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This work introduces a new software package �Sesame� for the numerical computation of classical
semiconductor equations. It supports 1 and 2-dimensional systems and provides tools to easily
implement extended defects such as grain boundaries or sample surfaces. Sesame is designed to
facilitate fast exploration of the system parameter space and to visualize local charge transport
properties. Sesame has been benchmarked against other software packages, and results for single
crystal and polycrystalline CdS-CdTe heterojunctions are presented. Sesame is distributed as a
Python package or as a standalone GUI application, and is available at https://pages.nist.gov/
sesame/.

I. INTRODUCTION

Numerical simulations are an essential aspect of pho-
tovoltaic research and design. A number of free software
packages have been developed and extensively used for
solar cell modeling in 1-dimension, including AMPS [1],
PC-1D [2], SCAPS [3], and wxAMPS [4]. Freely available
2-dimensional simulation tools are less common [5�7], but
are necessary for describing systems with lateral inhomo-
geneity. A common class of such systems are polycrys-
talline thin �lm photovoltaics, such as CdTe [8], CIGS
[9], and hybrid perovskites [10]. In these materials grain
boundaries break the lateral symmetry of the p-n junc-
tion, leading to complex system geometries. Lateral in-
homogeneity is also often encountered in nanoscale or
mesoscopic measurements. The resolution of these mea-
surements is typically achieved by using an excitation
source or measurement probe with nanoscale spatial ex-
tent. Examples include electron beam induced current
(EBIC) or scanning Kelvin probe microscopy, which are
also often surface sensitive. An appropriate model for
these measurements is therefore (at least) 2-dimensional
and includes localized excitation/detection sources and
relevant boundary conditions.

There are numerous examples of 2-dimensional so-
lar cell modeling in the literature. For instance, the
impact of grain boundaries in polycrystalline cells has
been previously studied numerically [11�13] and analyt-
ically [14, 15]. Simulations have been used for interpret-
ing experiments with localized excitations such as EBIC
[16, 17], cathodololuminescence [18, 19], and two-photon
photoluminescence [20]. Although these works are in-
structive, nonlinearities in the system response prevent
a simple extrapolation of previous results to all possi-
ble system con�gurations of interest. Indeed there re-
main a number of unresolved questions of fundamental

FIG. 1. Coordinate system of Sesame: rectilinear geometry
and contacts located at x = 0 and x = L. pn junction doping
is shown as an example.

interest in polycrystalline photovoltaics, questions as ba-
sic as whether grain boundaries are harmful or bene�cial
to cell performance [8, 21]. It is therefore desirable for
researchers to have widespread access to 2-d simulation
software.
In this work we introduce Sesame, a Python package

developed by the authors (B. G. and P. M. H.) which
solves the drift-di�usion-Poisson equations in 1 and 2 di-
mensions. Sesame is open source and distributed under
the BSD license. Sesame is designed to easily construct
systems with planar defects, such as grain boundaries
or sample surfaces, which may contain both discrete or
a continuum of gap state defects. While full-featured
commercial packages allow simulations of complex device
con�gurations together with multiple physical e�ects, the
needs of research sometimes require access to the source
code and licensing that enables usage on computing clus-
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ters. Access to source code enables researchers to modify
the program to suit their needs. The free licensing and
Python implementation of Sesame allows batch process-
ing of an arbitrary number of simultaneous simulations
(limited only by cluster access). This provides the capac-
ity for performing large scale parameter sweeps in mul-
tiple dimensions. The program and its code are publicly
available at https://pages.nist.gov/sesame/.
The paper is organized as follows: In Sec. II we present

a brief overview of the model and geometry. In Sec. III
we compare the output of Sesame to established semicon-
ductor modeling software, including SCAPS [3], Sentau-
rus [22], and COMSOL Semiconductor Module [23] [24].
In Sec. III we also present a hands-on tutorial script for
solving a 2-dimensional system with a grain boundary,
and brie�y describe the functionality of the GUI. The
mathematics underlying the model and technical details
of the numerical implementation can be found in the Ap-
pendix.

