Sesame Documentation

Benoit H. Gaury, Paul M. Haney

Sep 30, 2019

CONTENTS

1 Preliminaries 3
1.1 AboutSesame e e e 3
1.2 Installation instructions (for experienced USers) oo i 3
1.3 Installation instructions (for beginners) oo 5
1.4 Authorsof Sesame L e e e 6
1.5 Citing Sesame v v vt e e e e e e e e e e e e e e e e e 6
1.6 Sesame license L. e e e 7
2 Analytical model and numerical implementation 9
2.1 Physicalmodel L e e e e e 9
2.2 Numerical treatment of the drift diffusion Poisson equations 13
3 Tutorial: learning Sesame through examples 17
3.1 Tutorial 1: I-V curve of a one-dimensional pn homojunction 17
3.2 Tutorial 2: I-V curve of a one-dimensional pn heterojunction 21
3.3 Tutorial 3: Two-dimensional pn junction with a grainboundary 25
3.4 Tutorial 4: Saving, loading, and analyzing simulationdata 29
3.5 Tutorial 5: Simulating an EBIC/CL experiment oo v v i v v i v, 35
3.6 Tutorial 6: Batch submission for computing clusters 0. 39
4 Using Sesame with the GUI 45
4.1 SystemTab L e e e e e e e e e e e e 45
42 Simulation Tab e e e 46
43 AnalysisTab e e e e e 47
44 Runningscriptsinthe GUL. o 48
5 Core modules 49
5.1 sesame-—Toplevel package e 49
5.2 sesame.builder — High-level construction of systems 50
53 sesame.plotter —Plottingof systems oL 53
54 sesame.solvers — Equilibrium and nonequilibrium solvers 54
5.5 sesame.analyzer — Computing densities, recombination and currents 57
5.6 sesame.observables — Low-level routines for computing densities and currents 61
5.7 sesame.utils —Miscellaneousroutinesl e e e 63

Python Module Index 65

Sesame Documentation

About Sesame

Sesame is a Python3 package for solving the drift diffusion Poisson equations for multi-dimensional systems using
finite differences.

Support for this project comes from the U.S. National Institute of Standards and Technology and the University of
Maryland.

Summary

Version 2.0

Date Sep 30, 2019

Authors Benoit H. Gaury, Paul M. Haney

CONTENTS 1

Sesame Documentation

2 CONTENTS

CHAPTER
ONE

PRELIMINARIES

1.1 About Sesame

Sesame is a Python3 package for solving the drift diffusion Poisson equations for multi-dimensional systems using
finite differences.

The software computes the steady state of a semiconductor between two contacts, and subject to voltage bias and/or
illumination. It was developed to study polycrystalline solar cells containing charged interfaces (grain boundaries,
sample surface). Sesame handles single charged states and continuum of defect states alike.

1.2 Installation instructions (for experienced users)

This section documents how to build Sesame.

1.2.1 Prerequisites

Building Sesame requires

* Python 3.4 or above,

* SciPy 0.9 or newer,

* LAPACK and BLAS, (other options are the free OpenBLAS or the nonfree MKL can be used.)
The following software is highly recommended though not strictly required:

* Matplotlib 1.1 or newer, for Sesame’s plotting routines. Matplotlib is required when using the graphical
interface of Sesame.

e MUMPS, a sparse linear algebra library that will in many cases speed up Sesame several times and reduce
the memory footprint. (Sesame uses only the sequential, single core version of MUMPS. The advantages
due to MUMPS as used by Sesame are thus independent of the number of CPU cores of the machine on
which Sesame runs.)

* An environment which allows to compile Python extensions written in C, C++ and Fortran.
The graphical user interface requires PyQt5.

For users with no python installation, a convenient standalone installation which automatically includes all of the
requisiste libraries and packages is Anaconda .

Sesame may be downloaded from https://github.com/usnistgov

http://python.org
http://scipy.org
http://netlib.org/lapack/
http://netlib.org/blas/
http://xianyi.github.com/OpenBLAS/
http://software.intel.com/en-us/intel-mkl
http://matplotlib.sourceforge.net/
http://graal.ens-lyon.fr/MUMPS/
https://riverbankcomputing.com/software/pyqt/intro
https://www.anaconda.com/
https://github.com/usnistgov

Sesame Documentation

1.2.2 Generic instructions

Standard build and install

Sesame can be built and installed following the usual Python conventions by running the following commands in the
root directory of the Sesame distribution:

python setup.py build
python setup.py install

Depending on your system, you might have to run the second command with administrator privileges. The installation
step can be done locally either by using the ——user prefix:

python setup.py install —-user

or by specifying the location where to install the package files with ——prefix=/path/of/directory.

The tutorial examples can be found in the directory examples inside the root directory of the Sesame source distri-
bution.

Build configuration

The setup script of Sesame parses the file setup . cfg in the root directory of the distribution to know if the graphical
user interface should be installed, and whether or not to link Sesame against the MUMPS library.

The graphical user interface will be installed if use = True in the GUTI section. The default is to install it (use use
= False to avoid install). The mumps section provides the paths to relevant directories where MUMPS is installed.
By default this section is commented out and MUMPS is not used.

Building the documentation

To build the documentation, the Sphinx documentation generator is required (version 1.4 or newer) with numpydoc
extension (version 0.5 or newer), and Latex.

HTML documentation is built by entering the doc sub-directory of the Sesame package and executing make html.
Open the file index.html in the directory build/html with a web browser to access the documentation. PDF
documentation is generated by executing make latex followed by make latexpdf. The pdf file is generated in
build/latex.

Because of some quirks of how Sphinx works, it might be necessary to execute make clean between building
HTML and PDF documentation. If this is not done, Sphinx may mistakenly use PNG files for PDF output or other
problems may appear.

As an alternative if make is not available, the HTML documentation can be built using the command from the root
directory:

python setup.py build_sphinx

The documentation is produced in doc/build/html. To build the PDF file:

python setup.py build_sphinx -b latex
cd doc/build/latex
make all-pdf

The resulting PDF is produced in doc/build/latex.

4 Chapter 1. Preliminaries

http://docs.python.org/install/index.html
http://sphinx.pocoo.org/

Sesame Documentation

1.2.3 Hints for specific platforms
Unix-like systems (GNU/Linux)

Sesame should run on all recent Unix-like systems.
1. Install the required packages.

2. Inside the Sesame source distribution’s root directory run

python setup.py build
sudo python setup.py install

Run python setup.py —-—help install for installation options.

Microsoft Windows

The generic installation instructions given above also apply on Windows. However, since the only recommended way
to compile Python extensions on Windows is using Visual C++, we are not able to provide guidelines as to how to
build with the MUMPS library.

1.3 Installation instructions (for beginners)

This section documents how to build Sesame for those with zero Python experience.

