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NOMENCLATURE 

  Variables with Roman Letters 

q,0a  ‐ zeroth degree polynomial fit coefficient of null data (equals  NULL
q ) 

c0 ,  1c ,  c2  ‐ fit coefficients for density correlation 

CLDA ‐ calibration coefficient for NIST’s Laser Doppler Anemometry (LDA) system  (Usually CLDA = 1.) 

1 NULL NULL45, 12,F P P    ‐ pitch calibration factor  

2 NULL
2
LDA 12,2F V P   ‐ velocity calibration factor 


nP1  ‐ unit vector normal to port 1 on five‐hole probe 

T  ‐ static temperature of the air in the wind tunnel 

P  ‐ static pressure of the air in the wind tunnel 

offsetP  ‐ yaw pressure at which null parameters are measured (may be offset from zero) 

RH  ‐ relative humidity of the air in wind tunnel 

1 45 12PR P P   ‐ Pitch pressure ratio 

2 dyn 12PR P P    ‐ Velocity pressure ratio 

r x xm n( , )  ‐ normalized correlation coefficient between variables  xm  and  xn  

u x( )  ‐ uncertainty of input quantity  x  at the 68 % confidence level 

c,p( )u y  ‐ combined propagated uncertainty of measurand y at the 68 % confidence level 

c,np( )u y  ‐ combined non‐propagated uncertainty of measurand y at the 68 % confidence level 

c( )u y  ‐ combined uncertainty of measurand y at the 68 % confidence level 

( )U y  ‐ expanded uncertainty of measurand y at the 95 % confidence level 

VLDA  ‐ airspeed measured by NIST’s Laser Doppler Anemometry (LDA) working standard 

VPITOT  ‐ airspeed measured by NIST’s standard L‐type pitot probe check standard 

z'V  ‐ local velocity along stack axis 

 

  Variables with Greek letters 

  ‐ pitch angle measured by traverse system 

q  ‐ global probe variable equals a null parameter or calibration coefficient depending on value of q  

2
LDAdyn 2P V    ‐ dynamic pressure based on air density and airspeed  

                                                            
1 Corresponding Author: Iosif.shinder@nist.gov 
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  P P Pmn m n  ‐ measured differential pressure across ports “m” and “n” of the five‐hole 

o   P P P45 4 5  ‐ pitch pressure 

o   P P P23 2 3  ‐ yaw pressure 

o   P P P12 1 2  ‐ velocity pressure 

zeroP  ‐ zero reading of differential pressure transducer 

calP  ‐ differential pressure reading within calibrated range transducer 

  ‐ positive number much less than 1 

 ‐ air density 
  ‐ yaw angle measured by traverse system  

  ‐ rational polynomial curve fit of calibration data 

 

 

 

Subscripts 

ALIGN ‐ alignment of yaw angle or pitch angle during probe installation 

EOS ‐ Equation of State 

FIT ‐ curve fitted value 

LDA ‐ Laser Doppler Anemometry 

NULL‐ condition where yaw pressure is zero ( P23 0 ) 

q ‐ global probe parameter with values 1, 2, 3, 4, or 5 

r ‐ relative value  

TRAV ‐ wind tunnel traversing system 

x – axis of wind tunnel 
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ABSTRACT 

We  report  progress  towards  the  goal  of  reducing  the  errors  in  industrial  smokestack  flow 

measurements to 1 % by replacing S‐probes with calibrated 3‐D probes (i.e., probes that measure 3 

components of velocity).  NIST calibrated a commercially‐manufactured spherical probe and a prism 

probe at air speeds  (5 m/s  to 30 m/s) and pitch angles  (20° to 20°) using a yaw‐nulling method 

similar to EPA’s Method 2F.  The expanded uncertainty for 3‐D air speed measurements of both probes 

was near 1 % at a 95 % confidence level.  Most of this uncertainty is attributed to the reproducibility 

of the calibration measurements and the uncertainty of the NIST’s  laser doppler anemometer air‐

speed standard.  Thus, the 1 % goal might be possible; however, to obtain this low uncertainty, two 

significant uncertainties consistent with EPA Method 2F must be avoided.  First, the Reynolds number 

dependence of the prism probe must be accounted for during probe calibration, and second, more 

stringent uncertainty requirements are needed for the yaw‐pressure measurement at low flows. 

1 INTRODUCTION 

Accurate stack-flow measurements are required to measure hazardous emissions from industrial 
smokestacks.  Today, most stack flow measurements use an S-type pitot probe (or S-probe), 
which measure only two components of the flow velocity.  When the velocity field in stacks is 
highly 3-dimensional, S-probe surveys can have errors of 10 % or more [1 ‒ 4].  Here, we report 
progress towards the goal of reducing stack flow survey errors to 1 % by replacing S-probes with 
calibrated probes that measure 3 components of velocity.   

The U.S. Environmental Protection Agency (EPA) has developed regulations supporting two types 
of commercially available 3-D probes including a 5-hole prism probe and a 5-hole spherical probe 
shown in Figures 1A and  1B.  These probes are calibrated and used in accordance with EPA 
document Method 2F [5].  The protocols in Method 2F stipulate 1) the design features of the wind 
tunnel used to calibrate probes (e.g., minimum cross section dimensions, flow stability, range of air 
speeds, maximum level of off-axis flow), 2) the calibration procedure to determine the Method 2F 
calibration factors, aptly named F1 and F2, 3) the procedure for using the probe to measure the 
volumetric flow in industrial stacks, and 4) the uncertainty specifications of auxiliary measurements 
of differential pressure, yaw angle, and pitch angle.  However, the uncertainty of the calibration 
factors F1 and F2 are not specified.  Therefore, it is not clear what level of uncertainty reduction, if 
any, will be gained by replacing an inexpensive two-dimensional (2-D) S-probe with a more complex 
three-dimensional (3-D) probe.  If 1 % stack flow measurements are the goal, then the uncertainty 
of these calibration factors should be no larger than 1 % at the 95 % confidence level.  

The National Institute of Standards and Technology (NIST) has experience calibrating both prism 
probes and spherical probes using nulling and non-nulling methods.  For each probe type, the 
calibration factors have the same general characteristics.  In this work we calibrated the prism 
probe and the spherical probe shown in Figures 1A and 1B using the Method 2F protocol; 
however, NIST implementation of Method 2F exceeded the protocol’s minimum requirements.  
Several steps were taken to obtain the highest quality data with the lowest possible uncertainty.  
First, we characterized the probes’ Reynolds number (Re) dependence over the full velocity range 
(5 m/s to 30 m/s) of typical coal-fired power plant stacks.  In addition, we evaluated the probe 
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performance over a wide range of pitch angles ( = - 45° to 45°).  The calibration was performed 
in NIST’s wind tunnel [1] against the U.S. national standard for wind speed, a laser doppler 
anemometer (LDA) traceable to the SI unit of velocity via length and time [6]. 

Second, we computed the expanded uncertainties2 of the both the pitch calibration factor F1 and 
the velocity calibration factor F2 for both 3-D probes.  The results showed the expanded 
uncertainty (95 % confidence level) of the velocity calibration factor 100U(F2)/F2 ranged from 
0.9 % to 1.1 % for the spherical probe and from 0.9 % to 1.25 % for the prism probe for pitch 
angles  = - 20° to 20°.  We performed multiple calibrations on each probe and included 
reproducibility in the uncertainty budget.  For both probes reproducibility was a major factor in the 
uncertainty budget, contributing more than 50 % to the total uncertainty.  Given that the 
uncertainties of these probes have not been documented over the wide range of pitch angles and 
velocities investigated herein, these results will give the stack flow measurement community the 
groundwork for computing the uncertainty as well as provide a baseline of the best possible 
performance once can expect from these devices.   

 

Figure 1. Picture of A) 5-hole prism probe and B) 5-hole spherical probe.  The nominal diameter and 
probe length of each probe was D = 2.54 cm (1 inch) and 1.83 m (6 ft). 

