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Abstract—In this study, we design and implement an algorithm
for optimal dynamic spectrum access (DSA) in a shared spectrum
system where the primary user (PU) is a Long Term Evolution
(LTE) system. The cumulative hazard function from survival
analysis is used to predict the remaining idle time available
in each channel for secondary user (SU) transmission subject
to a probability of successful completion. Optimal allocation of
physical resource blocks (PRBs) for the SU is shown to be a
variation of the unbounded knapsack problem. We evaluate the
algorithm performance using three data sets collected from real
LTE systems. The algorithms achieve good white space utilization
and have a measured probability of interference around the
target threshold.

I. INTRODUCTION

Dynamic spectrum access (DSA) has been proposed as a
means of making more efficient use of available spectrum.
In a common DSA scenario, there are one or more primary
users (PUs) operating in a given band with priority access. One
or more secondary users (SUs) can opportunistically transmit
during times that the PUs are idle. When the PUs want to use
the band again, the SUs must stop transmitting. In general,
the SUs know whether the band is occupied by the PUs at
a given time, either by querying a central coordinator (i.e.,
scheduler) or by sensing the band. However, the SUs do not
know future activity of the PUs. Hence, DSA can be thought
of as a prediction scheme in which an SU scheduler has to
predict, with a certain probability, that the SU can complete
its transmission before a PU reappears.

LTE cellular systems provide various services using one or
more frequency bands comprising multiple channels. LTE is
slated to be the first technology to be deployed in the Citizens
Broadband Radio Service (CBRS) band, which is based on the
shared spectrum paradigm [1]. Although opportunistic DSA is
not supported in the CBRS band at present, its semi-dynamic
three tier priority-based spectrum sharing is a positive step
towards that. The first tier (highest priority) is the federal
incumbent, which operates infrequently and only in limited
geographic areas. The second tier is licensed LTE; the third
tier is unlicensed. Thus, it is appropriate to start thinking about
DSA in a network where an LTE system acts as the PU and the

SUs communicate by opportunistically accessing the spectrum.

Although an LTE eNodeB could in theory be tasked with
scheduling the SUs along with its own PU UEs, we believe
there are reasons why this is not desirable and, therefore, not
likely. In general the SUs will not be subscribers to the PU
service. Thus, it is better to deploy a separate and independent

SU system whose operation is transparent to the primary LTE
system, thereby requiring no changes to the LTE system. This
approach also enables legacy LTE systems, i.e., those not
implementing our scheme, to participate in the DSA system.
The only interaction between PU and SU systems is at the
operator level, where a Service Level Agreement (SLA) may
be agreed upon that specifies various operational policies, e.g.,
an upper bound on the probability of interference.

Resources in LTE are allocated in chunks called physical
resource blocks (PRBs). Each PRB is 0.5 ms (one slot) long in
time and 180 kHz wide in frequency. In our scheme, therefore,
DSA becomes a matter both of predicting spectrum occupancy
by the PU and allocating PRBs for the SU transmission
accordingly.

The contributions of this paper are as follows. We present a
DSA algorithm that allocates PRBs to SUs in a system with a
statistical guarantee on the probability of interference to the PU
LTE system. We frame the allocation of PRBs across time and
frequency as a variation of the unbounded knapsack problem.
Our algorithm is simple and efficient, which makes it easier
to implement in a real system. We show the effectiveness of
our algorithm using LTE uplink datasets collected from real
deployed LTE systems at the time scale used by LTE systems
(1 ms).

II. RELATED WORK

Two state time-inhomogeneous Discrete-Time Markov Chain
(DTMC) [2], semi-Markov DTMC models [3], Alternating
Renewal Process [3], [4] and semi-Markov Continuous-Time
Markov Chain (CTMC) based models [5], [6], [7] are some
of the models proposed in the literature to represent spectrum
occupancy.