II. OVERVIEW OF THE PHYSICAL MODEL

The system geometry consists of a semiconductor de-
vice connected to contacts at x = 0 and x = L (see
Fig. 1). Sesame describes the steady state behavior of
this system, which is governed by the drift-di�usion-
Poisson equations:

~∇ · ~Jn = −q(G−R) (1)

~∇ · ~Jp = q(G−R) (2)

~∇ ·
(
ε~∇φ

)
= −ρ/ε0 (3)

with the currents

~Jn = −qµnn~∇φ+ qDn
~∇n (4)

~Jp = −qµpp~∇φ− qDp
~∇p , (5)

where n and p are the respective electron and hole num-

ber densities, and φ is the electrostatic potential. ~Jn(p)
is the charge current density of electrons (holes). Here, q
is the absolute value of the electron charge. ρ is the local
charge density, ε is the dielectric constant of the mate-
rial, and ε0 is the permittivity of free space. µn,p is the
electron/hole mobility, and is assumed to satisfy the Ein-
stein relation: Dn,p = kBTµn,p/q. G is the electron/hole
pair generation rate density and R is the recombination
rate density.
Sesame includes Schockley-Read-Hall, radiative, and

Auger recombination mechanisms. Sesame is cur-
rently limited to describing non-degenerate semiconduc-
tors with Boltzmann statistics, and does not include
thermionic emission and quantum tunneling at inter-
faces. These can be important contributions to the trans-
port in heterojunctions [25], so care should be exercised
when using Sesame to simulate such systems. Sesame

Model features

Heterojunction X Schottky contact X

Radiative/Auger
recombination

X
Schockley-Read-Hall

recombination
X

Graded material
parameters

X Planar defects X

Thermionic emission 7 Tunneling 7

Boltzmann statistics X Fermi-Dirac statatistics 7

Time-dependent 7
Scripting/batch

processing
X

Model output

Spatially resolved electron/hole density X

Spatially resolved electron/hole current X

Surface (grain boundary) recombination X

Total recombination (defect, radiative, and Auger) X

J − V (Dark and light conditions) X

TABLE I. List of features of Sesame (X indicates feature is
available, 7 indicates a feature is not available).

includes Ohmic and Schottky contact boundary condi-
tions, and periodic or hardwall (in�nite potential) trans-
verse boundary conditions. See Table I for a list of soft-
ware capabilities and data output options. Note that
Sesame currently does not include a solver for Maxwell's
equations. Sesame uses �nite di�erences to solve Eqs.
(1-3), and the standard Scharfetter-Gummel scheme for
discretizing the current [26]. Details of the implementa-
tion can be found in the Appendix.

III. BENCHMARKS AND EXAMPLES

A. Benchmarks

We �rst verify the consistency between Sesame and
other software packages. We have compared the out-
put of Sesame with the well-established software packages
Sentaurus, COMSOL, and SCAPS for many systems, and
present two illustrative examples here. We �rst consider
a 1-d heterojunction consisting of a thin n+-doped layer
of CdS and a p-type CdTe. The material parameters
are shown in Table II. Fig 2(a) shows the computed
J-V curve under a uniform generation rate density of
G = 3.3 × 1020 cm−3 s−1. We �nd close agreement be-
tween Sesame, Sentaurus, and COMSOL. To quantify
the comparison, we de�ne the relative di�erence between
two computed currents J1 and J2 as |J1 − J2| /〈J1 +J2〉,
where 〈〉 denotes the average. The maximum relative dif-
ference between Sesame and Sentaurus is 0.2 %, and be-
tween Sesame and COMSOL it is 2 %. We observe a more
substantial di�erence between Sesame and SCAPS, with
a maximum value of 7 %. In all cases, the maximum dis-
crepancy occurs near Voc, where the current is minimized
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Param. CdS CdTe
L [nm] 25 4000
ε 10 9.4

τn [ns] 10 5
τp [ns] 10−4 5

NC [cm−3] 2.2× 1018 8× 1017

NV [cm−3] 1.8× 1019 1.8× 1019

Eg [eV] 2.4 1.5
χ [eV] 4.0 3.9

µn [cm2/(V · s)] 100 320
µp [cm2/(V · s)] 25 40
doping [cm−3] 1017 (D) 1015 (A)

TABLE II. List of bulk parameters used for the 1-d and 2-
d simulations. The label (D) and (A) for the doping value
indicate donor and acceptor, respectively.