Third, we developed robust correlations that calculate the probe velocity calibration factor (F2) and 
pitch angle ( ) as a function of the measured pitch pressure and velocity pressure at the yaw-null 
angle.  The correlation accounts for the probes’ Re − dependence and pitch angle response over 
the range of pitch angles, F2 = F2(, Re).  For  = - 20° to 20° we found that F2,PRISM had a strong 
Re−dependence while F2,SPHERICAL was nearly independent of Re.  Because the Method 2F protocol 
allows probes to be calibrated at only two air speeds, 18.3 m/s and 27.4 m/s, the resulting F1 and 
F2 calibration factors are extrapolated to lower velocities during application.  This extrapolation 
procedure works reasonable well for the spherical probe since F2,SPHERICAL is nearly independent of 

                                                            
2  Herein the expanded uncertainty is the uncertainty with a confidence interval of 95 % or equivalently with a coverage factor 

of two (k = 2).  A capital U is used throughout to denote expanded uncertainty. 
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Re.  A reference value of F2,SPHERICAL measured at 20 m/s deviated less than ± 1 % with F2,SPHERICAL 
at other air speeds; the only exception occurred at the lowest air speed of 5 m/s where the deviation 
increased to nearly 2 %.  However, for the prism probe the extrapolation introduces a 6 % error at 
low air speeds (< 10 m/s).  To accurately measure low velocities a prism probe must be calibrated 
at low velocities so that the Re−dependence of F2,PRISM is adequately characterized. 

Finally, we ensured that the accuracy of low speed (< 10 m/s) yaw pressure measurements only 
made a negligible contribution to the F1 and F2 uncertainty budget.  When Method 2F protocol is 
implemented the uncertainty of the yaw pressure measurement can be significant at low speeds 
for the following 3 reasons.  First, Method 2F only requires that the yaw pressure measurement 
be 1 % of full-scale where the full-scale is 124.4 Pa.  As such, the accuracy of the yaw pressure 
measurement can be a significant fraction of the of the dynamic pressure at low air speeds.  
Second, during a flow RATA, Method 2F allows the differential pressure transducer that measures 
yaw pressure to drift by as much as 7.5 Pa.  At low flue gas velocities, the uncertainty attributed 
to the zero drift can be a significant fraction of the dynamic pressure, leading to a large uncertainty 
in the yaw pressure measurement.  Finally, Method 2F requires nulling the probe or equivalently 
finding the yaw angle resulting in zero yaw pressure at each traverse point.  In practice, finding 
the probe yaw-angle where the yaw-pressure is zero is difficult due to noisy pressure signals.  
This is especially true in typical stack applications that have swirling, turbulent flows.  Method 2F 
does not require time-averaging the yaw pressure measurements and adjusting the yaw angle 
until the actual zero yaw pressure is determined.  Consequently, the F1 and F2 values determined 
using Method 2F are generally measured at a yaw-pressure close to, but not exactly equal to 
zero.  This uncertainty has not been documented in Method 2F, but it can be significant at low 
velocities. 

To mitigate the large yaw pressure uncertainties that occur at low velocities we took the following 
3 steps.  First, we measured the yaw-pressure with a stable, low uncertainty yaw-pressure 
transducers with uncertainty specifications based on 0.2 percent of reading instead of 1 % percent 
of full-scale.  Second, we ensured that zero drift was negligible relative to other uncertainty 
components during calibration.  Finally, we implemented a curve fit method (CFM) to ensure that 
the calibration factors F1 and F2 are determined at a zero yaw-pressure, even when pressure 
signals are noisy due to flow noise.   

This manuscript documents the calibration procedures used by NIST, gives the results for both 
3-D probes, and documents their uncertainty calculations.  We hope that this paper will guide the 
stack flow community in estimating the uncertainty of Method 2F calibrations.  The low 
uncertainties obtained herein are generally not obtainable using Method 2F unless certain 
modifications are made to the protocol.  We conclude the manuscript by discussing modifications 
that should be made to Method 2F to avoid unexpected large uncertainties.  
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Figure 2. 3-D probe installed in NIST wind tunnel: A) definitions of the pitch ( ) and yaw angles ( ), 
B) NIST 3-D Automated Traverse System. (Note that the air flow moves in the direction of the x-
axis in Fig. 2). 

2 DESCRIPTION OF NIST’S WIND TUNNEL 

Air speed measurements were performed in the 2 m long rectangular test section of our 
recirculating wind tunnel [7 - 10].  The cross section is 1.2 m high by 1.5 m wide.  This large cross-
section minimizes the probe-induced blockage effects and the profile effects attributed to the 
boundary layer along the wall.  LDA surveys (without a probe installed) demonstrate a uniform 
velocity in the test section’s measurement zone.  Figure 2A shows a 5-hole prism probe installed in 
the test section.  Since the presence of the probe disturbs the velocity field, the LDA velocity (VLDA) is 
measured in the freestream upstream of the probe’s zone of influence.   

The velocity measured by the LDA is converted to dynamic pressure by  

dyn

2
LDA

2

V
P 


 (1) 

where   is the air density in the test section, which is calculated by 

     
  


c c

P c RH
T T
0 2

1= exp  (2) 

where the coefficients have the following values c0 = 3.4848103 K kg/J, c1 = 6.65287108 Pa, and 
c2 = 5315.56 K; RH is the relative humidity of the air in percent, P is the static pressure in Pascal, T 
is air temperature in Kelvin, and the air density is in units of kg/m3.  The pressure is measured using 
the static pressure ports on the NIST check standard pitot probe shown in Fig.2A.  The figure also 
shows the location where the temperature and relative humidity are measured. 3  The standard 
relative uncertainty of density equation of state is uEOS,r( ) = 0.1 % [ 11 ]. 4   The standard 
uncertainties of the temperature, pressure, and relative humidity (RH) are u(T) = 1 K, 
u(P) = 0.1 kPa, and u(RH) = 5 %, respectively.  These uncertainties are multiplied by their 

                                                            
3  In Fig. 2 the temperature sensors attached to the probes were not the ones used in this calibration. 

4  Throughout this manuscript we denote relative uncertainties using the subscript “r”, so that ur(x) = 100 u(x)/x is a dimensionless 
value expressed as a percent; here, x is the measurand and u(x) is the dimensional standard uncertainty of the measurand at a 
confidence interval of 68 % or equivalently with a coverage factor of unity (k = 1). 
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respective normalized sensitivity coefficients and root-sum-squared to give the relative 
uncertainty in the computed density.5  For the range of air speeds in this calibration (5 m/s to 
30 m/s) the expanded uncertainties of the LDA and L-shaped pitot probe are Ur,LDA =0.41 % and 
Ur,L-PITOT = 0.44 % [6], respectively.2  During the calibration the average difference between the 
LDA airspeed (VLDA) and the L-shaped pitot probe air speed (VPITOT) differed by no more than 
0.1 %, well within their expected uncertainties.   

Probes are oriented to specific pitch angles in the range −45° ≤  ≤ 45° and yaw angles in the range 

180°≤  ≤ to +180° by the 3-D traverse system attached to the outside of the wind tunnel shown 
in Fig. 2B.  The probe is installed into the test section through the narrow rectangular slot called the 
feed-through port.  Velocity surveys have shown that air leakage into the test section through the 
feed through has a negligible effect on air speed measurements, provided the probe is positioned 

near the center of the wind tunnel.  As shown in Fig. 2A the yaw angle ( ) corresponds to rotations 
about the probe axis while the pitch angle ( ) rotates the probe in the x-y plane about the pressure-
sensing port 1 (see Fig. 3 for pressure port locations).  Consequently, when the traverse system 
moves the probe to a specified pitch angle the physical location of port 1 in the test section remains 
unchanged.  In addition, the physical location of the LDA velocity measurement coincides with the 
streamline normal to port 1.  The positive yaw angle direction is indicated by the direction of the 
arrow in Fig. 2A and the positive and negative pitch angles are denoted by the respective positive 
sign (+) and negative sign ().  

A custom software program controls the air speed and the probe pitch and yaw angle settings.  The 
program also acquires the calibration data including the LDA velocity, the required differential 
pressure measurements, pitch, yaw, etc.  Data acquisition uses several different communication 
interfaces. Pressure-based instrument readings are acquired using a PCI-based multifunction DAQ 
board, while auxiliary LabVIEW programs are used to continuously monitor the Laser Doppler 
Anemometer and environmental sensors (i.e., temperature, pressure, and relative-humidity).  The 
program ensures flow is stable and within ±0.2 % of set point velocity during data collection. 

                                                            
5  Section 5.1 gives details for calculating sensitivity coefficients and performing uncertainty analysis. 
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Figure 3. Probe head geometries and port locations 1, 2, 3, 4, and 5 for Prism probe (A) and Spherical probe (B). 