1.3.1 Installing Python
For users with no Python installation, there are a number of convenient standalone installations which automatically
includes all of the requisiste libraries and packages, including:

* Anaconda

* Canopy

* Pythonxy

These can be installed on any operating system (Windows, GNU/Linux, MacOS). This page walks through the process
using Anaconda in a Windows environment.

First download and install Anaconda, using the default settings. After installation, you’ll find a new folder with various
programs in the windows Start button folder: Start — A1l Programs — Anaconda.

1.3.2 Downloading and Installing Sesame (on Windows)

To obtain Sesame, first open the Anaconda Prompt: Start — All Programs — Anaconda — Anaconda
Prompt. A command line should appear (a primer on using the Windows command line can be found here). Sesame
is downloaded using git. Make sure git is installed by first typing:

’conda install -c¢ anaconda git

Once you have git, obtain Sesame with the command:

’git clone http://github.com/usnistgov/sesame

1.3. Installation instructions (for beginners) 5

https://www.anaconda.com/
https://www.enthought.com/product/canopy/
https://python-xy.github.io/
https://www.computerhope.com/issues/chusedos.htm

Sesame Documentation

The git repository of Sesame is cloned in the directory where the command was issued. Enter the sesame repository,
build and install Sesame with the commands:

cd sesame
python setup.py build
python setup.py install —--user

The essential procedure for installing for other operating systems is the same.

1.3.3 Running Sesame

Upon installation, you can try some of the examples. Navigate the examples directory:

’cd sesame\examples

Running a sesame python script is done with the command:

’python ldpn.py

The GUI is launched with the command from the sesame install directory:

’python app.py

Note: some distributions of Anaconda are packaged with older versions of PyQt. If you find that graphics do not
render, or that the GUI does not run, it may be because PyQt is not up to date (Sesame uses PyQt5). You can try this
command to update PyQt if you have difficulty using graphics:

conda install -c anaconda pygt

1.4 Authors of Sesame

The authors of Sesame are
* Benoit Gaury (NIST / University of Maryland)
* Paul M. Haney (NIST)

Benoit Gaury acknowledges support under the Cooperative Research Agreement between the University of Mary-
land and the National Institute of Standards and Technology Center for Nanoscale Science and Technology, Award
70NANB14H209, through the University of Maryland.

1.5 Citing Sesame

We provide Sesame as a free software to the research community. If you have used Sesame for a publication, we ask
that you mention the software explicitly by name in the main text, and cite the introduction paper:

B. Gaury, Y. Sun, P. Bermel, P. M. Haney, Sesame: A 2-dimensional solar cell modeling tool, Sol. Energ.
Mat. Sol. Cells 198, 53-62 (2019)

6 Chapter 1. Preliminaries

https://doi.org/10.1016/j.solmat.2019.03.037
https://doi.org/10.1016/j.solmat.2019.03.037

Sesame Documentation

1.6 Sesame license

Copyright 2017 University of Maryland.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

1.6. Sesame license 7

Sesame Documentation

8 Chapter 1. Preliminaries

CHAPTER
TWO

ANALYTICAL MODEL AND NUMERICAL IMPLEMENTATION

2.1 Physical model

Here we present the geometry with the system of coordinates that Sesame assumes, and the set of equations that it
solves.

2.1.1 Geometry and governing equations

Our model system is shown below. It is a semiconductor device connected to two contacts at v = 0 and « = L. The
doped regions are drawn for the example only, any doping profile can be considered.

A
z

>

X

The steady state of this system under nonequilibrium conditions is described by the drift-diffusion-Poisson equations:

V-J,=q(G-R) Q.1
with the currents

Jn = —quanVé + ¢D,Vn
Jp = —quppVé — ¢DpVp

where n, p are the electron and hole number densities, and ¢ is the electrostatic potential. J,,(,) is the charge current
density of electrons (holes). Here ¢ is the absolute value of the electron charge. p is the local charge, e is the dielectric
constant of the material, and ¢ is the permittivity of free space. p, ; is the electron/hole mobility, and is related
the diffusion D,, , by D,, , = kTt p/q, wWhere kp is Boltzmann’s constant and T is the temperature. G is the

2.2)

Sesame Documentation

generation rate density, R is the recombination and we denote the net generation rate U = G — R. The natural
length scale is the Debye length, given by A = ¢okpT/(q>N), where N is the concentration relevant to the problem.
Combining Eqgs. (2.1) and Eqgs. (2.2), and scaling by the Debye length leads to the following system

v <ﬁ§¢3+ ﬁﬁ) =U

% (—p%qﬁ—ép =-U
V. (e¥9) = (1 —p) + (N4 — Np)

where V is the dimensionless spatial first derivative operator. N A,(p) are the dimensionless ionized acceptor (donor)
impurity concentration. The dimensionless variables are given below:

T q¢
= kgT
n=n/N
p=p/N
. UN?
U=-"
ND
_ N
F— tQN
€0
- A
Jn,p - Jn,quiN

with D = kpTu/q a diffusion coefficient corresponding to our choice of scaling for the mobility = 1 cm?/(V - s).
See the Scaling () class for the implementation of these scalings.
We suppose that the bulk recombination is through three mechanisms: Shockley-Read-Hall, radiative and Auger. The
Shockley-Read-Hall recombination takes the form

np — n?
Tp(n+n1) + 7u(p +p1)

Rsgru =

where n? = NC]\T\/G’EH/’CBT7 ny = meET/kBTml = n;e Er/kBT \where Er is the energy level of the trap state
measured from the intrinsic energy level, N (Ny) is the conduction (valence) band effective density of states. The
equilibrium Fermi energy at which n = p = n, is the intrinsic energy level E;. 7, () is the bulk lifetime for electrons
(holes). It is given by

1
Tnp = 77—
P NTU;CIhpO'nvp

(2.3)

where N7 is the three-dimensional trap density, v;}}p is the thermal velocity of carriers: v;}jp = 3kpT/my p, and o p
is the capture cross-section for (electrons, holes).

The radiative recombination has the form
Riaq = B(np — n?)
where B is the radiative recombination coefficient of the material. The Auger mechanism has the form
Ra = (Chn + Cpp) (np — n?)

where C), (C),) is the electron (hole) Auger coefficient.