There have been few models proposed for predicting
spectrum occupancy, which is critical to allocating spectrum to
the secondary users. The Partially-Observable Markov Decision
Process (POMDP) model [8], prediction based on expected
remaining OFF time [9] and the two state semi-Markov
model [3] are some of the methods used for this purpose.
In [10], the transmission duration of an SU is constrained
based on the maximum bound on probability of interference to
the PU. Residual idle time of an Alternating Renewal Process
is used in [4] to indirectly predict reappearance of the PU.
Pattern mining of spectrum occupancy data has been used to
predict channel availability [11], [12]. In [13], [14], the authors
used the cumulative hazard function from survival analysis to



design DSA algorithms that allocated resources (time duration)
in a single dimension. In this work, we consider allocation of
resources in two dimensions, namely time and frequency.

Long Term Evolution (LTE) systems employ packet sched-
ulers that schedule users in the time domain and then allocate
physical resource blocks (PRBs) among them according to
criteria such as channel quality and service rate [15], but
usually no distinction is made between different classes of
User Equipments (UEs). Application-aware schedulers where
the allocation of PRBs and power is based on UE real-time
requirements, along with a guaranteed quality of experience
(QoE) for all users, has been researched in [16]. However,
these do not consider the requirement for an SU in a DSA
system where the scheduler must account for predicting future
PU activity.

III. ALLOCATION ALGORITHMS

We begin this section with a more precise statement of
the problem we are solving. Then we briefly explain how we
use the cumulative hazard function from the field of survival
analysis [17], [18] to limit the probability of interference
caused by an SU transmission to the PU system. This is
a key element of our DSA algorithm. We then present the
optimization formulation for our problem, followed by the
algorithm that optimally allocates PRBs for an SU.

A. Problem Statement

We use an LTE system operating in a given band as the PU.
The width of the band in frequency is (N x 180) kHz, i.e., the
width of N PRBs. We refer to each 180 kHz range of frequency
as comprising a channel to aid conceptual understanding. SUs
may transmit on PRBs that are idle, but interference to the
PUs should be limited. Hence in this DSA application, an
SU requests VW PRBs, and the goal is to devise an algorithm
that allocates up to ¥V PRBs, maintaining the probability of
interference on each channel below a specified threshold. Hence,
this is a two-dimensional resource allocation problem in which
the number of allocated PRBs is maximized, subject to the
constraint that the probability of interference on each channel
is below a threshold.

B. Use of Cumulative Hazard Function

A communication channel alternates between idle and busy
states. Let I, By, Is, B, . .. represent the successive idle and
busy states of a channel. We assume these states are independent
and the lengths of all the idle states have the same distribution,
say F(t). Our algorithm makes use of the hazard function
associated with the distribution F'(t). The hazard function at
time t, h(t), measures how likely an idle period of unknown
length I will end in the next instance given that it has lasted
for ¢ units of time and is given by
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where f(t) = dF(t)/dt. Given a specific channel to be shared,
the algorithm allows a request to transmit for 7 units of time
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only if the probability that the current idle period I will last for
additional duration 7 given that it has been idle for duration ¢
(when the SU request arrived) is more than a set threshold p.
That is, the SU request is granted if the following condition is
satisfied.

Pril>t+7|I>t>p 2)

This threshold p,0 < p < 1, is the probability of successful
transmission by the SU. It can be shown that [13]

PI>t+7|1>=exp(—[H(t+7)— HO) )

where H(t) = fg h(s)ds,t > 0 is the cumulative hazard
function. However, in practice, H (t) needs to be estimated
from the idle time data for which a large sample 1, Io, ..., I,
of n idle durations is collected. Let I(1) < Igy--- < Iy
be the ordered I;,7 = 1,...,n. Then it can be shown that a
non-parametric estimate H,,(t) of H(t) is given by [13]

1
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From (2) and (3), using H,(t) in place of H(t), it is easy to
deduce that transmission is allowed by the SU if the following
inequality is satisfied.

