
Model-based Cosimulation for Industrial Wireless
Networks

Jing Geng∗, Honglei Li∗, Yanzhou Liu∗, Yongkang Liu†,
Mohamed Kashef†, Richard Candell†, Shuvra S. Bhattacharyya∗‡,

∗ Department of Electrical and Computer Engineering, University of Maryland, College Park, USA
† Intelligent Systems Division, National Institute of Standards and Technology, USA
‡ Department of Pervasive Computing, Tampere University of Technology, Finland

Email: {jgeng, honglei, yzliu}@umd.edu, {yongkang.liu, mohamed.hany, richard.candell}@nist.gov, ssb@umd.edu

Abstract—Wireless communications technology has the poten-
tial to provide major benefits in lowering the cost and increasing
the efficiency of factory automation (FA) systems. However,
design of FA systems that employ wireless networks involves
stringent constraints on real-time performance and reliability,
and requires the assessment of and experimentation with complex
interactions among process control, factory topology construction
(layout and connectivity of subsystems, such as machines, rails,
etc.), and wireless communication. In this paper, we introduce
a novel simulation framework to support such assessment and
experimentation in the design of next-generation FA systems. Our
simulation framework employs model-based design principles to
enhance design reliability, and enable systematic and efficient
integration of control, topology, and network modeling aspects.
We demonstrate the utility of our framework through a case
study that involves topology design and scalability analysis for a
large class of FA systems. Our results demonstrate the ability of
the proposed framework to provide insights on complex design
trade-offs, while the underlying model-based features enhance
efficient and reliable system-level integration.

I. INTRODUCTION

Wireless communications technology has the potential to

provide major benefits in lowering the cost and increasing

the efficiency of factory automation (FA) systems. In partic-

ular, wireless communication significantly reduces costs for

network deployment, and allows for integration of sensing

devices and associated monitoring capabilities in parts of the

system that are difficult or impossible to connect through wired

sensing installations (e.g., see [1]).

However, to realize the full potential of wireless com-

munications integration with FA, significant challenges must

be overcome in ensuring the reliability, real-time operational

speed, and energy efficiency of industrial wireless networks.

This is a major challenge due to the conflicting relationships

among these metrics, and the complexity of the system-level

design space, which includes key parameters at the layers of

communication protocols, FA system topologies (placement

and connectivity of units), and the embedded processing

platforms (hardware and software) within the network nodes.

To enable efficient experimentation, validation, and opti-

mization processes in the context of this complex design space,

effective simulation methodologies are of critical importance.

978-1-5386-1066-4/18/$31.00 ©2018 IEEE

In this paper, we introduce a novel simulation framework

to address the challenge of simulating complex FA systems

that are integrated with wireless communication techniques,

networks, and connections. Our framework is novel in its

model-based approach, where different models are employed

to efficiently and flexibly integrate the design perspectives

of FA topologies (system-level structure in the form of net-

works of machinery and control units), FA nodes (processing

within individual nodes of a networked FA system), and

wireless communications (protocol functionality and channel

characteristics). Model-based design is an important paradigm

for cyber-physical systems in which systems are specified

through components that interact through formal models of

computation [2].

In particular, we apply the dataflow model of computation

in new ways to formally capture key aspects of FA system

behavior and integrate these with discrete event models of

computation that are used in state-of-the-art simulators for

communication networks. Our application of dataflow prin-

ciples enables dataflow-based analysis of FA process flows

(system-level analysis) and signal and information processing

that takes places within individual FA nodes, while providing

efficient mechanisms for leveraging and interfacing to arbitrary

discrete-event-based network simulation tools.

Our simulation framework is built on top of the lightweight

dataflow environment (LIDE), which is a design tool for

dataflow-based design and implementation of signal and in-

formation processing systems [3], [4]. Distinguishing features

of LIDE are that it is minimally intrusive on existing design

processes, and it is easily adaptable to different platform-

or simulation-oriented programming languages, such as C,

C++, Verilog, VHDL, and MATLAB. LIDE achieves these

features through its formulation in terms of a compact set

of application programming interfaces (APIs) for constructing

software or hardware components that communicate through

dataflow interfaces, and for building up graphs as connec-

tions of such dataflow-based components. In our simulator

prototype, we specifically employ LIDE-C, which provides C-

language implementations of the LIDE APIs. However, the

simulator can be retargeted readily to other languages by

exploiting the retargetability of LIDE described above.

In our simulation framework for FA systems, we incorporate

extensions to LIDE for managing time because the dataflow

model of computation, which LIDE is based on, is an untimed

model with no built-in concept of time or time stamps. In

dataflow, functional components (actors) synchronize with one

another based only on the availability of data. The “time-

extended” version of LIDE that we employ is referred to as

τLIDE, where τ represents the incorporated notion of time.

Based on its foundations in τLIDE, we refer to our new

factory simulation framework as τLIDE–factorysim, which

we abbreviate as TLFS (Tau Lide Factory Sim). The TLFS

framework can be viewed as a design tool that applies timed

dataflow concepts in novel ways to enable model-based cosim-

ulation of factory process flows together with discrete-event

simulation of communication networks that link physically-

separated subsystems within the factories.

Rather than re-invent functionality for simulating commu-

nication networks, TLFS defines a structured process for inte-

grating third-party network simulation tools with the dataflow-

based factory simulation capabilities within TLFS. Thus,

TLFS is agnostic to any specific network simulation tool, and

can be adapted in a modular fashion to work with different

network simulators depending on the designer’s preference.

In our first-version prototype of TLFS, we apply NS-3 [5]

as the network simulation tool that is incorporated into the

framework. However, the underlying architecture of TLFS is

not dependent on NS-3, and can be adapted to work with other

network simulation tools, as described above.