10 Chapter 2. Analytical model and numerical implementation

Sesame Documentation

2.1.2 Extended line and plane defects

Additional charged defects can be added to the system to simulate, for example, grain boundaries or sample surfaces
in a semiconductor. These extended planar defects occupy a reduced dimensionality space: a point in a 1D model, a
line in a 2D model). The extended defect energy level spectrum can be discrete or continuous. For a discrete spectrum,
we label a defect with the subscript d. The occupancy of the defect level f; is given by'

Spn 4 Sppa

Ja = G na) + 5,0+ p2)

where n (p) is the electron (hole) density at the defect location, S, S, are recombination velocity parameters for
electrons and holes respectively. ng and py are

Ng = nieEd/kBT

Ppa = nge” Fi/keT
where F, is calculated from the intrinsic Fermi level E;. The defect recombination is of Shockley-Read-Hall form:
SnSp(np —n7)

R, = .
d Sn(n+ng) + Sp(p + pa)

The charge density g4 given by a single defect depends on the defect type (acceptor or donor)

_ (1= f4) donor
qd = qpa X { (—fa) acceptor

where pg is the defect density of state at energy E4. Sp, S, and pq are related to the electron and hole capture cross
sections o, 0, of the defect level by S, , = an,pv;}jppd, where v;}jp is the electron (hole) thermal velocity. Multiple
defects are described by summing over defect label d, or performing an integral over a continuous defect spectrum.

2.1.3 Carrier densities and quasi-Fermi levels

Despite their apparent simplicity, Egs. (2.1) are numerically challenging to solve. We next discuss a slightly different
form of these same equations which is convenient to use for numerical solutions. We introduce the concept of quasi-
Fermi level for electrons and holes (denoted by Ef,, and Ef, respectively). The carrier density is related to these
quantities as

n(z,y,z) = NCe(EF‘" (%,y,2)+q¢(2,y,2)+x(2,y,2)) / kT

(2.4)

p(z,y,z) = Nve(—EF,,(z,y72)—q¢(m7y72)—Eg—x(mvy,Z))/kBT

where the term Y is the electron affinity, ¢ is the electrostatic potential, and Ej is the bandgap. Note that all of
these quantities may vary with position. Quasi-Fermi levels are convenient in part because they guarantee that carrier
densities are always positive. While carrier densities vary by many orders of magnitude, quasi-Fermi levels require
much less variation to describe the system.

The electron and hole current can be shown to be proportional to the spatial gradient of the quasi-Fermi level
Jn = quanV Ep,
Jp = quppVEF,

These relations for the currents will be used in the discretization of Eq. (2.1).

1

23. Shockley, W. T. Read, Jr., Phys. Rev., 87, 835 (1952).

2.1. Physical model 11

Sesame Documentation

2.1.4 Boundary conditions at the contacts

Equilibrium boundary conditions

For a given system, Sesame first solves the equilibrium problem. In equilibrium, the quasi-Fermi level of electrons
and holes are equal and spatially constant. We choose an energy reference such that in equilibrium, Fr = Efp, =
Er, = 0. The equilibrium problem is therefore reduced to a single variable ¢. Sesame employs both Dirichlet and
Neumann equilibrium boundary conditions for ¢, which we discuss next.

Dirichlet boundary conditions

Sesame uses Dirichlet boundary conditions as the default. This is the appropriate choice when the equilibrium charge
density at the contacts is known a priori, and applies for Ohmic and ideal Schottky contacts. For Ohmic boundary
conditions, the carrier density is assumed to be equal and opposite to the ionized dopant density at the contact. For an
n-type contact with N ionized donors at the z = 0 contact, Eq. (2.4) yields the expression for ¢¢¢(x = 0):

¢“1(0,y,2) = kgT'In (Np/Nc) — x(0,y, 2)
Similar reasoning yields expressions for ¢®? for p-type doping and at the x = L contact. For Schottky contacts, we
assume that the Fermi level at the contact is equal to the Fermi level of the metal. This implies that the equilibrium

electron density is N¢ exp[— (P — x)/kpT) where @ is the work function of the metal contact. Eq. (2.4) then
yields the expression for ¢°? (shown here for the z = 0 contact):

¢eq (07 Y, Z) = _(I)Mlz:O contact

An identical expression applies for the x = L contact.

Neumann boundary conditions

Sesame also has an option for Neumann boundary conditions, where it is assumed that the electrostatic field at the
contact vanishes:

a(beq B a¢eq
833 (O,y,Z)— 637

The equilibrium potential ¢°¢ determines the equilibrium densities 7.4, peq according to Egs. (2.4) with Er, =
Er, =0.

Out of equilibrium boundary conditions

Out of thermal equilibrium, we impose Dirichlet boundary conditions on the electrostatic potential. For example, in
the presence of an applied bias V' at x = L, the boundary conditions are

¢(0,y,2) = ¢*(0,y, 2)
o(L,y,z) = ¢ (L,y,2) +qV
For the drift-diffusion equations, the boundary conditions for carriers at charge-collecting contacts are typically pa-

rameterized with the surface recombination velocities for electrons and holes at the contacts, denoted respectively by
Se, and S,

12 Chapter 2. Analytical model and numerical implementation

Sesame Documentation

(0,9, 2) - i = qSe, (n(0,y, 2) — 1eq(0,y, 2))
{(0 Y, 2) - Gy = —qSe, (p(0,9, 2) — Peq (0,9, 2)) 26
In(L,y,2) -ty = —qSe, (n(L,y, 2) — neq(L, Y, 2))

Tp(L,y, 2) - e = qSe, (p(L,y, 2) — peq(L,y, 2))

where n(p)eq is the thermal equilibrium electron (hole) density.
References

2.2 Numerical treatment of the drift diffusion Poisson equations

In this section we present the procedure followed to discretize the drift diffusion Poisson set of equations, the algorithm
used to solve it and its implementation.

2.2.1 Scharfetter-Gummel scheme

To solve the drift diffusion Poisson equations numerically, we utilize a simple spatial discretization. Recall that
densities are defined on sites, and fluxes (such as current flux, electric field flux) are defined on links. It’s important to
note that sites and links in the discretized grid are fundamentally different objects, as shown in the figure below.

site Ax
L link o

Xi X Xi+1

Fig. 1: Sites versus links. We take the indexing convention that Az’ represents the space between sites i and i + 1.

We consider a one-dimensional system to illustrate the model discretization. First, we want to rewrite the currents in
semi-discretized form for link ¢ (link ¢ connects discretized points ¢ and 7 + 1):

8EFn,i

ox
OEp . 2.7

Jp = auppi ax”’

Jy = qunn;

Note that link indices are denoted with a superscript, while site indices are denoted with a subscript.

Next, a key step to ensure numerical stability is to integrate the above in order to get a completely discretized version
of the current J*. This discretization is known as the Scharfetter-Gummel scheme'. First, rewrite the hole density in
terms of the quasi-Fermi level.

p(z) = o(—x(@)=Eg(2)~Er, (2)—q¢(2)+ksT In(Nv)) /kpT

8. (k) Gummel, IEEE Transactions on Electron Devices, 11, 455 (1964).

