as illustrated on the figure below. Given a general nonlinear function 𝑓(𝑥), we want to
find its root �̄� : 𝑓(�̄�) = 0. Given an initial guess 𝑥1, one can estimate the error 𝛿𝑥 in this guess by assuming that the
function varies linearly all the way to its root

14 Chapter 2. Analytical model and numerical implementation
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f'(x )1
f(x )1

x1

x2

f(x)

x

Fig. 2: Schematic for the Newton-Raphson method for root finding.

𝛿𝑥 =

(︂
𝑑𝑓

𝑑𝑥
(𝑥1)

)︂−1

𝑓 (𝑥1) (2.12)

An updated guess is provided by 𝑥2 = 𝑥1 − 𝛿𝑥.

In multiple dimensions the last term in Eq. (2.12) is replaced by the inverse of the Jacobian, which is the multi-
dimensional generalization of the derivative. In this case, Eq. (2.12) is a matrix equation of the form:

𝛿x = 𝐴−1F (x)

where

𝐴𝑖𝑗 =
𝜕𝐹𝑖
𝜕𝑥𝑗

Here is a small subset of the 𝐴 matrix for our problem. We have only explicitly shown the row which corresponds to
𝑓 𝑖𝑛 (here we drop the super/sub script convention set up to distinguish between sites and links, for the sake of writing
things more compactly):

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

. . .
𝜕𝑓𝑖

𝑛

𝜕𝐸𝑖−1
𝐹𝑛

𝜕𝑓𝑖
𝑛

𝜕𝐸𝑖−1
𝐹𝑝

𝜕𝑓𝑖
𝑛

𝜕𝜑𝑖−1

𝜕𝑓𝑖
𝑛

𝜕𝐸𝑖
𝐹𝑛

𝜕𝑓𝑖
𝑛

𝜕𝐸𝑖
𝐹𝑝

𝜕𝑓𝑖
𝑛

𝜕𝜑𝑖

𝜕𝑓𝑖
𝑛

𝜕𝐸𝑖+1
𝐹𝑛

𝜕𝑓𝑖
𝑛

𝜕𝐸𝑖+1
𝐹𝑝

𝜕𝑓𝑖
𝑛

𝜕𝜑𝑖+1 . . .

...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
𝛿𝐸𝑖−1

𝐹𝑛

𝛿𝐸𝑖−1
𝐹𝑝

𝛿𝜑𝑖−1

𝛿𝐸𝑖𝐹𝑛

𝛿𝐸𝑖𝐹𝑝

𝛿𝜑𝑖

𝛿𝐸𝑖+1
𝐹𝑛

𝛿𝐸𝑖+1
𝐹𝑝

𝛿𝜑𝑖+1

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
𝑓 𝑖−1
𝑛

𝑓 𝑖−1
𝑝

𝑓 𝑖−1
𝑣

𝑓 𝑖𝑛
𝑓 𝑖𝑝
𝑓 𝑖𝑣
𝑓 𝑖+1
𝑛

𝑓 𝑖+1
𝑝

𝑓 𝑖+1
𝑣
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.13)

Note that for this problem, finding derivatives numerically leads to major convergence problems. We derived the
derivatives and implemented them in the code for this reason.

2.2. Numerical treatment of the drift diffusion Poisson equations 15
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2.2.3 Multi-dimensional implementation

We do the standard folding of the multi-dimensional index label (𝑖, 𝑗, 𝑘) into the single index label 𝑠 of the sites of the
system:

𝑠 = 𝑖+ (𝑗 × 𝑛𝑥) + (𝑘 × 𝑛𝑥 × 𝑛𝑦)

where 𝑛𝑥 (𝑛𝑦) is the number of sites in the 𝑥-direction (𝑦-direction).

Using sparse matrix techniques is key fast to fast computation. We provide below the number of non-zero elements in
the Jacobian for periodic boundary conditions in the 𝑦- and 𝑧-directions.

Dimension Number of stored values in the Jacobian
1 19 (nx-2) + 20
2 ny [29 (nx - 2) + 28]
3 ny nz [39 (nx - 2) + 36]

By default the Newton correction is computed by a direct resolution of the system in Eq. (2.13). This is done using
the default Scipy solver. We recommend using the MUMPS library instead, which yields faster performace. Note that
for large systems, and especially for 3D problems, the memory and the computing time required by the direct methods
aforementioned become so large that they are impractical. It is possible to use an iterative method to solve Eq. (2.13)
in these cases.

References
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CHAPTER

THREE

TUTORIAL: LEARNING SESAME THROUGH EXAMPLES

3.1 Tutorial 1: I-V curve of a one-dimensional pn homojunction

In this tutorial we show how to build a simple one-dimensional 𝑝𝑛+ homojunction and compute its I-V curve. In this
and other tutorials we assume a rudimentary knowledge of python (e.g. basic syntax, function definition, etc.) and
numpy (e.g. array declarations).

See also:

The example treated here is in the file 1d_homojunction.py located in the examples\tutorial1 direc-
tory of the distribution. The same simulation’s GUI input file is 1d_homojunction.ini, also located in the
examples\tutorial1 directory.

The 1-dimensional 𝑝𝑛+ homojunction band diagram under short-circuit conditions is shown below.

3.1.1 A word for Matlab users

Sesame uses the Python3 language and the scientific libraries Numpy and Scipy. A documentation on the similarities
and differences between Matlab and Numpy/Scipy can be found here.

3.1.2 Constructing a mesh and building the system

We start by importing the sesame and numpy packages:

import sesame
import numpy as np

Choosing a good mesh is a crucial step in performing the simulation. An overly coarse mesh will give inaccurate
results, while an excessively fine mesh will make the simulation slow. The best mesh for most systems is nonuniform:
being highly refined in regions where the solution changes rapidly, and coarse in regions where the solution varies
slowly. After the tutorials the user should have a sense of how to construct an appropriate mesh. In this example, we
create a mesh which contains more sites in the pn junction depletion region:

L = 3e-4 # length of the system in the x-direction [cm]
x = np.concatenate((np.linspace(0,1.2e-4, 100, endpoint=False), # depletion region

np.linspace(1.2e-4, L, 50))) # neutral region

17
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Note: Sesame assumes all quantities of length are input in units of cm. Other assumed input units are: time in s,
energy in eV.

To make a system we use Sesame’s Builder() class. The input to Builder() are grids along the different
dimensions of the simulation. For a 1-dimensional simulation, we provide only the x grid as input. Builder()
returns an object sys which contains all the information needed to describe the simulation. Additional simulation
settings will be set by calling various methods of sys:

sys = sesame.Builder(x)

3.1.3 Adding material properties

Next we add a material to our system. A material is defined using a python dictionary object, which is added to
the system using the add_material() method of sys:

material = {'Nc':8e17, 'Nv':1.8e19, 'Eg':1.5, 'affinity':3.9, 'epsilon':9.4,
'mu_e':100, 'mu_h':100, 'Et':0, 'tau_e':10e-9, 'tau_h':10e-9, 'Et':0}

sys.add_material(material)

Here Nc (Nv) is the effective density of states of the conduction (valence) band (cm−3), Eg is the material band gap
(eV), epsilon is the material’s dielectric constant, mu_e (mu_h) is the electron (hole) mobility (cm2/(V · s)), Et
is the energy level of the bulk recombination defect, as measured from the intrinsic energy level, and tau_e (tau_h)
is the electron (hole) bulk lifetime (s). For the full list of material parameters available, see the documentation of the
method add_material().

3.1.4 Adding dopants

Let’s add dopants to make a pn junction. This requires specifying the regions containing each type of dopant, which
is done by using a python function. Here’s an example: let’s suppose the n-type region is between x=0 and x=50 nm.
We write a function which returns a value of True when the input pos belongs to this region, and False otherwise:

junction = 50e-7 # extent of the junction from the left contact [cm]

def n_region(pos):
x = pos
return x < junction

We add donors by calling the sys method add_donor(), whose input arguments are the donor concentration (in
units cm−3), and the function defining the doped region (n_region for this example)

# Add the donors
nD = 1e17 # [cm^-3]
sys.add_donor(nD, n_region)

Similarly, we add acceptors by defining a function p_region to specify the p-type region, and add it to the system
with the add_acceptor() method:

def p_region(pos):
x = pos
return x >= junction

(continues on next page)
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(continued from previous page)

# Add the acceptors
nA = 1e15 # [cm^-3]
sys.add_acceptor(nA, p_region)

Note: The lambda keyword provides a more efficient way to define simple functions with python. For example, the
p_region function can be defined in the single line: p_region = lambda x: x<=junction. See python
documentation for more details on defining “anonymous functions” using lambda.

3.1.5 Specifying contact types

Next we need to specify the contact boundary conditions. For this example, we’ll use selective Ohmic contacts. We
first specify contact type with the sys method contact_type(), which takes two input arguments: the contact
type at 𝑥 = 0 (“left” contact), and the contact type at 𝑥 = 𝐿 (“right” contact). Note that the order of arguments
matters: the right contact type is the first agument, the left contact type is the second argument. Then we’ll specify
the recombination velocities for electrons and holes at left and right contacts with the sys method contact_S().
Again, the order of the input to contact_S() should be as shown below:

# Define Ohmic contacts
sys.contact_type('Ohmic', 'Ohmic')

# Define the surface recombination velocities for electrons and holes [cm/s]
Sn_left, Sp_left, Sn_right, Sp_right = 1e7, 0, 0, 1e7 # cm/s
sys.contact_S(Sn_left, Sp_left, Sn_right, Sp_right)

3.1.6 Computing an I-V curve

To compute an I-V curve under illumination, we specify the generation profile with a function. For this example, we
use an exponentially varying generation profile defined in the function gfcn:

phi = 1e17 # photon flux [1/(cm^2 s)]
alpha = 2.3e4 # absorption coefficient [1/cm]

# Define a function for the generation rate
def gfcn(x):

return phi * alpha * np.exp(-alpha * x)

Adding the illumination profile to the simulation is accomplished with the sysmethod generation(), which takes
the function we’ve defined as input:

sys.generation(gfcn)

Finally we compute the I-V curve under illumination. We do this with the sesame method IVcurve(), whose
the input arguments are the system object sys, an array of applied voltage values, the equilibrium solution we just
computed, and a string which is the seedname for the output files.:

voltages = np.linspace(0, 0.95, 40)
j = sesame.IVcurve(sys, voltages, '1dhomo_V')
j = j * sys.scaling.current

3.1. Tutorial 1: I-V curve of a one-dimensional pn homojunction 19



Sesame Documentation

Note: The IVcurve method returns the dimensionless current. We convert it to dimension-ful form by multiplying
by the constant sys.scaling.current.