The remainder of this paper is organized as follows. Sec-

tion II provides background on dataflow modeling that the later

sections in the paper depend on. Section III discusses related

work and positions the contribution of this paper in the context

of other simulation techniques and tools. Section IV presents

the architecture of the TLFS simulation framework. Section V

presents an example to concretely demonstrate the process of

modeling factory process flows in TLFS using its‘ underlying

dataflow capabilities. Section VI presents experiments that

demonstrate the utility of TLFS in assessing design trade-

offs across different combinations of factory process flow

and networking configurations. Section VII summarizes the

contributions of the paper and points to useful directions for

further investigation.

II. BACKGROUND

Dataflow is widely used as a programming model in many

areas of embedded and cyber-physical systems, especially in

areas that involve significant emphasis on digital communica-

tion, signal and information processing, or both. Model-based

design processes in terms of dataflow graphs provide useful

features such as efficient retargetability to different imple-

mentation languages and platforms; support for deterministic,

concurrent programming; and support for a wide variety of

analysis and optimization techniques (e.g., see [6], [7]).

A variety of specific forms of dataflow has been developed

and continues to evolve. These different forms of dataflow

provide different trade-offs between generality (the class of

applications that can be expressed) and analysis potential —

that is, the tractability of analysis and optimization problems

or the availability of algorithms that address such problems.

For background on dataflow models and various specialized

forms of dataflow in embedded and cyber-physical systems,

we refer the reader to [7].

The specific form of dataflow used in TLFS, inherited

from the modeling approach in LIDE, is referred to as core

functional dataflow (CFDF) [8]. CFDF is a general (Turing

complete) form of dataflow that can be used to model a wide

variety of applications. It is possible to apply more restricted

models in TLFS that trade-off some of the generality of CFDF

to enable more powerful analysis and optimization techniques.

Such exploration is a useful direction for future work that

builds naturally on the developments of this paper.

In the remainder of this section, we provide a brief in-

troduction to CFDF semantics. This background is useful

in understanding the methodology employed in TLFS for

modeling FA systems.

In CFDF, as in other dataflow programming variants, the

application system is represented as a directed graph in which

vertices (actors) correspond to functional modules, and each

edge e corresponds to a first-in, first-out (FIFO) buffer. This

buffer represents the storage of data as it passes from the

source actor of e to the sink actor of e. Each unit of data

that passes along an edge is referred to as a token. Tokens

can be of arbitrary data types, such as integers, floating point

numbers, or objects of any complexity.

In a simulation model of a factory system, each token that

passes through a given edge can represent some physical entity

(such as a part) that moves from one factory subsystem (e.g.,

a machine) to another subsystem. Alternatively, a token can

represent some form of information, such as a command that

is sent from a factory controller module to a machine or rail

that is controlled by the module.

In dataflow, the execution of an actor is decomposed into

discrete units of execution called firings of the actor. On each

firing, an actor consumes zero or more tokens from each of

its input edges and produces zero or more tokens onto each

output edge. The numbers of tokens that are produced and

consumed in this way are referred to as the production and

consumption rates that are associated with the firings.

An actor A in CFDF consists of a set µ(A) of one or more

modes, where each m ∈ µ(A) corresponds to a distinct state

in which the actor can fire. In other words, each firing f of

the actor is a associated with a specific mode in µ(A). As a

side effect, each firing determines the next mode n ∈ µ(A) of

the actor, which is the mode that will be associated with the

next firing of the actor. An initial next mode is assigned to

each actor as part of the initialization of a CFDF graph.

In a given CFDF mode, the production or consumption rate

on each incident edge must be constant — that is, all firings in

the same mode must have identical production (consumption)

rates on a given output (input) edge of the actor. This is a key

“design rule” of CFDF. However, the rates can vary between

distinct modes. A CFDF actor can fire whenever the number

of tokens buffered on each input edge is at least equal to the

consumption rate of the edge for the actor’s next mode.

As a simple example of a CFDF actor, consider the integer-

typed switch actor that is illustrated in Figure 1. This actor

has two input ports xd (data) and xc (control), and two output

ports yf and yt. The ports xd, yf , and yt have integer token

type, while the token type of xc is Boolean. The actor operates

by copying each ith token consumed from xd to yf or yt
depending on whether the ith value consumed from xc is

false or true, respectively.

Fig. 1. A switch actor used to illustrate CFDF modeling.

This functionality can be implemented as a CFDF actor with

three modes µ = {mc,mt,mf}. The subscripts here stand for

“control”, “true”, and “false”, respectively. In mc, the actor

consumes the next token (“control token”) from xc, and sets

the actor’s next mode to mf or mt depending on whether

the value consumed is false or true, respectively. In mf

(mt), the actor outputs a copy of the most-recently consumed

control token onto yf (yt) and unconditionally sets the actor’s

next mode (back) to mc.

One can easily verify, based on this description, that the

number of tokens consumed and produced on each actor port

is constant for each given mode. This is the basic “dataflow

requirement” when decomposing an actor into modes for

CFDF modeling. For example, the production rates associated

with ports xc, xd, yt, yf in mode mc are 1, 0, 0, 0, respectively.

For more detailed background on dataflow modeling that is

oriented to embedded and cyber-physical systems, we refer the

reader to [6], [7]. For further details on CFDF, we refer the

reader to [8]. For foundational concepts related to the dataflow

paradigm, we refer the reader to [9], [10].

III. RELATED WORK

A variety of approaches have been developed over the

years that are relevant to the effective simulation of networked

factory automation systems.