FIG. 2. Comparison between Sesame and SCAPS, Sentau-
rus, and COMSOL for a CdS-CdTe heterojunction. (a) Il-
luminated J-V curve. (b) Band diagram under short circuit
conditions. Inset shows the valence band and hole quasi-Fermi
level near the CdS layer. Black thin lines are the Sentaurus
results, and thick colored lines are Sesame results.

so that relative di�erences are maximized. We attribute
the larger di�erence between Sesame and SCAPS to the
di�erent interface recombination model used in SCAPS,
in which the system variables are multi-valued at the in-
terface and allow for recombination between layers [3].

We next consider a 2-d system comprised of the same
bulk materials, with a vertical grain boundary in the
CdTe layer (see inset of Fig. 3(a)). The system width

is 3 µm and we use hard wall boundary conditions for
the vertical system edges. The grain boundary is po-
sitioned in the middle of the CdTe layer, and termi-
nates a distance 0.1 µm away from the p-type con-
tact, and 25 nm away from the CdS interface. The
grain boundary contains a discrete donor and acceptor
defect, both positioned at 0.4 eV above midgap, with
defect density ρGB = 1014 cm−2 and equal hole and
electron capture cross section σGB = 10−14 cm2. For
this simulation we again use a uniform generation rate
G = 3.3 × 1021 cm−3 s−1. Fig. 3(a) shows the illumi-
nated J-V curve obtained with Sesame, COMSOL, and
Sentaurus (SCAPS is not included, as it does not support
2-d geometries). We again �nd good agreement between
Sesame and the other software packages: the largest rel-
ative di�erence between Sesame and Sentaurus is 1.8 %,
and between Sesame and COMSOL it is 0.7 %. Fig. 3(b)
shows the good agreement obtained for the band diagram
along the grain boundary core under short-circuit condi-
tions for the three software packages.
In Fig. 3(a) we also include the J − V curve ob-

tained with the 1-d simulation; the large di�erence be-
tween the 1-d and 2-d results reveals the crucial role the
grain boundary plays in the system response. We've also
checked that Sesame matches commercial software for
systems with non-vertical, or �tilted� grain boundaries,
and for system with multiple, intersecting grain bound-
aries [27]. Systems with complex grain boundary geome-
tries are easily constructed in Sesame: the grain bound-
ary endpoints are the only required input, and the soft-
ware automatically embeds the planar defect in the real
space mesh. The dependence of device behavior on grain
boundary orientation and geometry was recently studied
using Sesame in Ref. [28].

B. Scripting example

Sesame is run either through a self-contained GUI, or
as a python package which is called in scripts. Running
sesame with scripts is particularly convenient for run-
ning large-scale batch simulations on a computing clus-
ter. Scripting also provides more �exibility in system
de�nition (e.g. continuous grading of electronic parame-
ters and doping). In the distribution, we provide several
example scripts which describe standard PV simulations
(e.g. J-V , IQE calculations), along with in-depth tutori-
als in the documentation. Here we give a description of
a script to build and solve a simple 2-d simulation with
a grain boundary.
We �rst import the numpy and sesame packages:

import sesame
import numpy as np

Next we de�ne the grids for x and y. We use uni-
form grids for this example, but generally non-uniform
grids are necessary to optimize the simulation accuracy
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FIG. 3. Comparison between Sesame, COMSOL and Sentau-
rus for a 2-dimensional system. (a) Illuminated JV curve. In-
set: schematic of the system, an n-p junction with a columnar
grain boundary. (b) Band diagram along the grain boundary
core under short-circuit conditions.

and speed (non-uniform grids are used in the simulation
of Fig. 3). (Note: Sesame assumes all lengths are given
in units of cm.)