3 PROBE DESCRIPTION AND INSTALLATION  

3.1 Differential Pressure Measurements 
Figures 3A and 3B show the shapes of the prism probe head, the spherical probe head, and the 
location of the 5 pressure ports on each probe.  The pressure ports are labeled 1, 2, 3, 4, and 5.  
We measured the differential pressures across the ports using four 10 Torr (10 Torr = 1333.22 
Pa) model 698A Baratron heated, high accuracy, bidirectional differential capacitance 
manometers.6  For convenience, we define the pressure difference between any two ports by  

mn m nP P P    (3) 

where Pm is the pressure of port “m” where m = 1, 2, 3, 4, or 5 and Pn is the pressure of port “n” 
where n =1, 2, 3, 4, or 5.  We connected the four pressure sensors to the pitot probe ports so that 
the first sensor measured P12; the second transducer measured P13; etc. The standard 
uncertainty of each differential pressure transducer is ur(Pcal) = 0.1 % of reading for Pcal = 2 Pa 
to 666.7 Pa and from Pcal =  2 Pa to 666.7 Pa.7  A conservative estimate of the standard 
uncertainty attributed to zero drift is conservatively taken to be u(Pzero) = 0.002 Pa.  Thus, the 
uncertainty of differential pressure measurements is 

                                                            
6  Certain  commercial  equipment,  instruments,  or  materials  are  identified  in  this  report  to  foster  understanding.  Such 

identification does not  imply recommendation or endorsement by the National Institute of Standards and Technology, nor 
does it imply that the materials or equipment identified are necessarily the best available for the purpose. 

7  The uncertainty is based on repeated calibrations against NIST’s primary pressure standard.  The stated uncertainty includes 
the standard deviation of fit residuals, hysteresis, reproducibility, and the uncertainty from the primary pressure standard.  
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2 2
1n cal zero( ) ( ) ( )u P u P u P      (4A) 

for n = 2 to 4, where P1n is the measured differential pressure, and u(Pcal) is the dimensional 
uncertainty (in units of pressure) attributed to the calibration of the transducer. 

The pressure difference between ports 1 and 2 (P12) has special significance and is denoted 
“velocity pressure”.  Two other important differential pressure measurements include the “yaw 
pressure” and the “pitch pressure”.  The yaw pressure is the differential pressure between ports 2 
and 3 (P23) while the pitch pressure is the differential pressure between ports 4 and 5 (P45).  Since 
NIST measured all the probe differential pressures relative to port 1, we subtract the appropriate 
differential pressure measurements to determine the yaw pressure and the pitch pressure.  The 
yaw pressure is P13 - P12 and the pitch pressure is P15 - P14. 

The uncertainty in the velocity pressure measurement (P12) is given by Eq. (4A).  However, 
additional considerations are necessary to determine the uncertainty of the yaw pressure (P23) and 
the pitch pressure (P45) since each is determined by the difference of two separate measurements.  
The yaw pressure will be zero at the yaw-null condition so that the two pressure measurements P13 
and P12 will be nearly identical.  In this case, the uncertainty from calibrating both transducers to the 
same standard is perfectly correlated, and does not contribute to the uncertainty of P13 and P12.  In 
contrast, the uncertainty from zero drift is not correlated and must be included for both transducers.  
Consequently, the uncertainty for the yaw pressure at (or near) the yaw condition is 

  u P u P23 zero( ) 2 ( )  (4B) 

where the factor 2  accounts for the zero drift of both transducers.  For the uncertainty in the 
pitch pressure, the two measurements P15 and P14 are not equal, and their uncertainties of their 
calibrations are not correlated.  In this case the uncertainty is 

2 2
45 cal zero( ) 2 ( ) 2 ( )u P u P u P      (4C) 

where 2  is a factor of both u Pcal( )  and u Pzero( ) .   

We leak checked each pressure line before calibration to prevent erroneous pressure readings 
resulting from leaks. 
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Figure 4. Yaw angle alignment: (A) Prism probe, and (B) Spherical probe in wind tunnel test section. Flow 
moves in the positive x-direction.  

3.2 Alignment of 5-hole Probes 
Figures 4A and 4B show pictures of the yaw angle alignment of both the prism probe and the 
spherical probe in the wind tunnel test section.  The inclinometer in each figure is balanced on 
the flat sections of each probe head.  The probe shaft is rotated until the inclinometer reads zero 
within ± 0.5°.  At these reference yaw angles, the vector normal to port 1 (shown as P1n


 in the 

figures) is orthogonal to the axis of the wind tunnel (the x-axis).  In Fig. 4A port 1 on the prism 

probe is oriented upwards in the direction of P1n


 so that the yaw angle is 90°.  In contrast, port 1 

on the spherical probe shown in Fig. 4B is oriented downward in the direction of P1n


 so that the 

yaw angle is 90°.  Based on this convention the yaw angle is zero when the probe is rotated so 

that P1n


 points into the oncoming flow (i.e., P1n


 is parallel to but opposite the x-axis). 

We define the pitch angle equal to zero when the probe axis is parallel to the transverse direction 
depicted by the y-axis in Fig. 4A and 4B.  The traverse system is used to align probe to the zero-
pitch position.  The standard uncertainty of rotating a probe to the zero-pitch position and to all 
pitch angles ± 45° is u( )  = 0.25 °. 

The standard uncertainty of the yaw angle is u( )  = 0.32°.  The yaw angle uncertainty is given by 

   u u u
ALIGN TRAV
2 2( ) ( ) ( )  (5) 

where u
ALIGN

( )  is the standard uncertainty attributed to yaw angle misalignment incurred during probe 

installation, and u
TRAV

( )  is the standard uncertainty associated with the traversing system’s rotary 

encoder.  The standard uncertainty attributed to yaw angle misalignment is u
ALIGN

( )  = ± 0.5°/ 6  
± 0.2° where ± 0.5° is accuracy of the inclinometer shown in Fig. 4.  Assuming a triangular distribution, 

the standard uncertainty is obtained by dividing ± 0.5° by 6  [12]. 
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4 CALIBRATION PROCEDURES AND RESULTS 

We calibrated both the spherical and prism probes using the framework of the Method 2F 
procedure.  Deviations from the Method 2F procedure are discussed in detail.  The spherical 
probe was calibrated on 3 different occasions: 7/12/2016, 7/15/2016, and 11/1/2016 while the 
prism probe was calibrated on 2 occasions: 7/18/2016 and 7/22/2016.  The calibration conditions 
(i.e., the range of air speeds, pitch angles, and yaw angles) are listed in Table 1 for the spherical 
probe and in Table 2 for the prism probe. 

Table 1.Calibration conditions for the 5-hole spherical probe. 

No. Date 
Range of LDA 

Velocities (VLDA) 
Range of  

Pitch Angles () 
Range of  

Yaw Angles ( ) 

1 7/12/2016 
5 m/s to 30 m/s 
(5 m/s steps) 

45° to 45° 
(3° steps) 

9° to 9° 
(3 ° steps, N = 7) 

2 7/15/2016 
7.5 m/s to 27.5 m/s 

(5 m/s steps) 
43.5° to 43.5° 

(3 ° steps) 
7.5° to 7.5° 

(3 ° steps, N = 6) 

3 11/1/2016 
5 m/s to 30 m/s  
(5 m/s steps) 

45° to 45° 
(5 ° steps) 

10° to 10° 
(2 ° steps, N = 11) 

Table 2. Calibration conditions for the 5-hole prism probe. 

No. Date 
Range of LDA 

Velocities (VLDA) 
Range of  

Pitch Angles () 
Range of  

Yaw Angles ( ) 

1 7/18/2016 
5 m/s to 30 m/s  
(5 m/s steps) 

45° to 45° 
(3 ° steps) 

9° to 9° 
(3 ° steps, N = 7) 

2 7/22/2016 
7.5 m/s to 27.5 m/s 

(5 m/s steps) 
43.5° to 43.5° 

(3 ° steps) 
7.5° to 7.5° 

(3 ° steps, N = 6) 

After installing the probe into the traversing system and leak checking each pressure line, the air 
speed in the wind tunnel is set to the lowest-velocity set point and allowed to stabilize.  While the 
air speed is stabilizing, the traverse system moves the probe to the initial pitch and yaw angles.  
After the pressure readings and the air speed are stable, we record the differential pressure 
readings from the probe (i.e., P12, P13, P14, and P15), the LDA velocity (VLDA), the static 
pressure, static temperature, and relative humidity.  Subsequently, the probe is rotated to the next 
yaw angle and another set of data is recorded.  We repeat this procedure until data is acquired at 
all the prescribed yaw angles.  After traversing the range of pitch angles, we repeat the entire 
procedure from the beginning at the next air speed set point. 