For example, Neema et al. have developed a model-based

platform that integrates heterogeneous simulation tools for

cyber-physical systems [11]. Düngen et al. demonstrate a

simulation approach for parallel sequence spread spectrum

signals in the context of industrial wireless communication

environments [12]. Liu et al. present a simulation framework

that integrates process control system modeling and wireless

network modeling into a unified discrete-event simulator [13].

Bause et al. present a tool that integrates the ProC/B toolset

for process chain modeling with the OMNeT++ tool for

simulating communication networks [14]. Won et al. present a

tool that integrates the targeted dataflow interchange format, a

dataflow tool for embedded signal processing, with the NS-2

environment for communication network simulation [15].

The work presented in this paper differs from the related

work in its emphasis on dataflow-based modeling of fac-

tory process flows, and its general approach for integrating

dataflow-based process flow models with arbitrary discrete-

event-based tools for communication network simulation.

For concreteness, we demonstrate our models and methods

by integrating a specific dataflow-based design tool, LIDE,

with a specific network simulation tool, NS-3. However, the

architecture of TLFS is formulated carefully in terms of

abstract dataflow principles and model-based interfacing prin-

ciples between dataflow and network modeling subsystems.

This use of abstraction promotes the adaptability of TLFS to

incorporate other network simulation tools as well as other

tools for dataflow-based design. This flexibility is important

given that a variety of different network simulation tools exist

with different combinations of features (e.g., see [16], [17]).

In this way, our contribution is complementary to related

work such as the works discussed previously in this section.

For example, the network simulation techniques applied in the

works by Liu [13] and Düngen [12] can be interfaced with

dataflow-based factory models using TLFS, and similarly, the

techniques for embedded software synthesis used in the work

of Won [15] can be applied to networked factory automation

systems. Such extensions of TLFS represent a useful direction

for future work.

IV. SIMULATION APPROACH

In this section, we present our simulation framework, called

TLFS, for FA systems that are integrated with wireless com-

munication networks. We describe the architecture of TLFS,

which is designed to be integrated with arbitrary simulators

that are specialized for communication network simulation

(CNS). In Section VI, we present experiments using this

architecture with the integration of a specific CNS tool.

Figure 2 illustrates the architecture of TLFS. The blue-,

green-, and red-colored parts of the diagram (the top 2, middle

2, and bottom 2 blocks, respectively) correspond to parts

that pertain to factory process flow simulation, interfacing

(cosimulation) between the factory and network simulation

subsystems, and communication network simulation.

In TLFS, a factory system is modeled as a dataflow graph in

which vertices (actors) represent distinct physical or computa-

tional components within the system, and edges represent the

flow of information or physical entities (e.g., parts for prod-

ucts that are being manufactured). Examples of TLFS actors

include actors for representing individual machines within a

factory, individual rails that connect different machines, and

machine controllers that send signals to machines to instruct

the machines to perform specific functions (such as loading

parts on rails when specific conditions are met). More detailed

actor examples will be presented in Section V.

As illustrated in Figure 2, cosimulation is enabled by the

TLFS coordination module (or just coordination module in

Fig. 2. Cosimulation architecture based on TLFS.

abbreviated form), which transfers relevant simulation events

between the factory and network simulation subsystems. There

are two types of events that trigger event transfer through

the coordination module: dataflow send events, which are

generated in the factory simulation (dataflow simulator), and

network receive events, which are generated in the CNS. These

events are communicated between simulation subsystems us-

ing a dedicated event list, which is represented by the block

in Figure 2 labeled “communication event list”, together with

the coordination module, which acts as a gateway to achieve

proper synchronization of communication events. More details

on the process of managing dataflow send events and network

receive events are described in Section IV-C.

A. Coordination Module

Figure 3 shows a pseudocode sketch of the coordination

module. Here, ntime represents the value of simulated

time in the CNS (network time), and nresult is a simple

data structure that is used to communicate selected status

information from the CNS tool to the coordination module.

In particular, nresult.result_time gives the current

value of network time, and nresult.receive_events

provides the list of network receive events that have been

generated in the CNS tool during the most recent call to the

CNS tool. The function save_receive_events removes

events from nresult.receive_events, and generates

corresponding events in τLIDE that trigger processing of

the received data (see Figure 3). The dataflow simulator has

access to the communication event list directly through special

communication interface actors within the factory process flow

model. Communication interface actors are discussed further

in Section IV-C.

The next_lide_event_time function is a method of

τLIDE that returns the time of the earliest pending event

within the event list of the dataflow (factory) simulation. The

simulate_network function serves as a “wrapper” for

Fig. 3. A pseudocode sketch of the block in Figure 2 that is labeled TLFS
coordination module.

whatever CNS tool is being used in the given application of

TLFS. This function uses application programming interfaces

of the CNS tool to simulate the FA system’s communica-

tion network until a new receive event is generated or the

next_lide_event_time is reached, whichever happens

first. If (a) the return value from next_lide_event_time

is infinite, which means that there are no pending dataflow

events, and (b) there are no more pending communica-

tion events in NS-3, then simulate_network stops with

network_result.deadlock = true. The simulation

(while loop in Figure 3) stops when this deadlock condition

is reached or when the predefined simulation time limit

time_limit is reached.

B. Latency Modeling

The passage of time in the factory process flow model

incorporates latencies that are associated with the actors in

the model. These latencies are specified as part of the mod-

eling process. Additionally, the physical placement of factory

components (machines, controllers, etc.) with respect to the

enclosing factory environment is annotated as attributes of

actors that represent the components in the dataflow model.

This placement information is passed to the CNS tool when

the cosimulation is initialized.

Similarly, the CNS tool is responsible for simulating la-

tencies associated with sending and receiving data across

the communication network. In general, CNS tools take into

account channel characteristics, network traffic conditions, and

transmitter-receiver separation (distance) in determining these

latencies. The interoperability of TLFS with arbitrary CNS

tools allows designers to leverage the various communication

latency modeling approaches of available tools.