The output data files will have names like 1dhomo_V_0.gzip where the number 0 labels the the voltages array
index. These data files contain all the information about the simulation settings and solution. tutorial 4 discusses how
to access and plot this detailed data.

3.1.7 Saving and plotting the I-V curve

In this section we show different ways to save the computed current and voltage values.

First we store the data we wish to save in a dictionary object:

result = {'v':voltages, 'j':j}

Then we use the numpy function save to save the data as a numpy array. The first argument is the filename for the
saved data (note the file will receive a .npy extension), the second argument is the dictionary to save:

np.save('jv_values', result)

The data dictionary can subsequently be loaded with the command:

result = np.load("jv_values.npy").

We can also save the data in a simple ascii file with the command:

np.savetxt('jv_values.txt', (v, j))

An alternative is to save the data in a Matlab-readable .mat file. This is accomplished with the function savemat in
the scipy library:

import scipy.io.savemat as savemat
savemat('jv_values.mat', result)

Note: In the tutorial script, we’ve added commands to check if the scipy library is installed. We omit these commands
in this tutorial for the sake of clarity.

The library Matplotlib is commonly used for plotting in python. The code for generating a simple current-voltage plot
is shown below:

import matplotlib.pyplot as plt
plt.plot(voltages, j, '-o')
plt.xlabel('Voltage [V]')
plt.ylabel('Current [A/cm^2]')
plt.grid() # add grid
plt.show() # show the plot on the screen

We discuss loading and plotting results in Tutorial 4. As a preview, we show the code used to generate the band
diagram we showed at the beginning of this tutorial:
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sys, result = sesame.load_sim('1dhomo_V_0.gzip') # load data file
az = sesame.Analyzer(sys,result) # get Sesame analyzer object
p1 = (0,0)
p2 = (3e-4,0)
az.band_diagram((p1,p2)) # plot band diagram along line
→˓from p1 to p2

3.2 Tutorial 2: I-V curve of a one-dimensional pn heterojunction

In this tutorial we consider a more complex system in 1-dimension: a heterojunction with a Schottky back contact.
The n-type material is CdS and the p-type material is CdTe. The structure of the script is the same as in the last tutorial,
however we must provide more detail to describe a more complex system.

See also:

The example treated here is in the file 1d_heterojunction.py located in the examples\tutorial2 direc-
tory of the distribution. The same simulation’s GUI input file is 1d_heterojunction.ini, also located in the
examples\tutorial2 directory.

The band diagram for this system under short-circuit conditions is shown below .

3.2.1 Constructing a grid and building the system

We first define the thicknesses of the n-type and p-type regions:

t1 = 25*1e-7 # thickness of CdS
t2 = 4*1e-4 # thickness of CdTe

The mesh for a heterojunction should be very fine in the immediate vicinity of the materials interface. We define a
distance dd, which determines the thickness of the highly-refined mesh near an interface. We form the overall system
mesh by concatenating meshes for different parts of the system as follows:

dd = 3e-6 # 2*dd is the distance over which mesh is highly refined
x = np.concatenate((np.linspace(0, dd, 10, endpoint=False), # L
→˓contact interface

np.linspace(dd, t1 - dd, 50, endpoint=False), #
→˓material 1

np.linspace(t1 - dd, t1 + dd, 10, endpoint=False), #
→˓interface 1

np.linspace(t1 + dd, (t1+t2) - dd, 100, endpoint=False), # material
→˓2

np.linspace((t1+t2) - dd, (t1+t2), 10))) # R
→˓contact interface

As before we make a system with Builder():

sys = sesame.Builder(x)

3.2.2 Adding material properties

We make functions to define the n-type and p-type regions as in the last tutorial:
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def CdS_region(pos):
x = pos
return x<=t1

def CdTe_region(pos):
x = pos
return x>t1

Now we add materials to our system. We define two dictionaries to describe the two material types:

CdS = {'Nc': 2.2e18, 'Nv':1.8e19, 'Eg':2.4, 'epsilon':10, 'Et': 0,
'mu_e':100, 'mu_h':25, 'tau_e':1e-8, 'tau_h':1e-13, 'affinity': 4.}

CdTe = {'Nc': 8e17, 'Nv': 1.8e19, 'Eg':1.5, 'epsilon':9.4, 'Et': 0,
'mu_e':320, 'mu_h':40, 'tau_e':5e-9, 'tau_h':5e-9, 'affinity': 3.9}

As in the last tutorial, we add materials using the sys method add_material(). This time we specify the material
location using the functions we defined above as additional input arguments to add_material():

sys.add_material(CdS, CdS_region) # adding CdS
sys.add_material(CdTe, CdTe_region) # adding CdTe

3.2.3 Adding dopants

Adding the dopants works as in the last tutorial:

nD = 1e17 # donor density [cm^-3]
sys.add_donor(nD, CdS_region)
nA = 1e15 # acceptor density [cm^-3]
sys.add_acceptor(nA, CdTe_region)

3.2.4 Specifying contact types

Next, we’ll add a left Ohmic contact and a right Schottky contact. For Schottky contacts, we must to specify the
work function of the metal. As in the previous tutorial, we add contacts to the system using the sys method
contact_type(); however this time we provide the additional arguments of the left and right contact work func-
tions to contact_type():

Lcontact_type, Rcontact_type = 'Ohmic', 'Schottky'
Lcontact_workFcn, Rcontact_workFcn = 0, 5.0 # eV

sys.contact_type(Lcontact_type, Rcontact_type, Lcontact_workFcn, Rcontact_workFcn)

Note that for Ohmic contacts, the metal work function doesn’t enter into the problem, so its value is unimportant - we
therefore simply set the left contact work function equal to 0. Having defined the contact types, we next specify the
contact recombination velocities as before. For this system, we’ll assume the contacts are non-selective:

Sn_left, Sp_left, Sn_right, Sp_right = 1e7, 1e7, 1e7, 1e7 # cm/s
sys.contact_S(Sn_left, Sp_left, Sn_right, Sp_right)
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3.2.5 Computing an I-V curve

We’ve now completed the system definition. As in the last example, we compute the equilibrium solution, add illumi-
nation, and compute the I-V curve

Warning: Sesame does not include interface transport mechanisms of thermionic emission and tunneling.

phi = 1e21 # photon flux [1/(cm^2 s)]
alpha = 2.3e6 # absorption coefficient [1/cm]

# Define a function for the generation rate
f = lambda x: phi * alpha * np.exp(-alpha * x)
sys.generation(f)

voltages = np.linspace(0, 0.95, 40)
j = sesame.IVcurve(sys, voltages, '1dhetero_V')
# convert dimensionless current to dimension-ful current
j = j * sys.scaling.current

The current can be saved and plotted as in the previous tutorial:

result = {'v':voltages, 'j':j} # store j, v values
np.save('jv1d_hetero', result) # save the j-v curve

import matplotlib.pyplot as plt
plt.plot(voltages, j,'-o') # plot j-v curve
plt.xlabel('Voltage [V]')
plt.ylabel('Current [A/cm^2]')
plt.grid() # show grid lines
plt.show() # show plot

3.2.6 Adding contact and shunt resistance

We next demonstrate how to include the effect of series and shunt resistance. The example treated here is in the
file 1d_heterojunction_with_Rs_Rsh located in the examples\tutorial2 directory of the distribution.
The classic equivalent circuit model for a solar cell is given below (note we use current density 𝐽 and resistance-area
product to characterize the circuit).
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For our model, the diode in this circuit is replaced by the numerically computed current-voltage relation shifted by
the computed short-circuit current, so that 𝐽dark

diode(0) = 0). The light source current 𝐽𝐿 is given by the numerically
computed short-circuit current density. The current-voltage relation of the above circuit is given by the following
implicit equation:

𝐽 = 𝐽𝐿 − 𝐽dark
diode(𝑉 − 𝐽𝑅s𝐴) − 𝑉 + 𝐽𝑅s𝐴

𝑅sh𝐴
.

For a fixed potential drop across the circuit 𝑉 , the above equation is solved numerically to find the total current through
the circuit 𝐽 . Below we show the effect of finite series and contact resistance values (given by𝑅s and𝑅sh respectively)
on the current-voltage relation computed in the first part of the tutorial:
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We refer the reader to the example script for more details of how the mathematics of the equivalent circuit model is
implemented.

3.3 Tutorial 3: Two-dimensional pn junction with a grain boundary

In this tutorial we show how to build a two-dimensional 𝑝𝑛+ junction containing a grain boundary.

See also:

The example treated here is in the file 2d_homojunction_withGB.py located in the examples\tutorial3
directory in the root directory of the distribution. The same simulation’s GUI input file is
2d_homojunction_withGB.ini, also located in the examples\tutorial3 directory.