4.1 Null Parameters and Calibration Factors  
At each air speed and pitch angle, we measured the yaw-null angle (NULL) by determining the 
yaw angle for which the yaw pressure is zero (i.e.,  P23 = 0).  At the yaw-null angle we also 
measured the null pitch pressure (P45,NULL) and the null velocity pressure (P12,NULL).  These null-
parameters are used in conjunction with the measured air speed (VLDA) and air density () to 
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determine the pitch angle calibration factor (F1) and the velocity calibration factor (F2).  The 
formulas used to compute the pitch angle calibration factor and the velocity calibration factor are:  

 
 

 
 

 

P P P
F

P P P
NULLNULL

NULLNULL

4 5 45,
1

1 2 12,

, (6A) 

and 

  NULL NULLNULL

2
dyn dyn LDA

2 LDA LDA
1 2 12, 12,2

P P V
F C C

P P P P

 
  

  


, (6B) 

respectively.  In Eq. (6B) the dynamic pressure is calculated from Eq. (1) so that the coefficient 
CLDA is identically equal to 1.   

4.2 Curve Fit Method (CFM) to Determine the Null Parameters 
When using the CFM one does not attempt to rotate the probe to the exact position where the 
yaw pressure is zero; instead, one measures each of the five physical variables shown in Table 3 
over a narrow range of yaw pressures surrounding P23 = 0.  Then, the measured values are 
fitted to a polynomial function of the yaw pressure, which is evaluated at P23 = 0 to give the 
respective null parameters (e.g.,  NULL, P45,NULL, and P12,NULL). We use the notation q to 
represent any of the five quantities listed in Table 3 where the subscript “q” identifies each 
quantity.  The measured values are compactly expressed as ordered pairs (P23,n,q,n), where the 
subscript n denotes the nth  measurement of the N total measurements made at the points listed 
in Table 1 for the spherical probe and in Table 2 for the prism probe.  

Table 3. Definition of the Generic Probe Parameters (q,n) 

θ Physical Variable Generic Probe Parameters 

1 yaw angle, ( ) 1 =  

2 pitch pressure, (P45) 2 = P45 

3 velocity pressure, (P12) 3 = P12 

4 pitch pressure ratio, (PR1) a 4 = PR1 = P45/P12 

5 velocity pressure ratio, (PR2) b 5 = PR2 =  LDA 12P P  

aBy definition, the pitch pressure ratio equals the pitch calibration factor, PR1(0) = F1 at zero yaw pressure.  
bBy definition, the velocity pressure ratio equals the velocity calibration factor PR2(0) = F2 at zero yaw pressure.

The N data points (P23,n , q, n) are fit to a 4th degree polynomial given by8 

          q,FIT
32 4

0 1 23 2 23 3 23 4 23a a P a P a P a P  (7) 

where a0, a1, a2, a3, and a4, are the fit coefficients, and q,FIT is the fitted function.  The fit is used 
as a continuous extension of the discrete data set; therefore, the null parameters are determined 
by evaluating the curve fit at zero-yaw pressure, 

                                                            
8  At some large (positive and negative) pitch angles we used a 3rd degree polynomial.  
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   q,FIT q,NULL q,0(0) a  (8) 

where aq,0 is the zeroth-degree fit coefficient (i.e., y-intercept of the polynomial fit) the and the 
subscript “q” specifies the quantity that is being evaluated, as shown in Table 3.  For example, for 
q = 1, 2, and 3 the corresponding null parameters are: a1,0 = NULL; a2,0 = P45,NULL; and 
a3,0 = P12,NULL, while for q = 4 and 5 the calibration coefficients are: a4,0 = F1 and a5,0 = F2. 

 
Figure 5. Plots of the A) the yaw angle ( ), B) the pitch pressure ( ), and C) the velocity pressure ( ) versus the 
yaw angle for the spherical probe at an air speed of 15 m/s and a pitch angle of 21°.  A 4th degree curve fit evaluated 
at  P23 = 0 gives a yaw-null angle of NULL = 1.06°, a pitch pressure at the yaw-null angle of P45,NULL = 142.27 Pa, 
and a velocity pressure at the yaw-null angle of P12,NULL = 105.0 Pa. 

Figure (5) shows an example of how the null parameters are computed for the spherical probe at 
VLDA = 15 m/s and   = 21°.  The measured yaw angles ( ), pitch pressures ( ), and velocity 
pressures ( ) are plotted along with their corresponding polynomial curve fits indicated by the 
solid lines ().  The dashed line (- - -) in each plot originates vertically from x-axis, intercepts the 
polynomial fit at P23 = 0, and extends horizontally to the y-axis where it indicates the value of 
respective null parameter. For the air speed and pitch angle in this example, Fig. (5A) shows the 

yaw-null angle equals NULL = 1.06°.  Fig. (5B) shows the pitch pressure at the null angle is 
P45,NULL = 142.27 Pa, and Fig. (5C) depicts that the velocity pressure at the null angle is 
P12,NULL = 105.0 Pa.  The measured null parameters along with the air speed and air density are 
used to calculate F1 and F2 and via Eqs. (6A) and (6B).  For this example, these values are 
F1 = 1.358 and F2 = 1.121, respectively. 

 

Figure 6. Plots of the A) the pitch pressure ratio ( ) and B) the velocity pressure ratio ( ) versus the yaw 
pressure for the spherical probe at an air speed of 15 m/s and a pitch angle of 21°.  A 4th degree curve fit 
evaluated at P23 = 0 gives the pitch calibration factor of F1 = 1.356 and a velocity calibration factor of F2 = 1.121. 
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As indicated in the last two rows of Table 3, the calibration factors F1 and F2 can be directly calculated 

using the CFM to evaluate pitch pressure ratio (PR1) and the velocity pressure ratio (PR2) at P23 = 0.  
Figure (6) illustrates how this is done.  The pitch calibration factor (F1) is determined by curve fitting 

PR1 ( ) versus the yaw pressure in Fig. (6A) and evaluating the fit at P23 = 0.  Similarly, the velocity 
calibration factor (F2) is the y-intercept of the curve fit of PR2 ( ) versus the yaw pressure shown in 

Fig. (6B).  The difference in the values of F1 and F2 calculated by evaluating PR1 and PR2 at P23 = 0 
shown in Fig. (6) are metrologically equivalent (i.e., within the uncertainty) with F1 and F2 computed 

using the values of P45,NULL in Fig. (5B) and P12,NULL in Fig. (5C) along with Eqs. (6A) and (6B).  
Although both methods give equivalent results, in this work we opt to calculate the null parameters 
using Eqs. (6A) and (6B) as this choice facilitates a slightly easier uncertainty analysis. 

4.3 Calibration Results for a Spherical Probe 
Figure 7 shows the calibration data of the spherical probe performed on 7/12/2016.  Figures 7A 
and 7B show F1 and F2, respectively, plotted as a function of the pitch angle .  Each symbol in 
the figure corresponds to one of the 6 air speed set points (Vn’s) shown in the legend.  Each of 
these velocities is measured by the LDA system.  In Fig. 7A, the pitch angle calibration factor F1 
is approximately a linear function of  at pitch angles above 30°.  In Fig. 7B, the values of F2 are 
approximately a parabolic function of  .  Although Figs. 7A and 7B display the trends of F1 and 
F2, they do not reveal the details of the velocity-dependences of F1 and F2. 

