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ABSTRACT 
 

The current additive manufacturing (AM) product development 

environment is far from being mature. Both software 

applications and workflow management tools are very limited 

due to the lack of knowledge supporting engineering decision 

making. AM knowledge includes design rules, operation 

guidance, and predictive models, etc., which play a critical role 

in the development of AM products, from the selection of a 

process and material, lattice and support structure design, 

process parameter optimization to in-situ process control, part 

qualification and even material development. At the same time, 

massive AM simulation and experimental data sets are being 

accumulated, stored, and processed by the AM community. This 

paper proposes a four-tier framework for self-improving additive 

manufacturing knowledge management, which defines two 

processes:  bottom-up data-driven knowledge engineering and 

top-down goal-oriented active data generation. The processes are 

running in parallel and connected by users, therefore forming a 

closed loop, through which AM knowledge can evolve 

continuously and in an automated way. 

  

Keywords: additive manufacturing, knowledge management, 

manufacturing system integration 

 

1. INTRODUCTION 
 

      Many hurdles continue to hinder the widespread adoption of 

additive manufacturing (AM) technologies for production, 

including low repeatability and quality inconsistency, high cost 

and time in qualification, and constrained material choices [1].   

A key step in overcoming each of these hurdles is to obtain the 

knowledge needed to support engineering decision making 

through the AM product development lifecycle and across its 

value chain. In recent years, through the acquisition of “know 

how” startups, major CAD/CAM vendors have quickly 

expanded their offerings to include reverse engineering, 

geometry repairing, topology optimization, build preparation 

and process simulation in support of “Design for AM” 

engineering activities [2]. There are also services like 3D Hubs 

where engineers can get instant feedback on part 

manufacturability and the best processes for the design [3]. 

  

      However, existing AM software know-how is still far from 

being mature enough to allow engineers to fully grasp the 

requirements and limitations to bring optimized AM parts to 

production [4]. Albright [5] lists some missing capabilities from 

the existing AM software, including design rules to validate 

issues of the minimum wall thickness, printability of the part 

overhang angle, shrinkage/warping prediction, support design, 

orientation selection, lattice structure analysis and post-process 

planning, etc. These desired but lacking software functions 

demand a new set of knowledge about AM capabilities, 

limitations and design rationales, which not only depends on the 

choice of material and technology but is also determined by the 

product definition and process parameters.  Both today’s design 

and manufacturing engineers and university graduates are 

encouraged to seek out the knowledge associated with the 

‘physics’ of how AM processes work and how within each 

process category each type of material may respond differently 
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when trying to build a specific geometry in a specific orientation 

[4].  

      While some researchers are working on physics-based 

modeling and simulation techniques to understand AM 

processes, others are diligently conducting field studies and 

disseminating information to derive process-structure-property 

(PSP) relationships directly from data. Data-driven modeling 

and information fusion are foundational to AM knowledge 

development [6]. Such approaches take experimental or 

simulation data, using advanced data analytics techniques, such 

as metamodeling and machine learning, to identify AM material 

PSP relationships and derive AM design, process planning, and 

operation rules. Illustrated as a bottom-up process in Figure 1, 

new data sets emerge first, whether from research experiments 

in the lab or real production on the manufacturing shop floor, 

leading to new information fused and analyzed, so that new AM 

knowledge is acquired, and AM software functions are 

enhanced. 

 

Figure 1: A modified Data-Information-Knowledge-Wisdom 

(DIKW) model 

      Many individual techniques have been studied and reported 

to support data-driven AM knowledge engineering. Kim et al. 

gave a comprehensive description of the types of heterogeneous 

data sets generated and consumed during an AM development 

lifecycle [7]. Lu et al. have reported a common information 

model and a collaborative database to structure and fuse the 

heterogeneous data sets contributed by different stakeholders in 

the AM community [8, 9].  Towards advanced data analytics, 

intensive research has been done by Yang et al in employing 

metamodeling techniques in design and optimization [10, 11]. 

AM builds are well suited for the reported collaborative data and 

information management in [9], especially for metal parts, where 

costs for conducting large scale sampling over many variables 

can be prohibitive.  Generative learning and transfer learning are 

two methods reported in other domains, which might be used for 

AM metamodeling based on heterogeneous data sets.  

      At the same time, a few research activities were reported 

related to the techniques required for an application-driven data 

generation process, shown in Figure 1 as a top-down process. An 

Information Fusion Enterprise Model proposed by Kessler and 

White provides an approach about how to derive information 

needs from user’s queries [12]. Adaptive sampling or sequential 

sampling has been used widely for metamodel improvement 

through new data acquisition.  