2.2. Numerical treatment of the drift diffusion Poisson equations 13

Sesame Documentation

It’s convenient to define v, = x + E, + E; — kgT In(Ny). We plug this form of p into Eq. (2.7):
OER

P

ox ’

J}‘) = qupe_wp(x)/kBT

next multiply both sides of the hole current by e¥»(®)/#5T dz and integrate over link i

/ Jietr@/ksT g = qp,, / e Er/keTqpy (2.8)

Now we assume that 1, varies linearly between grid points,

_ 11[}Pi+1 — wm

d)i” (I) Azt

(,I - l’7) + 7*/}17;'7

which enables the integral on the left hand side above to be performed:

T;) k v
/ +1 dxe‘/’p(z)/kBT _ kBTAxi ewm.H/ BT _ e¥p; /kBT 29)
Ti ’L/)Pz‘+1 - %i
Plugging Eq. (2.9) into Eq. (2.8) and solving for JZ, yields
i qu’; wpi - ,(/)pH»l —Er 1/k T _E ;
o = Azt gVoiia /6T _ gy, ke HP € Fritt BB —em] (2.10)

Where u; = (fp; + fpi+,)/2. A similar procedure leads to the following expression for J :

Ji = 3 Yris = Yns eErnit1/kpT _ oPro.i/ ’“BT} @.11)
n Axt e*w"wl [kBT _ e_d’ni/kBT ‘

where ¥, = q¢ + x + kT In(N¢).

2.2.2 Newton-Raphson algorithm

We want to write the continuity and Poisson equations in the form f(xz) = 0, and solve these coupled nonlinear
equations by using root-finding algorithms. The appropriate form is given by:

i 2 i qie
L= st o=l)+ G- R

i 2 i o1\ o~y ,

fi= s U= ST — Gt R,

iz 2 € + €1 Pi — i1\ [€+1 T & Git1 — i N
v Axt 4+ Agi—l 2 Agi—1 2 Azl pi

These equations are the discretized drift-diffusion-Poisson equations to be solved for the variables {E Fp.is .05 qﬁi},
subject to the boundary conditions given in introduction.

We use a Newton-Raphson method to solve the above set of equations. The idea behind the method is clearest in a
simple one-dimensional case as illustrated on the figure below. Given a general nonlinear function f(z), we want to
find its root Z : f(Z) = 0. Given an initial guess x1, one can estimate the error dx in this guess by assuming that the
function varies linearly all the way to its root

14 Chapter 2. Analytical model and numerical implementation

Sesame Documentation

Fig. 2: Schematic for the Newton-Raphson method for root finding.

Sz = (jj;(xl))l f (1) 2.12)

An updated guess is provided by zo = 27 — 0.

In multiple dimensions the last term in Eq. (2.12) is replaced by the inverse of the Jacobian, which is the multi-
dimensional generalization of the derivative. In this case, Eq. (2.12) is a matrix equation of the form:

ox = A7'F (x)
where
OF;
A = v
I (9£Ej

Here is a small subset of the A matrix for our problem. We have only explicitly shown the row which corresponds to
£, (here we drop the super/sub script convention set up to distinguish between sites and links, for the sake of writing

things more compactly):

i—1 N

0B, "
71— ;—

6EFP £ 1

5¢i—1 fi—l
Ofn Ofp Ofn Ofp Ofp Ofp Ofp Ofp Ofp SE Y
6E7L71 aEi—l 6¢i71 8E7’ 6Ez (9(/51 8Ei+1 aEi+1 8¢i+1 e Fﬂ fn
Fpn, Fp Fn Fp Fn Fp 5E’L — fT
F, - D
50" £

B || A

i-+1 i+

SEp Iy X

5t fir

(2.13)

Note that for this problem, finding derivatives numerically leads to major convergence problems. We derived the
derivatives and implemented them in the code for this reason.

2.2. Numerical treatment of the drift diffusion Poisson equations 15

Sesame Documentation

2.2.3 Multi-dimensional implementation

We do the standard folding of the multi-dimensional index label (i, j, k) into the single index label s of the sites of the
system:

s=1i+ (j xng) + (k X ngy X ny)

where n; (n,) is the number of sites in the z-direction (y-direction).

Using sparse matrix techniques is key fast to fast computation. We provide below the number of non-zero elements in
the Jacobian for periodic boundary conditions in the y- and z-directions.

Dimension | Number of stored values in the Jacobian
1 19 (ns-2) + 20

2 ny [29 (n - 2) + 28]

3 ny 0, [39 (ny - 2) + 36]

By default the Newton correction is computed by a direct resolution of the system in Eq. (2.13). This is done using
the default Scipy solver. We recommend using the MUMPS library instead, which yields faster performace. Note that
for large systems, and especially for 3D problems, the memory and the computing time required by the direct methods
aforementioned become so large that they are impractical. It is possible to use an iterative method to solve Eq. (2.13)
in these cases.

References

16 Chapter 2. Analytical model and numerical implementation

CHAPTER
THREE

TUTORIAL: LEARNING SESAME THROUGH EXAMPLES

3.1 Tutorial 1: I-V curve of a one-dimensional pn homojunction

In this tutorial we show how to build a simple one-dimensional pn™ homojunction and compute its I-V curve. In this
and other tutorials we assume a rudimentary knowledge of python (e.g. basic syntax, function definition, etc.) and
numpy (e.g. array declarations).

See also:

The example treated here is in the file 1d_homojunction.py located in the examples\tutoriall direc-
tory of the distribution. The same simulation’s GUI input file is 1d_homojunction.ini, also located in the
examples\tutoriall directory.

The 1-dimensional pn™™ homojunction band diagram under short-circuit conditions is shown below.

3.1.1 A word for Matlab users

Sesame uses the Python3 language and the scientific libraries Numpy and Scipy. A documentation on the similarities
and differences between Matlab and Numpy/Scipy can be found here.

3.1.2 Constructing a mesh and building the system

We start by importing the sesame and numpy packages:

import sesame
import numpy as np

Choosing a good mesh is a crucial step in performing the simulation. An overly coarse mesh will give inaccurate
results, while an excessively fine mesh will make the simulation slow. The best mesh for most systems is nonuniform:
being highly refined in regions where the solution changes rapidly, and coarse in regions where the solution varies
slowly. After the tutorials the user should have a sense of how to construct an appropriate mesh. In this example, we
create a mesh which contains more sites in the pn junction depletion region:

L = 3e-4 # length of the system in the x-direction [cm]
X = np.concatenate ((np.linspace(0,1.2e-4, 100, endpoint=False), # depletion region
np.linspace(l.2e-4, L, 50))) # neutral region

17

https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html

Sesame Documentation

Note: Sesame assumes all quantities of length are input in units of cm. Other assumed input units are: time in s,
energy in eV.