x = np.linspace(0,3e-4,100)
y = np.linspace(0,3e-4,100)

We create the system with the Builder function. The
input to Builder are the x and y grids. The output is
an object sys which contains all the information needed
to describe the simulation.

sys = sesame.Builder(x, y)

Additional simulation settings are set by calling various
methods of sys, as we show below.
Next we de�ne the material properties with a python

dictionary object (called mat in this example). The
dictionary key names correspond to standard de�nitions.
(Note: Sesame assumes times are given in units of
s, energies in units of eV, densities in units of cm−3,
mobility in units of cm/V · s)).

mat = {’Nc’:8e17, ’Nv’:1.8e19, ’Eg’:1.5,
’affinity’:4.1, ’epsilon’:9.4, ’Et’:0,
’mu_e’:320, ’mu_h’:40, ’tau_e’:1e-8,
’tau_h’:1e-8}

The dictionary key Et represents the energetic position of
bulk recombination centers, as measured from the intrin-

sic energy level, and tau_e/tau_h are the electron/hole
lifetimes. The dependence of the Schockley-Read-Hall
recombination on these parameters can be found in the
Appendix. The material is added to the system using the
add_material function, which takes the mat dictionary
as input. Note that add_material is a method of the
sys object, and is called with the command:

sys.add_material(mat)

To build a p-n junction we add a position-dependent
doping pro�le to the system. We must de�ne functions
which describe the di�erent doping regions; for this
example, these functions are called n_region and
p_region. They return True when the input variable
position belongs to the region. For this example the
two regions are delimited at the junction coordinate
which corresponds to x = 10−5 cm.

junction = 1e-5

def n_region(position):
x, y = position
return x < junction

def p_region(position):
x, y = position
return x >= junction

Having de�ned the di�erent doping regions, we add the
donors and acceptors with the sys methods add_donor
and add_acceptor. The input for these methods are
the doping magnitude and doping region functions we
just de�ned. Sesame currently assumes that all bulk
dopants are fully ionized. (Note: Sesame assumes the
units of density is cm−3):

donorDensity = 1e17
sys.add_donor(donorDensity, n_region)
acceptorDensity = 1e15
sys.add_acceptor(acceptorDensity, p_region)

Next we specify the contact boundary conditions. For
this example, we specify Ohmic contacts with the func-
tion contact_type. Note the order of input arguments
is left contact (x = 0) type �rst, right contact (x = L)
type second:

sys.contact_type(’Ohmic’,’Ohmic’)

We next specify the value of recombination velocity for
electrons and holes at both contacts (Note: Sesame
assumes the units of velocity are cm/s). For this
example, both contacts only collect majority carriers.
This is accomplished with the function contact_S:

Sn_L, Sp_L, Sn_R, Sp_R = 1e7, 0, 0, 1e7
sys.contact_S(Sn_L, Sp_L, Sn_R, Sp_R)
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Next we add a grain boundary. We must specify the
grain boundary defect energy level EGB (note the defect
energy level is measured from the intrinsic energy level),
the electron and hole capture cross sections sigmaeGB
and sigmahGB, the defect density rhoGB, and the end-
points of the line de�ning the grain boundary p1, p2.
These are input arguments to the function add_defects
which creates a grain boundary. We also specify the
charge transition states of the defect with the function
input transition. In this case the speci�ed charge
states are (+1,-1), corresponding to having a donor and
acceptor at the same energy level.

EGB = 0.4
sigmaeGB = 1e-15
sigmahGB = 1e-15
rhoGB = 1e14
p1 = (.1e-4, 1.5e-4)
p2 = (2.9e-4, 1.5e-4)
sys.add_defects([p1, p2], rhoGB,

sigmaeGB, sigmahGB, EGB, transition=(+1,-
1))

We add illumination by de�ning a function illumina-
tion which returns the position-dependent intensity as
a function of the input coordinate x,y

def illumination(x,y):
return 2.3e21 * np.exp(-2.3e4 * x)

sys.generation(illumination)