The velocity-dependences of F1 and F2 are shown more clearly in Figs. 7C and 7D, respectively.  
Figure 7C plots the difference F1(Vn)  F1(20 m/s), where F1(Vn) is evaluated at air speeds Vn 
indicated by the legend above Fig. 7 and F1(20 m/s) is the reference value at 20 m/s.  Similarly, 
Fig. 7D is a plot of the percent difference 100[ F2(Vn)/F2(20 m/s)  1] between F2(Vn) and 
reference value F2(20 m/s).  Plotting the calibration factors relative to the reference values clearly 
shows that F1 and F2 are velocity-dependent.  The velocity-dependence is largest at pitch angles 
 < 30° and   > 40°.  For large negative pitch angles, the values of F2(Vn) deviate by as much 
as 10 % from the reference value.  However, for pitch angles   >  25° the velocity-dependence 
of F2(Vn) is less than 1 % of F2, except for a fraction of the data at the lowest air speed V1 = 5 m/s.  
These results show that one could calibrate a spherical probe at a single reference velocity of 
20 m/s and at a single pitch angle  = 0°, and then apply the calibration to a wider range of  
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Figure 7. Calibration results of Spherical Probe for 6 air speeds ranging from 5 m/s to 30 m/s as functions 
of pitch angle . A) pitch calibration factor, F1; B) velocity calibration factor, F2; C) difference between F1 at 
specified air speeds and a reference value at an air speed of 20 m/s; D) percentage difference between F2 
at specified air speeds and a reference value at an air speed at 20 m/s; E) expanded uncertainty of F1 at 
95 % confidence level; F) expanded percentage uncertainty of F2 at 95 % confidence level. 
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Figure 8. Calibration results of Prism Probe for 6 air speeds ranging from 5 m/s to 30 m/s as functions of 
pitch angle . A) pitch calibration factor, F1; B) velocity calibration factor, F2; C) difference between F1 at 
specified air speeds and F1 at the reference air speed of 20 m/s; D) percentage difference between F2 at 
specified air speeds and F2 at the reference air speed at 20 m/s; E) expanded uncertainty of F1 at 95 % 
confidence level; F) expanded percentage uncertainty of F2 at 95 % confidence level. 
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airspeeds (10 m/s  VLDA  30 m/s) and pitch angles (25°   35°).  The values of F2 
determined from such a single-point calibration would be within ± 1 % of the values of F2, as 
determined via the complete calibration.9 

Figure 7E shows the expanded uncertainty U(F1) of the calibration factor F1 and Fig 7F shows the 
percent expanded uncertainty 100U(F2)/F2.  The expanded uncertainty is defined as the 
confidence interval that includes 95 % of the F1 and F2 data.  The uncertainties U(F1) and U(F2) 
have two sources: 1) the uncertainty attributed to the reproducibility of repeated calibrations, and 
2) the data reduction uncertainty, which combines uncertainty contributions from all the auxiliary 
variables used to calculate F1 and F2.  Section 4.5 documents the reproducibility uncertainties, 
and Section 5 documents the data reduction uncertainties. 

The uncertainties of both calibration factors increased at the extreme positive and negative values 
of pitch.  The sharp increase of U(F2) at pitch angles below  < 30° is primarily attributed to the 
random uncertainty, which is calculated by the standard deviation of repeated measurements.  
We speculate that this large random uncertainty results from complex flow patterns over the 
temperature probe and its protective cylindrical tip (See Fig. 1B.).  At large negative pitch angles, 
the vortices shed from these obstacles are likely to interfere with the differential pressure 
measurements between the ports, thereby resulting in a large random component of uncertainty. 

4.4 Calibration Results for a Prism Probe 
Figure 8 shows the calibration data of the prism probe performed on 7/18/2016.  The 
calibration factors F1 and F2 are plotted as a function of the pitch angle  in Figs. 8A and 8B, 
respectively.  Each plotted symbol corresponds to one of the 6 velocity set points Vn shown 
in the legend.  In contrast to the spherical probe, the prism probe’s F2 calibration factor has a 
strong Re-dependence at pitch angles in the range 20°   20°.  As shown in Fig. 8D, the 
values of F2(Vn) span a range of 6 %.  [Fig. 8D plots the percentage difference between the 
velocity calibration factor at different air speeds Vn and a reference value at Vref = 20 m/s, 
100[ F2(Vn)/F2(20 m/s)  1].  Analogously, Fig. 8C is a plot of the differences F1(Vn)  F1(20 m/s).  
As shown in Fig. 8C, F1 is independent of velocity for pitch angles in the range 10°     20°; 
however, outside this range F1 becomes increasingly velocity dependent.  Because of the prism 
probe’s velocity dependence, it should be calibrated over the range of air speeds it will be used 
in stack measurement applications to achieve better accuracy.  

The expanded uncertainties of the calibration coefficients U(F1) and 100U(F2)/F2 and are plotted in 
Figs. 8E and 8F.  The uncertainty of F1 is nearly independent of pitch angles in the range 40°   40°; 
it increases when  > 40°.  As shown in Fig. 8F, the expanded uncertainty 100U(F2)/F2 increases 
sharply at large positive ( > 40°) and negative ( < 40°) pitch angles.  For pitch angles 30°    0° 
the expanded uncertainty is approximately a constant value of 0.9 %.  In the range 0°   20°, the 
expanded uncertainty increases only slightly, reaching a maximum value of 1.25 %. 

4.5 Probe Reproducibility and Rational Polynomial Curve Fits of the Calibration Data 
During a EPA stack emissions testing commonly called a relative accuracy test audit (RATA), the 
axial velocity along the stack axis (Vz’) is determined by the equation: 

                                                            
9 While this observation applies for the laminar flow conditions used in this calibration, more research is needed to confirm it 

applies in turbulent flow.   
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
 (9) 

where the velocity pressure P12,NULL and the yaw-null angle   NULL are measured using the 
Method 2F nulling procedure.  The pitch pressure is also measured at the null condition 
P45,NULL and used along with P12,NULL to calculate the pitch calibration factor F1 via 
Eq. (6A).  In contrast, the pitch angle  and velocity calibration factor F2 are not measured 
during a RATA test, but instead are based on curve fits of the probe calibration data.  For a 
specified probe shape, the calibration factors F1 and F2 are characterized by the pitch angle, 
Reynolds number (or airspeed), and turbulence intensity.10  For some probe shapes the Re-
dependence is significant (e.g., see prism probe results for F2 in Fig. 8D) while for other 
probes the Re-dependence is small (e.g., see spherical probe results for F2 in Fig. 7D). 

Here, we provide high-accuracy curve fits to the pitch angle and the velocity calibration 
factor.  These fits account for Reynolds number effects and are valid for airspeeds spanning 
the range 5 m/s  V  30 m/s and for pitch angles 45°    45°.  We use a rational 
polynomial fit expressed by 

0 0 0 0
FIT

m n m n
,p mn,p p p mn,p p p

N N m N N m

m n m n

a x y b x y
 

   

      (10) 

where the numerator and denominator are each N  = 5 degree polynomials of the two 
variables xp and yp.  The fit was developed using the commercial available software package 
Orgin.6  The index “p” ranges from 1 to 3; it identifies the fitting functions  FIT,p, and their 
dependent variables xp and yp, as shown in Table 4.  Using this compact notation, the symbol 
 FIT,p represents three fitted functions; 1) FIT,1 =  FIT is the pitch angle fitted to the 
dependent variables P45,NULL and F1; 2)  FIT,2 = F2,FIT is the velocity calibration factor fitted 
to the dependent variables FIT and (P12,NULL)1/2, and 3)  FIT,3 =Pstd,FIT is the standard 
pressure fitted to the dependent variables (P12,NULL)1/2 and F1.  The third function  FIT,3 can 
be used instead of  FIT,2 to determine the flow velocity.  In this case the grouped-terms 

 NULL
2
2 12,F P  in Eq. (9) are replaced by Pstd so that the axial velocity is expressed in terms of 

the standard pressure, NULLx td2 cos( )cos( )sV P     . 

Table 4. Rational polynomial fits for  , F2 , and Pstd . 

p xp yp FIT,p  

1 P NULL45, , [Pa] F1 , [  ] FIT , [deg] 

2 FIT , [deg] P NULL12, , [Pa1/2] F ,FIT2 , [  ] 

3 P NULL12, , [Pa1/2] F1 , [  ] P FITstd, , [Pa] 

 

                                                            
10 The effect of turbulence intensity on the calibration factors is a topic of current research and is beyond the scope of this document.  