Hy(t+7) — Ho(t) < (= Inp) (5)

C. Optimization Formulation

Let x; be the number of PRBs allocated on channel ¢, w; be
the weight of the channel 7 and NV be the number of channels.
Let H!(-) be the non-parametric estimate of the cumulative
hazard funtion of channel i. Let 6, = (—Inp), where p is
the set threshold for probability of successful transmission and
t; be the amount of time that channel 7 has been idle when
the SU request for V¥ number of PRBs arrives. Then the two
dimensional resource allocation problem can be formulated as a
variation of the well-known unbounded knapsack problem [19]
given by

N
maximize Z w;xi, subject to (6)
i=1
N
> wi <W, a; €{0,Z} (7
i=1
w; >0,i=1,...,N (8)
max 0; < 0y, )

1<i<N

where 91' = Hfl(ti + l‘l) — H}.L(tl)

The above optimization formulation maximizes the total
weighted value of the allocated PRBs subject to the constraints.
Constraint (7) limits the allocation to a maximum of ¥V PRBs
requested by an SU, whereas constraint (9) makes sure that
the probability of interference on any channel is below the
specified threshold.

To keep our analysis simple, in this study, we have assumed
that all channels have equal weight by setting w; = 1, 1 <



1 < N. In general, the weights can be assigned based on (for
example) channel quality or priority.

D. Definition of Algorithm

The unbounded knapsack problem is known to be NP-
Hard [19]. Hence, we use a pseudo-polynomial algorithm using
dynamic programming to solve our two dimensional resource
allocation problem [20]. Let ¢; be the length of the current idle
period for channel i and H(-) be the non-parametric estimate
of cumulative hazard function of channel ¢. The algorithm for
finding the optimal allocation of resource blocks is presented in
Algorithm Fixed_PRB, which outputs x;’s, the number of PRBs
allocated to the SU in channel . Essentially the algorithm uses
the SU transmission constraint given in (5) across each channel
and solves the optimization formulation presented in (6).

Algorithm Fixed_PRB : Request Grant of }V PRBs
input:
W = number of PRBs requested
parameters:
H={H} H?2, ... HY}: non-parametric estimate of cumu-
lative hazard function for channels 1 to N
t = {t1,t2,...tn}: length of current idle period for
channels 1 to N in terms of PRBs
p - the probability of successful transmission threshold
output:
x = {1, %2, ...y }: number of resource blocks allocated
in channels 1 to NV

O, ;= —1np
0:=0
x:=0

while > . z; < W do
Omin = min; H’;Ll(tl +xi+1) = H}L(tz)
imin = argmin, H! (t; +z; + 1) — H. (t;)
if 0,,,;n, < 6y, then
Lirnin — LCimin + 1
0= emin
else
break
end if
end while
return x

For some applications, an SU may want to request the
maximum possible number of PRBs subject to the constraints.
A minor modification to Algorithm Fixed_PRB can achieve
that. The only change required is to remove the condition in
the while loop and make it an infinite loop. The algorithm
terminates when no more PRBs can be allocated on any of the
N channels, i.e., the if statement inside the while loop fails.
We call this Algorithm Max_PRB.

E. Example

Figure 1 illustrates a possible allocation using Algorithm
Fixed_PRB with 5 channels. In the figure, the SU requests
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Fig. 1. Allocation of resource blocks for the SU. PU transmissions in green,
SU transmissions in blue

W = 4 PRB pairs at time shown. The idle time lengths of the
channels are shown as ¢;, ¢ = 1,2,4,5 (Channel 3 is busy at
the time of request). The optimal allocation is shown as the set
of {x; : >°, ; = W} that satisfies the interference constraint
across all the channels.

IV. EVALUATION

A. Spectrum Occupancy Data

We use three sets of collected data to model PU activity.
The first set was collected using an indoor antenna on the
National Institute of Standards and Technology (NIST) campus
in Gaithersburg, MD. The second and third datasets were
collected using outdoor antennas in the city of Philadelphia, PA.
The locations were chosen to test our algorithms in indoor and
outdoor settings in an urban environment. Data were collected
in Band 17, a 10MHz uplink (UL) LTE band centered at
709 MHz at all the three locations.