With the system now fully de�ned, we specify the list
of applied voltages used to compute the current-voltage
relation with the IVcurve function:

voltages = np.linspace(0,1,11)
jset = sesame.IVcurve(sys, voltages, ’GB_JV’)

The function IVcurve returns an array jset contain-
ing the computed current density for each applied volt-
age. The IVcurve function also saves output �les with
seedname �GB_JV� concatenated with a su�x labeling
the applied voltage index. These output �les contain
objects describing the simulation settings and the solu-
tion arrays. By default these �les are compressed data
�les containing python Pickle objects (.gzip �les). There
is also an option to output the data in Matlab format
(.mat �les). Sesame includes an Analyzer object which
contains several functions for computing quantities of in-
terest from the solution, such as current densities, total
recombination, carrier densities, and others. We refer the
reader to the online documentation for a detailed list of
all these functions.

C. GUI

Use of the standalone GUI as an alternative to script-
ing can be more convenient for small-scale calculations,

FIG. 4. Menu and 3 main tabs of the Sesame GUI. See text
for a description of the functionality of each tab.

FIG. 5. Panels from System tab of the GUI. In the planar
defects panel, an arbitrary number of planar defects can be de-
�ned by specifying the endpoints of the boundary (a 1-d line
for a 2-dimensional simulation), the defect energy, density,
electron and hole capture cross sections, and charge states.
The Generation rate panel allows for one user-de�ned param-
eter to be varied.

or for those without access to a python distribution.
Simulation settings can be saved and loaded, and the
GUI also provides an interactive python prompt. The
GUI is divided into three tabs, as shown in Fig. 4:

1. The System tab contains �elds to de�ne the system
geometry and material parameters (see Fig. 5).

2. The Simulation tab lets the user specify which
parameter is varied: either the voltage is swept, or
a user-de�ned variable related to the generation rate
density is swept. The boundary conditions and output
�le information is also set here, and the simulation
is launched from this tab. The program output is
provided so that the user can follow the progress of the
calculations.

3. The Analysis tab enables the user to plot the
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FIG. 6. Panel from Analysis tab of the GUI. Data �les can
be selected for analysis, and surface plots of system variables
and observables can be generated for 2-dimensional systems.
A linear plot with two modes is available. In �loop values�
mode, a scalar (such as total current) is plotted versus the
looped parameters. In the �position� mode, a system variable
or observable from a single solution is plotted versus spatial
coordinate.

FIG. 7. The surface plot panel of the Analysis tab of the GUI.
This shows the hole currents �owing in a homojunction with
a single grain boundary.

output of the simulation, and to save and export plotted
data (see Figs. 6 and 7).

Sesame is distributed with a number of sample input
�les for setting up standard PV simulations in the GUI.
More detailed documentation for the GUI is included in
the distribution.

IV. CONCLUSION

Modeling tools are essential for describing and under-
standing polycrystalline materials and nanoscale mea-
surements. System behavior for complex, 2-dimensional
geometries can be drastically di�erent than the textbook
1-dimensional p-n junction model. Numerical simula-
tions provide the capability to explore and develop in-
tuition about this rather unchartered territory. Our aim
in releasing Sesame is to provide the research commu-
nity with a free, easy-to-use resource which will enable
broader use of simulation in complex photovoltaic sys-
tems. There are opportunities for additional functional-
ities (e.g. time-dependence, small-signal analysis, more
advanced interface transport models) and further opti-
mizations (e.g. use of Cython) of the code. Our intent
in releasing the fully documented source code is to pro-
vide users the option to make these and other additions
as their research needs require. An additional feature
not discussed here is 3-dimensional modeling, which is
included in the distribution as an untested feature which
will be investigated further in future work.
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Appendix A MODEL DETAILS