      The top-down and bottom-up processes are running in 

parallel and isolated without the AM community being aware of 

the opportunity and benefit to integrate and streamline them.    

The existing research works surveyed above only address the 

individual functions and links of the processes without a vision 

of creating an integrated workflow. Current disconnected AM 

knowledge management makes it harder for AM engineers to 

fully grasp the benefits and limitations of AM technology and 

bring optimized AM designs to production. In this paper, we 

proposed a self-improving additive manufacturing knowledge 

management approach which consists of a bottom-up data-

driven knowledge engineering process and a top-down goal-

oriented active data generation process and forms a closed-loop 

for continuous knowledge improvement. The proposed approach 

is based on a four-tier data-information-knowledge-wisdom 

(DIKW) model variant as shown Figure 1. The original DIKW 

model [13] is modified to have the top layer renamed as 

“Applications” to make it more understandable for AM 

engineers. Besides, a bottom-up and a top-down process are 

added to the pyramid to capture the need of workflow integration 

and automation for the proposed self-improving knowledge 

management. The bottom-up process is named as "Adaptive 

Knowledge Engineering" while the top-down one is called 

"Goal-oriented Data Generation".  

      The paper is organized as follows. Section 2 introduces the 

layer model for the four-tiers knowledge engineering framework. 

Section 3 describes the top-down and bottom-up processes and 

how they are connected into a closed loop. Section 4 provides an 

example to show how a self-improving AM knowledge 

management system works. Section 5 summarizes the paper and 

discusses our future work.  

 

 
2. A FRAMEWORK FOR SELF-IMPROVING ADDITIVE 
MANUFACTURING KNOWLEDGE MANAGEMENT 
 

An elaborated four-tier knowledge management framework 

for AM is shown in Figure 2. The Data layer sits at the bottom, 

captures diverse data sets generated and used in AM lifecycle 

and value chains. The Information tier fuses the heterogeneous 

data sets and manages them in a collaborative way. The 

Knowledge layer sits on top of the information layer, capturing 

process, machine and material capabilities, design rules, 

operating guidance, process models and asset health models 
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Figure 2: A 4-tier analytical framework for self-improving AM knowledge management 

 

which can be queried and simulated using various search engines 

and simulation engines. The top tier is the Applications  

layer, which consists of software applications in support of AM 

lifecycle and value chain activities. Knowledge is the key for AM 

engineers to conduct their activities and make correct design or 

operation decisions. A summary of the components at each layer 

is provided below. 

Data Layer:  

      The data components are heterogeneous, covering vendor 

provided machine and material data, asset and feedstock data 

from their owners, design data from designers, process data from 

manufacturers, test data from inspectors and all kinds of 

experimental data from AM researchers. They are summarized 

in Table 1. 

Information Layer:  

             A common conceptual information model captures the data 

sets generated from AM lifecycle and value chain, as shown in 

Figure 3 [7].   Based on the common data model, heterogeneous 

data sets are fused into a collaborative information system based 

on NoSQL technology for both easy query and efficient storage 

[8].  

 

Table 1: AM data types summary  

Data 

Category 

Data Description 

Material Material type and grades; Vendor provided material 
properties (feedstock and as-built); Material stock 
information and actual material properties 

Machine Process type; Vendor provided machine 
specifications; Machine information as an asset; 
asset maintenance information 

Design CAD models; Design meta data; Design intents and 
PMIs; design features  

Build Build meta information; Feedstock material 
information; Equipment information; Structure and 
support as designed; Process parameters; 
Preprocess pedigree; In-situ monitoring data; Post 
processing information; Inspection data 

Tests Test meta information; Sample information; Test 
type/standards; Operator information; Test results.  

Simulation  Simulation models; simulation configurations; 
simulation results 
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                   Figure 3: An AM common information Model [8] 

Knowledge Layer:  

      AM knowledge can be classified into two categories: 

descriptive and prescriptive.  The descriptive knowledge could 

be either physics-based models or metamodels, both of which 

can be used to simulate AM processes and allow engineers to 

perform ‘what if ’ scenarios for potential parametric optimization. 

MathML [14] and PMML [15] are two markup languages 

frequently used to represent and communicate the models. 