Each dataflow actor A in a TLFS factory process flow model

has an associated execution time estimation function, which is

denoted by θA or by θ if A is understood from context. The

arguments to the function include any parameters and state

variables of A.

When a new firing of A becomes enabled at some simulated

time t, TLFS calls the θA function to determine the amount of

simulated time Tf that will be expended by the firing. Here, by

an enabled firing, we mean a firing for which there is sufficient

data on the input edges of the associated actor A, as defined

by the consumption rate specification for the next mode of A.

Upon determining the value Tf , TLFS schedules a firing

completion event to be processed by the simulator at time

(t+Tf). The firing completion event triggers the execution of

a τLIDE function that carries out a single firing of A, which

in turn updates the input and output edges (FIFOs) of A based

on the token consumption and token production that occurs as

part of the firing.

Just as τLIDE is used to manage simulated time delays

associated with actor firings (execution of factory subsystems),

the CNS tool is responsible for managing the simulated delays

associated with sending and receiving communication packets

through the wireless communication network. The TLFS co-

ordination module (see Figure 2) is responsible for synchro-

nizing the advancement of time across the two cooperating

simulators for factory dataflow and network communication,

respectively.

C. Communication Interface Actors

For dataflow modeling in TLFS, we introduce a special type

of actor called a communication interface actor, as mentioned

in Section IV-A. Communication interface actors are used in

factory process flow models to represent functionality for send-

ing or receiving data across wireless communication channels.

These actors are used to provide modular interfaces between

the dataflow subsystem within a TLFS simulation model and

the TLFS coordination module (see Figure 2), which is used to

provide time synchronization and information transfer between

the dataflow simulator and the CNS tool. Communication

across these interfaces goes through the dataflow simulator

and communication event list.

In TLFS, we use different types of communication interface

actors for sending and receiving data across the wireless

network. These are referred to, respectively, as send interface

actors (SIAs) and receive interface actors (RIAs). When an

SIA fires (executes) in the dataflow simulation, it injects one

or more events into the communication event list. This list is

used, as described in Section IV-A, by the TLFS coordination

module to transfer events between the dataflow simulator and

the CNS tool.

Similarly, events associated with the reception of data in

the CNS tool (network receive events) trigger the firing of

RIAs in the dataflow simulation. This triggering is enabled

again by the coordination module, which injects an event into

the τLIDE event list corresponding to each network receive

event that it detects. This process of injecting reception-related

events into τLIDE is represented by the function call labeled

save_receive_events in Figure 3. More specifically, an

RIA firing completion event is scheduled in τLIDE for each

packet reception. The time of the event is the receive time as

determined by the CNS tool.

Note that there need not be a one-to-one correspondence

between the SIAs and RIAs in an TLFS model. The routing

of packets between SIAs and RIAs is achieved through infor-

mation in the packets (as they are assembled in the dataflow

simulation), and the communication protocols that are being

used (as they are simulated in the CNS tool).

V. FACTORY SYSTEM MODELING

In this section, we concretely demonstrate the process of

modeling factory process flows in TLFS using the underly-

ing dataflow capabilities. Once modeled within the dataflow

framework of τLIDE, the factory models can be integrated

systematically with arbitrary CNS tools using the TLFS frame-

work defined in Section IV.

A. Factory Process Flow Model

Figure 4 illustrates a simple factory system that we use to

demonstrate the dataflow-based modeling process in TLFS.

The factory processes parts that are generated by a Parts

Generator subsystem. Each part is processed by a pipeline that

consists of three distinct machines. A given machine could,

for example, be responsible for adding some specific feature

to the part. The third machine outputs the fully-processed

parts, which are subsequently collected for storage or further

processing by a subsystem called the Parts Sink. In this and

related examples of this paper, we are not concerned with the

details of what the Parts Sink does; we consider storage within

the Parts Sink to represent the last stage of processing within

the FA system (pipeline) that is being investigated.

Fig. 4. A simple factory system that we use to illustrate the dataflow-based
modeling process in TLFS.

Adjacent machines and rails in Figure 4 are controlled by

controller subsystems, which we refer to as machine con-

trollers. Each of the lower three blocks in the figure represents

a Dual-Rail, Single Machine (DRSM) controller, which is a

machine controller that is designed to interface with two rails

and a single machine. For example, the DRSM controller for

Machine 1, Rail 1 and Rail 2 sends a command to Machine

1 to output the next part onto Rail 2, and similarly, it sends a

command to Rail 1 when it is time for Machine 1 to take in

the next part to process.

When a machine or rail completes a command that is

sent from an associated machine controller, it sends an ac-

knowledgment message back to that controller indicating the

completion of the command operation. Additionally, state

changes within the machines and rails may trigger notification

messages to inform the corresponding machine controllers.

The communication between machines and rails and their

associated machine controllers is assumed to be carried out

using wireless connections, which are shown as the dashed,

bidirectional edges in Figure 4.

Figure 5 illustrates a TLFS-based dataflow model that can

be used to model the factory system of Figure 4. This model

is an actual test case for TLFS, and can be used by TLFS

to simulate the functionality and performance of the factory

system together with specific communication protocols that

are used to implement the wireless networking, as well as

specific models of the wireless channels within the factory

environment.

Fig. 5. A dataflow model for the factory system of Figure 4.

In the dataflow graph of Figure 5, the actors M1,M2,M3

and r1, r2, r3 model the machines and rails, respectively, of

the factory pipeline that is depicted in Figure 4. Similarly, the

actors C1, C2, C3 represent the three machine controllers that

provide commands to different subsets of machines and rails.

The actors G and K are used to model the Parts Generator

and Parts Sink.