The NIST campus data collection system consisted of a
10.78 cm “rubber duck” antenna connected to an Ettus Universal
Sofware Radio Peripheral (USRP) !. A 56 point power spectrum
(in dB) for each 1 ms period (after aggregating I/Q samples
every 80ns) was computed and the middle 50 values used as
power values of the 50 LTE channels. Since LTE allocates
PRBs in pairs, our collected dataset consisted of an integer
power value, in dB, for a pair of PRBs (1 ms in time). A
noise power threshold was then applied to produce a binary
occupancy sequence for each of the 50 channels. The noise
power threshold was chosen 3 dB above the value that produced
a probability of false alarm (PFA) below 1 %.

Data was collected for two different one hour periods:

e 3:00 PM to 4:00 PM local time, Monday, August 28, 2017
(1% day)

e 3:00 PM to 4:00 PM local time, Tuesday, August 29, 2017
2" day)

IThe identification of any commercial product or trade name does not
imply endorsement or recommendation by the National Institute of Standards
and Technology, nor is it intended to imply that the materials or equipment
identified are necessarily the best available for the purpose.



We chose these so that we could compare the same time period
on two separate days.

The second and third datasets were collected at two locations
in the metro Philadelphia area on the CityScape spectrum
monitoring system [21] with additional processing of the 1/Q
samples to produce output files in the same format as the data
collected at NIST. We converted the CityScape datasets into
binary occupancy sequences using the noise threshold to which
the CityScape USRPs were calibrated.

B. Simulation

In our experiments, we used occupancy data of LTE uplink
channels from channel 15 to 24 (total of 10 channels) as PU
traffic. This ensures that the SU does not transmit over the
control channels, Physical Random Access Channel (PRACH)
and Physical Uplink Control Channel (PUCCH). Idle and busy
periods for each channels were built based on a sampling
interval (1 ms) and noise threshold. Then a non-parametric
estimation of the cumulative hazard function of each channel
is computed. The threshold for probability of successful
transmission is set to 0.9, which implies the threshold of
probability of interference is 0.1.

We evaluate the performance of our algorithms in different
configurations. The configurations are denoted with a con-
catenation of three text strings separated by underscores in
the form station_train_run, where station € {lab, upenn0l,
upenn02} is the location where the data was collected, train €
{1“, Q”d} represents the data used for training the algorithm,
i.e., data used for building the cumulative hazard function
and run € {1%, 2"} denotes the data that represents the
PU spectrum occupancy while running the algorithm. For lab
station, values of 15t and 2"¢ represent one hour data from 15t
and 2" day respectively. For upenn01 and upenn02 station,
15t and 2" represent the first and second half of the one hour
data collected at those stations respectively. For example, in
configuration lab_15t_2md ap algorithm is trained using one
hour data collected in NIST lab from the 1%¢ day and run
using one hour data from the 2"¢ day. An algorithm trained
using the 15¢ half-hour data collected at upennO1 station and
run using the 2"? half-hour data is denoted as configuration
upenn01_1°t_2m%,

The SU traffic is modeled as a Poisson arrival process.
For Algorithm Fixed_PRB, an SU requests a fixed number
of PRBs and the algorithm allocates up to that many PRBs
while ensuring that the probability of interference is below the
specified threshold. For Algorithm Max_PRB, an SU requests
the maximum possible number of PRBs, and the algorithm
allocates the maximum possible PRBs subject to the given
interference probability constraint. The requests and allocations
in our simulation are always in terms of 1 ms time lengths,
but we use the term PRBs rather than “pair of PRBs” for
simplicity.

C. Metrics

Performance of the two algorithms was measured with the
following metrics.

e White Space Utilization (WSU): Given the spectrum
occupancy of a set of channels, the WSU by an SU
is defined as the fraction of total idle PRBs used by the
SU for its own transmission. In other words, it is the
ratio of number of idle PRBs used by the SU for its own
transmission to the total idle PRBs present in the spectrum
occupancy of the set of channels.

« Probability of Interference (PoI): The Pol of the secondary
user across a set of channels is defined as the probability
that a transmission of the SU collides with that of the PU
on those channels. Thus, it is the ratio of the number of
times an SU transmission collides (or runs into a busy
period) with a PU transmission across those set of channels
to the total number of SU transmissions over a long
observation period.

o Percentage Overlap of SU Transmission (POST): This
is the number of PRBs used for SU transmissions that
overlaps with PU transmissions across a set of channels
expressed as a percentage of total PRBs used for SU
transmissions across the same set of channels.