      The prescriptive knowledge includes design rules, operation 

guidance and diagnosis rules, which can be applied directly to 

AM applications.  Dedicated AM design rules that relate to 

process capabilities are necessary for both CAD tools and AM 

process planning tools.  Design rules can be represented and 

executed using an ontology. Figure 4 shows an ontology that can 

be used to select the best manufacturing process, considering 

AM as an option to compare, for a given part [16],17].  

  

Figure 4: An Ontology for manufacturing process selection 

[16],17] 

 

Applications Layer:  

      This layer captures software applications that support end-to-

end digital processing during the AM product lifecycle and 

across its value chain.  The software can be hosted on clouds and 

provided as services to AM stakeholders. Aided by effective 

workflow management, compositions of software functions can 

greatly streamline how AM products are designed, manufactured 

and tested. Figure 5 shows a list of AM applications hosted on a 

collaborative development platform supported by a shared 

knowledge base. 

 
 

Figure 5:  A collaborative development platform for AM 

3. PARALLEL PROCESSES FOR SELF-EVOLVING AM 
KNOWLEDGE MANAGEMENT 

      Our previous work has been focused on how to identify, 

model and represent the data, information, and knowledge for 

each layer of the framework [6]. This section introduces our 

latest work on streamlining the process of engineering AM 

knowledge from data. In addition, a complementary top-down 

process is introduced to prescribe data sets to accelerate AM 

knowledge accumulation and enable the self-evolving AM 

knowledge management. Requirements on individual 

technologies are identified corresponding to those links between 

the layers of the tiered framework as well as the connections 

between the two-way processes.  

3.1 Bottom-up Process 

 

      The bottom-up process, Adaptive Knowledge Engineering, 

consists of multiple sub-processes including heterogonous data 

generation and curation, data integration and information fusion, 

knowledge extraction and fusion, and knowledge query and 

access. Substantial research has been conducted on the sub-

processes individually. The focus of our framework is to provide 

a method to automate the data-driven knowledge engineering 

process and allow for a continuously improved knowledge 

management system. 

      Figure 6 illustrates a typical adaptive knowledge engineering 

workflow.  It starts with a new data set being available for 
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knowledge engineering, which kicks off a sequential workflow 

consisting of sub-processes to extract knowledge out of the data 

sets and fuse it with the existing knowledge.    

Step 1: Check the data trustworthiness and quality; after the data 

source is verified and the data quality is validated, curate 

the data set. 

Step 2: Check if the new data set brings in any new information, 

for example, a new type of material, a new model of AM 

machine or a new build, etc. If the answer is affirmative, 

fuse the new information into the existing information 

system. Information fusion could involve feature 

recognition to characterize a part design when a new set 

of build data is ingested. In addition, the links between 

the build and the material/machine products used for 

such a build, if already captured, should be established.  

Step 3: Check if the new information leads to any knowledge 

update. If yes, extract knowledge from the new 

information and update the knowledge base. For 

example, minimum thin wall thickness is a measure 

characterizing the capability of an AM machine. This 

capability can be assessed based on a statistical analysis 

of all the builds made on the machine. Therefore, a new 

build will likely update that knowledge of the machine 

capability. Similarly, existing predictive models or 

design rules for a material-process combination can be 

updated with new information. 

Step 4:  Check if any ongoing design decisions are still valid after 

the knowledge base update. If not, re-initiate the affected 

design processes. If yes, actions will be taken into the 

corresponding AM activities, and new data sets are 

expected. 

 

Figure 6: A typical bottom-up process  

      Various data integration approaches have been proposed to 

enable the automation of Step 1 and Step 2 of the bottom-up 

process. At NIST, we proposed to use a common information 

model to ingest diverse data sets, which is more suitable for 

greenfield data integration. If legacy databases exist, an ontology 

based data integration will be more appropriate [18].   

      Automation of Step 3 is still a very open problem. The 

challenges lie in today’s immature model/knowledge 

characterization and representations methods [19,20]. Both rules 

and models in the knowledge base should be characterized for 

their validity and applicability in order to evaluate if a certain 

piece of information will enrich the knowledge or not. However, 

strong dependencies of AM process outputs on part geometry 

make the standardization and representation of AM design rules 

very challenging to automate. The next section takes a case study 

to illustrate how metamodels can be improved with new data 

sets. The final step can be easily realized through a 

publish/subscribe software implementation, where AM 

applications are programmed to receive knowledge updates and 

check the consistency between the ongoing decisions and the 

newly updated knowledge.   