The rail r1 is a special rail that incorporates storage for

multiple parts that are generated by the Parts Generator. If this

storage fills up (i.e., if parts are being generated faster than

they are processed in the pipeline), then the Parts Generator

stops generating new parts until there is space in r1 to

accommodate them. This functionality ensures that parts do

not keep accumulating at the output of the Parts Generator if

they cannot be processed by the machines fast enough.

The numbers next to or inside the actors and next to the

edges in Figure 5 are used as unique labels (indices) to help

identify the different graph components.

The actors in Figure 5 that are labeled S1, S2, . . . S12 are

SIAs. As described in Section IV-C, SIAs and their coun-

terparts called RIAs are special actors that model wireless

communication interfaces for transmitting and receiving data

across the FA network. Actors R1, R2, . . . , R14 are RIAs. The

RIAs and SIAs are actors that encapsulate the functionality for

interfacing the dataflow-based FA process flow model to the

event-based model that is used in the CNS tool. More details

about SIAs and RIAs are discussed in Section IV-C.

B. Actor Modeling Example

Actors that model individual factory subsystems, such as

machines, rails, and the Parts Generator, are specified in TLFS

using CFDF semantics, which were introduced in Section II.

In CFDF, a given actor can be viewed as a state machine where

the current mode of the actor defines the present state, and state

transitions occur between firings based on the determination

of the actor’s next mode as part of each firing. A graphical,

finite state machine representation of a CFDF actor is therefore

referred to as a mode transition graph. In a mode transition

graph, vertices represents actor modes for a given actor, and

each edge (ma,mb) indicates that it is possible for the actor

to determine its next mode as mb when it is executing in mode

ma.

To illustrate actor modeling in TLFS, we discuss the mod-

eling of machine controllers in our example factory process

flow model of Figure 5. Figure 6 illustrates the interface (input

and output ports) for each of the machine controller actors

C1, C2 and C3 in Figure 5. These actors are among those

that have the most complex mode transition graphs in our

factory system example, and help to concretely illustrate the

modeling of factory subsystems in TLFS. Actors C1, C2 and

C3 represent DRSM controllers.

Fig. 6. Interface of a DRSM controller actor.

A DRSM controller is associated with a specific machine

M in the factory system, an input rail Rin of the machine, and

an output rail Rout of the machine (or to some subsystem that

has a similar input interface as a rail). The DRSM controller

communicates through a wireless channel to monitor updates

to the state of M , Rin , and Rout that are detected by sensors

on these three subsystem. The DRSM controller also sends

actuation commands to M , and Rin through the wireless

channel.

In our factory model, the DRSM C3 interfaces to the Parts

Sink actor in place of an output rail. However, the input

interface of the Parts Sink is modeled in a similar fashion as

that of a rail. Thus, a DRSM is used to model the controller

for Machine M3 even though the output of this machine is

connected to the Parts Sink rather than to a rail.

The input ports MS , RinS , RoutS , shown in Figure 6

represent ports for receiving monitoring messages from the

relevant sensors of M , Rin , and Rout , respectively. Similarly,

the output ports MA and RinA represent ports for sending

actuation messages to M and Rin . In the notation associated

with these ports, R, M , s, and a stand respectively for rail, ma-

chine, sensing, and actuation. Note that in this factory system

example, the actuation associated with Rout (the transfer of

parts from the rail to the next factory pipeline unit) is assumed

to be performed by a different controller that is also associated

with Rout .

The approach described here for DRSM controllers is just

one possible way of modeling interfaces in TLFS between

machine controllers and their associated rails and machines;

many other interfacing models are possible given the flexibility

of the underlying dataflow model of computation.

C. Mode Transition Graph

In Section V-B, we discussed the mode transition graph as a

useful representation of actor functionality. Figure 7 illustrates

the mode transition graph for a DRSM controller actor.

Fig. 7. Mode transition graph for a DRSM controller actor.

As a DRSM controller actor D operates, it keeps track of (as

part of its internal state) the status of the associated factory

subsystems M , Rin and Rout through messages it receives

through the MS , RinS , and RoutS ports of D, respectively.

Note that dataflow actors for embedded applications are typi-

cally allowed to maintain state. Such state can be represented

formally within a dataflow model as a self loop edge — that

is, an edge whose source and sink actors are identical. To

avoid clutter in diagrams of dataflow graphs, we often omit

the self-loop edges.

The status information that a DRSM keeps track of includes

the state of the machine M and the number of parts that reside

at any given time on the rails Rin and Rout . This control

information is used to help ensure the constraints that at any

given time there should be at most one part in the machine,

and that the number of parts on a rail at any given time should

not exceed its capacity. The capacity of a rail (the maximum

number of parts that can reside on it at a given time) is an

actor parameter in the dataflow model. In our experiments, we

use a capacity of 10 for rail r1 in Figure 5, which connects

to the output of the parts generator, and we use a capacity of

1 for each of the other rails.

The DRSM operates through sequences of message pro-

cessing cycles, where each cycle involves a trajectory through

multiple actor modes. Each cycle begins in the selectMessage

mode, where the next input message to process is selected.

This selection is made based on the unprocessed messages

that are buffered at the actor inputs, and some priority scheme

for selecting messages if messages are available on multiple

inputs. If no messages are available at the inputs, then the actor

waits in the selectMessage mode until a message becomes

available. The TLFS framework can be used to prototype

and experiment with different priority schemes. In our ex-

periments, we assumed the simple priority scheme in which

messages are selected in decreasing priority order from the

inputs RoutS , RinS , and MS , respectively.