V. RESULTS
A. Performance of Algorithm Max_PRB

Figures 2, 3 and 4 show the performance of Algorithm
Max_PRB in terms of WSU as the average request inter-
arrival duration increases for lab, upenn0O1 and upenn02 datasets
respectively. As average request inter-arrival duration increases,
the offered load to the algorithm decreases, leading to a
decrease in WSU for all the datasets. However, for the lab
dataset, WSU is much higher than for the upenn01 and upenn02
datasets. For the lab dataset, all ten channels are idle for about
95 % of the time (for 1% day), whereas for upenn01, it varies
between 89 % to 90 % and for upenn02, it varies between 57 %
to 89 % (see Table I). Further, for the lab dataset, maximum
idle duration across the ten channels (for 1°¢ day) vary between
35345 ms to 51 532 ms. But the maximum idle durations in the
upenn01 dataset lie between 136 ms and 191 ms. For upenn02
those numbers are 34 ms to 154 ms. Thus, the lab data has
idle durations two orders of magnitude greater than those of
upenn01, and upennO1 idle durations are significantly higher
than those of upennO2. Also, the idle durations of the lab
data were not continuous, causing long flat periods in the
H(-) function, leading to allocations of more PRBs than in the
upenn(01 and upenn02 datasets. This also causes the slope of
H(-) function of the lab data to be lower than that of upenn01
and upenn02 datasets. Since a lower slope of H(-) function
leads to higher number of PRB allocation (see Eqn (5)), WSU
for lab dataset is much higher compared to those of upenn01
and upen(2. Comparing WSU between upennO1 and upenn(2,
we notice that the WSU of upennOl1 is higher. This is attributed
to the fact that fraction of idle time and the maximum idle
duration of channels are much higher in upenn0O1 dataset than
those of upenn02.

In Figure 2, we observe that the WSU for lab_15t_15¢ is
the highest and for lab_2"?_2"¢ is the lowest. This is largely
because there are larger idle durations on the 1¢ day compared
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to the 2"¢ day. WSU of the other two configurations lies
between these two.

For the upennO1 and upenn02 datasets, the relative perfor-
mance of WSU among different configurations is close to
each other. Note that configurations with 1¢_15¢ and 27¢_274
suffixes are not practical, since the algorithm is run on the
same data as the training data. In practice, the algorithm will
train (i.e., build the H(-) function) on the first half hour (or
some fixed duration) data and then allocate PRBs to SU using
the built H(-) function. So, 1°¢_2"? represents such a scenario.
2nd_15t represents a scenario where the PU traffic may be
swapped between the two half hour periods (in case such
traffic occurs in practice). Since the relative performances are
close to each other, it shows that a system deploying Algorithm
Max_PRB can perform as well as the theoretical system (e.g.,
1%t_15%) when it trains on first half hour data and then runs on
the next half hour.

Figures 5, 6 and 7 present the measured Pol as average
SU request inter-arrival time increases for the three datasets.
Measured Pol for the upennO1 and upenn02 datasets is always
below the set threshold (0.1) for all configurations. For the
lab dataset, the measured Pol is below the threshold for the
lab_2™?_274 and lab_2"¢_1%¢ configuration. However, for the
other two configurations ( lab_1¢_1% and lab_15t_2"%) the
measured Pol is slightly higher than the threshold. The first lab
dataset has longer idle time durations and is idle for a higher
fraction of time. So, when the algorithm is trained using this
data, the PRB grants are more generous (H (-) function is more
relaxed) and hence when the algorithm runs on the second
dataset it encounters more interference. When the algorithm
is trained and run on first dataset (configuration 1%¢_1%%), the
Pol slightly exceeds the threshold mostly due to estimation
error (of H(-) function). Measured Pol remains almost constant
in all configurations of all datasets as the inter-arrival time
between SU requests increases. Hence, the performance of the
PU system remains almost the same regardless of the load on
the SU system.