Preliminary studies show that a 10 % turbulence intensity has a 2 % ‐ 3 % effect on the velocity calibration factor, F2. 
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Figure 9. Residuals from Eqs. (10), rational polynomials fitted to 3 repeated calibrations of the spherical probe 
(left) and the 2 repeated calibrations of the prism probe (right).  The residuals are plotted versus the pitch 
angle  for 6 air speeds ranging from 5 m/s to 30 m/s.  The dashed lines (− − −) enclose 95 % of the data. 
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The residuals of the three fitted functions  FIT,p from the corresponding measured values are plotted 
as a function of pitch angle in Fig. 9.  Figures. 9A, 9C, and 9E are plots of the residuals from three 
repeated calibrations of the spherical probe; Figs. 9B, 9D, and 9F are plots of the residuals from two 
calibrations of the prism probe.  For comparisons, the residuals from the two probes are plotted next 
to each other.  (Note: the vertical scales for the spherical probe span wider ranges than the 
corresponding scales for the prism probe.)  Figures 9A and 9B plot the pitch angle residual    FIT. 
Figures 9C and 9D plot as a percent, the residual of the fitted standard pressure from the measured 
pressure 100[Pstd/Pstd,FIT  1].  Figures 9E and 9F plot as a percent, the residual of the fitted 
velocity factor from the measured velocity factor 100[F2/F2,FIT  1].   

The dashed lines (− − −) are confidence intervals containing 95 % of the data.  If data in the confidence 
intervals were randomly distributed, these confidence intervals would be a measure of the reproducibility 
Ureprd of repeated calibrations.  In Fig. 9D, the averaged data at some of the pitch angles is not zero, 
indicating that the deviations are not completely random.  A better curve fit could reduce these 
deviations; thereby, reducing Ureprd.  Thus, the structure in the residual plots cause the values of Ureprd to 
be biased high.  Nevertheless, we use this measure to estimate the reproducibility of the calibration 
factors, and the uncertainties attributed to reproducibility of F1 and F2 are included in the respective 
uncertainty budgets for the spherical probe in Section 4.3 and the prism probe in Section 4.4. 

Care must be taken when comparing residual plots of the spherical probe to those of the prism 
probe because the scales on the y-axes are not the same.  However, it is clear all the residual 
plots of the spherical probe sharply increase at large negative pitch values.  In Section 4.3 we 
hypothesized that at large negative pitch angles the pressure ports are engulfed by a turbulent 
wake.  The wake is caused by vortices shed from the temperature sensor and the cylindrical tip 
located just upstream of the probe ports (see probe geometry in Fig. 1B) at large negative pitch 
angles.  The inherent fluctuations in the wake result in the larger reproducibility for   < 20°.  In 
field RATA tests, pitch angles are usually greater than 20°; therefore, this reproducibility will not 
limit the accuracy of RATA tests using spherical probes.  

For pitch angles 20 °     30 ° the values of Ureprd for the spherical probe (See Figs. 9A, 9C, 
and 9E.) are uniform and are less than or equal to Ureprd of the prism probe.  This range of pitch 
angles includes typical  values encountered in typical RATA tests; therefore, we expect slightly 
better reproducibility from a spherical probe than from a prism probe.   

At large positive pitch angles ( > 30 ), the reproducibility of the spherical probe is not quite as good, 
as evidenced by the slight increase in Ureprd in probe in Figs. 9A, 9C, and 9E.  Figure 9F shows that 
the reproducibility of the velocity calibration factor for the prism probe also increases at large positive 
pitch angles.  The reproducibility at large positive pitch angles, like that of large negative pitch angles, 
does not play a role in field RATA tests where pitch angles are typically 20°    20°. 

5 UNCERTAINTY ANALYSIS OF CALIBRATION RESULTS 

In this section we calculate the expanded uncertainty of the yaw-null angle NULL, the pitch 
pressure at the null condition P45,NULL, the velocity pressure at the null condition P12,NULL, and 
the calibration factors F1 and F2.  These uncertainties are calculated for airspeeds 
5 m/s  VLDA  30 m/s and pitch angles from 45      45 .  The uncertainties of the pitch (F1) 
and velocity (F2) calibration factors are plotted in Figs. 7E and 7F for the spherical probe, and in 
Figs. 8E and 8F for the prism probe.  In most stack applications, the maximum range of the pitch 
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angle is 20      20 .  For this narrower range of pitch angles the expanded uncertainty of F2 
is nearly constant for both probes; for the spherical probe, Ur(F2) ranges from 0.9 % to 1.1 % while 
for the prism probe, Ur(F2) ranges from 0.9 % to 1.25 %.  For both probes the largest uncertainty 
sources for F2 are the reproducibility of repeated calibrations and the LDA standard, which 
together, contributed 60 % to 80 %.   

The methodical uncertainty calculations provided herein are intended both to document these 
results and to provide guidance to those in stack testing community or other metrologist not as 
familiar with uncertainty analysis.  Those not interested in these details can skip this section 
without loss of continuity. 

5.1 Data Reduction Equation and Method of Propagation of Uncertainty 
The uncertainty analysis is based on the method of propagation of uncertainty [13,14].  In this 
method, a mathematical expression called the data reduction equation relates the functional 
dependence of one or more measured input quantities to an output quantity.  Equation (11) is a 
generic data reduction equation  

1 2 M( , , , )y y x x x  , (11) 

that relates M input quantities given by the xm‘s to a single output y.  Several data reduction 
equations have been used throughout this work; for example, the air density  in Eq. (2) is not 
measured directly, but is calculated from its data reduction equation, which has as its inputs the 
measured pressure P, temperature T, and relative humidity RH.  Likewise, the pitch calibration 
factor F1 is calculated from its data reduction equation given in Eq. (6A), which has as its inputs 
P45,NULL and P12,NULL. 

Propagated Uncertainties 
The same data reduction equation that computes the value of an output quantity as a function of 
known input quantities is also used to relate the uncertainty of the M input quantities, u(xm)’s, to the 
uncertainty of the output quantity, uc,p(y), called the standard combined, propagated uncertainty.  
That is, the uncertainty of an output quantity is determined by propagating the known uncertainties 
of the input quantities through the corresponding data reduction equation.  For the generic data 
reduction equation given by Eq. (11) the standard combined, propagated uncertainty is 

c,p

2

2
m mn m n m n

m m n1 1 1

( ) ( ) (1 ) ( , ) ( ) ( )
M M M

m m n

y y y
u y u x r x x u x u x

x x x
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  

      
            
   (12A) 

where uc,p(y) is the uncertainty at the 68 % confidence level, the u(xm)’s are the standard uncertainties 
of the input quantities at the 68 % confidence level; the y/xm‘s are the dimensional sensitivity 
coefficients equal to the partial derivatives of the output variable (y) with respect to each input variable 
(xm); mn is the Kronecker delta function, which equals 1 if m = n and 0 if m ≠ n; and r(xm , xn) is the 
normalized correlation function, which indicates the degree of correlation between xn and xm. 

The value of the normalized correlation coefficient in Eq. (12A) has the range 1  r(xm, xn)  1.  
In many cases, its value is difficult to determine, and approximations are necessary.  In the special 
case where all the uncertainty sources are uncorrelated r(xm, xn) = 0, and the standard combined, 
propagated uncertainty simplifies to 
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which is the root-sum-square (RSS) of the standard uncertainty of each input amplified by its 
sensitivity coefficient.  Alternatively, if the uncertainty sources are perfectly correlated then 
r x xm n( , )  = 1, and Eq. (12A) simplifies to 

p n
n1

( ) ( )
N

n

y
u y u x

x

 
    
  (12C) 

where the propagated uncertainty equals the absolute value of the summed products of u xn( )  and 

 y xn .   

Throughout this document most of the propagated uncertainty sources are uncorrelated, and the 
RSS formulation in Eq.(12B) is used.  However, in Section 5.2 the uncertainty of the null 
parameters has partially correlated uncertainty sources and r x xm n( , )  cannot be taken to be 0 or 

1, but has an intermediate value between these two limits.  As such, in this section we use an 
approximate method similar to Coleman [14] to estimate the degree of correlation.  The details 
are explained in Section 5.2. 

Non-Propagated Uncertainties 
The uncertainty in the measuraund y does not derive exclusively from propagation of 
measurement errors in the input quantities.  Herein, we use the notation uc,np(y) to denote the 
standard combined, non-propagated uncertainties.  In this document, non-propagated 
uncertainties include 1) the measurement reproducibility of F1 and F2, and 2) the null-parameter 
curve fit uncertainty.   