To make a system we use Sesame’s Builder () class. The input to Builder () are grids along the different
dimensions of the simulation. For a 1-dimensional simulation, we provide only the x grid as input. Builder ()
returns an object sys which contains all the information needed to describe the simulation. Additional simulation
settings will be set by calling various methods of sys:

sys = sesame.Builder (x)

3.1.3 Adding material properties

Next we add a material to our system. A material is defined using a python dictionary object, which is added to
the system using the add_material () method of sys:

material = {'Nc':8el7, 'Nv':1.8el9, 'Eg':1.5, 'affinity':3.9, 'epsilon':9.4,
'mu_e':100, 'mu_h':100, 'Et':0, 'tau_e':10e-9, 'tau_h':10e-9, 'Et':0}

sys.add_material (material)

Here Nc (Nv) is the effective density of states of the conduction (valence) band (cm™3), Eg is the material band gap
(eV), epsilon is the material’s dielectric constant, mu_e (mu_h) is the electron (hole) mobility (cm?/(V -s)), Et
is the energy level of the bulk recombination defect, as measured from the intrinsic energy level, and tau_e (tau_h)
is the electron (hole) bulk lifetime (s). For the full list of material parameters available, see the documentation of the
method add_material ().

3.1.4 Adding dopants

Let’s add dopants to make a pn junction. This requires specifying the regions containing each type of dopant, which
is done by using a python function. Here’s an example: let’s suppose the n-type region is between x=0 and x=50 nm.
We write a function which returns a value of True when the input pos belongs to this region, and False otherwise:

junction = 50e-7 # extent of the junction from the left contact [cm]

def n_region (pos):
X = pos
return x < junction

We add donors by calling the sys method add_donor (), whose input arguments are the donor concentration (in
units cm~3), and the function defining the doped region (n_region for this example)

Add the donors
nD = lel7 # [cm"-3]
sys.add_donor (nD, n_region)

Similarly, we add acceptors by defining a function p_region to specify the p-type region, and add it to the system
with the add_acceptor () method:

def p_region(pos):
X = POsS
return x >= junction

(continues on next page)

18 Chapter 3. Tutorial: learning Sesame through examples

Sesame Documentation

(continued from previous page)

Add the acceptors
nA = lel5 # [cm"-3]
sys.add_acceptor (nA, p_region)

Note: The 1ambda keyword provides a more efficient way to define simple functions with python. For example, the
p_region function can be defined in the single line: p_region = lambda x: x<=junction. See python
documentation for more details on defining “anonymous functions” using lambda.

3.1.5 Specifying contact types

Next we need to specify the contact boundary conditions. For this example, we’ll use selective Ohmic contacts. We
first specify contact type with the sys method contact_type (), which takes two input arguments: the contact
type at z = 0 (“left” contact), and the contact type at x = L (“right” contact). Note that the order of arguments
matters: the right contact type is the first agument, the left contact type is the second argument. Then we’ll specify
the recombination velocities for electrons and holes at left and right contacts with the sys method contact_S ().
Again, the order of the input to contact_S () should be as shown below:

Define Ohmic contacts
sys.contact_type ('Ohmic', 'Ohmic')

Define the surface recombination velocities for electrons and holes [cm/s]
Sn_left, Sp_left, Sn_right, Sp_right = 1le7, 0, 0, le7 # cm/s
sys.contact_S(Sn_left, Sp_left, Sn_right, Sp_right)

3.1.6 Computing an I-V curve

To compute an I-V curve under illumination, we specify the generation profile with a function. For this example, we
use an exponentially varying generation profile defined in the function gfcn:

phi = 1lel? # photon flux [1/(cm"2 s)]
alpha = 2.3e4 # absorption coefficient [1/cm]

Define a function for the generation rate
def gfcn(x):
return phi * alpha * np.exp(-alpha * x)

Adding the illumination profile to the simulation is accomplished with the sy s method generation (), which takes
the function we’ve defined as input:

sys.generation (gfcn)

Finally we compute the I-V curve under illumination. We do this with the sesame method IVcurve (), whose
the input arguments are the system object sys, an array of applied voltage values, the equilibrium solution we just
computed, and a string which is the seedname for the output files.:

voltages = np.linspace (0, 0.95, 40)
j = sesame.IVcurve (sys, voltages, 'ldhomo_ V")
j = j % sys.scaling.current

3.1. Tutorial 1: I-V curve of a one-dimensional pn homojunction 19

Sesame Documentation

Note: The IVcurve method returns the dimensionless current. We convert it to dimension-ful form by multiplying
by the constant sys.scaling.current.

The output data files will have names like 1dhomo_V_0 . gz ip where the number 0 labels the the voltages array
index. These data files contain all the information about the simulation settings and solution. fuforial 4 discusses how
to access and plot this detailed data.

3.1.7 Saving and plotting the I-V curve

In this section we show different ways to save the computed current and voltage values.

First we store the data we wish to save in a dictionary object:

result = {'v':voltages, 'J':j}

Then we use the numpy function save to save the data as a numpy array. The first argument is the filename for the
saved data (note the file will receive a .npy extension), the second argument is the dictionary to save:

’np.save(’jvaalues’, result)

The data dictionary can subsequently be loaded with the command:

’result = np.load("jv_values.npy") .

We can also save the data in a simple ascii file with the command:

’np.savetxt('jvaalues.txt’, (v, 3))

An alternative is to save the data in a Matlab-readable .mat file. This is accomplished with the function savemat in
the scipy library:

import scipy.io.savemat as savemat
savemat ('jv_values.mat', result)

Note: In the tutorial script, we’ve added commands to check if the scipy library is installed. We omit these commands
in this tutorial for the sake of clarity.

The library Matplotlib is commonly used for plotting in python. The code for generating a simple current-voltage plot
is shown below:

import matplotlib.pyplot as plt

plt.plot (voltages, j, '-o')

plt.xlabel ('Voltage [V]")

plt.ylabel ('Current [A/cm”2]")

plt.grid() # add grid

plt.show() # show the plot on the screen

We discuss loading and plotting results in Tutorial 4. As a preview, we show the code used to generate the band
diagram we showed at the beginning of this tutorial:

20 Chapter 3. Tutorial: learning Sesame through examples

http://matplotlib.sourceforge.net/

Sesame Documentation

sys, result = sesame.load_sim('ldhomo V_0.gzip"') # load data file

az = sesame.Analyzer (sys,result) # get Sesame analyzer object

pl = (0,0)

p2 = (3e-4,0)

az.band_diagram((pl,p2)) # plot band diagram along line,

—~from pl to p2

3.2 Tutorial 2: |-V curve of a one-dimensional pn heterojunction

In this tutorial we consider a more complex system in 1-dimension: a heterojunction with a Schottky back contact.
The n-type material is CdS and the p-type material is CdTe. The structure of the script is the same as in the last tutorial,
however we must provide more detail to describe a more complex system.

See also:

The example treated here is in the file 1d_heterojunction.py located in the examples\tutorial?2 direc-
tory of the distribution. The same simulation’s GUI input file is 1d_heterojunction.ini, also located in the
examples\tutorial?2 directory.