Figures 8, 9 and 10 show POST values for the lab, upenn0O1
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18 95.8| 35345 92.7| 28980 90.8| 191 | 87.8| 106
19 95.7| 44151 92.8| 28980 89.8| 166 | 82.0] 68
20 | 95.6] 51532 | 92.8| 28980 88.9| 149 | 77.8] 63
21 95.9| 51532 | 92.9] 28980 88.7| 142 | 77.0| 66
22 96.0| 49255 93.1| 19401 89.8| 136 | 57.2| 34
23 95.9| 51529 | 93.1] 31681 90.3] 155 | 70.6| 36
24 95.8| 51529 | 93.2] 30841 90.3] 142 | 83.4] 79
TABLE I

IDLE TIME DURATION INFORMATION FOR THE DATASETS

and upenn02 datasets respectively. The percentage overlap is
below 7.5% for all configurations for the lab dataset. For
upenn01 and upenn02 the maximum we see are 11 % and
13 %, respectively. The lab dataset has a higher fraction of idle
duration, and some idle periods are very long, which leads to
a lower POST value.

B. Performance of Algorithm Fixed_PRB

Figures 11, 12 show how WSU varies when the number
of requested PRBs increases for Algorithm fixed_PRB over
the lab and upennO1 datasets, respectively, when the average
SU request inter-arrival time is 1 ms. WSU increases as more
PRBs are requested, since the algorithm exploits more white
space before reaching a limiting value. The algorithm is limited
by the available white space and the interference constraint.
Hence, beyond a certain point, the algorithm cannot grant the
requested number of PRBs and instead allocates the maximum
possible within the constraints. In fact, the values at which
WSU saturates match the WSU values of Algorithm Max_PRB
corresponding to average request inter-arrival time of 1ms.
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Similar to Algorithm Max_PRB, the WSU values are close to

each other for various configurations in the upennQ1 dataset.

For the lab dataset the WSU for lab_15¢_1°¢ is the highest
and for lab_2"% 274 ig the lowest, and WSU for the other
two configurations lies between these two. The reasons for
these relative performances are the same as those given for
Algorithm Max_PRB.

Figures 13, 14 show a measured Pol for the lab and upennO1
datasets that initially increases as the number of requested PRBs
increases and then stays constant. These constant (saturated) Pol
values match the corresponding values for Algorithm Max_PRB
when the average request inter-arrival time is 1 ms. For all
the datasets and all configurations, except for lab_15t_2nd,
measured Pol is less than the set threshold. The anomaly in
lab_1°t_27? is due to the same reason given for Algorithm
Max_PRB.

Performance of the algorithm in terms of POST as the
requested number of PRBs increases is shown for the lab and
upenn01 datasets in Figures 15, 16. Overall, the POST values
are low. Similar to WSU and Pol, the saturated values match

upenn01 dataset
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Fig. 12.  WSU vs number of Requested PRBs for upenn0O1
dataset running Algorithm Fixed_PRB

with those of Algorithm Max_PRB.

Due to space limitations, we have not provided the perfor-
mance graphs of Algorithm Fixed_PRB over upenn(02 dataset.
But they are similar to those of upenn0O1 dataset.

VI. CONCLUSION AND FUTURE WORK

We presented an optimal DSA algorithm for allocation of
PRBs to the SU. The algorithm is a form of the unbounded
knapsack problem that maximizes the number of allocated
PRBs such that the Pol across all the channels remains below
a threshold using a non-parametric estimate of the cumulative
hazard function. The algorithm was tested on real LTE datasets,
one collected in our laboratory and two collected in center city
Philadelphia. Our results show that the algorithm is able to
make good use of the available white space while keeping the
overall Pol around the desired threshold. Hence, our algorithm
can be readily implemented in a practical LTE network.

In this study, we used equal weights for the channels. Our
scheme should be studied when the channels have different
weights due to different priority or channel quality. The
SU scheduling model assumed ideal knowledge of the PU
activity at the time of the SU request and the ability to
schedule the SU transmission within one subframe. Further
work should investigate imperfect sensing of the band and
realistic scheduling overhead.
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