Combined and Expanded Uncertainties 
The standard combined uncertainty is the RSS of the standard combined, propagated uncertainty, 
uc,p(y), and the standard combined, non-propagated uncertainty, uc,np(y), as given by  

c
2 2
c,p c,np( ) ( ) ( )u y u y u y  , (13A) 

and the expanded uncertainty is  

c
2 2
c,p c,n( ) ( ) ( ) ( )U y ku y k u y u y    (13B) 

where uc(y) is the standard combined uncertainty, and k is the coverage factor, which when taken 
equal to k = 2, converts the combined standard uncertainty at the 68 % confidence level to the 
expanded uncertainty U(y) at the 95 % confidence level, (U = k uc). 

5.2 Uncertainty of the Null Parameters u(P23, NULL), u(P45,NULL), and u(P12,NULL) 
Using the CFM, the null parameters are calculated numerically via a linear regression algorithm.  

As shown in Eq. (8) these parameters are equal to the regression coefficient aq,0.  As such, the 

functional dependence of aq,0 on its input parameters is not explicitly known.  In contrast, we point 
out that the functional dependence of the F1 and F2 calibration coefficients are explicitly defined 
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by Eqs. (6A) and (6B), respectively.  Since aq,0 cannot be characterized by such simple algebraic 
expressions, we represent the output of the linear regression algorithm by the following generic 
expression  

 
23 23 231 Nnq,0 q,0 q,1 q,n q,N( , , , , , , , , , )        a a P P P , (14) 

where N is the number of data points used in the curve fit as specified in Tables 1 and 2; P23,n is 
the nth measurement of the yaw pressure; and q,n is the nth measurement of the generic probe 
variable defined in Table 3 of Section 4.2.  The dependent variables on the right-hand side of 
Eq. (14) list the N data points, (P23,n , q,n), used by the regression model to calculate aq,0.  

Because aq,0 is calculated numerically, the sensitivity coefficients must also be calculated 
numerically.  This is accomplished using a finite difference technique whereby we perturb a single 
dependent variable in Eq. (14) by a small amount ε, re-compute the new perturbed regression 
coefficients via the least squares method, subtract the new coefficient q,0â  from the unperturbed 

value aq,0, and divide the quantity by ε [15].  The complete set of sensitivity coefficients are 
determined by repeating this procedure for each one of the dependent variables. 

Non-Propagated Uncertainty  
The non-propagated uncertainty is given by 
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where FIT 3  is the standard deviation of the mean of 3 values of aq,0 calculated using 2nd, 3rd, 

and 4th degree polynomial fits.  This uncertainty accounts for the fact that there is no physical 
basis to select the degree of the polynomial to use.  The second term is the “so called” classical 
solution for the uncertainty of the y-intercept [14].  It is calculated by multiplying the sensitivity 
coefficient by the standard deviation of the curve fit residuals or also known as the standard error 

of regression ( RES ), which is calculated by [16] 
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The second term accounts for the uncertainty of the curve fit, but does not include systematic 
uncertainties attributed to the zero-pressure offset, calibration of the pressure sensors, etc.  These 
uncertainties are accounted for in the propagated uncertainty.  

Propagated Uncertainty 
Measurement errors in P23,n and in q,n propagate through Eq. (14) and lead to the following 
expression for propagated uncertainty, 
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Generally speaking, the input variables are correlated so that the correlation coefficients 
r (P23,m , P23,n), r (q,m , q,n ), and r (P23,m , q,n ) are not zero, but have some intermediate value 
between 0 and 1.  We estimate the values of the correlation coefficient using an approach similar 
to Coleman [14].  Each correlation coefficient and its corresponding uncertainties are 
decomposed into their elementary or base uncertainty sources.  Elemental uncertainty sources 
include: 1) the calibration uncertainty of the pressure transducers, u(Pcal); 2) the zero-drift of 
pressure transducers, u(Pzero); and 3) the uncertainty of yaw angle alignment, u(θ).  The 
elemental uncertainty sources have cross-correlation coefficients that are equal to zero; however, 
the elemental uncertainty sources may or may not be correlated with themselves.  For example, 
since all the transducers are calibrated by the same pressure standard the calibration uncertainty 
is taken to be perfectly correlated when the sensors are used to measure the same nominal 
pressure.  Thus, at the yaw-null pressure condition of P23 = 0, the calibration uncertainties of the 
two pressure transducers that measure P12 and P13 are perfectly correlated, and the correlation 
coefficient is unity, r (P13,cal, P12,cal,) = 1.  On the other hand, the calibration uncertainties are 
taken to be uncorrelated and have correlation coefficient equal to zero for the same transducer 
(or different transducers) used to measure different pressures. In cases where it is unclear 
whether an elemental correlation coefficient should be 0 or 1, we conservatively use the value 
that results in the larger uncertainty.  By associating the perfectly correlated elemental 
uncertainties with Eq. (12B) and uncorrelated uncertainties with Eq. (12C) we simplify the 
propagated uncertainty in Eq. (16A) to 
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where the term u P23,n( )  is the uncertainty in the yaw pressure measurement given in Eq. (4B), 

and u(q,1,n) and u(q,2,n) are the uncertainties of the generic probe parameters given by 
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and 
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respectively.  The use of this approximate method is justified since it yields a conservative 
estimate of the uncertainty, and p q,0( )u a  is not the dominate source of uncertainty in the 

uncertainty budget.  

Combined Uncertainty 
The combined uncertainty, including both propagated and non-propagated components is 
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5.3 Uncertainty Analysis of F1 and F2.  
The uncertainty of the calibration factors F1 and F2 in Eqs. (6A) and (6B) are determined using 
Eq. (12B).  The expression for the expanded uncertainty expression of F1 is 
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where u(P45,NULL) and u(P12,NULL) are the uncertainties of the null parameters specified in 
Eq. (17) for q = 2 and 3, respectively.  The values of the null parameters are determined using 
the CFM from Section 4.2.  Also, ureprd(F1) is the standard reproducibility uncertainty documented 
in Section 4.5. 

The expression for the expanded uncertainty for F2 is 

12,NULL
LDA

2
reprd

22
rr 2

r 2 r 2

( )( )
( ) 2 ( ) ( )

4 4

u Pu
U F = u V + u F

 
   (18B) 

where ur(VLDA) is the relative standard uncertainty of the LDA specified in Section 2, ur() is the 
relative standard uncertainty in density specified in Section 2, and urepro(F2) is the relative standard 
uncertainty attributed to reproducibility specified in Section 4.5  

The expanded uncertainties of F1 and F2 are plotted in Figs. 7E and 7F for the spherical probe 
and in Figs. 8E and 8F for the prism probe.  The expanded uncertainty of F2 was comparable for 
both probes for  = - 20  to 20 .  The prism probe exhibited an uncertainty ranging from 0.9 % to 
1.25 % depending on airspeed while the uncertainty of the spherical probe ranges from 0.9 % to 
1.1 %.  The largest uncertainty sources for both probes include the reproducibility of repeated 
calibrations and the LDA airspeed standard, which together, contributed between 60 % and 80 % 
in all cases. 
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6 LIMITATIONS OF METHOD 2F CAN CAUSE LARGE UNCERTAINTIES IN FIELD 
MEASUREMENTS 

We identified two limitations of Method 2F that can result in large biases when 3-D probes are 
used in field measurements.  First, Method 2F does not adequately account for the Re-
dependence of probe calibration factors; instead Method 2F approximates F1 and F2 as a function 

of   only.11  This approach is reasonable for the spherical probe for pitch angles 20  ≤  ≤ 20  since 
F2,SPHERICAL is nearly independent of Reynolds number (or air speed).  In contrast, F2,PRISM strongly 
depends on Reynolds number, especially at the lower air speeds < 10 m/s.  If we had calibrated the 
prism probe using Method 2F and then used the probe in the field, we would over-report low 
velocity (5 m/s) measurements by nearly 6 %.  Therefore, to obtain accurate low velocities 
measurements in field applications, a prism probe must be calibrated over the range of velocities 
it will be used.  

Second, more stringent uncertainty requirements are needed for the yaw-null pressure 
measurement at low air speeds ( < 10 m/s).  Method 2F specifies the yaw pressure transducer 
should have full-scale range of ± 124.5 Pa and an expanded uncertainty of 2.5 Pa (1 % of full- 
scale).  In addition, during stack application, the protocol allows the yaw pressure transducer to 
have a zero drift as large as 7.5 Pa.  If these specifications are met, the uncertainty in yaw 
pressure u(Pyaw) will significantly increase the measurement uncertainty at low flue gas 
velocities. 