The band diagram for this system under short-circuit conditions is shown below .

3.2.1 Constructing a grid and building the system

We first define the thicknesses of the n-type and p-type regions:

tl 25x1le-7 # thickness of CdS
t2 = 4dxle-4 # thickness of CdTe

The mesh for a heterojunction should be very fine in the immediate vicinity of the materials interface. We define a
distance dd, which determines the thickness of the highly-refined mesh near an interface. We form the overall system
mesh by concatenating meshes for different parts of the system as follows:

dd = 3e-6 # 2xdd is the distance over which mesh is highly refined

x = np.concatenate ((np.linspace (0, dd, 10, endpoint=False), # L
—contact interface

np.linspace(dd, tl - dd, 50, endpoint=False), #_,
—material 1

np.linspace(tl - dd, tl1 + dd, 10, endpoint=False), #.,
—interface 1

np.linspace(tl + dd, (tl1+t2) - dd, 100, endpoint=False), # material,,
2

np.linspace ((tl+t2) - dd, (tl+t2), 10))) # R,

—contact interface

As before we make a system with Builder ():

sys = sesame.Builder (x)

3.2.2 Adding material properties

We make functions to define the n-type and p-type regions as in the last tutorial:

3.2. Tutorial 2: I-V curve of a one-dimensional pn heterojunction 21

Sesame Documentation

def CdS_region (pos):
X = POosS
return x<=tl

def CdTe_region (pos):
X = pPos
return x>tl

Now we add materials to our system. We define two dictionaries to describe the two material types:

CdS = {'Nc': 2.2el18, 'Nv':1.8el9, 'Eg':2.4, 'epsilon':10, 'Et': 0,
'mu_e':100, 'mu_h':25, 'tau_e':1le-8, 'tau_h':1le-13, 'affinity': 4.}

CdTe = {'Nc': 8el7, 'Nv': 1.8el9, 'Eg':1.5, 'epsilon':9.4, 'Et': 0,
'mu_e':320, 'mu_h':40, 'tau_e':5e-9, 'tau_h':5e-9, 'affinity': 3.9}

As in the last tutorial, we add materials using the sy s method add_material (). This time we specify the material
location using the functions we defined above as additional input arguments to add_material ():

sys.add_material (CdS, CdS_region) # adding CdS
sys.add_material (CdTe, CdTe_region) # adding CdTe

3.2.3 Adding dopants

Adding the dopants works as in the last tutorial:

nD = lel7 # donor density [cm"-3]
sys.add_donor (nD, CdS_region)

nA = lel5 # acceptor density [cm”-3]
sys.add_acceptor (nA, CdTe_region)

3.2.4 Specifying contact types

Next, we’ll add a left Ohmic contact and a right Schottky contact. For Schottky contacts, we must to specify the
work function of the metal. As in the previous tutorial, we add contacts to the system using the sys method
contact_type (); however this time we provide the additional arguments of the left and right contact work func-
tions to contact_type ():

Lcontact_type, Rcontact_type = 'Ohmic', 'Schottky'
Lcontact_workFcn, Rcontact_workFcn = 0, 5.0 # eV

sys.contact_type (Lcontact_type, Rcontact_type, Lcontact_workFcn, Rcontact_workFcn)

Note that for Ohmic contacts, the metal work function doesn’t enter into the problem, so its value is unimportant - we
therefore simply set the left contact work function equal to 0. Having defined the contact types, we next specify the
contact recombination velocities as before. For this system, we’ll assume the contacts are non-selective:

Sn_left, Sp_left, Sn_right, Sp_right = 1le7, le7, 1le7, le7 # cm/s
sys.contact_S(Sn_left, Sp_left, Sn_right, Sp_right)

22 Chapter 3. Tutorial: learning Sesame through examples

Sesame Documentation

3.2.5 Computing an I-V curve

We’ve now completed the system definition. As in the last example, we compute the equilibrium solution, add illumi-
nation, and compute the I-V curve

Warning: Sesame does not include interface transport mechanisms of thermionic emission and tunneling.

phi = 1e2l1 # photon flux [1/(cm”™2 s)]
alpha = 2.3e6 # absorption coefficient [1/cm]

Define a function for the generation rate
f = lambda x: phi * alpha * np.exp(-alpha * x)

sys.generation (f)

voltages = np.linspace (0, 0.95, 40)

j = sesame.IVcurve (sys, voltages, 'ldhetero V')
convert dimensionless current to dimension-ful current
j = J % sys.scaling.current

The current can be saved and plotted as in the previous tutorial:

result = {'v':voltages, 'J':j} # store j, v values
np.save ('jvld_hetero', result) # save the j-v curve

import matplotlib.pyplot as plt

plt.plot (voltages, j,'-0o') # plot j-v curve
plt.xlabel ('Voltage [V]')

plt.ylabel ('Current [A/cm”2]")

plt.grid() # show grid lines
plt.show () # show plot

3.2.6 Adding contact and shunt resistance

We next demonstrate how to include the effect of series and shunt resistance. The example treated here is in the
file 1d_heterojunction_with_Rs_Rsh located in the examples\tutorial?2 directory of the distribution.
The classic equivalent circuit model for a solar cell is given below (note we use current density J and resistance-area
product to characterize the circuit).

3.2. Tutorial 2: I-V curve of a one-dimensional pn heterojunction 23

Sesame Documentation

O

For our model, the diode in this circuit is replaced by the numerically computed current-voltage relation shifted by
the computed short-circuit current, so that J{2% (0) = 0). The light source current Jy, is given by the numerically
computed short-circuit current density. The current-voltage relation of the above circuit is given by the following
implicit equation:

V+JRA

J=Jp — JS (V — JR,A) — A

For a fixed potential drop across the circuit V, the above equation is solved numerically to find the total current through
the circuit J. Below we show the effect of finite series and contact resistance values (given by Rs and R, respectively)
on the current-voltage relation computed in the first part of the tutorial:

24 Chapter 3. Tutorial: learning Sesame through examples

Sesame Documentation

20 ! ! ! !

J [mA/cm?]

-5 — R.,=0 Q.cm?, R.,=00 Q.cm? [
:]
-- R.=3Q-cm? R,;=500Q-cm? | '
~10 | | | | i
0.0 0.2 0.4 0.6 0.8 1.0
V [V]

We refer the reader to the example script for more details of how the mathematics of the equivalent circuit model is
implemented.

3.3 Tutorial 3: Two-dimensional pn junction with a grain boundary

In this tutorial we show how to build a two-dimensional pn T junction containing a grain boundary.

See also:

The example treated here is in the file 2d_homojunction_withGB.py located in the examples\tutorial3
directory in the root directory of the distribution. The same simulation’s GUI input file is
2d_homojunction_withGB. ini, also located in the examples\tutorial3 directory.