A Mathematical Description

In this section we provide a full description of the equa-
tions solved by Sesame. These are fairly standard and
can be found in textbooks [29�32], but we include them
here for the sake of completeness and to specify notation
and conventions used in the code. We �rst write densities
in terms of quasi-Fermi levels, denoted by EFn

and EFp

for electrons and holes, respectively. Since we assume
Boltzmann statistics (i.e. a non-degenerate semiconduc-
tor), the carrier densities are related to quasi-Fermi levels
by:

n = NC exp

(
EFn

+ χ+ qφ

kBT

)
(6)

p = NV exp

(−EFp − χ− Eg − qφ
kBT

)
. (7)

where Eg is the material band gap, χ is the electron a�n-
ity, and NC,V are the conduction, valence band e�ective
density of states, respectively. All quantities except tem-
perature can vary with position.
The electron and hole current can be expressed in

terms of the spatial gradient of the quasi-Fermi levels
[33]:

~Jn = qµnn~∇EFn (8)

~Jp = qµpp~∇EFp
. (9)

1 Recombination

Sesame includes Shockley-Read-Hall, radiative and
Auger recombination. The steady-state Shockley-Read-
Hall recombination rate density is given by:

RSRH =
np− n2i

τp(n+ n1) + τn(p+ p1)
(10)
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FIG. 8. Depiction of energy levels of defect states. The in-
trinsic energy level is Ei = Eg/2 − kBT/q ln (NC/NV ), as
measured from the valence band edge.

where ni is the material intrinsic carrier density, given
by ni =

√
NCNV exp (−Eg/(2kBT )). The equilibrium

Fermi energy at which n = p = ni is the instrinsic energy
level Ei. We specify the defect energy level ET relative
to Ei (see Fig. 8), so that the expressions for n1 and p1
in Eq. 10 are given by:

n1 = ni exp

(
ET
kBT

)
, (11)

p1 = ni exp

(
− ET
kBT

)
(12)

τn,(p) is the bulk lifetime for electrons, holes. It is given
by

τn,p =
1

NT vthn,pσn,p
(13)

where NT is the three-dimensional trap density, vthn,p is

the thermal velocity of carriers (vthn,p =
√

3kBT/mn,p

with mn,p the electron/hole e�ective mass), and σn,p is
the capture cross-section for electrons, holes.
The radiative recombination has the form

Rrad = B(np− n2i ) (14)

where B is the radiative recombination coe�cient of the
material. The Auger mechanism has the form

RA = (Cnn+ Cpp)(np− n2i ) (15)

where Cn (Cp) is the electron (hole) Auger coe�cient.

2 Planar defects

Sesame has been created with the intent of studying
extended defects in solar cells, such as grain boundaries
and sample surfaces. These extended planar defects are
represented by a point in a 1-d model, a line in a 2-d
model, and a plane in a 3-d model. The extended defect

energy level spectrum can be discrete or continuous. For
a discrete spectrum, we label the defect with the sub-
script d. The occupancy of the defect level fd is given
by [34]

fd =
Snn+ Sppd

Sn(n+ nd) + Sp(p+ pd)
(16)

where n (p) is the electron (hole) density at the spatial
location of the defect, Sn, Sp are recombination velocity
parameters for electrons and holes respectively. nd and
pd are

nd = ni exp

(
Ed
kBT

)
(17)

pd = ni exp

(
− Ed
kBT

)
(18)

where Ed is calculated from the intrinsic level Ei.
The electron/hole recombination velocity are related

to the electron/hole capture cross section and the defect
density ρd according to:

Sn,p = ρdσn,pv
th
n,p. (19)

The defect recombination is of Shockley-Read-Hall
form:

Rd =
SnSp(np− n2i )

Sn(n+ nd) + Sp(p+ pd)
. (20)

The charge density given of a single defect depends on
the defect type (acceptor vs. donor)

Q = qρd ×

{
(1− fd) donor

(−fd) acceptor
(21)

where ρd is the defect density of state at energy Ed. Mul-
tiple defects are described by summing over defect la-
bel d, or performing an integral over a continuous defect
spectrum.

B Boundary conditions at the contacts

For a given system de�nition, Sesame �rst solves the
equilibrium problem. In equilibrium, the quasi-Fermi
level of electrons and holes levels are equal and spatially
constant. We choose an energy reference such that in
equilibrium, EFp = EFn = 0. The equilibrium problem
is therefore reduced to a single variable φeq (r). Sesame
employs both Dirichlet and von Neumann equilibrium
boundary conditions for φeq, which we discuss next.