3.3.1 Building a two-dimensional system

We want to simulate a two-dimensional 𝑝𝑛+ junction (homojunction) with a columnar grain boundary as depicted
below.
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As usual, we start by importing the sesame and numpy packages. We construct the mesh of the system and make an
instance of the Builder(). Notice that in this case we provide the Builder() function with both x and y grids;
this automatically tells the code to build a two-dimensional system:

import sesame
import numpy as np

# dimensions of the system
Lx = 3e-4 # [cm]
Ly = 3e-4 # [cm]

# position of p-n junction [cm]
junction = .1e-4

# Mesh
x = np.concatenate((np.linspace(0, .2e-4, 30, endpoint=False), # mesh near the
→˓contact

np.linspace(0.2e-4, 1.4e-4, 50, endpoint=False), # mesh in
→˓depletion region

np.linspace(1.4e-4, 2.7e-4, 50, endpoint=False), # mesh in bulk
np.linspace(2.7e-4, 2.98e-4, 30, endpoint=False), # mesh near the

→˓GB end point
np.linspace(2.98e-4, Lx, 10))) # mesh near the

→˓contact

y = np.concatenate((np.linspace(0, 1.25e-4, 50, endpoint=False),
np.linspace(1.25e-4, 1.75e-4, 50, endpoint=False), # mesh near the

→˓GB core
np.linspace(1.75e-4, Ly, 50)))

# Create a system
sys = sesame.Builder(x, y)

We define and add a material as before:

# Dictionary with the material parameters
mat = {'Nc':8e17, 'Nv':1.8e19, 'Eg':1.5, 'affinity': 3.9, 'epsilon':9.4,

'mu_e':200, 'mu_h':200, 'tau_e':10e-9, 'tau_h':10e-9, 'Et':0}

# Add the material to the system
sys.add_material(mat)

We next define functions delimiting the regions with different doping values. Because the model is 2-dimensional, the
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function input argument pos is a tuple of the form (x,y). In the functions below, we first “unpack” the x and y
coordinate, and determine the location of the x-coordinate relative to the junction:

# Add the donors
def n_region(pos):

x, y = pos
return x < junction

nD = 1e17 # [cm^-3]
sys.add_donor(nD, n_region)

# Add the acceptors
def p_region(pos):

x, y = pos
return x >= junction

nA = 1e15 # [cm^-3]
sys.add_acceptor(nA, p_region)

We specify contacts as before:

# Use perfectly selective Ohmic contacts
sys.contact_type('Ohmic', 'Ohmic')
Sn_left, Sp_left, Sn_right, Sp_right = 1e7, 0, 0, 1e7
sys.contacts(Sn_left, Sp_left, Sn_right, Sp_right)

Note: Sesame assumes that the contact properties (e.g. recombination velocity, metallic work function) are uniform
along the y-direction.

3.3.2 Adding a grain boundary

Now we add a line of defects to simulate a grain boundary using the sys method add_line_defects(). The
necessary inputs are the grain boundary defect’s electrical properties (e.g. capture cross sections, energy level, defect
density, and charge states), and the endpoints defining the grain boundary location (recall a grain boundary is repre-
sented by a line in a 2-dimensional simulation). Below we show code defining these properties for our example, and
adding the grain boundary to the simulation:

# gap state characteristics
rho_GB = 1e14 # defect density [1/cm^2]
S_GB = 1e-15 # trap capture cross section [cm^2]
E_GB = 0.4 # energy of gap state (eV) from intrinsic energy level

# Specify the two points that make the line containing additional charges
p1 = (.1e-4, 1.5e-4) # [cm]
p2 = (2.9e-4, 1.5e-4) # [cm]

# Add the line of defects to the system
sys.add_line_defects([p1, p2], rho_GB, S_GB, E=E_GB, transition=(1/-1))

The type of the charge transition 𝛼/𝛽 is specified by assigning the transition input value as shown above. In our
example we chose a mixture of donor and acceptor at energy E. An acceptor would be described by (-1,0) and a donor
by (1,0).
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Note:

• Avoid adding charges on the contacts of the system, as these will not be taken into account. The code is not
equiped to deal with such boundary conditions.

• In order to add another gap state at a different energy at the same location, one repeats the exact same process.

• Here we assumed equal electron and hole surface recombination velocities. The function
add_line_defects() takes two surface recombination velocities as argument. The first is for elec-
trons, the second for holes. To use different values write

sys.add_line_defects([p1, p2], rho_GB, Sn_GB, Sp_GB, E=E_GB)

• A continuum of states can be considered by omitting the energy argument above. The density of states can be a
callable function or a numerical value, in which case the density of states is independent of the energy.

3.3.3 Computing the IV curve

The computation of the IV curve proceeds as in the previous tutorials. We show the code below:

# Solve equilibirum problem first
solution = sesame.solve(sys, 'Poisson')

# define a function for generation profile
f = lambda x, y: 2.3e21*np.exp(-2.3e4*x)
# add generation to the system
sys.generation(f)

# Specify applied voltages
voltages = np.linspace(0, .9, 10)
# Compute IV curve
j = sesame.IVcurve(sys, voltages, '2dGB_V', guess=solution)
# rescale to dimension-ful current
j = j * sesame.scaling.current

# Save the computed IV data
result = {'voltages':voltages, 'j':j}
np.save('2dGB_IV', result)

3.3.4 Plotting system variables

The 2-dimensional solutions can be plotted with tools we describe more fully in tutorial 4. As a preview, we list the
commands for loading and plotting the electrostatic potential:

sys, results = sesame.load_sim('2dGB_V_0.gzip')
sesame.plot(sys, results['v'])

The output is shown below:

Note: As discussed more fully in Tutorial 4, quantities in Sesame are dimensionless by default. The electrostatic
potential shown above is dimensionless, scaled by the thermal voltage. The scaling field of sys provides the
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relevant quantites needed to rescale quantities to dimension-ful form.

3.3.5 Spatial variation of material parameters

See also:

The example treated here is in the file 2d_homojunction_withGB_nonuniform_mobility.py in the
examples\tutorial4 directory in the root directory of the distribution.

Suppose we want to have a reduced mobility around the line defects compared to the rest of the system. To do so, we
add another material which is defined in the region of non-uniform mobility. It has the same properties as the original
material, except that the mobility is not longer a scalar, but a function:

# function defining region of reduced mobility
xGB = 1.5e-4 # GB x-coordinate
Lmu = .25e-4 # distance from GB over which mobility is reduced
def reduced_mu_region(pos):

x, y = pos
return ((x < xGB+Lmu) & (x > xGB-Lmu) & (y > .1e-4) & (y < 2.9e-4))

# function defining region of reduced mobility
def my_mu(pos):

muGB = 10
x, y = pos
# mobility varies linearly between GB core and Lmu
return 10 + 310*np.abs((x-xGB)/Lmu)

mat2 = {'Nc': 8e17, 'Nv': 1.8e19, 'Eg': 1.5, 'epsilon': 9.4, 'Et': 0,
'mu_e': my_mu, 'mu_h': 40, 'tau_e': 10 * 1e-9, 'tau_h': 10 * 1e-9}

# Add the material to the system
sys.add_material(mat2, reduced_mu_region)

sesame.plot(sys, sys.mu_e)

3.4 Tutorial 4: Saving, loading, and analyzing simulation data

In this tutorial we describe the input and output data formats of Sesame, and show how to use Sesame’s built-in tools
to analyze the solution.

See also:

The examples treated here are in the files analyze_data.py and plot_data.py, located in
the examples\tutorial4 directory of the distribution. This tutorial uses the output files from
examples\tutorial3 python script, so it’s necessary to copy these gzip data files to examples\tutorial4.

3.4.1 Saving data

In the previous tutorials, detailed solution data was saved automatically in the IVcurve() function. It’s also possible
to manually save simulations with Sesame’s save_sim() function. This function saves both the system object
containing all of the simulation settings, and the solution dictionary. (The solution dictionary contains the keys 'v',
'efn', and 'efp'.) An example of save_sim() is shown below:

3.4. Tutorial 4: Saving, loading, and analyzing simulation data 29



Sesame Documentation

sesame.save_sim(sys, results, "my_sim")

The saved output file is named “my_sim.gzip”. Note that the gzip extension indicates the data is compressed, and the
data structures are stored using python’s pickle module.

The data can also be saved in a Matlab-readable format (.mat file), by adding fmt='mat' as an additional input
argument:

sesame.save_sim(system, result, "my_sim", fmt='mat')

In this case the arrays defining the system properties (including Eg, Nc, Nv, etc) are saved in a system data structure,
and the solution ('efn', 'efp', 'v') is saved in a results data structure.

Note: The saved data is “folded” into 1-d arrays. For example, the solution array of a two-dimensional system with
𝑛𝑥 x-grid points and 𝑛𝑦 y-grid points is stored as a one-dimensional array of length 𝑛𝑥 × 𝑛𝑦 .

The postprocessing tools packaged with Sesame are built to work with python data files. It’s therefore more convenient
to save the data in python format if substantial postprocessing and analysis will be performed.

3.4.2 Loading data

Loading a saved simulation is accomplished with the load_sim command. This returns the system object and result
dictionary:

sys, result = sesame.load_sim("my_sim")

3.4.3 Analysis of data: the Analyzer object

Next we show how to extract and analyze the data computed by the solvers. To facilitate data analysis, Sesame has
an Analyzer() class which contains many methods to compute typical quantities of interest, such as total defect,
radiative, or radiative recombination, total current, carrier densities, grain boundary recombination, etc. A summary
and the descriptions of the methods available via the Analyzer() object are detailed in Sec. Core modules.

We’ll demonstrate the use of some of these methods, using the system created in tutorial 3. We start as always by
importing sesame and numpy:

import numpy as np
import sesame

Note: In the rest of this tutorial, it’s necessary to copy the output gzip files you obtained in tutorial3 to the
examples\tutorial4 directory

Our data analysis will begin with computing carrier densities and currents, and plotting data. In the code below we
load a data file and create an instance of Analyzer class. The Analyzer() object is initialized with a system and a
dictionary of results. This dictionary must contain the key 'v', and can include 'efn', 'efp' when computed.:

sys, results = sesame_loadsim('2dpnIV.vapp_0.npz')
az = sesame.Analyzer(sys, results)

We start with how to obtain integrated quantities like the steady state current. In the code below we compute the
current for all applied voltages of the IV curve, using the Analyzer() method full_current():
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J = []
for i in range(40):

filename = '2dpnIV.vapp_{0}.npz'.format(i) # construct file name
sys, results = sesame.load_sim(filename) # load file
az = sesame.Analyzer(sys, results) # create Analyzer
current = az.full_current() # compute current
J.append(current) # add to array of current values

Non-integrated quantities are often plotted along lines. We define such lines by two points. Given two points in real
coordinates, the method line() returns the dimensionless curvilinear abscissae along the line, and the grid sites:

p1 = (2e-4, 0) # [cm]
p2 = (2e-4, 3-6) # [cm]

X, sites = az.line(sys, p1, p2)

Scalar quantities like densities or recombination are obtained either for the entire system, or on a line:

# For the entire system
n2d = az.electron_density()
n2d = n2d * sys.scaling.density # convert to dimension-ful form
n2d = np.reshape(n2d, (sys.ny, sys.nx)) # reshape to 2-d array

# On the previously defined line
n1d = az.electron_density((p1, p2))
n1d = n1d * sys.scaling.density # convert to dimension-ful form

Note: Note that the Analyzer methods return values in dimensionless form. It is therefore necessary to convert to
dimension-ful form using the quantities stored in the scaling field of sys. Available dimensions are: density,
energy, mobility, time, length, and generation. These dimensions (except mobility) depend on the temperature and
the unit length (meter or centimeter) given when creating an instance of the class Builder() (default is 300 K and
centimeters).