3.3.1 Building a two-dimensional system

We want to simulate a two-dimensional pn™ junction (homojunction) with a columnar grain boundary as depicted
below.

3.3. Tutorial 3: Two-dimensional pn junction with a grain boundary 25

Sesame Documentation

AY
d=3 um ¢
: p-type
grain boundary
25um+ H-------mm -
n+-layer-—»
ol -—junction
L 1 é
0 L=3 um

As usual, we start by importing the sesame and numpy packages. We construct the mesh of the system and make an
instance of the Builder (). Notice that in this case we provide the Builder () function with both x and y grids;
this automatically tells the code to build a two-dimensional system:

import sesame
import numpy as np

dimensions of the system
Lx = 3e-4 # [cm]
Ly = 3e-4 # [cm]

position of p-n junction [cm]

junction = .le-4
Mesh
X = np.concatenate((np.linspace (0, .2e-4, 30, endpoint=False), # mesh near the,
—contact
np.linspace(0.2e-4, 1.4e-4, 50, endpoint=False), # mesh 1in_,
—depletion region
np.linspace(l.4e-4, 2.7e-4, 50, endpoint=False), # mesh in bulk
np.linspace(2.7e-4, 2.98e-4, 30, endpoint=False), # mesh near the_
—~GB end point
np.linspace(2.98e-4, Lx, 10))) # mesh near the,

—contact

y = np.concatenate ((np.linspace (0, 1.25e-4, 50, endpoint=False),
np.linspace(l.25e-4, 1.75e-4, 50, endpoint=False), # mesh near the_
—GB core
np.linspace(l.75e-4, Ly, 50)))

Create a system
sys = sesame.Builder (x, Vy)

We define and add a material as before:

Dictionary with the material parameters
mat = {'Nc':8el7, 'Nv':1.8el9, 'Eg':1.5, 'affinity': 3.9, 'epsilon':9.4,
'mu_e':200, 'mu_h':200, 'tau_e':10e-9, 'tau_h':10e-9, 'Et':0}

Add the material to the system
sys.add_material (mat)

We next define functions delimiting the regions with different doping values. Because the model is 2-dimensional, the

26 Chapter 3. Tutorial: learning Sesame through examples

Sesame Documentation

function input argument pos is a tuple of the form (x, y). In the functions below, we first “unpack” the x and y
coordinate, and determine the location of the x-coordinate relative to the junction:

Add the donors
def n_region (pos):

X, Y = pos
return x < junction

nD = 1lel7 # [cm"-3]
sys.add_donor (nD, n_region)

Add the acceptors
def p_region (pos):
X, y = pos
return x >= junction

nA = lelb # [cm"-3]
sys.add_acceptor (nA, p_region)

We specify contacts as before:

Use perfectly selective Ohmic contacts
sys.contact_type ('Ohmic', 'Ohmic')

Sn_left, Sp_left, Sn_right, Sp_right = 1e7, 0, 0, 1le7
sys.contacts (Sn_left, Sp_left, Sn_right, Sp_right)

Note: Sesame assumes that the contact properties (e.g. recombination velocity, metallic work function) are uniform
along the y-direction.

3.3.2 Adding a grain boundary

Now we add a line of defects to simulate a grain boundary using the sys method add_line_defects (). The
necessary inputs are the grain boundary defect’s electrical properties (e.g. capture cross sections, energy level, defect
density, and charge states), and the endpoints defining the grain boundary location (recall a grain boundary is repre-
sented by a line in a 2-dimensional simulation). Below we show code defining these properties for our example, and
adding the grain boundary to the simulation:

gap state characteristics

rho_GB = 1lel4 # defect density [1/cm”™2]
S _GB = le—-15 # trap capture cross section [cm"2]
E_GB = 0.4 # energy of gap state (eV) from intrinsic energy level

Specify the two points that make the line containing additional charges
pl = (.le-4, 1.5e-4) # [cm]
p2 = (2.9e-4, 1.5e-4) # [cm]

Add the line of defects to the system
sys.add_line_defects([pl, p2], rho_GB, S_GB, E=E_GB, transition=(1/-1))

The type of the charge transition o/ is specified by assigning the t ransition input value as shown above. In our
example we chose a mixture of donor and acceptor at energy E. An acceptor would be described by (-1,0) and a donor
by (1,0).

3.3. Tutorial 3: Two-dimensional pn junction with a grain boundary 27

Sesame Documentation

Note:

* Avoid adding charges on the contacts of the system, as these will not be taken into account. The code is not
equiped to deal with such boundary conditions.

* In order to add another gap state at a different energy at the same location, one repeats the exact same process.

e Here we assumed equal electron and hole surface recombination velocities. The function
add_line_defects () takes two surface recombination velocities as argument. The first is for elec-
trons, the second for holes. To use different values write

sys.add_line_defects ([pl, p2], rho_GB, Sn_GB, Sp_GB, E=E_GB)

¢ A continuum of states can be considered by omitting the energy argument above. The density of states can be a
callable function or a numerical value, in which case the density of states is independent of the energy.

3.3.3 Computing the IV curve

The computation of the IV curve proceeds as in the previous tutorials. We show the code below:

Solve equilibirum problem first
solution = sesame.solve(sys, 'Poisson')

define a function for generation profile
f = lambda x, y: 2.3e2lxnp.exp(-2.3e4*x)

add generation to the system
sys.generation (f)

Specify applied voltages
voltages = np.linspace (0, .9, 10)
Compute IV curve

j = sesame.IVcurve (sys, voltages, '2dGB_V', guess=solution)
rescale to dimension-ful current
j = j % sesame.scaling.current

Save the computed IV data
result = {'voltages':voltages, 'j':7j}
np.save ('2dGB_IV', result)

3.3.4 Plotting system variables

The 2-dimensional solutions can be plotted with tools we describe more fully in tuforial 4. As a preview, we list the
commands for loading and plotting the electrostatic potential:

sys, results = sesame.load_sim('2dGB_V_0.gzip")
sesame.plot (sys, results['v'])

The output is shown below:

Note: As discussed more fully in Tutorial 4, quantities in Sesame are dimensionless by default. The electrostatic
potential shown above is dimensionless, scaled by the thermal voltage. The scaling field of sys provides the

28 Chapter 3. Tutorial: learning Sesame through examples

Sesame Documentation

relevant quantites needed to rescale quantities to dimension-ful form.

3.3.5 Spatial variation of material parameters

See also:

The example treated here is in the file 2d_homojunction_withGB_nonuniform _mobility.py in the
examples\tutorial4 directory in the root directory of the distribution.