The processRout, processMachine, and processRin modes

shown in Figure 7 are used to perform initial processing of

messages received from actor inputs RinS , RoutS , and MS ,

respectively. These actors use the newly received sensor data

and the current state information saved within the DRSM to

determine whether a new command message needs to be sent

to Rin , Rout or M . If a new command is not required to be

sent at this time, the DRSM completes the current message

processing cycle by returning to the selectMessage mode,

where the next cycle will subsequently begin.

Otherwise — if the DRSM determines in the processRout,

processMachine, or processRin mode that a command message

needs to be sent — then it transitions to Mode machineReady,

machineNewPart, or machinePartDone depending on the type

of message that needs to be sent. Mode machineReady repre-

sents the situation where a part has entered the machine, and

the machine is waiting for a command to start performing its

processing on the part. Similarly, Mode machineNewPart is

entered when the machine is ready to receive a new part for

processing from its input rail, and a part is available to be

ingested from the rail. Mode machinePartDone represents the

situation where the machine has finished its processing of a

part that is still inside the machine, and there is a vacancy on

the output rail so that the part can now be transferred to the

rail.

All of the modes in Figure 7 are based on standard CFDF

semantics (see Section II), except for the selectMessage mode,

which is called a transition-only mode. This type of mode can

be used to model nondeterminate behaviors in LIDE. In our

case, nondeterminism arises because of the unpredictable order

in which messages in general arrive at wireless communica-

tions interfaces of network nodes. Support for transition-only

modes is a new feature that we have added to LIDE as part

of developing TLFS.

In its transition-only mode, the machine controller actor

does not consume any input tokens. Instead, it checks the

populations of the input edges, and determines the next mode

as a function of these populations. The machine controller

actors in our factory process flow model are the only actors

that have transition-only modes, and each of these actors has

exactly one such mode. Thus, the overall factory system model

is technically based mostly on CFDF — all actors are CFDF,

except the three machine controllers, which are equipped with

transition-only modes, as described above.

The use of transition-only modes allows factory system

models in TLFS to incorporate non-determinism at the com-

munication network level together with deterministic, CFDF-

based modeling of signal and information processing that is

TABLE I
DATAFLOW TABLE FOR A DRSM CONTROLLER ACTOR.

Mode RinS MS RoutS MA RinA

selectMessage 0 0 0 0 0
processRin -1 0 0 0 0

processMachine 0 -1 0 0 0
processRout 0 0 -1 0 0

machineReady 0 0 0 0 1

machinePartDone 0 0 0 1 0
machineNewPart 0 0 0 1 0

embedded within individual factory subsystems. This multi-

layer modeling is achieved all within a unified dataflow

framework along with model-based interfacing to CNS tools.

Experimentation with complex signal and information pro-

cessing functionality in TLFS — for example, by integrating

machine learning subsystems into factory workflow models —

is a useful direction for future work.

D. Dataflow Table

In addition to the mode transition graph, another data

structure that is useful for representing the behavior of CFDF

actors is the dataflow table [4]. The dataflow table for a

CFDF actor A is a matrix D whose rows are in one-to-one

correspondence with the mode set µ(A) and whose columns

are in one-to-one correspondence with the ports of A. for each

port p of A and each mode m ∈ µ(A), the matrix element

D[m, p] gives the net change in the token population on the

edge connected to p that results from firing A in Mode m. If

p is connected to a self-loop edge or if m does not produce or

consume data on p during m, then D[m, p] = 0. Otherwise,

D[m, p] gives the number of tokens produced on p during m

if p is an output port of A, and D[m, p] gives the negative of

the number of tokens consumed from p during m if p is an

input port of A.

Table I shows the dataflow table for a DRSM controller

actor. By definition, all of the entries for the selectMessage

mode are zero in the table because this is a transition-only

mode. As shown in the table, all of the other modes perform

dataflow (consume or produce tokens) on at least one actor

port. The dataflow table is useful, for example, as a data

structure for model-based testing. Using the dataflow table,

one can generate tests for validating that the implementation

of an actor is consistent with the interface behavior defined

by the actor model.

E. Summary

In this section, we have presented concretely, through an

example, the modeling of a factory process workflow in TLFS.

We have focused in the example on modeling the interfacing

between different subsystems in a factory model. Of course,

this is just one example of a factory model in TLFS, and

many other kinds of process flow models can be developed

and experimented with using the tool.

While models of the type demonstrated in this section are

relatively abstract, they can be useful for fast design space

exploration across large design spaces involving communi-

cation protocols, factory topologies, and distributed control

policies. Such early stage design space exploration can be used

to inform later stage simulation experiments that investigate

specific combinations of protocols, topologies, and policies

in more depth. Experimenting with TLFS for such detailed

simulation experiments, which incorporate lower levels of

process flow design abstraction, is a useful direction for future

work.

VI. EXPERIMENTS

In this section, we present experiments to demonstrate the

utility of TLFS. First, we use TLFS to study the effect of

different wireless communication protocols on communication

system performance for a given factory model. Then we

demonstrate how communication performance changes as the

complexity of the factory system increases, and also as the

distances between network nodes in the factory increase. These

experiments are conducted with NS-3 as the CNS tool.

The experiments presented in this section are representative

of the kinds of studies that can be performed with TLFS.

They are by no means intended to be comprehensive. Indeed,

the flexible architecture of TLFS, which facilitates integration

with arbitrary CNS tools, enables a wide variety of different

kinds of trade-off studies, and investigations into the influence

of parameters and other design decisions on factory system

performance. Development of more extensive case studies in

simulation and design using TLFS is an interesting direction

for future work.

A. Simulation Parameters

Each factory model simulated in our experiments consists

of one or more pipelines of the form illustrated in Figure 4 and

Figure 5. Each factory model has two size-related parameters

— the number of pipelines Np, and the number of machines

per pipeline Nm. Thus, the example shown in Figure 4 and

Figure 5 corresponds to Np = 1 and Nm = 3.