Vectorial quantities (i.e. currents) are computed either on a line or for the entire system, by component. For instance,
to compute the electron current in the x-direction:

# For the entire system
jn = az.electron_current(component='x')

# On the previously defined line
jn = az.electron_current(location=(p1, p2))

We now turn to the treatment of the extended line defects introduced in our system. The following code retrieves the
solution along the grain boundary core:

# Line endpoints of the grain boundary core
p1 = (20e-7, 1.5e-4) #[cm]
p2 = (2.9e-4, 1.5e-4) #[cm]
# get the coordinate indices of the grain boundary core
X, sites = az.line(syst, p1, p2)

# obtain solution data along the GB core
efn_GB = results['efn'][sites]
efp_GB = result['efp'][sites]
v_GB = result['v'][sites]
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In this code we compute the integrated defect recombination along the grain boundary core:

# Get the first planar defect from the system
defect = sys.defects_list[0]
# Compute the defect recombination rate as a function of position along the planar
→˓defect
R_GB = az.defect_rr(defect) # R_GB is an array

# Compute the integrated recombination along the line defect
Rtot_GB = az.integrated_defect_recombination(defect) #Rtot_GB is a number

The attribute of Builder called defects_list is a list of named tuples. This list stores the parameters of each
defect originally added to the system. The field names of the named tuples are sites, location, dos, energy,
sigma_e, sigma_h, transition, perp_dl. The last field contains the lattice distance perpendicular to the line
of defects. This quantity is used to normalize the recombination velocity and the density of states.

3.4.4 Plotting data

To facilitate the visualization of two- and three-dimensional plots, sesame provides a few functions (requiring
matplotblib) that represent quantities in 2D or 3D. For example, one can visualize the electrostatic potential
at zero bias in 3D with:

sys, results = sesame.load_sim('2dGB_V_0.gzip')
az = sesame.Analyzer(sys, results)
az.map3D(results['v']) # units of kT/q
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or plot the electron current accross the system:

sys, results = sesame.load_sim('2dGB_10.gzip')
az = sesame.Analyzer(sys, results)
az.electron_current_map()
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We finally show how to use native matplotlib functionality to plot the data obtained with the Analyzer()
object. In the following code we make plots of the electron density that we obtained earlier:

# points define line perpendicular to GB
p1 = (2e-4, 0) # [cm]
p2 = (2e-4, 3-6) # [cm]
X, sites = az.line(syst, p1, p2)

# make 1d figure
plt.figure(1)
plt.plot(X, np.log(n1d))
plt.xlabel('Position [cm]')
plt.ylabel('Log[n]')

Here we represent the 2-dimensional electron density with a contour plot:

# For the entire system
n2d = az.electron_density()
n2d = n2d * sys.scaling.density # convert to dimnsion-ful form
n2d = np.reshape(n2d, (sys.ny, sys.nx)) # reshape to 2-d array

# make 2d contour plot
plt.figure(2)
plt.contourf(sys.xpts, sys.ypts, np.log(n2d))

(continues on next page)
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(continued from previous page)

plt.xlabel('Position [cm]')
plt.ylabel('Position [cm]')
plt.colorbar()
plt.title('ln(n)')

plt.show() # show figures on screen

3.4.5 Advanced possibilities

In case the methods available in the Analyzer() are not enough (especially in 3D), the module sesame.
observables() gives access to low-level routines that compute the carrier densities and the currents for any given
sites on the discretized system.

In the table below we show the syntax used to get some attributes of the Builder() that can then be useful:

Attribute Syntax
grid nodes syst.xpts, syst.ypts, syst.zpts
number of grid nodes syst.nx, syst.ny, syst.nz
grid distances syst.dx, syst.dy, syst.dz

The exhaustive list of all accessible attributes is in the documentation of the Builder() class itself. Note that the
grid nodes are in the units given in the system definition, while the grid distances are dimensionless.

3.5 Tutorial 5: Simulating an EBIC/CL experiment

In this tutorial we build a 2-dimensional simulation to describe experiments with a localized carrier generation profile,
such as electron beam induced current (EBIC), or cathodoluminescence (CL).

See also:

The example treated here is in the file 2d_EBIC.py located in the examples\tutorial5 directory of the dis-
tribution. The same simulation’s GUI input file is 2d_EBIC.ini, also located in the examples\tutorial5
directory.

For this case we’ll need to define a system as before, and then define a custom carrier generation rate density profile
associated with electron beam excitation. We’ll then cycle over beam positions and compute the total current and total
radiative recombination as a function of beam position.
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3.5.1 Building the system

The system we want to build is a 2-dimensional p-n junction in which the “top” of the system represents the exposed
sample surface. Building the 2-d pn junction proceeds as in the previous tutorials, and the code is shown below. One
important difference for this example is that the top/bottom boundary conditions are “hard-wall” (in the previous cases,
we used periodic boundary conditions, which are the default). This is specified by calling Builder() with an extra
argument Periodic=False:

## dimensions of the system
Lx = 3e-4 #[cm]
Ly = 3e-4 #[cm]

# extent of the junction from the left contact [cm]
junction = .1e-4 # [cm]

# Mesh
x = np.concatenate((np.linspace(0,.2e-4, 30, endpoint=False),

np.linspace(0.2e-4, 1.4e-4, 60, endpoint=False),
np.linspace(1.4e-4, 2.7e-4, 60, endpoint=False),
np.linspace(2.7e-4, Lx, 10)))

y = np.concatenate((np.linspace(0, .25e-4, 50, endpoint=False),
np.linspace(.25e-4, 1.25e-4, 50, endpoint=False),
np.linspace(1.25e-4, Ly, 50)))

# Create a system
sys = sesame.Builder(x, y, periodic=False)

# Dictionary with the material parameters
mat = {'Nc':8e17, 'Nv':1.8e19, 'Eg':1.5, 'epsilon':9.4, 'Et': 0,

'mu_e':320, 'mu_h':40, 'tau_e':10*1e-9, 'tau_h':10*1e-9}

# Add the material to the system
sys.add_material(mat)

# define a function specifiying the n-type region
def n_region(pos):

x, y = pos
return x < junction

# define a function specifiying the p-type region
def p_region(pos):

x, y = pos
return x >= junction

# Add the donors
nD = 1e17 # [cm^-3]
sys.add_donor(nD, n_region)
# Add the acceptors
nA = 1e15 # [cm^-3]
sys.add_acceptor(nA, p_region)

# Use Ohmic contacts
sys.contact_type('Ohmic','Ohmic')
Sn_left, Sp_left, Sn_right, Sp_right = 1e7, 1e7, 1e7, 1e7
sys.contact_S(Sn_left, Sp_left, Sn_right, Sp_right)
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3.5.2 Adding surface recombination

Adding recombination at the sample surface is accomplished with a planar defect along the line 𝑦 = 𝐿𝑦 . We consider a
neutral surface, so that the charge state of the defect is always 0. This is implemented by setting transition=(0,
0) as an input argument to add_line_defects(). As described in the previous tutorial, the values given in
transition set the charge of the defect when its occupied or unoccupied:

p1 = (0, Ly)
p2 = (Lx, Ly)

E = 0 # energy of gap state (eV) from intrinsic level
rhoGB = 1e14 # density of defect states [cm^-2]
s = 1e-14 # defect capture cross section [cm^2]

sys.add_line_defects([p1, p2], rhoGB, s, E=E, transition=(0,0))

3.5.3 Electron beam excitation

Next we review the physics of the electron beam excitation. For a beam focused at (𝑥0, 𝑦0), a simple parameterization
of the generation rate density profile is given by a Gaussian:

𝐺(𝑥, 𝑦) =
𝐺tot

𝐴
× exp

(︂
− (𝑥− 𝑥0)2 + (𝑦 − 𝑦0)2

2𝜎2

)︂
(3.1)

For our geometry, 𝑥0 is the lateral beam position, while the depth of the excitation from the sample surface is 𝑦0. The
total generation rate (units 1/𝑠) is approximated by4:

𝐺𝑡𝑜𝑡 ≈
𝐼beam
𝑞

× 𝐸beam

3𝐸𝑔
(3.2)

The length scale of the excitation 𝜎 is determined by the electron beam energy and material mass density, and is written
in terms of the interaction distance 𝑅𝐵 :

𝑅𝐵 = 𝑟0

(︂
0.043

𝜌/𝜌0

)︂
× (𝐸beam/𝐸0)

1.75 (3.3)

The constants in Eq. (3.3) are 𝑟0 = 1 𝜇m, 𝜌0 = 1 g/cm3, 𝐸0 = 1 keV. The length scale of the Guassian 𝜎 and the
distance from the surface 𝑦0 are related to 𝑅𝐵 as5:

𝜎 =
𝑅𝐵√

15

𝑦0 = 0.3 ×𝑅𝐵

The normalization constant 𝐴 has units of volume. The standard normalization of a 2-dimensional Gaussian is 2𝜋𝜎2,
which has units of area. An appropriate choice for the additional length factor in 𝐴 is the electron diffusion length
𝐿𝐷, so that:

4

3. (j) Wu and D. B. Wittry, J. App. Phys., 49, 2827,(1978).