3.2 Top-down Process 

      Individual experimental studies often contain only a few 

measurements and focus on specific sub-processes. Costs for 

conducting large scale sampling over many process variables can 

be prohibitive for AM data generation. However, the small sets 

of data captured do not adequately represent the inherently large 

sets of process variables and material microstructure variances 

that must be analyzed for establishing AM PSP relationships. 

Therefore, it is critical for the AM community to work jointly in 

a coordinated and systematic fashion to generate data sets which 

can maximize AM knowledge discovery. The top-down process 

is designed to solve an optimal data generation problem based 

on a goal-oriented method. 

As shown in Figure 7, the top-down process starts when a query 

is made in an AM application for knowledge to support 

engineering decision making. Five steps are involved in 

completing an optimal data set generation process. 

Step 1: Query for design rules for design decisions or a request 

for simulations to conduct “what-if” analysis. 

Step 2: Check if the requested design rules or simulation models 

exist in the knowledge. If not, define the information 

necessary to derive such rules or models and issue a 

query for the information. 

Step 3: Check if the information already exists in the information 

system. If not, identify the various data sets needed for 

the information formation. 

Step 4: Check if all the data sets already exist in distributed data 

sources. If not, call for the design of experiments (DOE) 

and data contribution. 

Step 5: DOE is conducted, and the list of experiments is 

distributed to the AM community. Individual data 

contributors conduct the experiments and make new data 

set submissions, which kicks off a new round of the 

bottom-up process. 

 

STEP 1

STEP 2

STEP 3

STEP 4
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Figure 7: A typical top-down process  

      By far, few research activities on streamlining goal-oriented 

AM data generation process exist. In information fusion for 

combat system command and control, a user directed 

information discovery method has been proposed to manage 

intelligence products for mission objectives [12]. A similar 

methodology can be developed for AM information systems. 

  

3.3 Closed-loop Knowledge Management 

 

      As shown in both Figure 6 and Figure 7, the bottom-up 

process and the top-down process are naturally connected with 

each other at the end, which forms a closed loop AM knowledge 

lifecycle. The closed-loop system, consisting of the bottom-up 

adaptive knowledge engineering and the top-down data 

generation process, if automated, will not only accelerate AM 

knowledge acquisition, and also reduce AM data generation cost 

dramatically. Data and information sharing is critical to 

implement an automated self-improving knowledge 

management system. Collaborative AM development platforms 

built on a shared knowledge base will further shorten the AM 

product, machine, material and process development lifecycle.  

Service-oriented architecture has the potential to integrate all the 

tiers and the links into an organic eco-system. For those links 

involving human-in-the-middle, a publish/subscribe mechanism 

can improve human response to knowledge changes and new 

data generation requests. 

4 A CASE STUDY: A METAL AM PROCESS MODEL 

ADAPTATION 

      A case study demonstrates a manual process for bottom-up 

adaptive AM knowledge management. A predictive metamodel 

was adapted for this purpose and deployed with empirical data 

from a metal AM process. This approach uniquely combines a 

previously established metamodel of the process with newly 

ingested data to complete a self-improving process. The general 

workflow deployed here is shown in Figure 8.  

 
Figure 8. General workflow of data-driven metamodel updating 

      As shown in Figure 8, newly ingested data triggers an 

evaluation of the current metamodel for prediction accuracy.  

The prediction error of the metamodel on the new data set is used 

for decision making for model update. If the prediction error is 

within a predefined threshold, the metamodel is considered 

effective, and no modification is needed. Otherwise, the model 

has to be improved using the new data and with the best available 

update strategy. In this case study, the predefined threshold value 

is generated from the average relative error magnitude (AREM) 

of the current metamodel based on the leave-one-out (LOO) 

cross-validation method [21, 22]. Three update strategies were 

designed for model updating, including 1) Direct data 

combination – assuming that the existing metamodel was trained 

and validated using the data generated under the same 

experimental condition as the new one, new data points are just 

added to optimize the model parameters. 2) Grey-box modeling 

[11], which is applied if the new experimental conditions are 

different, but the design spaces are highly overlapped. 3) 

Interpolation modeling strategy, which can be chosen for any 

cases. Here again, AREM [10][21] is selected to evaluate the 

predictive accuracy: 

𝐴𝑅𝐸𝑀 =
1

𝑛
(
∑ |𝑦𝑖 − 𝑦̂𝑖|
𝑛
𝑖=1

𝑦𝑖
) 

where y is the observed value, 𝑦̂ is the value predicted by the 

metamodel and n is the total number of new data points. 