Table II summarizes the other key simulation parameters

used in our experiments. A given data point in the experiments

is derived by executing a simulation with the same settings Ns

times, and averaging the results over the Ns executions. Each

such simulation involves Nj generated parts for each Parts

Generator actor in the factory dataflow graph. The simulation

completes when all of the generated parts are fully processed

in their respective pipelines. Since there is one Parts Generator

actor per pipeline, this means that each simulation involves

processing a total of (Np ×Nj) parts.

The values of tm and tr give, respectively, the estimated

execution time values used in the simulation models for a

machine to process a part, and for a rail r to move a part from

one end of r to the other end. Similarly, ti is the estimated

time required to generate a new part after the previous part

has been generated. The values of tm, tr, and ti are used in

the execution time estimation functions (θs) for the relevant

actors (see Section IV-B).

TABLE II
SIMULATION PARAMETERS.

Parts Generated Per Pipeline Nj 100

Number of Simulation Iterations Ns 10

Machine Processing Time tm 10 sec

Rail Transfer Time tr 4 sec

Part Generation Interval ti 10 sec

Channel Frequency 2.4 GHz

Large Scale Path Loss Model Log-distance

Decay Exponent α 3

Distance Reference d0 1 m

Loss at Reference L0 46.6777 dB

The parameters α, d0, and L0 in Table II are related to the

simulation of propagation path loss. In our simulations, we

apply features in NS-3 for using the log-distance path loss

model to estimate signal loss in communication channels. The

log-distance model is often used to estimate path loss within

buildings. In this model, the power loss at the receiver side

when transmitting over a distance d is calculated by

L = L0 + 10αlog10(
d

d0
) + Z, (1)

where L0 is the path loss at the reference distance, d0 is the

reference distance, α is the decay exponent, and Z is the log-

normal shadowing.

B. Experiments with Different Protocols

We first use TLFS to study the average communication

delay Tc for a fixed factory size, and the variation in Tc

for different communication protocols — in particular, for

different variants of IEEE 802.11. Using TLFS, we measure

Tc as the average time difference between the time when a

communication packet P is successfully received (through an

RIA), and the time when P was transmitted (through an SIA).

This average is taken over all packet communications within

a given simulation.
In this experiment, we use a factory model with a single

pipeline that contains 3 machines — that is, Np = 1, Nm = 3.
Figure 8 shows a box plot representation of how Tc

was found to vary across four different protocols — IEEE

802.11xx, for xx ∈ {ac, b, g, n}. Significant performance

variation is shown between the best-performing protocol in this

context (IEEE 802.11g) and the worst-performing one (IEEE

802.11b). One reason for the relatively low performance of

IEEE 802.11b may be its low maximum data rate. Compared

with other protocols, which can achieve 54 Mbps speed, the

maximum speed of IEEE 802.11b is only 11 Mbps.
Overall, the results in Figure 8 show a clear advantage of

IEEE 802.11g in terms of Tc for the factory model studied in

this experiment.

C. Scalability Experiments

Next, we study how communication performance changes

as we increase the factory size (Np, Nm) and the dis-

tance between factory subsystems. Here we study five dif-

ferent factory dataflow graphs, denoted (a) through (e),

ac b g n

1.0

3.0

3.5

 IEEE 802.11xx

A
ve

ra
ge

 C
om

m
un

ic
at

io
n

D
el

ay
 (m

s)

Fig. 8. A box plot representation of the variation in average communication
delay across different communication protocols.

with sizes that are defined, respectively, as (Np, Nm) =
(1, 3), (1, 4), (1, 5), (4, 4), (5, 5). The total number of network

nodes in the CNS tool modeling subsystem are, respectively,

11, 14, 17, 56, and 85. Each rail, machine, and machine

controller corresponds to a distinct network node. Additionally,

each Parts Generator and Parts Sink is modeled as a separate

network node.

We define a distance parameter d associated with the

simulations in this experiment. The units of this parameter are

meters. For each factory pipeline, the spacing between adjacent

network nodes is set to d. Additionally, for factory models

that consist of multiple pipelines, the successive pipelines are

spaced apart by distance d. Note that for the experiments

reported in Section VI-B, we used a constant distance value

of d = 10.

Figure 9 and Figure 10 show the variation in average

communication delay and packet retransmission rate, respec-

tively, for the five different factory sizes defined above, and

for different settings of d for each factory size. In each of

these two figures, each of the five plots corresponds to a

distinct (Np, Nm) pair, and each curve within a given plot

corresponds to a distinct value of d ∈ {5, 10, 15, 20, 25}. The

data is plotted for each of the four IEEE 802.11 variants

discussed in Section VI-B. In Figure 10, the vertical axis

represents the fraction of packet transmissions that have to

be repeated due to errors in the original transmission. For

example, a value of 0.5 means that 50% of the packets have

to be retransmitted. In addition to increasing communication

delays, packet retransmissions result in energy consumption

overhead due to the increased operational load placed on the

communication transceivers in the system.

The results in Figure 9 and Figure 10 show the general

trends that one would expect of increasing communication

delay and packet retransmission rate with increases in the

distance parameter value d, and increases in the factory size.