Suppose we want to have a reduced mobility around the line defects compared to the rest of the system. To do so, we
add another material which is defined in the region of non-uniform mobility. It has the same properties as the original
material, except that the mobility is not longer a scalar, but a function:

function defining region of reduced mobility
XGB = 1.5e-4 # GB x—coordinate
Lmu = .25e-4 # distance from GB over which mobility is reduced
def reduced_mu_region (pos) :
X, Yy = pos
return ((x < xGB+Lmu) & (x > xGB-Lmu) & (y > .le—-4) & (y < 2.9e-4))

function defining region of reduced mobility
def my_mu (pos) :
muGB = 10
X, Yy = pos
mobility varies linearly between GB core and Lmu
return 10 + 310+np.abs ((x-xGB) /Lmu)

mat2 = {'Nc': 8el7, 'Nv': 1.8el9, 'Eg': 1.5, 'epsilon': 9.4, 'Et': 0,
'mu_e': my_mu, 'mu_h': 40, 'tau_e': 10 x le-9, 'tau_h': 10 x le-9}

Add the material to the system
sys.add_material (mat2, reduced_mu_region)

sesame.plot (sys, sys.mu_e)

3.4 Tutorial 4: Saving, loading, and analyzing simulation data

In this tutorial we describe the input and output data formats of Sesame, and show how to use Sesame’s built-in tools
to analyze the solution.

See also:

The examples treated here are in the files analyze_data.py and plot_data.py, located in
the examples\tutorial4 directory of the distribution. This tutorial uses the output files from
examples\tutorial3 python script, so it’s necessary to copy these gzip data files to examples\tutoriald4.

3.4.1 Saving data

In the previous tutorials, detailed solution data was saved automatically in the IVcurve () function. It’s also possible
to manually save simulations with Sesame’s save sim () function. This function saves both the system object
containing all of the simulation settings, and the solution dictionary. (The solution dictionary contains the keys 'v',
'efn',and 'efp'.) An example of save_sim () is shown below:

3.4. Tutorial 4: Saving, loading, and analyzing simulation data 29

Sesame Documentation

sesame.save_sim(sys, results, "my_sim")

The saved output file is named “my_sim.gzip”. Note that the gzip extension indicates the data is compressed, and the
data structures are stored using python’s pickle module.

The data can also be saved in a Matlab-readable format (.mat file), by adding fmt="mat ' as an additional input
argument:

sesame.save_sim(system, result, "my_sim", fmt='mat')

In this case the arrays defining the system properties (including Eg, Nc, Nv, etc) are saved in a sy stem data structure,
and the solution ('efn', 'efp', 'v')is saved in a results data structure.

Note: The saved data is “folded” into 1-d arrays. For example, the solution array of a two-dimensional system with
ng X-grid points and n,, y-grid points is stored as a one-dimensional array of length n, X n,.

The postprocessing tools packaged with Sesame are built to work with python data files. It’s therefore more convenient
to save the data in python format if substantial postprocessing and analysis will be performed.

3.4.2 Loading data

Loading a saved simulation is accomplished with the 1oad_sim command. This returns the system object and result
dictionary:

sys, result = sesame.load_sim("my_sim")

3.4.3 Analysis of data: the Analyzer object

Next we show how to extract and analyze the data computed by the solvers. To facilitate data analysis, Sesame has
an Analyzer () class which contains many methods to compute typical quantities of interest, such as total defect,
radiative, or radiative recombination, total current, carrier densities, grain boundary recombination, etc. A summary
and the descriptions of the methods available via the Analyzer () object are detailed in Sec. Core modules.

We’ll demonstrate the use of some of these methods, using the system created in futorial 3. We start as always by
importing sesame and numpy:

import numpy as np
import sesame

Note: In the rest of this tutorial, it’s necessary to copy the output gzip files you obtained in tutorial3 to the
examples\tutoriald directory

Our data analysis will begin with computing carrier densities and currents, and plotting data. In the code below we
load a data file and create an instance of Analyzer class. The Analyzer () object is initialized with a system and a
dictionary of results. This dictionary must contain the key 'v ', and can include 'efn"', 'efp' when computed.:

sys, results = sesame_loadsim('2dpnIV.vapp_0.npz")
az = sesame.Analyzer (sys, results)

We start with how to obtain integrated quantities like the steady state current. In the code below we compute the
current for all applied voltages of the IV curve, using the Analyzer () method full_current ():

30 Chapter 3. Tutorial: learning Sesame through examples

Sesame Documentation

J = 1]
for i in range (40):
filename = '2dpnIV.vapp_{0}.npz'.format (1) # construct file name
sys, results = sesame.load_sim(filename) # load file
az = sesame.Analyzer (sys, results) # create Analyzer
current = az.full_current () # compute current
J.append (current) # add to array of current values

Non-integrated quantities are often plotted along lines. We define such lines by two points. Given two points in real
coordinates, the method 1ine () returns the dimensionless curvilinear abscissae along the line, and the grid sites:

pl = (2e-4, 0) # [cm]
P2 = (2e-4, 3-6) # [cm]

X, sites = az.line(sys, pl, p2)

Scalar quantities like densities or recombination are obtained either for the entire system, or on a line:

For the entire system

n2d = az.electron_density ()

n2d = n2d » sys.scaling.density # convert to dimension-ful form
n2d = np.reshape (n2d, (sys.ny, sys.nx)) # reshape to 2-d array

On the previously defined line
nld = az.electron_density ((pl, p2))
nld = nld * sys.scaling.density # convert to dimension-ful form

Note: Note that the Analyzer methods return values in dimensionless form. It is therefore necessary to convert to
dimension-ful form using the quantities stored in the scaling field of sys. Available dimensions are: density,
energy, mobility, time, length, and generation. These dimensions (except mobility) depend on the temperature and
the unit length (meter or centimeter) given when creating an instance of the class Builder () (default is 300 K and
centimeters).

Vectorial quantities (i.e. currents) are computed either on a line or for the entire system, by component. For instance,
to compute the electron current in the x-direction:

For the entire system
jn = az.electron_current (component="x")

On the previously defined line
jn = az.electron_current (location=(pl, p2))

We now turn to the treatment of the extended line defects introduced in our system. The following code retrieves the
solution along the grain boundary core:

Line endpoints of the grain boundary core

pl = (20e-7, 1.5e-4) #[cm]

P2 = (2.9e-4, 1.5e-4) #[cm]

get the coordinate indices of the grain boundary core
X, sites = az.line(syst, pl, p2)

obtain solution data along the GB core

efn_GB = results['efn'][sites]
efp_GB = result['efp'][sites]
v_GB = result['v'][sites]

3.4. Tutorial 4: Saving, loading, and analyzing simulation data 31

Sesame Documentation

In this code we compute the integrated defect recombination along the grain boundary core:

Get the first planar defect from the system

defect = sys.defects_list[0]

Compute the defect recombination rate as a function of position along the planar,,
—defect

R_GB = az.defect_rr (defect) # R_GB is an array

Compute the integrated recombination along the line defect
Rtot_GB =