5

1. (e) Grun, Zeitschrift fur Naturforschung, 12a, 89, (1957).
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𝐴 = 2𝜋𝜎2𝐿𝐷 (3.4)

To code 𝐺(𝑥, 𝑦), Eq. (3.1) we start by making the necessary definitions of constants:

q = 1.6e-19 # C
Ibeam = 10e-12 # A
Ebeam = 15e3 # eV
eg = 1.5 # eV
density = 5.85 # g/cm^3
kev = 1e3 # eV

Gtot = Ibeam/q * Ebeam / (3*eg)
Rbulb = 0.043 / density * (Ebeam/kev)**1.75 # given in micron
Rbulb = Rbulb * 1e-4 # converting to cm

sigma = Rbulb / sqrt(15) # Gaussian spread
y0 = 0.3 * Rbulb # penetration depth

Ld = np.sqrt(sys.mu_e[0] * sys.tau_e[0]) * sys.scaling.length # diffusion length

3.5.4 Perfoming the beam scan

To scan the lateral position 𝑥0 of the beam, we first define the list of 𝑥0 values:

x0list = np.linspace(.1e-4, 2.5e-4, 11)

We define an array to store the computed current at each beam position:

jset = np.zeros(len(x0list))

Next we scan over 𝑥0 with a for loop. At each value of 𝑥0, we define a function as given in Eq. (3.1), and add this
generation to the system:

for idx, x0 in enumerate(x0list):

def excitation(x,y):
return Gtot/(2*np.pi*sigma**2*Ld) *

np.exp(-(x-x0)**2/(2*sigma**2)) * np.exp(-(y-Ly+y0)**2/(2*sigma**2))

sys.generation(excitation)

Note: Using the GUI is more awkward for this type of simulation, because only one variable definition is allowed in
the generation function definition. Therefore all of the numerical prefactors must be computed by the user and input
by hand.

Now we solve the system:

solution = sesame.solve(sys, periodic_bcs=False, tol=1e-8)

We obtain the current and store it in the array:
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# get analyzer object with which to compute the current
az = sesame.Analyzer(sys, solution)
# compute (dimensionless) current and convert to dimension-ful form
tj = az.full_current() * sys.scaling.current * sys.scaling.length
# save the current
jset[idx] = tj

It can be informative to plot the current normalized to the total generation rate. The (dimensionless) total generation
rate for a simulation is contained in the gtot field of sys. As always, we must use scaling factors to make this a
dimension-ful quantity. The code for this is shown below:

# obtain total generation from sys object
gtot = sys.gtot * sys.scaling.generation * sys.scaling.length**2
jratio[idx] = tj/(q * gtot)

We can also compute the radiative recombination at each beam position point, thereby simulation a cathodolumines-
ence experiment. This code shown below:

# compute (dimensionless) total radiative recombination and convert to to dimension-
→˓ful form
cl = az.integrated_radiative_recombination() * sys.scaling.generation * sys.scaling.
→˓length**2
# save the CL
rset[idx] = cl
rad_ratio[idx] = cl/gtot

The current and CL can be saved and plotted as in previous tutorials.

References

3.6 Tutorial 6: Batch submission for computing clusters

See also:

The example treated here is in the file sesame_batch_job.py located in the examples\tutorial6 directory
of the distribution.

3.6.1 Running Sesame on a cluster

Next we give an example of running Sesame on a computing cluster. This can be accomplished in several different
ways; the most efficient way depends on the details of the cluster environment. For our example, the prerequisites
libraries are:

• MPI Library

• mpi4py

The basic idea is illustrated in schematic below (note we follow MPI and python convention where indices start from
0). We have more than one processor available to execute all of the (independent) jobs. In this case, we’ll assign the
jobs as shown in the figure:
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Any executable which uses MPI is called from the command line using the prefix mpirun. For example, the script
“parallel_batch_example.py” is run on 32 processors with the following command:

mpirun -np 32 python3 parallel_batch_example.py

3.6.2 Parallel script description

We first import some additional packages:

import numpy as np
import sesame
import itertools
from mpi4py import MPI

The first half of the script contains a function called system. The system function takes parameter values as input
and constructs a system object. This works as in previous tutorials, so we’ll skip over it for now and begin with the
second half contains a block of code, which begins:

if __name__ == '__main__':

Calling “parallel_batch_example.py” runs the code within the block contained in this “main” block. In the next section
we describe the “main” code, which performs the actual parallel-ization of the job.

3.6.3 Cycling over parameters on a computing cluster

The primary task of the “main” script is to distribute independent serial jobs among an arbitrary number of processors.
This is the easiest type of parallel computing (known as “embarassingly parallel”), and requires only a couple of
additional lines of code.

We first initialize the MPI library with the command:

mpi_comm = MPI.COMM_WORLD

We next determine the total number of processors available with mpi_comm.Get_size(), and the “rank” of
a particular instance of the program using mpi_comm.Get_rank(). In the schematic shown at the beginning,
mpisize=4, and each processor is assigned its own rank: 0, 1, 2, or 3. The processors will all run the code identi-
cally, with the exception that each has its own unique value of mpirank:
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mpirank = mpi_comm.Get_rank()
mpisize = mpi_comm.Get_size()

We define the set of parameter lists we want to study:

rho_GBlist = [1e11, 1e12, 1e13] # [1/cm^2]
E_GBlist = [-.3, 0, .3] # [eV]
S_GBlist = [1e-14, 1e-15, 1e-16] # [cm^2]
taulist = [1e-7, 1e-8, 1e-9] # [s]

We use the itertools product function to form a list of all combinations of parameter values. The total number of
jobs (njobs is equal to the product of the length of all parameter lists. This can get quite large if we vary several
parameters (for this case we have 180 jobs):

paramlist = list(itertools.product(rho_GBlist, E_GBlist, S_GBlist, taulist))
njobs = len(paramlist)

Here’s where the parallel-ization of the batch processes enters. Each node only needs to compute a subset of all
parameters. We set the relevant parameters for each node with the function range. The inputs are: starting index,
ending index, step size:

my_param_indices = range(mpirank,njobs,mpisize)

This partitions the jobs as shown at the top of the page: each processor starts on a different job (the first job index
equals the mpirank value) and skips over mpisize jobs to the next one. In this way we cover all jobs roughly
equally between all the processors.

Next we define two arrays in which to store the computed I-V values. One of them is a local array, the other is a
“global” array into which all the computed values will be set at the end of the program:

# Define array to store computed J-V values
jvset_local = np.zeros([njobs, len(voltages)])
jvset = np.zeros([njobs, len(voltages)])

Most of the parallel-ization is completed. The only remaining parallel component of code occurs at the very end, when
we compile the results from all the processors into a single array.

3.6.4 Defining the system

We define a function which takes in a list of parameters. In this case, the parameters are 𝜌𝐺𝐵 , 𝐸𝐺𝐵 , 𝑆𝐺𝐵 , 𝜏 . The
construction of the system follows the previous examples:

def system(params):

# we assume the params are given in order: [rho_GB, E_GB, S_GB, tau]
rho_GB = params[0]
E_GB = params[1]
S_GB = params[2]
tau = params[3]

# Dimensions of the system
Lx = 3e-4 # [cm]
Ly = 3e-4 # [cm]

# Mesh

(continues on next page)
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(continued from previous page)

x = np.concatenate((np.linspace(0, 0.2e-4, 30, endpoint=False),
np.linspace(0.2e-4, 1.4e-4, 60, endpoint=False),
np.linspace(1.4e-4, 2.7e-4, 60, endpoint=False),
np.linspace(2.7e-4, 2.98e-4, 30, endpoint=False),
np.linspace(2.98e-4, Lx, 10)))

y = np.concatenate((np.linspace(0, 1.25e-4, 60, endpoint=False),
np.linspace(1.25e-4, 1.75e-4, 50, endpoint=False),
np.linspace(1.75e-4, Ly, 60)))

sys = sesame.Builder(x, y) # Create a system

# Dictionary with the material parameters
mat = {'Nc': 8e17, 'Nv': 1.8e19, 'Eg': 1.5, 'epsilon': 9.4, 'Et': 0,

'mu_e': 320, 'mu_h': 40, 'tau_e': tau, 'tau_h': tau}

sys.add_material(mat) # Add the material to the system

junction = .1e-4 # [cm]

# Define a function specifiying the n-type region
def region1(pos):

x, y = pos
return x < junction

# Define a function specifiying the p-type region
def region2(pos):

x, y = pos
return x >= junction

nD = 1e17 # Donor density [cm^-3]
sys.add_donor(nD, region1) # Add the donors
nA = 1e15 # Acceptor density [cm^-3]
sys.add_acceptor(nA, region2) # Add the acceptors

# Define contacts: CdS and CdTe contacts are Ohmic
sys.contact_type('Ohmic', 'Ohmic')
Sn_left, Sp_left, Sn_right, Sp_right = 1e7, 1e7, 1e7, 1e7
sys.contact_S(Sn_left, Sp_left, Sn_right, Sp_right)

# Specify the two points that make the line containing additional charges
p1 = (0.1e-4, 1.5e-4) # [cm]
p2 = (2.9e-4, 1.5e-4) # [cm]

# Add donor defect along GB
sys.add_line_defects([p1, p2], rho_GB, S_GB, E=E_GB, transition=(1, 0))
# Add acceptor defect along GB
sys.add_line_defects([p1, p2], rho_GB, S_GB, E=E_GB, transition=(0, -1))

return sys

Here we define the set of applied voltages:

# Specify applied voltages
voltages = np.linspace(0, .9, 10)
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Now we cycle over all the parameter sets which apply to a given node:

# cycle over all parameter sets
for myjobcounter in my_param_indices:

# Get system for given set of parameters
params = paramlist[myjobcounter]
sys = system(params)

# Get equilibrium solution
eqsolution = sesame.solve(sys, 'Poisson')

# Define a function for generation profile
f = lambda x, y: 2.3e21 * np.exp(-2.3e4 * x)
# add generation to the system
sys.generation(f)

# Specify output filename for given parameter set
outputfile = ''
for paramvalue in params:

outputfile = outputfile + '{0}_'.format(paramvalue)

# Compute J-V curve
jv = sesame.IVcurve(sys, voltages, outputfile, guess=eqsolution)
# Save computed J-V in array
jvset_local[myjobcounter,:] = jv

To combine the output of all the processers, we use mpi_comm.Reduce. The first argument is the local value of jv;
the second argument is the global jv array. The local arrays will be added together and stored in the global array:

mpi_comm.Reduce(jvset_local,jvset)

Finally we save the global array of jv values, together with the list of parameters in a file “JVset”:

np.savez("JVset", jvset, paramlist)
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CHAPTER

FOUR

USING SESAME WITH THE GUI

The Sesame GUI can be launched from the command line by navigating to the base sesame directory and executing:

python app.py

Alternatively, the GUI can be installed as a standalone executable (currently available only for Windows).