The results also provide insight into how different IEEE 802.11

protocol variants perform for the different factory size/distance

combinations that are evaluated. The simulations carried out

ac b g n
0.6
0.9
1.2

3.5

4.0

ac b g n
0.8
1.2
1.6

4.0
4.5

ac b g n
0.8
1.2
1.6

4.0
4.5
5.0

ac b g n
0.9
1.2
1.5
1.8
4.0

4.5

ac b g n
0.8
1.2
1.6
2.0

4.5

5.0

 5
 10
 15
 20
 25

 5
 10
 15
 20
 25

 5
 10
 15
 20
 25

(e)

(a) (b)

(c)

 5
 10
 15
 20
 25

(d)

 5
 10
 15
 20
 25

Fig. 9. Variation in average communication delay for different factory sizes,
distance parameter settings, and IEEE 802.11 variants.

ac b g n
0.0

0.2

0.4

0.6

ac b g n

0.2

0.4

0.6

ac b g n

0.2

0.4

0.6

ac b g n

0.2

0.4

0.6

ac b g n

0.2

0.4

0.6

 5
 10
 15
 20
 25

 5
 10
 15
 20
 25

 5
 10
 15
 20
 25

 5
 10
 15
 20
 25

(e)

(d)(c)

(b)

 5
 10
 15
 20
 25

(a)

Fig. 10. Variation in packet retransmission rate for different factory sizes,
distance parameter settings, and IEEE 802.11 variants.

using TLFS provide a quantitative assessment of all of these

trends, and the associated factory system design trade-offs.

The results also help to validate the capabilities of TLFS and

demonstrate these capabilities with further concreteness.

VII. CONCLUSIONS

In this paper, we have introduced a simulation framework

called TLFS (Tau Lide Factory Sim) to address the challenge

of simulating complex factory automation systems that are

integrated with wireless communication. TLFS incorporates

novel techniques, based on dataflow concepts, for represent-

ing factory process flows, and for systematically integrating

dataflow-based process flow simulations with discrete event

simulations of communication network functionality. Useful

directions for future work include automatically generating the

corresponding communication network models from dataflow

graph representations of networked factory process flows,

and experimenting with more detailed and specialized factory

process flows using TLFS.

DISCLAIMER

Certain commercial equipment, instruments, materials, soft-

ware or systems are identified in this paper in order to specify

the experimental procedure adequately. Such identification is

not intended to imply recommendation or endorsement by

the National Institute of Standards and Technology, nor is it

intended to imply that the materials or equipment identified

are necessarily the best available for the purpose.

REFERENCES

[1] A. A. K. S., K. Ovsthus, and L. M. Kristensen, “An industrial perspective
on wireless sensor networks — a survey of requirements, protocols, and
challenges,” IEEE Communications Surveys & Tutorials, vol. 16, no. 3,
pp. 1391–1412, 2014.

[2] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems, A Cyber-

Physical Systems Approach, 2011, http://LeeSeshia.org, ISBN
978-0-557-70857-4.

[3] C. Shen, W. Plishker, H. Wu, and S. S. Bhattacharyya, “A lightweight
dataflow approach for design and implementation of SDR systems,”
in Proceedings of the Wireless Innovation Conference and Product

Exposition, Washington DC, USA, November 2010, pp. 640–645.
[4] S. Lin, Y. Liu, K. Lee, L. Li, W. Plishker, and S. S. Bhattacharyya, “The

DSPCAD framework for modeling and synthesis of signal processing
systems,” in Handbook of Hardware/Software Codesign, S. Ha and
J. Teich, Eds. Springer, 2017, pp. 1–35.

[5] ns–3 Tutorial, Release ns–3.25, ns–3 Project, 2016.
[6] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceedings

of the IEEE, pp. 773–799, May 1995.
[7] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, Eds.,

Handbook of Signal Processing Systems, 2nd ed. Springer, 2013.
[8] W. Plishker, N. Sane, M. Kiemb, and S. S. Bhattacharyya,

“Heterogeneous design in functional DIF,” in Transactions on High-

Performance Embedded Architectures and Compilers IV, ser. Lecture
Notes in Computer Science, P. Stenström, Ed. Springer Berlin
/ Heidelberg, 2011, vol. 6760, pp. 391–408. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-24568-8 20

[9] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Proceedings of the IFIP Congress, 1974.

[10] J. B. Dennis, “First version of a data flow procedure language,” in
Programming Symposium, ser. Lecture Notes in Computer Science,
B. Robinet, Ed. Springer Berlin Heidelberg, 1974, vol. 19, pp. 362–376.

[11] H. Neema et al., “Model-based integration platform for FMI co-
simulation and heterogeneous simulations of cyber-physical systems,” in
Proceedings of the International Modelica Conference, 2014, pp. 235–
245.

[12] M. Düngen, F. Hofmann, and H. Schulze, “Bit error rate simulation
studies for PSSS with multi-user detection for industrial multipath-
fading environments,” in IEEE International Workshop on Factory

Communication Systems, 2017, pp. 1–6.
[13] Y. Liu, R. Candell, K. Lee, and N. Moayeri, “A simulation framework

for industrial wireless networks and process control systems,” in IEEE

World Conference on Factory Communication Systems, 2016, pp. 1–11.
[14] F. Bause, P. Buchholz, J. Kriege, and S. Vastag, “A simulation environ-

ment for hierarchical process chains based on OMNeT++,” Simulation,
vol. 86, no. 5–6, pp. 291–309, 2010.

[15] S. Won, C. Shen, and S. S. Bhattacharyya, “NT-SIM: A co-simulator
for networked signal processing applications,” in Proceedings of the

European Signal Processing Conference, Bucharest, Romania, August
2012, pp. 1094–1098.

[16] A. Khan, S. M. Bilal, and M. Othman, “A performance comparison of
open source network simulators for wireless networks,” in Proceedings

of the IEEE International Conference on Control System, Computing

and Engineering, 2012, pp. 34–38.
[17] M. Korkalainen, M. Sallinen, N. Kärkkäinen, and P. Tukeva, “Survey of

wireless sensor networks simulation tools for demanding applications,”
in Proceedings of the International Conference on Networking and

Services, 2009, pp. 102–106.