STEP 4

STEP 3

STEP 1

STEP 2

STEP 5
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      For our study, data sets were collected from two independent 

experiments conducted for a laser melting powder bed fusion 

metal AM process [23]. The first experiment melted the powder 

directly on a bare build plate. This set of data is used to build an 

initial metamodel. The second experiment was conducted on a 

single layer of powder and the data generated is considered as a 

new data set. Laser power (LP) and scanning speed (SS) are the 

input variables, and melt-pool width is the output variable of the 

metamodel. Both experiments used the fractional factorial 

design of experiments (DOE) method, with the laser power 

ranging from 100W to 250W and the scan speed ranging from 

200 μm/s to 1400 μm/s. Two data points were left out because of 

infeasible builds at low energy intensity. The remaining 26 data 

points are listed in Table 2. The melt-pool width was measured 

along a 1mm section near the center of the scan trace and the 

measurement method is detailed in Fox et al [25]. The mean 

value is listed in the table.  

Table 2. Results of laser melting experiments 

LP (W) SS (mm/s) 
Melt-pool width (μm) 

Bare build plate On powder 

100 200 134.57 127.77 

100 400 114.75 112.43 

100 800 80.52 97.98 

100 600 87.58 86.64 

100 1000 75.35 64.43 

150 200 181.44 162.65 

150 400 126.50 149.24 

150 600 124.70 129.07 

150 800 106.39 119.95 

150 1000 103.50 101.26 

150 1200 99.28 97.98 

150 1400 99.40 95.95 

195 200 235.94 225.16 

195 400 178.07 150.01 

195 600 150.52 153.05 

195 800 129.57 151.04 

195 1000 122.86 119.19 

195 1200 115.38 125.60 

195 1400 112.40 114.83 

250 200 247.39 253.57 

250 400 227.55 254.10 

250 600 159.31 150.13 

250 800 160.85 175.71 

250 1000 141.34 141.05 

250 1200 134.58 137.31 

250 1400 126.69 124.42 

 

      To generate an appropriate metamodel update strategy, we 

manipulated and divided the original data points into several sub 

data sets to represent various data-model matching scenarios. 

Table 3 summarizes four sub data set partitions covering four 

possible data-model matching scenarios. For scenarios 1 and 2, 

both the initial data set and the new data set are sampled from 

Experiment 1. For scenario 1, 15 out of 26 data points from the 

first experiment were sampled by space filling to construct the 

initial metamodel. The other 11 points are treated as newly 

ingested data. In scenario 2, the design space of the initial 

metamodel and the domain of the new data set are manipulated 

to be only partially overlapped. Scenarios 3 and 4 assume data 

from the first experiment for the initial metamodel construction 

and select data from the second experiment to form a new data 

set. Scenarios 3 and 4 consider different design space 

overlapping conditions.  

Table 3. Test problem scenarios 

N
o

. 

Overlapping condition 
Experimental 

consistency 
Initial New 

LP SS LP SS 

1 100-250 200-1400 100-250 200-1400 Yes 

2 100-150 800-1400 195-250 200-1000 Yes 

3 100-250 200-1400 100-250 200-1400 No 

4 195-250 200-1400 100-195 200-1400 No 

 

      Polynomial regression was selected to build a metamodel in 

this example considering the linearity observed between the 

inputs and the output. If a grey-box modeling strategy is applied, 

Kriging method [24] is combined with the initial polynomial 

model. Table 4 lists the model update results for all test scenarios. 

The initial AREM was measured using the LOO cross-validation 

method. Predictive AREM refers to the prediction error on the 

new data points. Final AREM, however, is calculated differently 

for different scenarios. Scenarios 1, 2 and 4 use the LOO cross-

validation method since there is no third data set available within 

the given design space. Scenario 3 used a third data set to 

evaluate the updated AREM beyond the initial LOO cross-

validation. The third data set is extracted from the second 

experiment result, which covers those points not selected to 

construct the newly ingested data (with results shown in 

parenthesis). A star symbol marks the best update strategy and 

corresponding AREM. 