Even if u(Pyaw) is negligible, a third uncertainty source, not considered in Method 2F, should be 

considered.  This uncertainty u(P23 ≠ 0) occurs when the null parameters (NULL, P45,NULL, and 
P12,NULL) are measured at a non-zero yaw-pressure P23 ≠ 0.  In practice, noisy pressure signals 
(especially during in-stack applications) make it difficult to find the exact yaw-null angle where 
P23 = 0. Consequently, the null parameters are generally measured at pressures slightly offset 
from zero, thereby increasing the uncertainty. 

Accounting for all three uncertainty sources, the total yaw-pressure uncertainty is 

2 2 2
cal zerooffset 23( ) ( ) ( ) ( )u P u P u P u P        (19) 

where u(Pcal) is the uncertainty of the yaw pressure transducer, u(Pzero) is the uncertainty of the 

zero-drift during a measurement, and 2323( ) 3u P P    is the uncertainty in yaw-pressure 

because it is slightly offset from zero, P23 ≠ 0.  We take the latter uncertainty to have rectangular 
distribution so that P23 is multiplied by the factor 1/31/2 [12].   

We emphasize that the Method 2F allowable-yaw-pressure, zero-offset uncertainty will be a 
significant contributor to the overall uncertainty budget at low flows because u(Poffset) will be a 
significant fraction of the dynamic pressure.   

In our current work, u(Poffset) is negligible relative to other uncertainty sources.  First, we used the 
CFM introduced in Section 4.2 to ensure that the null parameters are determined at exactly 
                                                            
11 Method 2F requires that the calibration factors are measured over a range of pitch angles, but at each pitch angle F1 and F2 are 

only measured at 2 air speeds consisting of 18.3 m/s and 27.4 m/s.  The average F1 and F2 at these 2 air speeds are curve fit as a 
function of , and the calibration curve fits are extrapolated to lower flue gas velocities in stack applications [5].  
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P23 = 0. Second, we used differential pressure transducers (described in Section 3.1) with a 
small zero-drift uncertainty relative to the dynamic pressure of the air stream specified in Eq. (1).  
At the lowest velocity setting of VLDA = 5 m/s the dynamic pressure is Pdyn = 15 Pa so that 
u(Poffset) /PLDA < 0.001.  In contrast, Method 2F specifications for the uncertainty of yaw 
pressure measurement are not as stringent, allowing the calibration uncertainty to be as large as 
2.5 Pa and the zero drift as large as 7.5 Pa [5].  In this case, at 5 m/s the yaw-pressure uncertainty 
normalized by the dynamic pressure is significant, u(Poffset) /Pdyn = 0.53. 

To estimate how the uncertainty in the yaw-pressure measurement affects the yaw-null angle and 
the calibration factors, we conservatively specified u(Poffset) = 2.5 Pa and calculated the 

uncertainties u(NULL), u(F1) and u(F2) at different air speeds.  The expanded uncertainty attributed 
solely to the zero-offset effect is given by 

 

offset offset

NULL

q,FIT
q,1q,offset

23

( ) 2 ( ) 2 ( )U u P a u P
P


 




  (20) 

where q is the generic probe variable in Table 3, U(q,offset) compactly represents the expanded 
uncertainties: U(NULL,offset), U(F1,offset), and U(F2,offset) for q = 1, 4, and 5, respectively.  The term 
[q,FIT/P23]NULL is the slope of the curve fit specified in Eq. (7).  The slope is evaluated at the 

null condition where P23 = 0, and therefore equals the fit coefficient aq,1. 

Figure 10 shows the expanded uncertainties U(NULL,offset), U(F1,offset), and Ur(F2,offset) plotted versus 
the pitch angle () for u(Poffset) = 2.5 Pa.  As denoted by the legend at the top of the figure, each 
symbol corresponds to a constant airspeed between 5 m/s and 30 m/s.  Results for the spherical 
probe (left) and the prism probe (right) are plotted on the same x and y scale so that they can be 
easily compared.  Results for the prism probe and spherical probe are nearly identical at all 
airspeeds, except for U(F1,offset) at the lowest airspeed.  The dependence on pitch is small, but, in 
general the uncertainty slightly increases at large negative or positive pitch angles.  As expected, 
the largest uncertainties occur at the lowest airspeed of 5 m/s where the dynamic pressure is a 
larger fraction of u(Poffset).  The uncertainty in U(NULL,offset) and U(F2,offset) are substantial at 5 m/s, 
approximately 5 ° and 10 %, respectively for pitch angles ranging from   = 20  to 20 .  The 
uncertainties are lower at 10 m/s, but still are significant being approximately 1.5 ° and 1.5 %, 
respectively.   

These results suggest that zero-offset effects can make a significant contribution to the 
uncertainty budget in field applications at airspeeds at or below 10 m/s.  To improve the 
uncertainty requires more accurate yaw-pressure transducers and ensuring that the null 
parameters are measured at P23 = 0. 
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Figure 10. The expanded uncertainties in NULL, F1, and F2 attributed an uncertainty in the zero-offset 
pressure u(Poffset) = 2.5 Pa for the spherical probe (left) and prism probe (right) for airspeeds from 5 m/s to 
30 m/s and pitch angles from 40  to 40 . 
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7 DISCUSSION 

We calibrated a spherical probe and prism probe using a yaw-nulling method for pitch angles 
45    45  and air speeds 5 m/s  VLDA  30 m/s.  Here, we focus on the narrower range 
20     20  which includes the conditions encountered in most industrial smokestacks. We 
determined the pitch calibration factor F1 and the velocity calibration factor F2 over the range of 
calibration conditions.  Three repeated calibrations of the spherical probe and two repeated calibrations 
of the prism probe were mutually consistent within ±0.75 % of F2.  The dependence of F2 on the 
Reynolds number (Re) differed significantly between the two probes.  For the spherical probe, F2 was 
nearly Re-independent (deviations from the mean were less than ± 1 %) except at the lowest air speed 
of 5 m/s, where deviations increased to nearly 2 %.  In contrast, F2 for the prism probe had a strong Re-
dependence and the deviations from the mean were as large as 6 %.  Based on this result, the prism 
probe should be calibrated over the range of airspeeds for which it will be used to achieve accuracies 
better than 6 %. 

To apply the NIST calibration results to flue gas measurements in the field, we developed a calibration 
curve that determines  and F2 from measurements of the pitch pressure and velocity pressure at the 
null condition.  This calibration curve accounts for the Re-dependence of the prism probe.  In contrast, 
EPA’s protocol 2F, which is widely used for stack measurements, does not account for Re effects.  If 
method 2F is implemented using the prism probe calibrated herein, velocity errors exceeding 5 % could 
occur.  The NIST calibration curve accounts for the Re-dependence of the prism probe and is accurate 
to better than 1 % for airspeeds in the range 5 m/s  V  30 m/s and pitch angles from 20  to 20 .   

We determined the yaw-null angle NULL and the null pitch pressure P45,NULL and the null velocity 
pressure P12,NULL using a Curve Fit Method.  We rotated the probe about its axis and measured yaw 
angles , pitch pressures P45, velocity pressures P12, and yaw pressures P23 for values of P23 
surrounding the null condition P23 = 0.  We fitted polynomial curves to three sets of data pairs: (P23, 
); (P23, P45); and (P23, P12).  Then, we determined NULL, P45,NULL, and P12,NULL by evaluating the 
fitted curves at P23 = 0.  This procedure avoids errors resulting from zero-offsets of pressure 
transducers, which often occur in field applications when the null conditions are measured at non-zero 
yaw pressures.  To estimate the size of zero-offset effects, we multiplied the EPA’s yaw pressure 
specification (2.5 Pa) for stack emission flow measurements by the slope of the fitted curves.  The zero-
offset effects increase significantly at lower airspeeds.  At 5 m/s the zero-offset for the spherical probe 
is 10 %; for the prism probe, it ranges from 8.5 % to 10 %, depending on the pitch angle.  At 10 m/s the 
zero-offset was 2.5 % for the spherical probe and 2 % for the prism probe. 

The expanded percentage uncertainty at a 95 % confidence level of F2 was comparable for both probes.  
For the prism probe, U(F2) ranged from 0.9 % to 1.25 % depending on airspeed; for the spherical probe, 
U(F2) ranged from 0.9 % to 1.1 %.  For both probes the largest uncertainty source was the reproducibility 
of repeated calibrations and the LDA standard; together, they contributed 60 % to 80 % of U(F2). 
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