The Sesame GUI has three main tabs - system, simulation, and analysis. The File menu enables users to save and
load GUI simulation files. The View menu provides options for viewing the spatial distribution of defects and certain
system properties (like mobility and lifetime). The Console menu provides the option of an interactive python
console below the main window.

In the following subsections we detail the content and use of each of the window tabs.

4.1 System Tab

The first step in performing simulations with the GUI is defining the system. The layout of the system tab is shown
below:
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Grid: The upper left frame contains inputs for the user-defined grid. The dimensionality of the system is inferred from
the grid entries: entering a grid for the x-axis only implies a 1-d system. Adding a grid for the y-axis implies a 2-d
system, etc.

Materials: The middle-top frame contains the entries for the bulk material properties. Multiple materials can be added
to the system. Their location is specified in the Location field.

View system: Provides a depiction of the system geometry, including the x and y meshes, different materials regions,
and the planar defects (grain boundaries).

Planar Defects: Planar defects are added in the middle-bottom frame. For a 1-d system, a planar defect location is
specified by 1 point. For a 2-d system, a planar defect is specified by 2 points. The energy level of the defect (with
respect to the intrinsic energy level), the defect density, capture cross sections, and charge states are specified here.

Illumination Specify the illumination on the system. Options are 1. monochromatic, with user-defined wave-
length and power, and 2. 1 sun illumination, where the spectral density is taken from https://www.nrel.gov/grid/
solar-resource/spectra-am1.5.html (Direct+circumsolar spectrum).

Absorption Specify the material absorption. Options are 1. a user-defined single absorption coefficient, and 2. loading
in absorption spectrum from an external file. Tutorial2 has a sample absorption file. Note that the format of the file is
assumed to be two column, with first column containing wavelength of light in units of [nm], and the second column
containing the associated absorption coefficient in units of [1/m].

Generation Rate: The carrier generation rate density is entered in the lower-left frame. There is an option to vary
1 parameter in this profile. In cases where the generation profile changes, the parameter which is varied must be
specified in the field parameter name. If the generation profile does not change, this field may be left blank.

4.2 Simulation Tab

The system tab is used to define the conditions of the simulation (e.g. the applied voltage and contact boundary
conditions). The system window is shown below:

Basic Settings The GUI allows looping over two types of variables: the applied voltage and a user-defined parameter
in the generation rate (this variable is defined in the bottom-left field of the System tab). The Loop values can be
specified with numpy functions for array construction (as in the example shown above), or can be specified manually
(e.g. [0, .1, .2]).
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The working directory and output file name determine the location and name of simulation output files. The files can
be saved in python format (.npz) or matlab format (.mat). The output filenames are appended by “_x”, where x labels
the loop index.

Boundary Conditions Boundary conditions are specified next. Possible choices for contact boundary conditions
Ohmic, Schottky, or Neutral, and recombination velocity for electrons/holes are specified here. Transverse boundary
conditions can be periodic or hardwall.

Algorithm Settings The algorithm settings are as follows: There’s an option to ramp the generation rate. This can
be useful to assist in convergence. If a system under illumination fails to converge, one can increase the generation
ramp value. Setting the value to “n” means the initial illumination is decreased by a factor of 10𝑛. The generation is
increased by factors of 10 until the desired generation rate is reached.

The Algorithm precision sets the error tolerance for the root-finding algorithm. A value of 1e-6 is typically
acceptable. Maximum steps determines how many steps the Newton-Raphson algorithm attempts before aborting.
The Mumps library option can be selected if the MUMPS library is installed. This library increases the speed up
to several times, depending on system size. There is also an option for iterative solver, which is less accurate,
but faster for very large systems (such as 3-d systems). The iterator solver precision is specified in the following field.

Simulation Log The simulation is launched with the Run simulation button on the top right. The log window
gives a real-time output of the error in the solution obtained with the Newton-Algorithm. The solution procedure can
be aborted at any time by clicking Stop simulation.

4.3 Analysis Tab

After successful completion of the simulation, the Analysis tab provides tools to plot and analyze the solution.

Import data The upper-left frame lets the user specify the output files to analyze. This list of files will be automatically
populated by the output files of a successful simulation specified in the Simulation tab.

Surface plot For plots of quantities in 2-dimensions, select an outputfile, and in the surface plot, select a quantity
to plot. Clicking Plot will give the spatially resolved color contour plot of the given quantity.

Linear plot For 1-d plots, two options are available: “loop values” and “position”. For “loop values”, a single scalar
quantity (e.g. current density, total recombination) is plotted against the values of the looped parameter. Selecting
“loop values” automatically selects all output files, and automatically fills in the X data field with the loop values. This
is shown in the graphic above.
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If “Position” is selected, then a plot of a quantitiy versus position is given. For a 2-d simulation, the position is given by
two endpoints of a line (note the position of the endpoints are assumed to be given in units of [cm]). This is specified
by the user in the “S data” field. For a 1-d simulation, the “X data” field is automatically set to the entire 1-d grid.

4.4 Running scripts in the GUI

The standalone Sesame GUI executable contains a full Python distribution. This can be accessed by selecting the
Console → Show Console option from the window. An IPython console is displayed, as shown below. Below
we show how Sesame scripts may be run from the python console:

The first step is to navigate to the directory with the python script you would like to run. This is accomplished with
the following commands, entered into the IPython prompt:

import os
os.chdir("examples/tutorial1")

Next the python script (in this case called “1d_homojunction.py”) is called with the following command:

exec(open("1d_homojunction.py").read())

The example scripts and GUI input files provided in the examples/tutorials folders define identical simulations. The
user can modify one or the other as needed, and run either one within the GUI. Scripts provide more flexibility for
system definition and for simulation actions, e.g. looping over several variables.
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CHAPTER

FIVE

CORE MODULES

The following modules are used for internal and external use.

5.1 sesame – Top level package

We provide short names for a few objects and methods from the sub-packages. Otherwise, this package has no
functionality of its own.

The version of Sesame is available under the name __version__.

5.1.1 From sesame.builder

Scaling([input_length, T]) An object defining the scalings of the drift-diffusion-
Poisson equation.

Builder(xpts[, ypts, input_length, T, periodic]) A system discretized on a mesh.

5.1.2 From sesame.plotter

plot(sys, data[, cmap, alpha, fig, title]) Plot a 2D map of a parameter (like mobility) across the
system.

plot_line_defects(sys[, ls, fig]) Plot the sites containing additional charges located on lines
in 2D.

5.1.3 From sesame.solvers.default

solve(system[, compute, guess, tol, . . . ]) Solve the drift diffusion Poisson equation on a given dis-
cretized system out of equilibrium.

IVcurve(system, voltages, file_name[, . . . ]) Solve the Drift Diffusion Poisson equations for the voltages
provided.

5.1.4 From sesame.analyzer

Analyzer(sys, data) Object that simplifies the extraction of physical data (den-
sities, currents, recombination) across the system.
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5.1.5 From sesame.utils

save_sim(sys, result, filename[, fmt]) Utility function that saves a system together with simula-
tion results.

load_sim(filename) Utility function that loads a system together with simula-
tion results.

5.2 sesame.builder – High-level construction of systems

class sesame.builder.Scaling(input_length=’cm’, T=300)
An object defining the scalings of the drift-diffusion-Poisson equation. The temperature of the system and the
reference unit for lengths are specified when an instance is created. The default unit for length is cm, and the
default temperature is 300 K.

Parameters input_length: string

Reference unit for lengths. Acceptable entries are ‘cm’ for centimeters and ‘m’ for
meters.

T: float

Temperature for the simulation.

Attributes

denisty: float Density scale taken equal to 1019 cm-3.
energy: float Energy scale.
mobility: float Mobility scale taken equal to 1 cm2/(V.s).
time: float Time scale.
length: float Length scale.
generation: float Scale of generation and recombination rates.
velocity: float Velocity scale.
current: float Electrical current density scale.

class sesame.builder.Builder(xpts, ypts=array([0.]), input_length=’cm’, T=300, periodic=True)
A system discretized on a mesh.

This type discretizes a system on a mesh provided by the user, and takes care of all normalizations. The
temperature of the system is specified when an instance is created. The default is 300 K.

Parameters xpts, ypts, zpts: numpy arrays of floats

Mesh with original dimensions.

input_length: string

Reference unit for lengths. Acceptable entries are ‘cm’ for centimeters and ‘m’ for
meters.

T: float

Temperature for the simulation.
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Attributes

xpts, ypts, zpts:
numpy arrays of
floats

Mesh with original dimensions.

dx, dy, dz:
numpy arrays of
floats

Dimensionless lattice constants in the x, y, z directions.

nx, ny: integers Number of lattice nodes in the x, y directions.
Nc, Nv: numpy
arrays of floats

Dimensionless effective densities of states of the conduction and valence bands.

Eg: numpy array
of floats

Dimensionless band gap.

ni: numpy array
of floats

Dimensionless intrinsic density.

mu_e, mu_h:
numpy arrays of
floats

Dimensionless mobilities of electron and holes.

tau_e, tau_h:
numpy arrays of
floats

Dimensionless bulk lifetime for electrons and holes.

n1, p1: numpy
arrays of floats

Dimensionless equilibrium densities of electrons and holes at the bulk trap state.

bl: numpy array
of floats

Electron affinity.

g: numpy array
of floats

Dimensionless generation for each site of the system. This is defined only if a genera-
tion profile was provided when building the system.

gtot: float Dimensionless integral of the generation rate.
defects_list: list
of named tuples

List of named tuples containing the characteristics of the defects in the order they were
added to the system. The field names are sites, location, dos, energy, sigma_e, sigma_h,
transition, perp_dl.

add_acceptor(density, location=<function Builder.<lambda>>)
Add acceptor dopants to the system.