1 System in thermal equilibrium

Sesame uses Dirichlet boundary conditions as the de-
fault. This is the appropriate choice apply when the equi-
librium charge density at the contacts is known a priori.
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This applies for Ohmic and ideal Schottky contacts. For
Ohmic boundary conditions, the carrier density is as-
sumed to be equal and opposite to the ionized dopant
density at the contact. For an n-type contact with ND
ionized donors at the x = 0 contact (i.e. no free excess
carriers at the contact), Eq. 6 yields the expression for
φeq(x = 0):

qφeq (0, y, z) = kBT ln

(
ND
NC

)
− χ (0, y, z) (22)

Similar reasoning yields expressions for qφeq for p-type
doping and at the x = L contact.
For Schottky contacts, we assume that the Fermi level

at the contact is equal to the Fermi level of the metal.
This implies that the equilibrium electron density is
NC exp [− (ΦM − χ) /kBT ], where ΦM is the work func-
tion of the metal contact. Eq. 6 then yields the expres-
sion for φeq (shown here for the x = 0 contact):

qφeq (0, y, z) = −ΦM |x=0 contact (23)

An identical expression applies for the x = L contact.
Sesame also has an option for von Neumann boundary

conditions, where it's assumed that the electrostatic �eld
at the contact vanishes:

∂φeq

∂x
(0, y, z) =

∂φeq

∂x
(L, y, z) = 0. (24)

The equilibrium potential φeq determines the equilibrium
densities neq, peq according to Eqs. 6 and 7 with EFn

=
EFp

= 0.

2 System out of thermal equilibrium

Out of thermal equilibrium, Dirichlet boundary con-
ditions are imposed on the electrostatic potential. For
example, in the presence of an applied bias V at x = L,
the boundary conditions are

φ(0, y, z) = φeq(0, y, z) (25)

φ(L, y, z) = φeq(L, y, z) + qV (26)

where φeq is the equilibrium electrostatic potential.

For the drift-di�usion equations, the boundary con-
ditions for carriers at charge-collecting contacts are pa-
rameterized with the surface recombination velocities for
electrons and holes at the contacts, denoted respectively
by Scn and Scp :

Jxn(0, y, z) = qS0
cn(n(0, y, z)− neq(0, y, z)) (27)

Jxp (0, y, z) = −qS0
cp(p(0, y, z)− peq(0, y, z)) (28)

Jxn(L, y, z) = −qSLcn(n(L, y, z)− neq(L, y, z)) (29)

Jxp (L, y, z) = qSLcp(p(L, y, z)− peq(L, y, z)) (30)

C Numerical implementation

In this section we review the set of equations solved by
Sesame and provide some details of their implementation
in the one-dimensional case.

1 Scharfetter-Gummel scheme

Sesame uses �nite di�erences to solve the drift-
di�usion-Poisson equations on a nonuniform grid. Fig. 9
shows our index-labeling convention for sites and links:
link i connects site i and site i+1. Site-de�ned quantities
(such as density and electrostatic potential) are labeled
with a subscript denoting the site number. Link-de�ned
quantities (such as electrical current and electric �eld)
are labeled with a superscript denoting the link number.

We consider a one-dimensional system to illustrate the
model discretization. First, we rewrite the current on
link i in semi-discretized form:

J in = qµn,ini
dEFn

dx

∣∣∣∣
i

(31)

J ip = qµp,ipi
dEFp

dx

∣∣∣∣
i

(32)

A key step to ensure numerical stability is to integrate
Eqs. (31) and (32) in order to get a completely discretized
version of the current J in,p. This discretization is known
as the Scharfetter-Gummel scheme [26]. Here we give the
�nal expressions for the hole current J ip between sites i
and i+ 1:

J ip =
q

∆xi

 ψp,i+1 − ψp,i
exp

(
ψp,i+1

kBT

)
− exp

(
ψp,i

kBT

)
×

µp,i

[
exp

(−EFp,i+1

kBT

)
− exp

(−EFp,i

kBT

)]
. (33)

where ψp = qφ + χ + Eg − kBT ln(NV ) is the e�ective
potential. The electron current J ip is given by:

J in = − q

∆xi

 ψn,i+1 − ψn,i
exp

(
−qψn,i+1

kBT

)
− exp

(
−qψn,i

kBT

)
×

µn,i

[
exp

(
EFn,i+1

kBT

)
− exp

(
EFn,i

kBT

)]
.