 

Table 4. Results from model updating after ingesting new data 

No. 
Initial 

AREM 

Predictive 

AREM 
Updating strategy 

Final 

AREM 

1 0.0783 0.0626 Direct combination 0.0528 

2 0.0520 0.3614 
Direct combination 0.0760 

Interpolation modeling*  0.0743* 

3 0.0528 0.0700 

Direct combination 
0.0564 

(0.0749) 

Grey-box modeling* 
 0.0001* 

(0.0670*) 

Interpolation modeling 
0.0822 

(0.0852) 
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4 0.0672 0.2074 
Direct combination*  0.0585* 

Interpolation modeling 0.0598 

 

For Scenario 1, the predictive AREM on the new data set is 

0.0626 which is less than the initial AREM. This observation 

indicates that it might be unnecessary to update the current 

metamodel further since the model can accurately predict the 

new data points. However, it is observed that after the model 

updating using the direct data combination strategy, the final 

AREM is further reduced to 0.0528. Scenario 2, however, 

requires a major update for the initial metamodel since it 

generates very large predictive AREM (0.3614) on the new data 

set. Both applicable strategies provided model improvement at a 

similar level. Though the AREM of the direct combination 

method is slightly higher than that of the interpolation strategy, 

it fundamentally increases the design space. For scenario 3, 13 

data points are picked from the second experiment to form the 

new data set. The rest of the data is available to validate the 

model since the two data sets are in the same design space. In 

this case, the interpolation strategy is not optimal as the updated 

model generated has higher AREM. Instead, grey-box updating 

results in the greatest improvement. Scenario 4 represents the 

most complex situation among these test scenarios. Both design 

space and experimental conditions are inconsistent between the 

initial model and the new data set. Thus, any strategy that can 

utilize more information to update the metamodel would become 

useful. After strategic updating, the AREM was reduced from 

0.2074 to 0.0585.  

      The case study demonstrates a valid approach to updating an 

existing metamodel using new data. It sheds a little light on a 

general metamodel update approach. However, the case study 

only illustrates a manual process for model updating. Further 

research is needed to discover an automated and more effective 

way for metamodel updating following emergence of new data 

sets in the AM domain.  

5. CONCLUSIONS 

      As AM matures into a production-ready technology, greater 

emphasis will continue to be placed on rapid design-to-product 

transformations.  AM will continue to become a more viable 

alternative for applications such as supply chain logistics and 

customized parts.  To this end, this paper outlined a closed-loop 

data-information-knowledge-application framework that will 

support the functionalities necessary to realize rapid, 

customizable, design-to-product transformations through a self-

improving knowledge management system. 

      The proposed analytic framework defines a bottom-up 

knowledge engineering process and a top-down data generation 

process to leverage individual efforts of conducting experiments 

and deriving knowledge from data. The streamlined bottom-up 

knowledge engineering process plus the application driven data 

generation process are connected by operators and engineers.  As 

new data is ingested, it will be infused to the existing information 

system. The contextualized new data could trigger a 

metamodeling process where predictive models are updated to 

reflect PSP more accurately. Sequentially, the new knowledge 

will be integrated into the AM application to improve AM 

engineering decisions. Conversely, if the engineer receives some 

alarm caused by inconsistency between design decisions and 

design rules, he/she can perform engineering analysis by 

querying the knowledge. If knowledge is missing, information 

needs will be generated, and the demand will be passed to the 

information system, and ultimately design-of-experiments can 

be prescribed for the researchers and manufacturers. Thus 

additional experiments, builds, and tests can be performed in a 

cost effective fashion.  

      The integrated and automated workflow illustrated in this 

paper is comprehensive enough to cover and manage the whole 

development lifecycle of AM knowledge with continuous 

improvement.  It was also discovered that to automate and 

streamline the workflow, further research on AM informatics is 

needed to build the links still missing, especially those in the top-

down goal-oriented data generation processes.   

      Our future work will be focused on the integration of 

knowledge-based adaptive data-driven knowledge engineering 

and goal-oriented adaptive data sampling design. Specifically, 

we will investigate how ontology can potentially address the 

aforementioned need to learn from the experience of AM parts 

produced successfully or unsuccessfully. This would reduce 

requirements to simulate or analyze each new job fully.  

Approaches will be proposed to adaptively learn and enrich the 

knowledge base to enable continuous improvements. The two-

way concept introduced in Section 3 provides the foundation to 

methodically adapt data and knowledge to improve the quality, 

reliability, and usefulness of both for improved understanding of 

the complexity of PSP relationships.  This approach can help 

move toward a reusable knowledge base that improves with 

experience. A reference ontology can be developed and 

standardized to enable easy integrations of heterogeneous AM 

information systems. 
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