Parameters density: float

Doping density [cm-3].

location: Boolean function

Definition of the region containing the doping. This function must take a tuple of real
world coordinates (e.g. (x, y)) as parameters, and return True (False) if the lattice node
is inside (outside) the region.

add_defects(location, N, sigma_e, sigma_h=None, E=None, transition=(1, -1))
Add additional charges (for a grain boundary for instance) to the total charge of the system. These charges
are distributed on a line.

Parameters location: float or list of two array_like coordinates [(x1, y1), (x2, y2)]

Coordinate(s) in [cm] of a point defect or the two end points of a line defect.

N: float or function

Defect density of states [cm-2 ]. Provide a float when the defect density of states is a
delta function, or a function returning a float for a continuum. This function should take
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a single energy argument in [eV].

sigma_e: float

Electron capture cross section [cm2].

sigma_h: float (optional)

Hole capture cross section [cm2]. If not given, the same value as the electron capture
cross section will be used.

E: float

Energy level of a single state defined with respect to the intrinsic Fermi level [eV]. Set
to None for a continuum of states (default).

transition: tuple

Charge transition occurring at the energy level E. The tuple (p, q) represents a defect
with transition p/q (level empty to level occupied). Default is (1,-1).

add_donor(density, location=<function Builder.<lambda>>)
Add donor dopants to the system.

Parameters density: float

Doping density [cm-3].

location: Boolean function

Definition of the region containing the doping. This function must take a tuple of real
world coordinates (e.g. (x, y)) as parameters, and return True (False) if the lattice node
is inside (outside) the region.

add_material(mat, location=<function Builder.<lambda>>)
Add a material to the system.

Parameters mat: dictionary

Contains the material parameters Keys are Nc (Nv): conduction (valence) effective den-
sities of states [cm-3], Eg: band gap [eV], epsilon: material’s permitivitty, mu_e (mu_h):
electron (hole) mobility [m2/(V s)], tau_e (tau_h): electron (hole) bulk lifetime [s], Et:
energy level of the bulk recombination centers [eV], affinity: electron affinity [eV], B:
radiation recombination constant [cm3/s], Cn (Cp): Auger recombination constant for
electrons (holes) [cm6/s], mass_e (mass_h): effective mass of electrons (holes). All
parameters can be scalars or callable functions similar to the location argument.

location: Boolean function

Definition of the region containing the material. This function must take a tuple of real
world coordinates (e.g. (x, y)) as parameter, and return True (False) if the lattice node
is inside (outside) the region.

contact_S(Scn_left, Scp_left, Scn_right, Scp_right)
Create the lists of recombination velocities that define the charge collection at the contacts out of equilib-
rium.

Parameters Scn_left: float

Surface recombination velocity for electrons at the left contact [cm/s].

Scp_left: float

Surface recombination velocity for holes at the left contact [cm/s].

Scn_right: float
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Surface recombination velocity for electrons at the right contact [cm/s].

Scn_right: float

Surface recombination velocity for electrons at the right contact [cm/s].

contact_type(left_contact, right_contact, left_wf=None, right_wf=None)
Define the boundary conditions for the contacts at thermal equilibrium. ‘Ohmic’ or ‘Schottky’ impose a
value of the electrostatic potential, ‘Neutral’ imposes a zero potential derivative.

Parameters left_contact: string

Boundary conditions for the contact at x=0.

right_contact: string

Boundary conditions for the contact at x=L.

left_wf: float

Work function for a Schottky contact at x=0.

right_wf: float

Work function for a Schottky contact at x=L.

Notes

Schottky contacts require work functions. If no values are given, an error will be raised.

generation(f, args=[])
Distribution of generated carriers.

Parameters f: function

Generation rate [cm-3].

args: tuple

Additional arguments to be passed to the function.

5.3 sesame.plotter – Plotting of systems

plot(sys, data[, cmap, alpha, fig, title]) Plot a 2D map of a parameter (like mobility) across the
system.

plot_line_defects(sys[, ls, fig]) Plot the sites containing additional charges located on lines
in 2D.

5.3.1 sesame.plotter.plot

sesame.plotter.plot(sys, data, cmap=’gnuplot’, alpha=1, fig=None, title=”)
Plot a 2D map of a parameter (like mobility) across the system.

Parameters sys: Builder

The discretized system.

data: numpy array

One-dimensional array of data with size equal to the size of the system.
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cmap: string

Name of the colormap used by Matplolib.

alpha: float

Transparency of the colormap.

fig: Maplotlib figure

A plot is added to it if given. If not given, a new one is created and displayed.

5.3.2 sesame.plotter.plot_line_defects

sesame.plotter.plot_line_defects(sys, ls=’-o’, fig=None)
Plot the sites containing additional charges located on lines in 2D. The length scale of the graph is 1 micrometer
by default.

Parameters sys: Builder

The discretized system.

ls: string

Line style of the plotted paths.

fig: Maplotlib figure

A plot is added to it if given. If not given, a new one is created and a figure is displayed.

5.4 sesame.solvers – Equilibrium and nonequilibrium solvers

Sesame offers several solvers to address quickly specific problems (equilibrium potential, IV curve) without having to
manage a cumbersome machinery to get to the solution.

5.4.1 sesame.solvers.default – Default solver

The functions below belong to the default solver sesame.solvers.default which is created upon loading
sesame. We made these functions available once sesame is loaded making the solver completely transparent for the
user. The solver stores the equilibrium potential of the system as soon as it has been computed.

solve(system[, compute, guess, tol, . . . ]) Solve the drift diffusion Poisson equation on a given dis-
cretized system out of equilibrium.

IVcurve(system, voltages, file_name[, . . . ]) Solve the Drift Diffusion Poisson equations for the voltages
provided.

sesame.solvers.default.solve

classmethod default.solve(system, compute=’all’, guess=None, tol=1e-06, periodic_bcs=True,
maxiter=300, verbose=True, htp=1)

Solve the drift diffusion Poisson equation on a given discretized system out of equilibrium. If the equilibrium
electrostatic potential is not yet computed, the routine will compute it and save it for further computations.

Parameters system: Builder

The discretized system.
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compute: string

Set to ‘all’ to solve the full drift-diffusion-Poisson equations, or to ‘Poisson’ to only
solve the Poisson equation. Default is set to ‘all’.

guess: dictionary of numpy arrays of floats

Contains the one-dimensional arrays of the initial guesses for the electron quasi-Fermi
level, the hole quasi-Fermi level and the electrostatic potential. Keys should be ‘efn’,
‘efp’ and ‘v’.

tol: float

Accepted error made by the Newton-Raphson scheme.

periodic_bcs: boolean

Defines the choice of boundary conditions in the y-direction. True (False) corresponds
to periodic (abrupt) boundary conditions.

maxiter: integer

Maximum number of steps taken by the Newton-Raphson scheme.

verbose: boolean

The solver returns the step number and the associated error at every step if set to True
(default).

htp: integer

Number of homotopic Newton loops to perform.

Returns solution: dictionary with numpy arrays of floats

Dictionary containing the one-dimensional arrays of the solution. The keys are the same
as the ones for the guess. An exception is raised if no solution could be found.

sesame.solvers.default.IVcurve

classmethod default.IVcurve(system, voltages, file_name, guess=None, tol=1e-06, peri-
odic_bcs=True, maxiter=300, verbose=True, htp=1, fmt=’npz’)

Solve the Drift Diffusion Poisson equations for the voltages provided. The results are stored in files with .npz
format by default (See below for saving in Matlab format). The steady state current is computed at the end of
the voltage loop and returned. Note that the potential is always applied on the right contact.

Parameters system: Builder

The discretized system.

voltages: array-like

List of voltages for which the current should be computed.

file_name: string

Name of the file to write the data to. The file name will be appended the index of the
voltage list, e.g. file_name_0.npz.

guess: dictionary of numpy arrays of floats (optional)

Starting point of the solver. Keys of the dictionary must be ‘efn’, ‘efp’, ‘v’ for the
electron and quasi-Fermi levels, and the electrostatic potential respectively.

tol: float
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Accepted error made by the Newton-Raphson scheme.

periodic_bcs: boolean

Defines the choice of boundary conditions in the y-direction. True (False) corresponds
to periodic (abrupt) boundary conditions.

maxiter: integer

Maximum number of steps taken by the Newton-Raphson scheme.

verbose: boolean

The solver returns the step number and the associated error at every step, and this func-
tion prints the current applied voltage if set to True (default).

htp: integer

Number of homotopic Newton loops to perform.

fmt: string

Format string for the data files. Use mat to save the data in a Matlab format (version 5
and above).

Returns J: numpy array of floats

Steady state current computed for each voltage value.

Notes

The data files can be loaded and used as follows:

>>> results = np.load('file.npz')
>>> efn = results['efn']
>>> efp = results['efp']
>>> v = results['v']

5.4.2 Creating another solver

Making another solver is done by creating an instance of the sesame.solvers.Solver class. This can be used
to turn off the use of the MUMPS library even when the library is available.

sesame.solvers.Solver – Sesame solver oject

class sesame.solvers.Solver(use_mumps=True)
An object that creates an interface for the equilibrium and nonequilibrium solvers of Sesame, and stores the
equilibrium electrostatic potential once computed.

Parameters use_mumps: boolean

Flag for the use of the MUMPS library if available. The flag is set to True by default. If
the MUMPS library is absent, the flag has no effect.

Attributes

equilibrium: numpy array of floats Electrostatic potential computed at thermal equilibrium.
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5.5 sesame.analyzer – Computing densities, recombination and
currents

Sesame provides several functions to compute densities, recombination and other integrated quantities to simplify the
analysis of simulation data. We give a summary of these functions below:

line(p1, p2) Compute the path and sites between two points.
band_diagram(location[, fig]) Compute the band diagram between two points defining a

line.
electron_density([location]) Compute the electron density across the system or on a line

defined by two points.
hole_density([location]) Compute the hole density across the system or on a line

defined by two points.
bulk_srh_rr([location]) Compute the bulk Shockley-Read-Hall recombination

across the system or on a line defined by two points.
auger_rr([location]) Compute the Auger recombination across the system or on

a line defined by two points.
radiative_rr([location]) Compute the radiative recombination across the system or

on a line defined by two points.
defect_rr(defect) Compute the recombination for all sites of a defect (2D and

3D).
total_rr() Compute the sum of all the recombination sources for all

sites of the system.
electron_current([component, location]) Compute the electron current either by component (x or y)

across the entire system, or on a line defined by two points.
hole_current([component, location]) Compute the hole current either by component (x or y)

across the entire system, or on a line defined by two points.
electron_current_map([cmap, scale]) Compute a 2D map of the electron current.
map3D(data[, cmap, scale]) Plot a 3D map of data across the entire system.
integrated_bulk_srh_recombination() Integrate the bulk Shockley-Read-Hall recombination over

an entire system.
integrated_auger_recombination() Integrate the Auger recombination over an entire system.
integrated_radiative_recombination() Integrate the radiative recombination over an entire system.
integrated_defect_recombination(defect) Integrate the recombination along a defect in 2D.
full_current() Compute the steady state current in 1D and 2D.