(34)

where ψn = qφ+ χ+ kBT ln(NC).
In the limit where either δψn(p) ≡
−q
(
ψn(p),i+1 − ψn(p),i

)
/kBT or δEFn(p)

≡(
EFn(p),i+1 − EFn(p),i+1

)
/kBT are smaller than 10−5
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FIG. 9. Sites and links of the grid used in the discretization
of the drift di�usion and Poisson equations.

Quantity Expression Value
Density N0 1019 cm−3

Mobility µ0 1 cm2/(V · s)
Temperature T0 300 K
Energy kBT0 0.0258 eV

Length (x0)
√
ε0kBT/(q2N0) 3.78× 10−8 cm

Time ε0/(qµ0N0) 5.5× 10−14 s
Gen. rate density Nµ0E0/(qx

2
0) 1.81× 1032 1/

(
cm3 · s

)
Current µ0N0kBT/x0 1.10× 106 A/cm2

TABLE III. Quantities used to scale variables to dimension-
less form.

and 10−9, respectively, we replace the expressions for
the current with a Taylor series expansion of the small
parameter. In the expansion, we evaluate the current
up to second order in δψn(p), and up to �rst order in
δEFn(p)

.

Embedding a two-dimensional density into the three-
dimensional model is formally accomplished with the use
of a delta function. Numerically, the two-dimensional
defect densities of states and the surface recombination
velocities are divided by the size of the discretized grid at
the position of the plane, and along the direction normal
to the plane.

2 Newton-Raphson algorithm

The discretization of Eqs. (1)-(3) leads to the system
of three equations for all sites of the discretized space

(except boundary sites):

0 =
2

∆xi + ∆xi−1

(
J ip − J i−1

p

)
+Gi −Ri (35)

0 =
2

∆xi + ∆xi−1

(
J in − J i−1

n

)
−Gi +Ri (36)

0 = ρi +
2

∆xi + ∆xi−1
×
[(

εi+1 + εi
2

)(
φi+1 − φi

∆xi

)
−(

εi + εi−1

2

)(
φi − φi−1

∆xi−1

)]
(37)

Because we exchanged the carrier densities for the quasi-
Fermi levels as the unknowns of the problem, we are
therefore looking for the sets EFn , EFp , φ at every grid
point.
We use the Newton-Raphson method to solve the

above set of equations: Given a general nonlinear func-
tion f(x), we want to �nd its root x̄ : f(x̄) = 0. Given
an initial guess x1, one can estimate the error δx in this
guess, assuming that the function varies linearly all the
way to its root

δx =

(
df

dx
(x1)

)−1

f (x1) . (38)

An updated guess is provided by x2 = x1 − δx. The as-
sumption of linear variation is key here, as if the guess x1
is too far from the root, the convergence of the algorithm
is very uncertain.
In multiple dimensions the derivative in Eq. (38) is

replaced by the Jacobian. In this case, Eq. (38) is a
matrix equation of the form

δx = A−1F (x) (39)

where F is a vector function of the unknowns of the prob-
lem on all sites of the discretized space, and A is the
Jacobian matrix given by

Aij =
∂Fi
∂xj

. (40)

We �nd that convergence of the Newton-Raphson algo-
rithm for this problem requires exact (analytically com-
puted) values for the Jacobian.

In case the guess is far from the root we are looking for,
the correction given by Eq. 38 can overshoot the solution.
A simple way to improve the convergence is to damp the
corrections δx given by Eq. (39). Inspired by an earlier
work [35], we found that the following procedure gives
good results. For δxi > 1, we replace δxi by

δx̄i = sgn(δxi) log (1 + 1.72|δxi|) . (41)