All the functions are gathered in the sesame.analyzer.Analyzer() class.

class sesame.analyzer.Analyzer(sys, data)
Object that simplifies the extraction of physical data (densities, currents, recombination) across the system.

Parameters sys: Builder

A discretized system.

data: dictionary

Dictionary containing 1D arrays of electron and hole quasi-Fermi levels and the elec-
trostatic potential across the system. Keys must be ‘efn’, ‘efp’, and/or ‘v’.

auger_rr(location=None)
Compute the Auger recombination across the system or on a line defined by two points.

Parameters location: array-like ((x1,y1), (x2,y2))

Tuple of two points defining a line over which to compute the recombination.
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Returns r: numpy array

An array with the values of recombination.

band_diagram(location, fig=None)
Compute the band diagram between two points defining a line. Display a plot if fig is None.

Parameters location: array-like ((x1,y1), (x2,y2))

Tuple of two points defining a line over which to compute a band diagram.

fig: Maplotlib figure

A plot is added to it if given. If not given, a new one is created and displayed.

bulk_srh_rr(location=None)
Compute the bulk Shockley-Read-Hall recombination across the system or on a line defined by two points.

Parameters location: array-like ((x1,y1), (x2,y2))

TUple of two points defining a line over which to compute the recombination.

Returns r: numpy array

An array with the values of recombination.

defect_rr(defect)
Compute the recombination for all sites of a defect (2D and 3D).

Parameters defect: named tuple

Container with the properties of a defect. The expected field names of the named tuple
are sites, location, dos, energy, sigma_e, sigma_h, transition, perp_dl.

Returns r: numpy array of floats

An array with the values of recombination at each sites.

electron_current(component=’x’, location=None)
Compute the electron current either by component (x or y) across the entire system, or on a line defined
by two points.

Parameters component: string

Current direction 'x' or 'y'. By default returns all currents in the x-direction.

location: array-like ((x1,y1), (x2,y2))

Tuple of two points defining a line over which to compute the electron current.

Returns jn: numpy array of floats

electron_current_map(cmap=’gnuplot’, scale=10000.0)
Compute a 2D map of the electron current.

Parameters cmap: Matplotlib color map

Color map used for the plot.

scale: float

Scale to apply to the axes of the plot.

electron_density(location=None)
Compute the electron density across the system or on a line defined by two points.

Parameters location: array-like ((x1,y1), (x2,y2))

Tuple of two points defining a line over which to compute the electron density.
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Returns n: numpy array of floats

See also:

hole_density

full_current()
Compute the steady state current in 1D and 2D.

Returns J: float

The integrated full steady state current.

hole_current(component=’x’, location=None)
Compute the hole current either by component (x or y) across the entire system, or on a line defined by
two points.

Parameters component: string

Current direction 'x' or 'y'. By default returns all currents in the x-direction.

location: array-like ((x1,y1), (x2,y2))

Tuple of two points defining a line over which to compute the hole current.

Returns jp: numpy array of floats

hole_current_map(cmap=’gnuplot’, scale=10000.0)
Compute a 2D map of the hole current of a 2D system.

Parameters cmap: Matplotlib color map

Color map used for the plot.

scale: float

Scale to apply to the axes of the plot.

hole_density(location=None)
Compute the hole density across the system or on a line defined by two points.

Parameters location: array-like ((x1,y1), (x2,y2))

Tuple of two points defining a line over which to compute the hole density.

Returns p: numpy array of floats

See also:

electron_density

integrated_auger_recombination()
Integrate the Auger recombination over an entire system.

Returns JR: float

The integrated Auger recombination.

Warning: Not implemented in 3D.

integrated_bulk_srh_recombination()
Integrate the bulk Shockley-Read-Hall recombination over an entire system.

Returns JR: float

The integrated bulk recombination.
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Warning: Not implemented in 3D.

integrated_defect_recombination(defect)
Integrate the recombination along a defect in 2D.

Returns JD: float

The recombination integrated along the line of the defect.

Warning: Not implemented in 3D.

integrated_radiative_recombination()
Integrate the radiative recombination over an entire system.

Returns JR: float

The integrated radiative recombination.

Warning: Not implemented in 3D.

static line(p1, p2)
Compute the path and sites between two points.

Parameters system: Builder

The discretized system.

p1, p2: array-like (x, y)

Two points defining a line.

Returns s, sites: numpay arrays

Curvilinear abscissa and sites of the line.

Notes

This method can be used with an instance of the Analyzer():

>>> az = sesame.Analyzer(sys, res)
>>> X, sites = az.line(sys, p1, p2)

or without it:

>>> X, sites = sesame.Analyzer.line(sys, p1, p2)

map3D(data, cmap=’gnuplot’, scale=1e-06)
Plot a 3D map of data across the entire system.

Parameters data: numpy array

One-dimensional array of data with size equal to the size of the system.

cmap: string

Name of the colormap used by Matplolib.
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scale: float

Relevant scaling to apply to the axes.

radiative_rr(location=None)
Compute the radiative recombination across the system or on a line defined by two points.

Parameters location: array-like ((x1,y1), (x2,y2))

Tuple of two points defining a line over which to compute the recombination.

Returns r: numpy array

An array with the values of recombination.

total_rr()
Compute the sum of all the recombination sources for all sites of the system.

Returns r: numpy array of floats

An array with the values of the total recombination at each sites.

5.6 sesame.observables – Low-level routines for computing densi-
ties and currents

These routines are to be used when the Analyzer() class does not provide the desired methods.

get_n(sys, efn, v, sites) Compute the electron density on the given sites.
get_p(sys, efp, v, sites) Compute the hole density on the given sites.
get_jn(sys, efn, v, sites_i, sites_ip1, dl) Compute the electron current between sites site_i and

sites_ip1.
get_jp(sys, efp, v, sites_i, sites_ip1, dl) Compute the hole current between sites site_i and

sites_ip1.

5.6.1 sesame.observables.get_n

sesame.observables.get_n(sys, efn, v, sites)
Compute the electron density on the given sites.

Parameters sys: Builder

The discretized system.

efn: numpy array of floats

Values of the electron quasi-Fermi level.

v: numpy array of floats

Values of the electrostatic potential.

sites: list of integers

The sites where the electron density should be computed.

Returns n: numpy array
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5.6.2 sesame.observables.get_p

sesame.observables.get_p(sys, efp, v, sites)
Compute the hole density on the given sites.

Parameters sys: Builder

The discretized system.

efp: numpy array of floats

Values of the hole quasi-Fermi level.

v: numpy array of floats

Values of the electrostatic potential.

sites: list of integers

The sites where the hole density should be computed.

Returns p: numpy array

5.6.3 sesame.observables.get_jn

sesame.observables.get_jn(sys, efn, v, sites_i, sites_ip1, dl)
Compute the electron current between sites site_i and sites_ip1.

Parameters sys: Builder

The discretized system.

efn: numpy array of floats

Values of the electron quasi-Fermi level for the entire system (as given by the drift
diffusion Poisson solver).

v: numpy array of floats

Values of the electrostatic potential for the entire system (as given by the drift diffusion
Poisson solver).

sites_i: list of integers

Indices of the sites the current is coming from.

sites_ip1: list of integers

Indices of the sites the current is going to.

dl: numpy arrays of floats

Lattice distances between sites sites_i and sites sites_ip1.

Returns jn: numpy array of floats

5.6.4 sesame.observables.get_jp

sesame.observables.get_jp(sys, efp, v, sites_i, sites_ip1, dl)
Compute the hole current between sites site_i and sites_ip1.

Parameters sys: Builder

The discretized system.
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efp: numpy array of floats

Values of the hole quasi-Fermi level for the entire system (as given by the drift diffusion
Poisson solver).

v: numpy array of floats

Values of the electrostatic potential for the entire system (as given by the drift diffusion
Poisson solver).

sites_i: list of integers

Indices of the sites the current is coming from.

sites_ip1: list of integers

Indices of the sites the current is going to.

dl: numpy arrays of floats

Lattice distances between sites sites_i and sites sites_ip1.

Returns jp: numpy array of floats

5.7 sesame.utils – Miscellaneous routines

save_sim(sys, result, filename[, fmt]) Utility function that saves a system together with simula-
tion results.

load_sim(filename) Utility function that loads a system together with simula-
tion results.

5.7.1 sesame.utils.save_sim

sesame.utils.save_sim(sys, result, filename, fmt=’npy’)
Utility function that saves a system together with simulation results.

Parameters sys: Builder

The discretized system.

result: dictionary

Dictionary of solution, containing ‘v’, ‘efn’, ‘efp’

filename: string

Name of outputfile

fmt: string

Format of output file, set to ‘mat’ for matlab files. With the default numpy format, the
Builder object is saved directly.

5.7.2 sesame.utils.load_sim

sesame.utils.load_sim(filename)
Utility function that loads a system together with simulation results.

Parameters filename: string
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Name of inputfile

Returns system: Builder object

A discritized system.

result: dictionary

Dictionary containing 1D arrays of electron and hole quasi-Fermi levels and the elec-
trostatic potential across the system. Keys are ‘efn’, ‘efp’, and/or ‘v’.

• genindex

Disclaimer

The full description of the procedures used in this documentation requires the identification of certain commercial
products. The inclusion of such information should in no way be construed as indicating that such products are
endorsed by NIST or are recommended by NIST or that they are necessarily the best software for the purposes
described.
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